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Abstract

Natural language processing (NLP) involves tasks that enable computers to process and
understand human languages, whether in text or speech, with the goal of improving
communications between humans and machines, as well as among humans themselves.
The origins of NLP can be traced back to the 1950s when Alan Turing introduced the
Turing Test as a tool to determine whether a computer is as skillful as a human being in
processing human languages. With the rapid development of the Internet and computer
hardware in recent decades, the field of NLP has experienced significant growth, and
many NLP applications are now widely used in our daily lives, such as Google Translate
and Apple Siri. One notable advancement in recent years is the emergence of ChatGPT, a
large-scale intelligent language model, that has gained global attention for its impressive
conversational capabilities.

In NLP, discriminative models are often preferred over generative models owing to
their direct computation and proven success in various applications such as machine
translation, text summarization, and named entity recognition, despite challenges such
as unbalanced data distribution and limited training data. However, recent studies have
highlighted two significant issues that arise when using discriminative models: text
degeneration and exposure bias, which can hurt the quality of the models’ predictions.

The primary objective of this thesis is to improve the prediction results from discrim-
inative models by presenting two re-ranking-based methods: the language model-based
reranker (LMR) and the bidirectional Transformer reranker (BTR), to counter the de-
coding issues of text degeneration and exposure bias. The aim of this study is to propose
general ideas that can be easily implemented in NLP tasks, including discourse pars-
ing and grammatical error correction, without requiring complex modifications to the
existing discriminative model structure or excessive computational resources.

The proposed LMR is designed as a generative model that leverages information from
the top-𝛼 candidates generated by a discriminative model. In addition to the source
text, the LMR also treats each candidate as the input. For each candidate, the LMR
employs a masked language model and pseudo-log-likelihood scores (PLL) to estimate
the sequence probability based on the bidirectional representation of the concatenated
sequence comprising the source text and the candidate. This thesis uses contrastive
learning during training to increase the probability difference between the true sequence
and unmatched sequences, expecting to enhance the ability of the LMR to distinguish
between them, thereby mitigating issues such as text degeneration. Experimental results
on the RST-DT dataset demonstrate the effectiveness of LMR in discourse segmentation
and sentence-level discourse parsing tasks.

Building upon the success of the LMR, this thesis extends it to a seq2seq architecture,
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resulting in the BTR. The BTR preserves the seq2seq-style Transformer architecture
and incorporates a masked language model in the decoder component to re-estimate
the probability of each candidate through PLL based on the corresponding bidirectional
representations. During inference, the BTR compares the re-ranked top-1 results with the
original ones using an acceptance threshold 𝛽 to determine the final results. Experimental
results on three publicly available grammatical error correction datasets demonstrates
the effectiveness of BTR in overcoming exposure bias and text degeneration.

The experimental results presented in this study provide strong evidence for the ef-
fectiveness of the proposed re-ranking-based methods in addressing decoding problems.
Moreover, these results suggest that future research could explore the potential benefits
of combining PLL-based and discriminative models. Building upon these findings,
this thesis offers valuable insights into potential directions, including label embedding,
masking, and negative sampling strategies, to benefit the NLP community.
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Chapter 1

Introduction

This thesis focuses on the objective function 𝑓 in natural language processing tasks,
given a source text 𝑋 = (𝑥1, . . . , 𝑥𝐼) of length 𝐼 over the source language vocabulary
V𝑠. The objective is to generate an appropriate text or classify the source text 𝑋 into
a sequence of labels 𝑌 = (𝑦1, . . . , 𝑦𝐽), composed of 𝐽 tokens or labels from the target
language vocabulary or the label set V𝑡 with respect to the tasks [Jurafsky, 2000, Liu
et al., 2022]. The function 𝑓 can be expressed as:

𝑓 : 𝑋 → 𝑌 . (1.0.1)

Here, the tokens 𝑥𝑖 and 𝑦 𝑗 are the minimum units in the tokenized or chopped text, and
could be characters, words, or any other relevant units. The label 𝑦 𝑗 indicates what have
been perceived by our senses from the source tokens [Jurafsky, 2000].

Previous research has commonly used probability theories to construct a function 𝑓
that allows machines to learn from data and make predictions for new inputs. These
functions can be categorized into two types: discriminative models and generative
models. Discriminative models make predictions by directly modeling the posterior
probability 𝑝(𝑌 |𝑋), i.e. they learn a direct map from input text 𝑋 to predicted text
𝑌 . Conversely, given all possible 𝑌 , generative models compute the joint probability
𝑝(𝑋,𝑌 ) for each 𝑌 and use Bayes rules [Webb, 2010] to calculate 𝑝(𝑌 |𝑋) as:

𝑝(𝑌 |𝑋) = 𝑝(𝑋 |𝑌 )𝑝(𝑌 )
𝑝(𝑋) ∝ 𝑝(𝑋,𝑌 ), (1.0.2)

and then select the most likely 𝑌 as the predicted text [Ng and Jordan, 2001].
To develop a text processing system, it is crucial to determine which model to use and

how to use it to make accurate predictions involving multiple discrete tokens.

1.1 Successful Discriminative Models
Despite issues such as unbalanced data distribution and insufficient data for training,
discriminative models have been preferred in most cases over generative models owing
to their direct computation without an intermediate step [Ng and Jordan, 2001, Yogatama
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et al., 2017] and their success in many applications.
In particular, to recognize the coherent structure of a natural language text, Wang

et al. [2018c] utilized a discriminative model that combines bidirectional long short-
term memory networks (LSTM) [Hochreiter and Schmidhuber, 1997] with conditional
random fields (CRF) [Lafferty et al., 2001], called BiLSTM-CRF [Huang et al., 2015],
to directly detect a set of rhetorical structure boundaries from the source text. Given the
source text and corresponding boundaries, Wang et al. [2017] and Kobayashi et al. [2020]
also modeled parsers with conditional probabilities to link these rhetorical structures.
Chapter 3 details the proposals of Huang et al. [2015] and Wang et al. [2017].

In addition, Luong et al. [2015] introduced a global attention-based sequence-to-
sequence (seq2seq) model that decomposes the conditional probability for neural ma-
chine translation. Two years later, Vaswani et al. [2017] proposed a variant of the seq2seq
model, Transformer, which used a multi-head self-attention mechanism and significantly
outperformed previous models, including the global attention-based seq2seq model, to
become the dominant paradigm in natural language processing tasks. Both the seq2seq
model and Transformer are discussed in detail in Chapter 2.

With the popularity of Transformer, several large pre-trained seq2seq-style Trans-
former models, including BART [Lewis et al., 2020], mBART [Liu et al., 2020],
ProphetNet [Qi et al., 2020], PEGASUS [Zhang et al., 2020], T5 [Raffel et al., 2020],
and mT5 [Xue et al., 2021], have been developed to learn general representations and
have demonstrated effectiveness in making high-quality predictions, reducing time- and
resource-cost for downstream tasks. Specifically, as reported by Rothe et al. [2021],
after successively fine-tuning with the cleaned LANG-8 corpus (cLang-8) [Rothe et al.,
2021], the pre-trained T5 and mT5 models achieved state-of-the-art results on grammat-
ical error correction (GEC) benchmarks for four languages. Besides, the experimental
results in Liu et al. [2022] demonstrated that simply fine-tuning pre-trained PEGASUS
and BART models could achieve comparable results on two abstractive summarization
datasets: CNN/DM [Hermann et al., 2015] and XSum [Narayan et al., 2018]. mBART
has also shown its effectiveness in several high- and low-resource machine translation
tasks, including English ⇔ German and English ⇔ Romanian.

Given the success of applying discriminative models in natural language processing,
this thesis is concerned with improving the prediction results of such models.

1.2 Training and Decoding in Discriminative Models
Let 𝑝∗(𝑌 |𝑋) be the true probability distribution. Given a sampled corpus D =
{(𝑋𝑛, 𝑌𝑛)}𝑁𝑛=1 with 𝑁 input-output pairs from 𝑝∗(𝑌 |𝑋), we expect to model a proba-
bility distribution 𝑝(𝑌 |𝑋, 𝜃) with parameter 𝜃, and find a most likely model 𝑝(𝑌 |𝑋, 𝜃∗)
to resemble 𝑝∗(𝑌 |𝑋), s.t. 𝑝(𝑌 |𝑋, 𝜃∗) ≈ 𝑝∗(𝑌 |𝑋) for all pairs of (𝑋,𝑌 ) in D [Welleck
et al., 2020]. This task of finding the most likely parameter 𝜃∗ to fit in the corpus D
is known as the training or optimization problem, and the de facto approach is to use
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maximum likelihood estimation (MLE) [Murphy, 2012] to update initialized 𝜃 as:

𝜃∗ := arg max
𝜃

∏
(𝑋,𝑌 )∈D

𝑝(𝑌 |𝑋; 𝜃) = arg max
𝜃

∑
(𝑋,𝑌 )∈D

log 𝑝(𝑌 |𝑋; 𝜃), (1.2.1)

where 𝑝(𝑌 |𝑋; 𝜃) could be decomposed according to the chain rule as an auto-regressive
language model that sequentially predicts the next token by giving previous tokens [Yang
et al., 2018] as:

𝑝(𝑌 |𝑋; 𝜃) =
𝐽∏
𝑗=1

𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃), (1.2.2)

where 𝑌< 𝑗 = (𝑦1, . . . , 𝑦 𝑗−1) and 𝑦𝐽 denotes the end token <eos>. Chapter 2 details the
language model.

Given the source 𝑋 and the trained model with optimized 𝜃∗, finding the most likely
prediction𝑌 ∗ is referred to as the decoding or inference problem, which is usually solved
using maximum a posterior (MAP) estimation [Smith, 2011, Eikema and Aziz, 2020] to
decode the posterior distribution 𝑝(𝑌 |𝑋; 𝜃∗) as:

𝑌 ∗ = arg max
𝑌

log 𝑝(𝑌 |𝑋; 𝜃∗). (1.2.3)

Once we decompose 𝑝(𝑌 |𝑋; 𝜃) as Equation ( 1.2.2), 𝑝(𝑌 |𝑋; 𝜃∗) could be decomposed
in the same way as:

𝑝(𝑌 |𝑋; 𝜃∗) =
𝐽∏
𝑗=1

𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃∗), (1.2.4)

and it will continue generating tokens until emitting the end token <eos>.
We can obtain the prediction 𝑌 ∗ by finding the sequence with the highest probability

𝑝(𝑌 ∗ |𝑋; 𝜃∗) after enumerating all possible sequences through exhaustive search. How-
ever, the computational complexity of this procedure grows exponentially as O(|V𝑡 |𝐽)
when using Equation ( 1.2.4), where |V𝑡 | is the target vocabulary size. For example,
if |V𝑡 | = 10000 and 𝐽 = 10, the number of possible sequences would be 1040, making
complete enumeration impractical [Stahlberg and Byrne, 2019]. Conversely, the sim-
plest algorithm is greedy decoding with computational complexity O(|V𝑡 | × 𝐽). This
algorithm picks one symbol 𝑦∗𝑗 with the highest probability 𝑝(𝑦∗𝑗 |𝑌 ∗

< 𝑗 , 𝑋; 𝜃∗) at a time
and could result in sub-optimal results, because only one hypothesis is tracked [Gu et al.,
2017]. Therefore, the natural choice is to use a heuristic search algorithm, such as beam
search, to track 𝑘 hypotheses or beams with computational complexity O(|V𝑡 | × 𝐽 × 𝑘),
where 𝑘 is the beam size. Contrary to greedy decoding, beam search keeps track of
the top-𝑘 highest scoring partial hypotheses at each time step and returns the hypothesis
with the highest log probability from the retained 𝑘 hypotheses.
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1.3 Problems
Although discriminative models use MLE and MAP as their objective function and
decoding strategy, respectively, and can generate high-quality predictions for a wide
range of tasks, they are still criticized as suffering from several problems. 1) The first
is exposure bias, which occurs when the model is only exposed to the training data
distribution without considering its own predictions. This can cause brittle generation
during inference, especially when using MAP with limited search space, such as beam
search [Ranzato et al., 2016]. In details, we usually adopt teacher forcing [Williams and
Zipser, 1989] in Equation ( 1.2.2) to feed the true previous tokens into the model for
predicting the next token. However, in Equation ( 1.2.4), the predicted previous tokens
are fed into the model with no future time steps factored in, unlike dynamic program-
ming [Bellman, 1952]. This can cause cumulative errors in inference, where wrong
decisions made at one time step lead to incorrect predictions for future tokens [Bengio
et al., 2015]. 2) The second problem is text degeneration, that even a successfully
pre-trained model [Radford et al., 2019] can assign a higher probability to generic,
repetitive, and awkward beam-search-decoded texts than to grammatical or natural text.
Consequently, the output text may appear bland, incoherent, or strangely repetitive,
while human-like text has a more diverse and surprising probability distribution [Holtz-
man et al., 2020]. This problem is also evident in the GEC task, as demonstrated by
Liu et al. [2021], where even though a fully pre-trained seq2seq model [Kiyono et al.,
2019] can generate several high-quality grammatical candidates using beam search for
an ungrammatical sentence, there may be still a gap between the selected hypothesis
and the most grammatical one within these candidates. 3) The third problem is known
as search error, which arises in inference when using Equation ( 1.2.4) with a more
comprehensive search, such as beam search with a larger beam size. This can result in
larger conditional probabilities but shorter predictions with worse text quality [Sountsov
and Sarawagi, 2016, Stahlberg and Byrne, 2019, Meister et al., 2020]. As demonstrated
by Yang et al. [2018], an increased search space with more tracks could make it easier
to explore the end token <eos>, resulting in shorter hypotheses and worse evaluation
results in the tokenized BLEU metric [Papineni et al., 2002]. Furthermore, Sountsov and
Sarawagi [2016] demonstrated that using MLE for the training objective in Equation (
1.2.2) underestimates the margin of separating long sequences from short ones, thereby
resulting in a preference for shorter sentences than longer ones in inference when using
MAP. 4) The fourth problem is the issue of low diversity, where the tracks retained
by beam search for Equation ( 1.2.4) tend to have a common part, resulting in generic
or “safe” outputs with low diversity [Li and Jurafsky, 2016, Vijayakumar et al., 2018,
Ippolito et al., 2019].

To address these problems, existing methods can be classified into four categories:
decoding-based, optimization-based, scoring-based, and re-ranking-based methods.
1) Decoding-based methods aim to solve these problems by extending standard beam
search algorithms [Li and Jurafsky, 2016, Vijayakumar et al., 2018, Kulikov et al., 2019]
or replacing MAP with stochastic sampling strategies [Fan et al., 2018, Holtzman et al.,
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2020]. For example, Vijayakumar et al. [2018] extended beam search by dividing 𝑘
beams into groups and incorporating diversity constraints within groups to promote
both diversity and quality of decoded sequences in image captioning and visual question
generation tasks. Fan et al. [2018] introduced a top-𝑘 sampling strategy to sample
the next word from the top-𝑘 most likely candidates for the neural story generation
task. However, selecting a suitable 𝑘 for this strategy can be a problem, as generation
according to this strategy could have high variance in likelihood with larger 𝑘 , which
leads to high diversity but usually results in incoherency issues, as indicated by Holtzman
et al. [2020]. Therefore, Holtzman et al. [2020] proposed a dynamical sampling strategy,
nucleus sampling (or top-𝑝 sampling), to sample the next word from the top-𝑝 portion
of the probability mass. Sountsov and Sarawagi [2016] also indicated that these post-
processing methods could reduce the appearances of <eos> and indirectly alleviate
search errors. It is important to note that while these post-processing methods alleviate
the decoding problems, they do not address the core issue that the model assign too
high probabilities to generic and awkward sequences instead of generating human-
like texts, and they still suffer from exposure bias with no future time steps being
factorized. 2) Previous research [Welleck et al., 2020, Liu et al., 2022] has argued that
MLE optimization is the main cause of dull and repetitive outputs, and optimization-
based methods have been utilized to tackle it by introducing new optimizations that
work with MLE. Specifically, Welleck et al. [2020] proposed unlikelihood training,
which minimizes the probability of unlikely predictions (or negative candidates) while
maximizing the probability of true targets. In contrast, to alleviate exposure bias, Liu
et al. [2022] assumed that sentence probabilities should be correlated with their quality
as evaluated by an automatic metric, and modified contrastive learning [Hadsell et al.,
2006] to encourage the model to assign higher probabilities to higher-quality candidates.
However, these two methods compared two or more candidates to normalize 𝑝(𝑋; 𝜃)
and 𝑝(𝑌 |𝑋; 𝜃) for optimizing 𝜃, which increases the memory requirements for GPU
or CPU computation. 3) Previous research [Tu et al., 2016, Mi et al., 2016, Suzuki
and Nagata, 2017, Yang et al., 2018, Kiyono et al., 2018, Meister et al., 2020] has
suggested that the objective function itself may cause previous decoding problems. In
particular, according to Tu et al. [2016] and Mi et al. [2016], the global attention-based
seq2seq model did not explicitly consider which source-side tokens had already been
covered in past attentions, resulting in repeated attention to translated source tokens and
generating degenerated text with redundant tokens. To address decoding issues, based on
Equation ( 1.0.1), researchers have proposed different objective functions to score each
pair of (𝑋,𝑌 ), denoted as scoring-based methods. Tu et al. [2016] and Mi et al. [2016]
estimated coverage normalization when computing 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃) in Equation ( 1.2.2)
and Equation ( 1.2.4) to consider the coverage of the attention distribution and prevent
generating redundant outputs. However, this method is not applicable to seq2seq models
with multiple attentions, such as the Transformer (details explained in Chapter 2). To
address the redundant generation without modifying the standard attention mechanism,
a simple idea is to adopt multi-task learning [Sener and Koltun, 2018] for models to
simultaneously learn multiple tasks: an original task that predicts 𝑌 from 𝑋 , and 𝑀
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added tasks aim to different problems. Let 𝜆𝑚 denote the weight for the 𝑡th added task,
𝑅𝑚 (·) the 𝑚th added task-specific loss function. Based on Equation ( 1.2.1), when using
multi-task learning to score (𝑋,𝑌 ), the model parameter 𝜃 can be updated as follows:

𝜃∗ := arg max
𝜃

∑
(𝑋,𝑌 )∈D

(
log 𝑝(𝑌 |𝑋; 𝜃) +

𝑀∑
𝑚=1

𝜆𝑚 · 𝑅𝑚 (𝑌 |𝑋; 𝜃)
)
. (1.3.1)

For instance, Kiyono et al. [2018] integrated a frequency constraint 𝑅(𝑌 |𝑋; 𝜃) on input
tokens to control redundancy in text summarization. However, their approach assumes
that input sentences contain more tokens than the output, which limits its applicability to
other tasks. Moreover, designing different computations for 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃) is straight-
forward and intuitive, but the lack of factorization for future steps during inference still
results in exposure bias. 4) To address this issue, similar to Equation ( 1.0.2), Sountsov
and Sarawagi [2016] modeled a globally conditional probability 𝑝(𝑌 |𝑋; 𝜃) as:

𝑝(𝑌 |𝑋; 𝜃) = 𝑆(𝑋,𝑌 ; 𝜃)∑
𝑌 ′∈Y𝑆(𝑋,𝑌 ′; 𝜃) , (1.3.2)

where 𝑆(𝑋,𝑌 ; 𝜃) computes the score of (𝑋,𝑌 ) with factorization for future steps, instead
of using 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃). Given a set Y of possible outputs, the item

∑
𝑌 ′∈Y𝑆(𝑋,𝑌 ′; 𝜃)

acts as a normalizer to normailize 𝑆(𝑋,𝑌 ; 𝜃) for 𝑌 ∈ Y. However, due to the ex-
ponentially growing computational complexity, exhaustive search for generating Y is
practically impossible. To reduce computation while taking a glimpse of the possible fu-
ture steps, they employed a re-ranking strategy, denoted as re-ranking-based methods,
that first generates a set Y𝑘 of 𝑘-best candidates using a base model, such as Equation (
1.2.4), and then re-scores these candidates whose future steps are visible using the pro-
posed score function. Li and Jurafsky [2016] also used a similar re-ranking strategy
to enhance the diversity and quality of translation. Their function 𝑆(𝑋,𝑌 ; 𝜃) considers
𝑝(𝑋 |𝑌 ), 𝑝(𝑌 ), and length of targets with factorization for future steps, in addition to
computing the sequential probability 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃). As the two work relied on LSTM
structures for re-ranking, it remains unclear how well the re-ranking approach with
factorization for future steps would perform on the current dominant model structure,
Transformer.

1.4 Goals and Organization
This thesis presents two re-ranking-based methods to alleviate two major problems
faced by discriminative models, text degeneration and exposure bias. The goal of
this study is to propose general ideas that can be easily implemented in natural language
processing tasks, such as grammatical error correction and discourse parsing, to enhance
the quality of predictions without making complex modifications on the dominant dis-
criminative model structure or using excessive computational resources. The proposed
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methods also have the potential to relieve the search error by carefully considering the
probability distribution, which may reject the unsuitable appearances of <eos>.

The proposals in this study are based on the Transformer architecture, which is one
of the most widely used architectures in the field of natural language processing, as
mentioned previously. Chapter 2 provides an overview of the Transformer architecture
and other essential information related to the proposed model structures, including
seq2seq models, language models, and masked language modeling [Devlin et al., 2019].

To alleviate text degeneration and improve prediction quality by countering the
exposure bias problem, the first part of this study proposes a function 𝑆(𝑋,𝑌 ; 𝜃) that
considers the joint probability 𝑝(𝑋,𝑌 ) with unlikelihood training. In inference, it
follows Sountsov and Sarawagi [2016] and Li and Jurafsky [2016] to implement the
re-ranking strategy to make future steps visible for each possible 𝑌 ∈ Y𝛼. This setting
is introduced in Chapter 3 and denoted as a language model-based reranker (LMR)
that uses information from target labels by treating the labels as an input and enhancing
label representations by embedding descriptions for each label, which allows LMR
to effectively use a pre-trained language model. The LMR is evaluated on the RST-
DT [Carlson et al., 2002] dataset and achieves state-of-the-art performance in discourse
segmentation and sentence-level discourse parsing tasks.

The second method in Chapter 4 presents an extension of LMR, a bidirectional
Transformer reranker (BTR), which can be easily applied to pre-trained seq2seq models.
The BTR preserves the seq2seq-style Transformer architecture while incorporating a
BERT-style self-attention mechanism [Devlin et al., 2019] in the decoder to compute
the probability of each target token. During inference, the BTR compares the re-ranked
top-1 result with the original top-1 one using an acceptance threshold 𝛽 to give the final
results. Experimental results on three publicly available GEC datasets demonstrate the
effectiveness of BTR in overcoming exposure bias, with significant improvements in
𝐹0.5 scores compared to the fine-tuned T5-base model.

Chapter 5 summarizes the main contributions and findings of this study, highlighting
the effectiveness of the proposed re-ranking-based methods in addressing the expo-
sure bias and text degeneration problems in natural language processing tasks. It
suggests that future research could explore combining discriminative models with rep-
resentations of target sequences, and focus on more robust models to domain shifts and
other challenges in real-world applications, providing valuable insights into the potential
directions for advancing predictions from the state-of-the-art discriminative models in
natural language processing.
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Chapter 2

Preliminary

This chapter introduces the fundamental concepts of language models and encoder-
decoder architectures, which are extensively employed for decomposing probability
and decoding time-specific probability distribution, respectively, throughout this thesis.
Specifically, it focuses on the strategy for decomposing probabilities, which involves a
comparison between masked language modeling and auto-regressive language modeling.
However, detailed information on neural networks, such as self-attention and feed-
forward mechanisms, are presented in the references. Please note that in the following
sections, the end token <eos> is used to indicate the end of each sequance, denoted as
𝑥𝐼 and 𝑦𝐽 for 𝑋 and 𝑌 , respectively.

2.1 Supervised Learning
Given a set of input observations, each associated with some correct outputs, the goal
of the supervised learning algorithm is to learn how to map from a new observation to
a correct output. Natural language generation is such a task using supervised learning
to generate an appropriate text 𝑌 from a source text 𝑋 , as shown in Figure 2.1(a).
Formally, taking an input 𝑋 and a fixed target language vocabulary V𝑡 , natural language
generation task returns a sequence consisting of tokens belonging toV𝑡 . Natural language
processing tasks also involve classification. For example, in discourse segementation, the
objective is to assign label to each source token to indicate whether the token represents
the start of an elementary discourse unit or not, when given the input 𝑋 and a label set
V𝑡 = {0, 1}. This task is described in detail in Chapter 3. In the supervised situation,
we use a training set D of 𝑁 source texts that have been hand-labeled with targets as:
{(𝑋1, 𝑌1), . . . , (𝑋𝑁 , 𝑌𝑁 )}. Our goal is to learn a model 𝑓 that is capable of mapping
from a new text 𝑋 to its correct target 𝑌 [Jurafsky, 2000].

2.1.1 Self-supervised Learning
While supervised learning is limited by the scarcity of hand-labeled data, self-supervised
learning that leverages the abundance of unlabeled data, readily available at web-scale,
has gained attention as a promising approach in natural language processing [Balestriero
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Figure 2.1: An example of supervised learning (a) and self-supervised learning (b),
where 𝑌 ′ represents the predicted text derived from 𝑋 , 𝑋′ represents the reconstructed
text derived from 𝑋\𝜅. The loss L(𝑌 ′, 𝑌 ) quantifies the dissimilarity between the true
text 𝑌 and the predicted text 𝑌 ′, and the model is optimized by minimizing the loss to
reduce this discrepancy.

et al., 2023]. As presented in Figure 2.1(b), self-supervised learning performs as a
denoising object: given an unlabeled input text 𝑋 , a fraction of its elements are corrupted,
typically discarded or replaced based on a noise strategy, models are then trained to
recover these corruptions by only using the corrupted input 𝑋\𝜅, where 𝜅 denotes the set
of corrupted positions in the input 𝑋 . This process enables the models to learn descriptive
and meaningful representations (§2.2), making self-supervised learning serves as a
pretext task to generate high-quality representations that benefit various downstream
tasks in natural language processing, including machine translation, text summarization,
and text generation [Raffel et al., 2020, Balestriero et al., 2023].

2.2 Representations
In natural language processing tasks, tokens 𝑥𝑖 ∈ 𝑋 are typically represented as |V𝑠 |-
dimensional vectors in the form of [0, 1] |V𝑠 |, where |V𝑠 | is the size of the source language
vocabulary V𝑠. While this atomic unit is simple and natural for representing 𝑥𝑖 as an
index in a vocabulary, it ignores the precise syntactic and semantic relationships be-
tween tokens, resulting in suboptimal generation performance. Moreover, many natural
languages have vocabularies with tens of thousands of words, making it challenging to
train an effective model with limited parameters [Mikolov et al., 2013a,b].

To address these limitations, distributed word representations, known as word embed-
dings, are utilized as under-complete representations for 𝑥. These word embeddings are
dense, low-dimensional, and real-valued vectors 𝑒 ∈ R𝑑𝑒 with each dimension captures a
latent feature of the word (or token), where 𝑑𝑒 < |V𝑠 | and R denotes the real coordinate
space [Turian et al., 2010]. To store and access these word embeddings efficiently, a
lookup table E ∈ 𝑅𝑑𝑒×|V𝑠 | is constructed, where each row represents the embedding
vector for a particular token in the vocabulary. Another commonly mentioned repre-
sentation is hidden representation, referred to as hidden states, which is learned from
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hidden layers of a neural network. These hidden states, denoted as ℎ ∈ R𝑑ℎ , are also
dense, low-dimensional, and real-valued vectors without directly correspond to the de-
sired output for a specific task, where 𝑑ℎ < |V𝑠 | [Goodfellow et al., 2016]. Naturally,
to enable the system quickly achieve effective performance on tasks, we expect the ex-
tracted hidden state ℎ𝑖 from 𝑥𝑖 to preserve a significant amount of information about the
input 𝑋 [Vincent et al., 2010]. To illustrate word embeddings and hidden states, let’s
consider an example of using a neural network language model [Bengio et al., 2003] to
estimate the conditional probability of the next word based on the previous context. The
network computes the probability distribution 𝑝(·|𝑋<𝑖) over the source vocabulary V𝑠

at the 𝑖th timestep as follows [Derby et al., 2020]:

𝑒𝑖 = E𝑥𝑖−1

ℎ̃𝑖 = 𝑔(𝑒𝑖, ℎ̃𝑖−1)
𝑝(·|𝑋<𝑖) = softmax(𝑊ℎ̃𝑖 + 𝑏). (2.2.1)

Here, 𝑊 is a weight matrix, 𝑏 is a bias term, 𝑔 represents one or multiple temporally
compatible layers such as LSTM or Transformer, and softmax denotes the softmax
function (§2.4). Given the one-hot vector 𝑥𝑖−1, we first extract its embedding 𝑒𝑖 from
the lookup table E. Then, the function 𝑔 takes 𝑒𝑖 and the previous hidden state ℎ̃𝑖−1
to produce a new hidden state ℎ̃𝑖. After passing ℎ̃𝑖 through a fully-connected layer, we
obtain the probability distribution 𝑝(·|𝑋<𝑖) for generating 𝑥𝑖. We compute the cross-
entropy loss (§2.6.1) between the predicted distribution and the actual distribution and
minimize the loss using gradient descent. Through this process, the embedding matrix
E can be optimized as a by-product of the main task [Mikolov et al., 2013b, Devlin
et al., 2019]. The representations discussed in this thesis refer to the distributed word
representations.

2.3 Transfer Learning
Data dependence is one of the most serious problems in learning deep features for a
neural network model 𝑓 . This is because such models consist of a large number of
parameters and require a substantial amount of data to effectively capture the underlying
patterns in supervised learning tasks. However, in reality, data collection can be complex
and expensive. To address this issue, transfer learning assumes that the training data
does not need to be independent and identically distributed from the test data. Under
this assumption, the training process is divided into two steps: the first step involves
pre-training the model parameters 𝜃 on upstream tasks, while the second step focuses
on fine-tuning the optimized model parameters 𝜃∗ to learn a new set of parameters 𝜙 for
downstream tasks [Tan et al., 2018, Zhang and Hashimoto, 2021]. The current dominant
approach in pre-training methods leverages the abundance of unlabeled data using self-
supervised learning, as demonstrated in pre-trained models like BERT, GPT2, BART,
and T5. After pre-training, the optimized model is fine-tuned on specific downstream
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tasks, such as machine translation and text summarization. Here, we present an example
of fine-tuning a pre-trained model 𝑝(𝑌 |𝑋; 𝜃∗) for the grammatical error correction task.
Given a corpus D′ = {(𝑋𝑛, 𝑌𝑛)}𝑁

′

𝑛=1, where 𝑋 represents an ungrammatical sentence and
𝑌 represents the corresponding grammatical sentence, during fine-tuning, we modify
the optimized parameter 𝜃∗ to 𝜙 for the pre-trained model using the following objective:

𝜙∗ := arg max
𝜙

∏
(𝑋,𝑌 )∈D′

𝑝(𝑌 |𝑋; 𝜙, 𝜃∗) = arg max
𝜙

∑
(𝑋,𝑌 )∈D′

log 𝑝(𝑌 |𝑋; 𝜙, 𝜃∗), (2.3.1)

2.4 Softmax Function
When 𝑥𝑖 is the 𝑚th element of V𝑠, the softmax function [Bridle, 1990] in Equation (
2.2.1) could be expressed as [Bishop, 1995]:

𝑝(·|𝑋<𝑖) = softmax(𝑊ℎ̃𝑖 + 𝑏),

where 𝑝(𝑥𝑖 = 𝑚 |𝑋<𝑖) =
exp(w𝑚 ℎ̃𝑖 + 𝑏𝑚)∑|V𝑠 |

𝑚′=1 exp(w𝑚′ ℎ̃𝑖 + 𝑏𝑚′)
, (2.4.1)

w𝑚 ∈ R |𝑑ℎ | denotes the 𝑚th row of 𝑊 ∈ R |V𝑠×𝑑ℎ |, 𝑏𝑚 denotes the 𝑚th element of
𝑏 ∈ R |V𝑠 |, and exp(·) refers to the exponential function. The softmax function is
widely used in neural networks as a normalizer to produce a probability distribution. It
non-linearly normalizes a set of numbers to the interval [0, 1] while ensuring that all
components sum up to 1, thanks to the exponential function.

The reason why we select the exponential function for the softmax could be tracked
back to the work of Ludwig Boltzmann in 1868 [Boltzmann, 1868]. Boltzmann first
formulated the Boltzmann distribution, which is often used to describe the distribution
of particles in a system, such as atoms or molecules. In this distribution, Boltzmann
assumed that each particle has a finite number of velocities and, consequently, a finite
number of values for its kinetic energy. Let𝑀 be the number of available states accessible
to a system, 𝑜𝑚 be the number of particles in state 𝑚, 𝑂 =

∑𝑀
𝑚=1 𝑜𝑚 be the total number

of particles in this system, and 𝜇𝑚 be the kinetic energy of a particle in state 𝑚. For a
system consisting of many particles, the probability of state 𝑚 represents the likelihood
of randomly selecting a particle that is in state 𝑚. This probability is determined by the
number of particles in state 𝑚 divided by the total number of particles in the system as:

𝑝(𝑚) = 𝑜𝑚
𝑂
, (2.4.2)

𝑜𝑚 is estimated as described below.
Let Ω =

∑𝑀
𝑚=1 𝑜𝑚𝜇𝑚 be the total energy of a system. By considering a group of

constants (𝑀 , 𝑂, Ω), the total number of available systems, denoted as 𝛿, is given by
𝑂!∏𝑀

𝑚=1 𝑜𝑚!
. Boltzmann established a relationship between the thermodynamic entropy

𝜏 and 𝛿, expressed as 𝜏 = 𝜌 ln 𝛿, where 𝜌 is the Boltzmann constant. And thus, to
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construct a “best” system, we could maximize 𝜏 according to the maximum entropy
theory. Considering previous constrains, we could form a Lagrangian function as:

Lenergy = ln𝑂! −
𝑀∑
𝑚=1

ln 𝑜𝑚! − 𝜆
(
(
𝑀∑
𝑚=1

𝑜𝑚) −𝑂
)
− 𝛾

(
(
𝑀∑
𝑚=1

𝑜𝑚𝜇𝑚) −Ω

)
, (2.4.3)

where𝜆 and 𝛾 are Lagrange multipliers. To maximize the entropy 𝜏, all partial derivatives
of this equation should be zero. Using the Stirling’s approximation, ln 𝑥! ≈ 𝑥 ln 𝑥 − 𝑥,
𝑜𝑚 can be derived as follows:

𝜕Lenergy

𝜕𝑜𝑚
≈ 𝜕

𝜕𝑜𝑚
(−𝑜𝑚 ln 𝑜𝑚 + 𝑜𝑚 − 𝜆𝑜𝑚 − 𝛾𝑜𝑚𝜇𝑚) = 0

− ln 𝑜𝑚 − 𝜆 − 𝛾𝜇𝑚 = 0
𝑜𝑚 = exp(−𝜆 − 𝛾𝜇𝑚). (2.4.4)

Consequently, Equation ( 2.4.2) can be rewritten as:

𝑝(𝑚) = exp(−𝜆 − 𝛾𝜇𝑚)∑𝑀
𝑚′=1 exp(−𝜆 − 𝛾𝜇𝑚′)

=
exp(−𝛾𝜇𝑚)∑𝑀

𝑚′=1 exp(−𝛾𝜇𝑚′)
, (2.4.5)

where the denominator
∑𝑀
𝑚′=1 exp(−𝛾𝜇𝑚′) is referred to as the partition function [Boltz-

mann, 1868, Atkins et al., 2014, Sharp and Matschinsky, 2015]. Assuming 𝛾 is an
arbitrary positive constant, resulting in the states with lower energy will always have a
higher probability of being occupied. For neural networks, 𝜇 can be defined as a function
𝜇(𝑋,𝑌, 𝜃) to measure the “goodness (or badness)” of each possible configuration of 𝑌
and 𝑋 . The output number of 𝜇 can be interpreted as the degree of compatibility between
the values of 𝑌 and 𝑋 . During training, to find optimal model parameter 𝜃∗, we can as-
sociate low energies to “desired” paired of data (i.e. highly compatible configurations of
the variables), and high energies to “undesired” configurations (i.e. highly incompatible
configurations of the variables) [LeCun and Huang, 2005, LeCun et al., 2006].

2.5 Denoising Autoencoder
To guarantee the extraction of useful features, Vincent et al. [2010] assumed that a good
hidden state should exhibit stability and robustness when faced with corrupted input,
while being capable of capturing the structure of the corrupted input to facilitate the
recovery of the corresponding clean input, akin to a denoising task. Building upon this
assumption, Vincent et al. [2010] proposed the denoising autoencoder algorithm to train
a stochastic operator 𝑝(𝑋 |𝑋\𝜅) to reconstruct the input 𝑋 from its corrupted version 𝑋\𝜅
through self-supervised learning. Let 𝑞(𝑋\𝜅 |𝑋) denote a stochastic operator, B(𝜇) the
Bernoulli distribution with mean 𝜇. The initial input 𝑋 could be corrupted into 𝑋\𝜅 by
means of a stochastic mapping 𝑋\𝜅 ∼ 𝑞(𝑋\𝜅 |𝑋). Please note that, each time a training
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Figure 2.2: Directed graphs in the auto-regressive language model (a) and in the masked
language model (b).

example 𝑋 is presented, a different corrupted version 𝑋\𝜅 of it is generated according to
𝑞(𝑋\𝜅 |𝑋). For optimization, the loss L(𝑋′, 𝑋) estimates an associated reconstruction
error L(𝑋′, 𝑋) between the reconstructed input 𝑋′ and the original input 𝑋 . If 𝑥𝑖 is
binary, that is 𝑥𝑖 ∈ [0, 1] |V𝑠 |, L(𝑋′, 𝑋) could be the cross-entropy loss.

2.6 Language Model
Reconstructing the original input sequence 𝑋 from its corrupted version 𝑋\𝜅 can be
achieved using a language model. A language model represents the probability distribu-
tion over sequences of tokens in natural languages. For a sequence 𝑋 = (𝑥1, . . . , 𝑥𝐼), the
language model assigns the joint probability 𝑝(𝑥1, . . . , 𝑥𝐼) to the marginal probability
𝑝(𝑋) [Goodfellow et al., 2016].

2.6.1 Auto-regressive Language Model
A commonly used type of language model is auto-regressive language model, also called
as causal language model. It utilizes the principles of auto-regressive modeling to predict
the next token based on the previously generated tokens [Hyndman and Athanasopou-
los, 2018], which defines an acyclic directed graph (or Bayes net) [Murphy, 2012] as
Figure 2.2(a) shows [Yamakoshi et al., 2022]. Then, the marginal probability 𝑝(𝑋) can
be factorized using the chain rule as the product of conditional probabilities [Radford
et al., 2019] as follows:

𝑝(𝑋) = 𝑝(𝑥1, . . . , 𝑥𝐼) =
𝐼∏
𝑖=1

𝑝(𝑥𝑖 |𝑋<𝑖). (2.6.1)

Given a corpus D𝑋 , the optimal parameter 𝜃∗ of the auto-regressive language model
can be estimated by employing the MLE approach. This involves updating the initial
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parameter 𝜃 as follows:

𝜃∗ := arg max
𝜃

∏
𝑋∈D𝑋

𝑝(𝑋; 𝜃) = arg max
𝜃

∑
𝑋∈D𝑋

log 𝑝(𝑋; 𝜃)

= arg max
𝜃

∑
𝑋∈D𝑋

𝐼∑
𝑖=1

log 𝑝(𝑥𝑖 |𝑋<𝑖; 𝜃). (2.6.2)

Assume the probability distribution 𝑝(·|𝑋<𝑖; 𝜃) is computed by a neural network such
as Equation ( 2.2.1). Because 𝑥𝑖 is a binary variable, optimizing Equation ( 2.6.2) is
equivalent to minimizing the cross-entropy loss [BRIER, 1950], that is

LCrossEntropy = −
∑
𝑋∈D𝑋

log 𝑝(𝑋; 𝜃) = −
∑
𝑋∈D𝑋

(
𝐼∑
𝑖=1

∑
𝑣∈V𝑠

𝑥𝑖,𝑣 log 𝑝(𝑣 |𝑋<𝑖; 𝜃)
)
, (2.6.3)

where 𝑝(𝑣 |𝑋<𝑖; 𝜃) denotes the probability at the 𝑖th time step for vocab 𝑣 ∈ V𝑠, and

𝑥𝑖,𝑣 :=

{
1 if 𝑥𝑖 = 𝑣
0 if 𝑥𝑖 ≠ 𝑣.

(2.6.4)

Given the trained model with optimized 𝜃∗, finding the most likely prediction 𝑋∗ is
solved using MAP to decode 𝑝(𝑋; 𝜃∗) as:

𝑋∗ = arg max
𝑋

log 𝑝(𝑋; 𝜃∗) = arg max
𝑋

𝐼∑
𝑖=1

log 𝑝(𝑥𝑖 |𝑋<𝑖; 𝜃∗), (2.6.5)

it will continue generating tokens until emitting the end token <eos>.
Although the auto-regressive language model is optimized through self-supervised

learning, it has gained popularity in text generation tasks, rather than focusing on
generating high-quality representations for other downstream tasks. In particular, it is
commonly used as the decoder component in encoder-decoder models, which will be
discussed in Section 2.7. One of the most widely recognized auto-regressive language
models is GPT-2 [Radford et al., 2019], renowned for its effectiveness in text generation
tasks owing to a pre-training step. Leveraging the achievements of GPT-2, extensive
development efforts over several years led in a remarkable addition to the GPT series.
This refined version, known as ChatGPT, has captured worldwide attention with its
impressive capabilities and advancements in conversational interactions with humans.

2.6.2 Masked Language Modeling
Different from the auto-regressive language model, the pretext task: masked language
modeling (MLM), that introduced in BERT was designed to learn bidirectional rep-
resentations for a given sentence 𝑋 through a cyclic directed graph or dependency
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Symbol Item

𝑋 Thank you for inviting me to your party last week .

𝜅 {3, 4, 7, 11}
𝑋𝜅 {for, inviting, your, last}
𝑋\𝜅 Thank you so <M> me to your party <M> week .

Table 2.1: Example of a sentence of length 11 before and after corruption.

net [Heckerman et al., 2001, Devlin et al., 2019, Yamakoshi et al., 2022]. Figure 2.2(b)
illustrates an example. During training, for 𝑋 ∈ D𝑋 , BERT follows the denosing au-
toencoder algorithm to utilize a masking noise strategy to corrupt a fraction of elements
of 𝑋 , resulting in a corrupted version 𝑋\𝜅. Note that, BERT also ensures that each time a
training example 𝑋 is presented, a different corrupted version 𝑋\𝜅 is generated. Specifi-
cally, 15% of the elements in 𝑋 are randomly selected by the training data generator. If
𝑥𝑖 is chosen, it is replaced with (1) the mask token <M> 80% of the time, (2) a random
token from V𝑠 10% of the time, and (3) the unchanged 𝑥𝑖 10% of the time. An example
of sentence corruption is presented in Table 2.1. While using self-supervised learning,
MLM aims to predict the original, uncorrupted tokens 𝑋𝜅 for a corrupted 𝑋\𝜅, instead of
reconstructing the original input 𝑋 , which is different from the denoising autoencoder.
The model parameter 𝜃 is optimized by minimizing the cross-entropy loss as:

− log 𝑝(𝑋𝜅 |𝑋\𝜅; 𝜃)
≈−

∑
𝑖∈𝜅

log 𝑝(𝑥𝑖 |𝑋\𝜅, 𝑖; 𝜃) = −
∑
𝑖∈𝜅

∑
𝑣∈V𝑠

𝑥𝑖,𝑣 log 𝑝(𝑣 |𝑋\𝜅, 𝑖; 𝜃), (2.6.6)

where 𝑝(𝑣 |𝑋\𝜅, 𝑖; 𝜃) denotes the probability at the 𝑖th position of 𝑋\𝜅 for vocab 𝑣 ∈ V𝑠,
and 𝑥𝑖,𝑣 is computed by Equation ( 2.6.4) [Song et al., 2020]. Assume the probabil-
ity distribution 𝑝(·|𝑋\𝜅, 𝑖; 𝜃) is also computed by a neural network. Compared with
𝑝(𝑥𝑖 |𝑋<𝑖, 𝜃), 𝑝(𝑥𝑖 |𝑋\𝜅, 𝑖; 𝜃) utilizes both the left and right sides of the context of the
masked token 𝑥𝑖 to capture deeper relationship between tokens.

As claimed by Salazar et al. [2020], log 𝑝(𝑋; 𝜃) in Equation ( 2.6.2) could be approx-
imated with the pseudo-log-likelihood scores (PLL) [Besag, 1975] as follows:

log 𝑝(𝑋; 𝜃) ≈ PLL(𝑋; 𝜃) :=
𝐼∑

𝑖=1,𝜅={𝑖}
log 𝑝(𝑥𝑖 |𝑋\𝜅, 𝑖; 𝜃). (2.6.7)

Besides, when using PLL to estimate the cross-entropy loss, the loss of 𝑥𝑖 |𝑋\𝜅, 𝑖 versus
𝑖 from BERT is flatter than GPT-2, that uses the chain rule. Considering the candidate
sentences might have different lengths, PLL is ideal for reranking.
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I like aple

I like apple <eos>

<sos> I like apple
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Figure 2.3: An example of using the encoder-decoder model to correct grammatical
errors. The input text 𝑋 =(I, like, aple, <eos>) contains a grammatical error, the word
“aple”. The target text𝑌 =(I, like, apple, <eos>) represents the corrected version. In the
decoder, the predicted token 𝑦 𝑗 at the 𝑗 th time step is utilized as an input in the ( 𝑗 + 1)th

time step and is highlighted in italics. The input sequence to the decoder begins with
the special token <sos>, indicating the start of the prediction. This sequence is referred
to as shifted right outputs, where each token in 𝑌 is shifted one position to the right.

2.7 Encoder-Decoder Sequence-to-Sequence Architectures
While a language model is typically designed to predict the probability distribution of
each token in the given sequence, there are tasks that require to generate a new sequence
with respect to the given one. In such cases, the sequence-to-sequence (seq2seq) model,
also known as the encoder-decoder model, is commonly used. The seq2seq model
consists of two primary components: encoder and decoder. The encoder calculates
the hidden representations 𝐻 of a source sentence 𝑋 , while the decoder generates a
target sentence 𝑌 from 𝐻. An example is presented in Figure 2.3. Here, the decoder
operates as an auto-regressive language model. Therefore, similar to Equation ( 2.6.2),
the seq2seq model with parameters 𝜃 could decompose the conditional probability
𝑝(𝑌 |𝑋; 𝜃) according to the chain rule, and update initialized 𝜃 as follows:

𝜃∗ := arg max
𝜃

∏
(𝑋,𝑌 )∈D

𝑝(𝑌 |𝑋; 𝜃) = arg max
𝜃

∑
(𝑋,𝑌 )∈D

log 𝑝(𝑌 |𝑋; 𝜃)

= arg max
𝜃

∑
(𝑋,𝑌 )∈D

𝐽∑
𝑗=1

log 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃). (2.7.1)

At the 𝑗 th decoding step, to estimate 𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃), the seq2seq model predicts the
probability distribution 𝑝(·|𝑌< 𝑗 , 𝑋; 𝜃) by

𝑝(·|𝑌< 𝑗 , 𝑋; 𝜃) = softmax(𝑊𝑠 𝑗 + 𝑏), (2.7.2)
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where 𝑠 𝑗 is the final hidden state from the decoder. Let 𝑝(𝑣 |𝑌< 𝑗 , 𝑋; 𝜃) denotes the
predicted probability at the 𝑗 th decoding step for vocab 𝑣 ∈ V𝑡 . Similar to the auto-
regressive language model, the seq2seq model parameter 𝜃 is optimized by minimizing
the cross-entropy loss as:

− log 𝑝(𝑌 |𝑋; 𝜃) = −
𝐽∑
𝑗=1

∑
𝑣∈V𝑡

𝑦 𝑗 ,𝑣 log 𝑝(𝑣 |𝑌< 𝑗 , 𝑋; 𝜃), (2.7.3)

where 𝑦 𝑗 ,𝑣 :=

{
1 if 𝑦 𝑗 = 𝑣
0 if 𝑦 𝑗 ≠ 𝑣.

(2.7.4)

Given the source 𝑋 and the trained model with optimized 𝜃∗, similar to Equation (
2.6.5), finding the most likely prediction 𝑌 ∗ is solved as:

𝑌 ∗ = arg max
𝑌

log 𝑝(𝑌 |𝑋; 𝜃∗) = arg max
𝑌

𝐽∑
𝑗=1

𝑝(𝑦 𝑗 |𝑌< 𝑗 , 𝑋; 𝜃∗), (2.7.5)

it will continue generating tokens until emitting the end token <eos>.

2.7.1 Seq2seq-style Transformer
The current most popular seq2seq-style nerual network is the Transformer, whose
architecture is depicted in Figure 2.4(a). Let FNN denote a feed-forward layer and
Attn(𝑞, 𝐾,𝑉) the attention layer, where 𝑞, 𝐾 , and 𝑉 indicate the query, key, and value,
respectively. The “Add & Norm” layer is combined with the FNN or Attn layers and is
not explicitly shown in the following formulas. We assume both the encoder and decoder
in the Transformer architecture consist of 𝐿 layers. To compute 𝑠 𝑗 , the encoder first en-
codes the source sentence 𝑋 into its last hidden representations 𝐻𝐿 = ( ℎ̃𝐿1 , . . . , ℎ̃𝐿𝐼 ). For
each layer ℓ ∈ 𝐿, the computation for the hidden state ℎ̃ℓ𝑖 in the encoder is as follows:

ℎℓ𝑖 = Attn𝑠 ( ℎ̃ℓ−1
𝑖 , 𝐻ℓ−1, 𝐻ℓ−1)

ℎ̃ℓ𝑖 = FNN(ℎℓ𝑖 ), (2.7.6)

where ℎ̃0
𝑖 is the word embedding of the token 𝑥𝑖, Attn𝑠 indicates the self-attention layer.

Then, the decoder uses the hidden representations 𝐻𝐿 to compute the final hidden
state 𝑠𝐿𝑗 . For ℓ ∈ 𝐿, the hidden state 𝑠ℓ𝑗 of the ℓth layer in the decoder is computed by

𝑠ℓ𝑗 = Attn𝑠 (𝑠ℓ−1
𝑗 , 𝑆ℓ−1

≤ 𝑗 , 𝑆
ℓ−1
≤ 𝑗 ),

𝑠ℓ𝑗 = Attn𝑐 (𝑠ℓ𝑗 , 𝐻𝐿 , 𝐻𝐿),
𝑠ℓ𝑗 = FNN(𝑠ℓ𝑗 ), (2.7.7)
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Figure 2.4: The Transformer architecture (a) utilizes a causal masked self-attention
mechanism (b) in the decoder.

where 𝑠0
𝑗 is the word embedding of the token 𝑦 𝑗−1 and 𝑠1 is the state for the start token

<sos>. 𝑆ℓ−1
≤ 𝑗 denotes a set of hidden states (𝑠ℓ−1

1 , . . . , 𝑠ℓ−1
𝑗 ). Attn𝑐 indicates the cross-

attention layer. A causal attention mask can be used to compute 𝑆ℓ in parallel, as in
Figure 2.4(b).

The seq2seq-style Transformer has demonstrated excellent performance, leading to
the popularity of encoder-only and decoder-only Transformer models for various tasks.

2.7.2 Encoder-only Transformer
One prominent encoder-only Transformer model is BERT, which was introduced in
Section 2.6.2. Unlike auto-regressive language models, the encoder-only structure of
BERT is not specifically designed for text generation tasks. Therefore, except for the
cross-entropy loss, the optimization for the encoder-only Transformer model can involve
mean square error or other loss functions in relation to downstream tasks.

In the case of MLM to predict the probability distribution 𝑝(·|𝑋\𝜅, 𝑖; 𝜃) at each position
𝑖 in the set of corrupted positions 𝜅, similar to Equation ( 2.7.2), a linear transformation
is applied to the hidden state ℎ̃𝐿

𝑖\𝜅, followed by a softmax function as follows:

𝑝(·|𝑋\𝜅, 𝑖; 𝜃) = softmax(𝑊ℎ̃𝐿𝑖\𝜅 + 𝑏), 𝑖 ∈ 𝜅. (2.7.8)
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And for ℓ ∈ 𝐿, the hidden state ℎ̃ℓ
𝑖\𝜅 of the ℓth layer in the model is computed by

ℎℓ𝑖\𝜅 = Attn𝑠 ( ℎ̃ℓ−1
𝑖\𝜅 , 𝐻

ℓ−1
\𝜅 , 𝐻

ℓ−1
\𝜅 )

ℎ̃ℓ𝑖\𝜅 = FNN(ℎℓ𝑖\𝜅) (2.7.9)

where ℎ̃0
𝑖\𝜅 is the embedding of the 𝑖th token in 𝑋\𝜅 and 𝐻ℓ−1

\𝜅 = ( ℎ̃ℓ−1
1\𝜅 , . . . , ℎ̃

ℓ−1
𝐼\𝜅 ) denotes

a set of hidden states for 𝑋\𝜅.

2.7.3 Decoder-only Transformer
The decoder-only Transformer architecture functions as an auto-regressive language
model. For each layer ℓ ∈ 𝐿, the hidden state 𝑠ℓ𝑖 is computed by excluding the cross-
attention layer Attn𝑐 from Equation ( 2.7.7) as follows:

𝑠ℓ𝑖 = Attn𝑠 (𝑠ℓ−1
𝑖 , 𝑆ℓ−1

≤𝑖 , 𝑆
ℓ−1
≤𝑖 ),

𝑠ℓ𝑖 = FNN(𝑠ℓ𝑖 ), (2.7.10)

where 𝑠0
𝑖 is the word embedding of the token 𝑥𝑖−1 and 𝑥1 is the state for the start token

<sos>. The main difference between Equation ( 2.7.9) and Equation ( 2.7.10) lies in the
usage of hidden states in the self-attention layer Attn𝑠. The encoder-only model utilizes
both left and right side representations of the the 𝑖th token in 𝑋\𝜅 to compute ℎ𝑖\𝜅, while
the decoder-only model only utilizes the left side representations of 𝑥𝑖 to compute 𝑠𝑖.

As mentioned in Section 2.6.1, the parameter 𝜃 of the auto-regressive language model
is optimized by minimizing the cross-entropy loss. Similar to Equation ( 2.7.2), the
probability distribution 𝑝(·|𝑋<𝑖; 𝜃) can be estimated from 𝑠𝐿𝑖 using the softmax function:

𝑝(·|𝑋<𝑖; 𝜃) = softmax(𝑊𝑠𝐿𝑖 + 𝑏). (2.7.11)

2.8 Contrastive Learning
As mentioned in Section 2.2, a good representation should accurately preserve the syn-
tactic and semantic relationships between tokens. Based on this assumption, Hadsell
et al. [2006] anticipated that a good representation would ensure that “similar” points
in a high-dimensional space remain mapped to nearby points in a lower-dimensional
manifold. Considering using MLE alone for this assumption only reduces the distance
among similar points, Hadsell et al. [2006] proposed contrastive learning to pull neigh-
bors (similar points) together while pushing non-neighbors (dissimilar points) apart.

2.8.1 Unlikelihood Training
Based on the principles of MLE and contrastive learning, Welleck et al. [2020] proposed
the unlikelihood training to reduce the predicted probability for specific tokens, referred
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to as negative samples. When decomposing the marginal probability 𝑝(𝑋) with an
auto-regressive language model, at the 𝑖th time step, the target token 𝑥𝑖 ∈ 𝑋 is also
denoted as the positive sample, while the corresponding negative samples consist of a
set of candidate tokens C𝑖 = {𝑐𝑖1, . . . , 𝑐

𝑖
𝑀}, where each candidate token 𝑐𝑖𝑚 ∈ V𝑠 and

𝑐𝑖𝑚 ≠ 𝑥𝑖. The unlikelihood loss for the 𝑖th time step is defined as:

L𝑖
unlikelihood = −

∑
𝑐∈C𝑖

log (1 − 𝑝(𝑐 |𝑋<𝑖; 𝜃)) , (2.8.1)

where the unlikelihood loss decreases as the probability 𝑝(𝑐 |𝑋<𝑖; 𝜃) decreases. Then,
Welleck et al. [2020] combined the unlikelihood loss with the likelihood loss to augment
the maximum likelihood training in Equation ( 2.6.2) as:

𝜃∗ := arg max
𝜃

∑
𝑋∈D𝑋

𝐼∑
𝑖=1

log 𝑝(𝑥𝑖 |𝑋<𝑖; 𝜃)︸             ︷︷             ︸
likelihood

+𝜆
∑
𝑐∈C𝑖

log (1 − 𝑝(𝑐 |𝑋<𝑖; 𝜃))︸                           ︷︷                           ︸
unlikelihood

, (2.8.2)

where 𝜆 represents a scaling factor that balances the contributions of likelihood and
unlikelihood. Maximizing the likelihood term increases 𝑝(𝑥𝑖 |𝑋<𝑖; 𝜃) while decreasing
𝑝(𝑐 |𝑋<𝑖; 𝜃) and the unlikelihood term. In other words, this estimation aims to maximize
likelihood while minimizing unlikelihood.

The combination of likelihood and unlikelihood training has demonstrated its effec-
tiveness in improving model performance in various natural language processing tasks,
such as response generation [Song et al., 2021], natural language inference [Ding et al.,
2020], and text generation [Welleck et al., 2020].
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Chapter 3

Language Model-based Reranker

Textual coherence is essential for writing a natural language text that is comprehensible
to readers. To recognize the coherent structure of a natural language text, Rhetorical
Structure Theory (RST) is applied to describe an internal discourse structure for the text
as a constituent tree [Mann and Thompson, 1988]. A discourse tree in RST consists of
elementary discourse units (EDUs), spans that describe recursive connections between
EDUs, and nuclearity and relation labels that describe relationships for each connection.
Figure 3.1 (a) shows an example RST discourse tree. A span including one or more
EDUs is a node of the tree. Given two adjacent non-overlapping spans, their nuclearity
can be either nucleus or satellite, denoted by N and S, where the nucleus represents a
more salient or essential piece of information than the satellite. Furthermore, a relation
label, such as Attribution and Elaboration, is used to describe the relation between the
given spans [Mann and Thompson, 1988, Carlson and Marcu, 2001]. To build such
trees, RST parsing consists of discourse segmentation, a task to detect EDU boundaries
in a given text, and discourse parsing, a task to link spans for detected EDUs.

This chapter focus on discourse segmentation and sentence-level discourse parsing,
which are indispensable in RST parsing [Joty et al., 2013, Feng and Hirst, 2014a, Joty
et al., 2015, Wang et al., 2017, Kobayashi et al., 2020] and are applicable to many
downstream tasks, such as machine translation [Guzmán et al., 2014, Joty et al., 2017]
and sentence compression [Sporleder and Lapata, 2005]. In discourse segmentation,
Carlson et al. [2001] proposed a method for using lexical information and syntactic
parsing results. Many researchers [Fisher and Roark, 2007, Xuan Bach et al., 2012,
Feng and Hirst, 2014b] utilized these clues as features in a classifier although automatic
parsing errors degraded segmentation performance. To avoid this problem, Wang et al.
[2018c] used BiLSTM-CRF [Huang et al., 2015] to handle an input without these clues
in an end-to-end manner. Lin et al. [2019] jointly performed discourse segmentation
and sentence-level discourse parsing in their pointer-network-based model. They also
introduced multi-task learning for both tasks and reported the state-of-the-art results
for discourse segmentation and sentence-level discourse parsing in terms of 𝐹1 scores.
Despite these achievements, there is still room for improvement for both tasks owing to
the scarcity of labeled data. It is important to extract more potential information from
the current dataset for further performance improvement.

Under this motivation, this chapter proposes a language model-based reranker (LMR)
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Figure 3.1: An example discourse tree structure.

for both discourse segmentation and sentence-level discouse parsing. The LMR can
jointly predict text and label probabilities by treating a text and labels as a single
sequence, like Figure 3.1 (b). Therefore, different from conventional methods, the LMR
can use more information from labels by treating the labels as an input. Furthermore, the
LMR can enhance label representations by embedding descriptions of each label defined
in the annotation manual [Carlson and Marcu, 2001], that allows us to use a pre-trained
language model such as MPNet [Song et al., 2020] effectively, because we can already
have the representations for labels, that were unseen in the pre-training step.

Experimental results on the RST-DT dataset [Carlson et al., 2002] show that the LMR
can achieve the state-of-the-art scores in both discourse segmentation and sentence-level
discourse parsing. The LMR utilizing the proposed enhanced label embeddings achieves
the best 𝐹1 score of 96.72 in discourse segmentation. Furthermore, in sentence-level
discourse parsing, when utilizing the enhanced relation label embeddings, the LMR
achieves the best relation 𝐹1 scores of 84.69 with gold EDU boundaries and 81.18 with
automatically segmented boundaries, respectively.

3.1 Related Work on Discourse Segmentation and Pars-
ing

Discourse segmentation is a fundamental task for building an RST discourse tree from a
text. Carlson et al. [2001] proposed a method for using lexical information and syntactic
parsing results for detecting EDU boundaries in a sentence. Fisher and Roark [2007],
Xuan Bach et al. [2012], Feng and Hirst [2014b] utilized these clues as features in a
classifier, while Wang et al. [2018c] utilized BiLSTM-CRF in an end-to-end manner to
avoid performance degradation caused by syntactic parsing errors.

Sentence-level discourse parsing is also an important task for parsing an RST discourse
tree, as used in many RST parsers [Joty et al., 2013, Feng and Hirst, 2014a, Joty
et al., 2015, Wang et al., 2017, Kobayashi et al., 2020]. Recently, Lin et al. [2019]
tried to jointly perform discourse segmentation and sentence-level discourse parsing
with pointer-networks and achieved the state-of-the-art 𝐹1 scores in both discourse
segmentation and sentence-level discourse parsing.

In spite of the performance improvement of these models, a restricted number of
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labeled RST discourse trees is still a problem. In the discourse segmentation and parsing
tasks, most prior work is on the basis of discriminative models, which learn mapping
from input texts to predicted labels. Thus, there still remains room for improving
model performance by considering mapping from predictable labels to input texts to
exploit more label information. To consider such information in a model, Mabona
et al. [2019] introduced a generative model-based parser, RNNG [Dyer et al., 2016], to
document-level RST discourse parsing. Different from the proposed LMR, this model
unidirectionally predicts action sequences as an auto-regressive language model.

This chapter models the LMR for the discourse segmentation and sentence-level
discourse parsing tasks. The LMR utilizes a BERT-style bidirectional encoder-only
Transformer to avoid prediction bias caused by using different decoding directions.
Because the LMR is on the basis of generative models, it can jointly consider an input
text and its predictable labels, and map the embeddings of both input tokens and labels
onto the same space. Owing to this characteristic, the LMR can effectively use the
label information through constructing label embeddings from the description of a label
definition [Carlson and Marcu, 2001]. Furthermore, recent strong pre-trained models
such as MPNet are available for any input tokens in the LMR.

3.2 Learning Rhetorical Structure with Discriminative
Models

The LMR reranks the results from a conventional discourse segmenter and parser, which
can be constructed as discriminative models. This section explains these base models
and introduces related mathematical notations.

3.2.1 Discourse Segmenter
In discourse segmentation, given an input text 𝑋 = (𝑥1, . . . , 𝑥𝐼), where 𝑥𝑖 is a word, a
segmenter detects EDUs𝑌 = (𝑦1, . . . , 𝑦𝐽) from 𝑋 as a supervised learning task. Because
there is no overlap or gap between EDUs, discourse segmentation can be considered as
a kind of sequential labeling task, which assigns labels 𝐿 = (ℓ1, . . . , ℓ𝐼), where each
ℓ𝑖 ∈ {0, 1} indicates whether the word is the start of an EDU or not. By using a
discriminative model, such as BiLSTM-CRF and pointer-networks [Lin et al., 2019],
the probability of predicting EDUs from 𝑋 can be 𝑝(𝐿 |𝑋) or 𝑝(𝑌 |𝑋). Because of its
simple structure and extensibility, this chapter follows Wang et al. [2018c] to choose
BiLSTM-CRF as the base model for discourse segmentation. In BiLSTM-CRF, 𝑝(𝐿 |𝑋)
is formulated through a CRF layer over all possible label sequences as follows:

𝑝(𝐿 |𝑋) =
∏𝐼
𝑖=1 𝜓𝑖 (ℓ𝑖, ℓ𝑖−1, ℎ̃𝑖)∑

𝐿′∈Y
∏𝐼
𝑖=1 𝜓𝑖 (ℓ𝑖′, ℓ′𝑖−1, ℎ̃𝑖)

, (3.2.1)
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where 𝜓𝑖 (ℓ𝑖, ℓ𝑖−1, ℎ̃𝑖) = exp(𝐵𝑙𝑖−1,𝑙𝑖 + 𝑊ℎ̃𝑖) is the potential function consisting of two
parts: the parameter 𝐵ℓ𝑖−1,ℓ𝑖 represents the transition probability from label ℓ𝑖−1 to label
ℓ𝑖, and 𝑊ℎ̃𝑖 represents the emission score, indicating how likely the label is ℓ𝑖 at the 𝑖th
time step given the input 𝑥𝑖. Here, ℎ̃𝑖 is the final hidden state at the 𝑖th time step, and
Y is the set of possible label sequences. Let LSTM denote the LSTM layer, Concat
be the concatenation layer, and 𝑒𝑖 be the word embedding of 𝑥𝑖. The hidden state ℎ̃𝑖 is
computed by using the bidirectional LSTM [Schuster and Paliwal, 1997] as follows:

ℎ̃(1)𝑖 = LSTM(𝑒𝑖, ℎ̃(1)𝑖−1)
ℎ̃(2)𝑖 = LSTM(𝑒𝑖, ℎ̃(2)𝑖+1)
ℎ̃𝑖 = Concat( ℎ̃(1)𝑖 , ℎ̃(2)𝑖 ). (3.2.2)

Equation ( 3.2.2) and Equation ( 3.2.1) clearly present the advantages of using
BiLSTM-CRF. These equations illustrate how bidirectional representations of the in-
put 𝑋 can be leveraged to compute hidden states, and how the probability of 𝑝(𝐿 |𝑋) is
normalized over all possible label sequences, unlike auto-regressive methods that rely on
a limited set of possible sequences obtained through heuristic search methods like beam
search. However, it should be noted that the CRF layer in BiLSTM-CRF only considers
local transitions between consecutive labels, which does not capture global transition
probabilities. As mentioned earlier, there is still room for improvement by considering
the representations of the target 𝐿 to alleviate text degeneration. Building upon this
observation, this thesis proposes the LMR to inherit the top-𝛼 Viterbi [Forney, 1973]
results of Wang et al. [2018c], scored by Equation ( 3.2.1), as described in Section 3.3.

3.2.2 Discourse Parser
In discourse parsing, given an input text 𝑋 and its EDUs 𝑌 , we can build a binary
tree 𝐴 = (𝑎1, . . . , 𝑎2𝐼−1), where each node 𝑎𝑖 ∈ 𝐴 has three kinds of labels: span 𝑑𝑖,
nuclearity 𝑢𝑖, and relation 𝑟𝑖. The sequences of span 𝐷 and nuclearity𝑈 can be predicted
simultaneously, as in 2-stage Parser [Wang et al., 2017], or span 𝐷 can be predicted in
advance for labeling nuclearity𝑈 and relation 𝑅, as in pointer-networks [Lin et al., 2019]
and span-based Parser [Kobayashi et al., 2020]. Because of its better performance, this
chapter adopts the 2-stage Parser as the base model for sentence-level discourse parsing.
2-stage Parser extracts several features and does classification with SVMs in two stages.
In the first stage, it identifies the span and nuclearity simultaneously to construct a
tree based on the transition-based system with four types of actions: Shift, Reduce-NN,
Reduce-NS, and Reduce-SN. In the second stage, for a given node 𝑎𝑖, 𝑟𝑖 is predicted as the
relation between the left and right children nodes of 𝑎𝑖 by using features extracted from 𝑎𝑖
and its children nodes. In spite of its limited features, it achieves the best results compared
with pointer-networks and span-based Parser, as described in Section 3.4.3. Similar to
the BiLSTM-CRF model discussed earlier, the 2-stage Parser is a discriminative model
that does not consider the global relationships among labels. This motivates this thesis
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Figure 3.2: Overview of the reranking procedure by using the language model-based
reranker (LMR).

to employ a generative model that takes into account the representations of labels to
further improve the final results. Because 2-stage Parser utilizes SVMs, this chapter
normalizes the action scores and inherits the top-𝛼 beam search results of 2-stage Parser
for the LMR to perform sentence-level discourse parsing.

3.3 Reranking Rhetorical Structure with Masked Lan-
guage Model

This section introduces the proposed generative model, LMR, that utilizes a masked
and permuted language model to compute sequence probabilities for reranking in both
discourse segmentation and sentence-level discourse parsing tasks. More specifically,
as we mention in Section 3.4, we can utilize the LMR in three tasks, (a) discourse
segmentation, (b) sentence-level discourse parsing with gold segmentation, and (c)
sentence-level discourse parsing with automatic segmentation. Figure 3.2 shows the
overview of using the LMR for reranking in the whole task (c). The prediction process
in LMR can be summarized as follows, assuming that, in task (c), discourse segmentation
and sentence-level discourse parsing are performed in a pipeline manner with models
trained for tasks (a) and (b).

1. Predict the top-𝛼𝑠𝑒𝑔 EDU segmentations Y𝛼𝑠𝑒𝑔 = {𝑌1, . . . , 𝑌𝛼𝑠𝑒𝑔} from a given
sentence 𝑋 using the base discourse segmenter described in Section 3.2.1.

2. Compute the joint probability 𝑝(𝑋,𝑌 ) and select the best segmentation 𝑌 ∗ from
Y𝛼𝑠𝑒𝑔 with a language model, as we describe below.

3. Parse and rank the top-𝛼𝑝𝑎𝑟 trees A𝛼𝑝𝑎𝑟 = {𝐴1, . . . , 𝐴𝛼𝑝𝑎𝑟 } from 𝑋 and the best
segmentation 𝑌 ∗ using the base discourse parser described in Section 3.2.2.

4. Compute the joint probability 𝑝(𝑋,𝑌 ∗, 𝐴) to select the best tree 𝐴∗ from A𝛼𝑝𝑎𝑟

with a language model, as we describe below.

In task (a), we apply Step 2 to predict the best segmentation after Step 1. In task (b), we
skip Steps 1 and 2, and apply just Steps 3 and 4 for gold segmentation to yield the best
parse tree.
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(a) Sentence with EDU boundary labels
𝑋1 [EDU] 𝑋2 [EDU] 𝑋3 [EDU]

(b) Sentence with span labels
(Span (Span 𝑋1 )Span (Span 𝑋2 )Span )Span (Span 𝑋3 )Span

(c) Sentence with nuclearity labels
(N (N 𝑋1 )N (S 𝑋2 )S )N (S 𝑋3 )S

(d) Sentence with relation labels
(Span (Span 𝑋1 )Span (Elaboration 𝑋2 )Elaboration )Span (Attribution 𝑋3 )Attribution

(e) Sentence with all labels
(Span:N (Span:N 𝑋1 )Span:N (Elaboration:S 𝑋2 )Elaboration:S )Span:N (Attribution:S 𝑋3 )Attribution:S

Figure 3.3: Example joint representations of an input text and labels for the sentence
We’ve got a lot to do, he acknowledged., which was segmented and parsed as illustrated
in Figure 3.1. 𝑋 𝑖 represents the corresponding EDU, and “ ” is whitespace.

3.3.1 Tree Representations
To calculate joint probabilities for a discourse tree with a language model, we need to
represent a tree as a linear form, like Figure 3.1(b). Because there are several predictable
label sets in discourse segmentation and parsing tasks, as shown in Figure 3.3, we prepare
linearized forms for each label set. Note that using just a raw s-expression-style tree
of Figure 3.1(b) in our language model cannot work because of its much more tokens.
Therefore, we transform the tree into the format depicted in Figure 3.3(e) where the
nuclearity and relation labels are connected together by the colons.

In discourse segmentation, we can consider joint probability 𝑝(𝑋,𝑌 ) for a sequence
with inserting a symbol, [EDU], at an EDU boundary (Figure 3.3(a)). In discourse
parsing, a discourse tree is represented as a sequence with several kinds of label sets:
span labels 𝐷, nuclearity labels𝑈 including span labels, and relation labels 𝑅 including
span and nuclearity labels (Figures 3.3(b)-(d)). To investigate the effectiveness of each
label set in the reranking step, we consider 𝑝(𝑋,𝑌, 𝐷), 𝑝(𝑋,𝑌,𝑈), and 𝑝(𝑋,𝑌, 𝑅) for
each label set to represent 𝑝(𝑋,𝑌, 𝐴) in this paper. To build a sequence, we combine
each label in a tree with brackets to imply the boundary for the label. For example,
“(N” and “)N” stand for the start and end of a nucleus EDU. For a node 𝑎𝑖 of the tree,
𝑟𝑖 describes the relation between its children nodes, leading to 𝑟𝑖 of leaf nodes being
“Null”. When the child nodes of 𝑎𝑖 are nucleus and satellite, we assign label “Span” to
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the nucleus child node of 𝑎𝑖 and label 𝑟𝑖 to the satellite child node of 𝑎𝑖, respectively.
When the child nodes of 𝑎𝑖 are both nucleus, we assign label 𝑟𝑖 to both child nodes of 𝑎𝑖.

For simpler illustration, in Figure 3.1(b), we show the linearized discourse tree only
with nuclearity and relation labels, because the nuclearity labels can also show span and
EDU boundary labels. “Null” labels for leaf nodes are also omitted in the figure.

3.3.2 Joint Probabilities
To calculate joint probabilities in the last subsection with a language model, we consider
probability 𝑝(𝑍) for a sequence 𝑍 = (𝑧1, . . . , 𝑧 |𝑍 |), which could correspond to the prob-
abilities for any sequential representations 𝑝(𝑋,𝑌 ), 𝑝(𝑋,𝑌, 𝐷), 𝑝(𝑋,𝑌,𝑈), 𝑝(𝑋,𝑌, 𝑅),
or 𝑝(𝑋,𝑌, 𝐴).

According to Song et al. [2020], masked and permuted language modeling (MPNet)
takes the advantages of both masked language modeling in BERT and permuted language
modeling in XLNet [Yang et al., 2019] while overcoming their issues. Compared with
BERT and XLNet, MPNet considered more information about tokens and positions, and
achieved better results for several downsteam tasks (GLUE, SQuAD, etc). Taking into
account its better performance, we choose pre-trained MPNet as our language model.
Because considering all possible inter-dependence between 𝑧𝑡 is intractable, we follow
the decomposition of PLL scores in the model, which was introduced in Section 2.6.2.
Thus, we decompose and calculate logarithmic 𝑝(𝑍) as follows:

log 𝑝(𝑍; 𝜃) ≈ PLL(𝑍; 𝜃) :=
|𝑍 |∑

𝑡=1,𝜅={𝑡}
log 𝑝(𝑧𝑡 |𝑍\𝜅, 𝑡; 𝜃), (3.3.1)

where 𝑝(𝑧𝑡 |𝑍\𝜅, 𝑡; 𝜃) is computed by two-stream self-attention [Yang et al., 2019]. This
model converts 𝑍 into continuous vectors 𝐸 = (𝑒1, . . . , 𝑒 |𝑍 |) through the embedding
layer. Multi-head attention layers further transform the vectors to predict each 𝑧𝑡 in the
softmax layer, as described in Section 2.7.2.

Because pre-trained MPNet does not consider EDU, span, nuclearity, and relation
labels in the pre-training step, we need to construct vectors 𝐸 for these labels from the
pre-trained parameters to enhance the prediction performance. We describe the details
of this method in the next subsection.

3.3.3 Label Embeddings
In LMR, we embed input text tokens and labels in the same vector space [Wang et al.,
2018b] of the embedding layer. Under the setting, to deal with unseen labels in the
pre-trained model, we compute the label embeddings by utilizing token embeddings in
the pre-trained model.

We try to combine the input text with four kinds of labels, EDU, span, nuclearity,
and relation labels, which were defined and clearly described in the annotation docu-
ment [Carlson and Marcu, 2001]. We list our extracted label descriptions from Carlson
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Label Definition
[EOS] elementary discourse units are the minimal building blocks of a discourse

tree
Span span
Nucleus a more salient or essential piece of information
Satellite a supporting or background piece of information
Attribution attribution, attribution represents both direct and indirect instances of

reported speech
Background background or circumstance
Cause cause or result
Comparison comparison, preference, analogy or proportion
Condition condition, hypothetical, contingency or otherwise
Contrast contrast relation, spans contrast with each other along some dimension.

Typically, it includes a contrastive discourse cue, such as but, however,
while.

Elaboration elaboration, elaboration provides specific information or details to help
define a very general concept

Enablement enablement, enablement presentes action to increase the chances of the
unrealized situation being realized.

Evaluation evaluation, interpretation, conclusion or comment
Explanation evidence, explanation or reason
Joint list, list contains some sort of parallel structure or similar fashion between

the units
Manner-Means explaining or specifying a method , mechanism , instrument , channel or

conduit for accomplishing some goal
Topic-Comment problem solution, question answer, statement response, topic comment

or rhetorical question
Summary summary or restatement
Temporal situations with temporal order, before, after or at the same time
Topic change topic change
Textual-
organization

links that are marked by schemata labels

Same-unit links between two non-adjacent parts when separated by an intervening
relative clause or parenthetical

Table 3.1: Extracted label definitions.

and Marcu [2001] in Table 3.1. For parsing symbols with brackets “(” and “)” like “(N”
and “)N”, we inserted the position phrase, the start of and the end of, to the beginning of
their label definitions. So the description of “)N” is the end of a more salient or essential
piece of information. To construct the label embedding for 𝑝(𝑋,𝑌, 𝐴), we combined
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the descriptions of the nuclearity and relation, and assigned the combination to the
corresponding node. For example, the description of “(Attribution:S” is the start of a
supporting or background piece of information attribution, attribution represents both
direct and indirect instances of reported speech. In taking into account the descriptions
for the labels as additional information, we adopt two different methods, Average and
Concatenate, for representing the label embeddings.
Average: We average the embeddings of tokens that appear in the definition of a label
and assign the averaged embedding to the label.
Concatenate: We concatenate a label name with its definition and insert the concate-
nated text to the end of sequence 𝑍 ,1 so that the label embedding can be captured by
self-attention mechanisms [Vaswani et al., 2017]. Note that we do not try it in the
parsing task, because the length of a sequence increases in proportion to the increase of
the number of labels, that causes a shortage of memory space.

3.3.4 Objective Function
As a reranker, the LMR should compare all corresponding segmentations Y and pars-
ing trees A for a given text 𝑋 to select the most coherent combination. However,
considering all possible segmentations and parsing trees for 𝑋 is computationally infea-
sible [Stahlberg and Byrne, 2019]. Therefore, we consider subsets Y𝛼𝑠𝑒𝑔 and A𝛼𝑝𝑎𝑟 that
consist of the top-𝛼𝑠𝑒𝑔 segmentations from the base segmenter and the top-𝛼𝑝𝑎𝑟 parsing
trees from the base parser, respectively. After building Y𝛼𝑠𝑒𝑔 or A𝛼𝑝𝑎𝑟 , we could select
a label sequence from {𝑌, 𝐷,𝑈, 𝑅, 𝐴} and construct a corresponding subset Z𝛼 for the
joint sequence 𝑍 from all possible sequences Z. We denote 𝑍𝑔𝑜𝑙𝑑 ∈ Z as the correct
label sequence of 𝑋 . To keep pre-trained information in MPNet, for 𝑍 ∈ Z𝛼 ∪ {𝑍𝑔𝑜𝑙𝑑},
we follow the setting of MPNet to randomly mask and permute 𝑍 and denote 𝜅 as the
set of masked positions. To address issues like text degeneration and exposure bias,
we followed previous research [Welleck et al., 2020, Song et al., 2021] to employ con-
trastive learning to optimize the parameters 𝜃 of the LMR. Given the masked sentence
𝑍\𝜅, this is achieved by maximizing the likelihood of positive samples and minimizing
the likelihood of negative samples as follows:

𝜃∗ := arg max
𝜃

log 𝑝(𝑍𝜅 |𝑍\𝜅; 𝜃) (3.3.2)

≈ arg max
𝜃

∑
𝑡∈𝜅

[1𝑍 log 𝑝(𝑧𝑡 |𝑍\𝜅, 𝑡; 𝜃)︸                    ︷︷                    ︸
likelihood

+ (1 − 1𝑍 ) log(1 − 𝑝(𝑧𝑘 |𝑍\𝜅, 𝑡; 𝜃))︸                                     ︷︷                                     ︸
unlikelihood

],

where 1𝑍 is the indicator function, defined as:

1𝑍 :=

{
1 if 𝑍 = 𝑍𝑔𝑜𝑙𝑑
0 if 𝑍 ≠ 𝑍𝑔𝑜𝑙𝑑

. (3.3.3)

1Note that the concatenated text of the label name and its definition is not masked during training.
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Task Train Valid Test

(a) Segmentation 6,768 905 991
(b) Parsing w/ gold segmentation 4,524 636 602
(c) Parsing w/ auto segmentation - 861 951

Table 3.2: The number of sentences for each task.

3.3.5 Inference
In inference, for 𝑍 ∈ Z𝛼, the LMR scores 𝑍 by using softmax function as follows:

𝑓 (𝑍) = exp(PLL(𝑍; 𝜃)/|𝑍 |)∑
𝑍 ′∈Z𝛼

exp(PLL(𝑍′; 𝜃)/|𝑍′|) . (3.3.4)

We select 𝑍 based on 𝑓 (𝑍).

3.4 Experimental Setup
This section presents the experimental settings in three tasks, (a) discourse segmentation,
(b) sentence-level discourse parsing with gold segmentation, and (c) sentence-level
discourse parsing with automatic segmentation.

3.4.1 Datasets
Following previous studies [Wang et al., 2017, 2018c, Lin et al., 2019], this chapter used
the RST Discourse Treebank (RST-DT) corpus [Carlson et al., 2002] as our dataset. This
corpus contains 347 and 38 documents for training and test datasets, respectively. We
divided the training dataset into two parts, following the module RSTFinder2 [Heilman
and Sagae, 2015], where 307 documents were used to train models and the remaining
40 documents were used as the validation dataset.

We split the documents into sentences while ignoring footnote sentences, as in Joty
et al. [2012]. There happens two possible problematic cases for the splitted sentences:
(1) The sentence consists of exactly an EDU, and so it has no tree structure. (2) The tree
structure of the sentence goes across to other sentences. Following the setting of Lin
et al. [2019], we did not filter any sentences in task (a). In task (b), we filtered sentences
of both cases. In task (c), we filtered sentences of case (2). Table 3.2 shows the number
of available sentences for the three different tasks.

2https://github.com/EducationalTestingService/rstfinder
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Model Precision Recall 𝐹1

Reported* 92.04 94.41 93.21
Shared 92.22 95.35 93.76
Reproduced (ELMo) 93.16 96.26 94.68
Reproduced (MPNet) 92.84 95.63 94.21

Table 3.3: Performances of BiLSTM-CRF [Wang et al., 2018c] in the discourse seg-
mentation task. The highest score in each metric among the models is indicated in bold.
* indicates the reported score by Lin et al. [2019]. Shared is the publicly shared model by
Wang et al. [2018c]. Reproduced (ELMo) and Reproduced (MPNet) are our reproduced
models with different word embeddings.

Model Span Nuclearity Relation

2-Stage Parser* 95.60 87.80 77.60
Pointer-networks* 97.44 91.34 81.70

Span-based Parser 96.67 90.23 74.76
2-Stage Parser 97.92 92.07 82.06

Table 3.4: Performance of retrained parsers in the sentence-level discourse parsing task
with gold segmentation. The highest score in each metric among the models is indicated
in bold. * indicates the reported score by Lin et al. [2019].

3.4.2 Evaluation Metrics
In task (a), we evaluated the segmentation in micro-averaged precision, recall, and 𝐹1
score with respect to the start position of each EDU. The position at the beginning of a
sentence was ignored. In task (b), we evaluated the parsing in micro-averaged 𝐹1 score
with respect to span, nuclearity, and relation. In task (c) for parsing with automatic
segmentation, we evaluated both the segmentation and parsing in micro-averaged 𝐹1
score. We used the paired bootstrap resampling [Koehn, 2004] for the significance test
in all tasks when comparing two systems.

3.4.3 Compared Methods
As our proposed methods, we used LMR𝑦, LMR𝑑 , LMR𝑢, LMR𝑟 , and LMR𝑎, which re-
spectively model probability 𝑝(𝑋,𝑌 ), 𝑝(𝑋,𝑌, 𝐷), 𝑝(𝑋,𝑌,𝑈), 𝑝(𝑋,𝑌, 𝑅), and 𝑝(𝑋,𝑌, 𝐴)
with initialized label embeddings. We represent LMR with Average and Concatenate
label embeddings as Enhance and Extend, respectively.

We used the base discourse segmenter and parser described in Section 3.2 as our
baseline. We reproduced the base discourse segmenter BiLSTM-CRF3 [Wang et al.,

3https://github.com/PKU-TANGENT/NeuralEDUSeg
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2018c]. Because BiLSTM-CRF adopted the hidden states of ELMo [Peters et al.,
2018] as word embeddings, we also tried the last hidden state of MPNet as the word
embeddings for BiLSTM-CRF for fairness. We retrained the segmenter in five runs, and
the experimental results are showed in Table 3.3. The publicly shared BiLSTM-CRF by
Wang et al. [2018c] is our base segmenter in the following experiments.

As for the base parser, we retrained two models, 2-stage Parser4 [Wang et al., 2017]
and span-based Parser5 [Kobayashi et al., 2020]. Different from the setting of Lin et al.
[2019], we retrained 2-stage Parser in the sentence-level rather than in the document-
level. Because the experimental results in Table 3.4 show our retrained 2-stage Parser
achieved the highest 𝐹1 scores among several parsers , we selected it as our base parser
in the following experiments.

Furthermore, for comparing LMR with an unidirectional generative model [Mabona
et al., 2019], we constructed another baseline method which utilizes a GPT-2 as a
reranker. This method follows an unidirectional language model-based generative
parser [Choe and Charniak, 2016], and considers top-𝛼 results from the base model
by an add-1 version of infinilog loss [Ding et al., 2020] during training. We denote
this baseline as GPT2LM hereafter. Following the steps in Choe and Charniak [2016],
GPT2LM with parameter 𝜃 utilized Equation ( 2.6.1) to compute 𝑝(𝑍) as follows:

𝑝(𝑍; 𝜃) = 𝑝(𝑧1, . . . , 𝑧 |𝑍 |; 𝜃) =
|𝑍 |∏
𝑡=1

𝑝(𝑧𝑡 |𝑍<𝑡 ; 𝜃), (3.4.1)

where 𝑝(𝑧𝑡 |𝑍<𝑡); 𝜃 was computed by GPT-2 as described in Section 2.7.3. And in
inference, it selected 𝑍 based on 1

|𝑍 | log 𝑝(𝑍). An add-1 version of infinilog loss [Ding
et al., 2020] was utilized for training GPT2LM as follows:

𝜃∗ :=arg max
𝜃

log
𝑓 (𝑍)

1 + ∑
𝑍 ′∈Z𝛼,𝑍 ′≠𝑍 𝑓 (𝑍′)

, (3.4.2)

where 𝑓 (𝑍) = exp (log 𝑝(𝑍; 𝜃)/|𝑍 |)∑
𝑍 ′∈Z𝛼

exp (log 𝑝(𝑍′; 𝜃)/|𝑍′|) , (3.4.3)

log 𝑝(𝑍; 𝜃) was computed by using cross-entropy loss as in Equation ( 2.6.3). GPT2LM
models 𝑝(𝑋,𝑌 ) for task (a) and 𝑝(𝑋,𝑌, 𝑅) for tasks (b) and (c), respectively. Both LMR
and GPT2LM are the ensemble of 5 models with different random seeds.

3.4.4 Hyperparmeters
For LMR, we used the source code shared in the public github6 of Song et al. [2020]. We
used the uploaded pre-trained MPNet and same setup as illustrated in Table 3.5. 15%
tokens as the predicted tokens were masked by replacement strategy 8:1:1. Relative

4https://github.com/yizhongw/StageDP
5https://github.com/nttcslab-nlp/Top-Down-RST-Parser
6https://github.com/microsoft/MPNet
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Hyperparameter LMR GPT2LM

Optimizer adam adam
Adam 𝛽1 0.9 0.9
Adam 𝛽2 0.98 0.98
Adam 𝜖 1𝑒 - 6 1𝑒 - 6
weight decay 0.01 0.01
Learning rate 0.00009 0.0001
Batch size 8192 tokens 512 gold tokens + candidate tokens
Warm up steps 2.4 epoch 2.4 epoch
Epoch 30 30
Attention layer 12 12
Attention head 12 12
dropout 0.1 0.1
attention dropout 0.1 0.1
Hidden size 768 768
Vocab size 30527 50257+ added tokens
Tokenizer Byte pair encoder Byte pair encoder
Max sentence length 512 512

Table 3.5: List of used hyperparameters for LMR and GPT2LM.

positional embedding mechanism [Shaw et al., 2018] was utilized. Because the vocab
we used is same as the one of BERT, we used the symbol [SEP] to represent [EDU]
and symbol [unused#] starting from 0 to represent parsing labels such as “(N” and
“(Attribution”.

For GPT2LM, we used the source code shared in the public github7 [Ott et al., 2019].
We used the uploaded pre-trained “gpt2” model [Wolf et al., 2020] and same setup as
illustrated in Table 3.5. We used symbol “=====” in vocab to represent the symbol
[EDU]. Because the vocab of GPT-2 has no available symbol for representing an unseen
symbol, we added <pad> and our relation symbols to the vocab of GPT-2 and resized
the pre-trained word embeddings.

3.5 Results

3.5.1 Candidates Tuning
As described in Section 3.3, LMR requires parameters 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 for the number
of candidates in the steps for different tasks. We tuned 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 based on the
performance on the validation dataset. Table 3.6 shows the setting of candidates for

7https://github.com/pytorch/fairseq/tree/master/fairseq/models/
huggingface
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Task Data Segmentation Parsing # of data
𝛼𝑠𝑒𝑔 1st stage 2rd stage 𝛼𝑝𝑎𝑟

(a) Training 20 - - - 140924
Prediction 5 - - - -

(b)
Trainingw/ span or nuclearity - 20 1 20 60742
Trainingw/ relation or all - 3 7 20 95004
Prediction - 5 5 5 -

(c) Prediction 5 5 5 5 -

Table 3.6: Setting of top candidates for different tasks. The Prediction data denotes the
validation and test dataset.

Model 𝛼𝑠𝑒𝑔 for training Precision Recall 𝐹1

LMR𝑦 0 87.76 95.72 91.57
10 97.67 97.73 97.70
20 97.99 97.86 97.92

GPT2LM𝑦 0 81.72 96.18 88.36
10 96.67 96.05 96.36
20 96.93 96.05 96.48

Table 3.7: Results of tuning 𝛼𝑠𝑒𝑔 for training in task (a). The highest score in each
metric among different 𝛼𝑠𝑒𝑔 for training is indicated in bold.

different tasks. As described in Section 3.3.4, we do data augmentation by using
additional top-𝛼 results generated by a base method, a larger 𝛼 during training in
Equation ( 3.3.2) is expected to bring more promotion for LMR. However, a larger 𝛼
during prediction step in Equation ( 3.3.1) introduces more candidates and may make
the prediction more difficult. Taking this into consideration, we tuned 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 for
training and prediction separately based on the performance on the validation dataset.
The set of parameters was similarly tuned for GPT2LM on the validation dataset.

In task (a), we used the Viterbi-topk algorithm for the base segmenter to select top-
𝛼𝑠𝑒𝑔 segmentations. We tuned 𝛼𝑠𝑒𝑔 ∈ {0, 10, 20} for training while 𝛼𝑠𝑒𝑔 for prediction
was fixed as 5.8 Because the LMR𝑦 and GP2TLM𝑦 with 𝛼𝑠𝑒𝑔 = 20 achieved the highest
𝐹1 scores as shown in Table 3.7, we tuned 𝛼𝑠𝑒𝑔 ∈ {5, 10, 20} for prediction by using
the LMR𝑦 and GP2TLM𝑦 trained with top-20 candidates.9 The results in Table 4.10
shows that when 𝛼𝑠𝑒𝑔 for prediction was set to 5, the LMR𝑦 and GP2TLM𝑦 attained their
highest 𝐹1 scores on the validation datasets. Building upon these results, 𝛼𝑠𝑒𝑔 was set to
20 and 5 for training and prediction, respectively.

8Note that we used only gold segmentations for training when 𝛼𝑠𝑒𝑔 was set to 0.
9Oracle indicates the upper bound score that can be achieved with candidates generated by the base

model. To compute the Oracle score, if the candidades by the base model include the correct answer, we
assume the prediction is correct.
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Model 𝛼𝑠𝑒𝑔 for prediction Precision Recall 𝐹1

Oracle 5 99.94 99.68 99.81
10 99.94 99.68 99.81
20 99.94 99.68 99.81

LMR𝑦 5 97.99 97.86 97.92
10 97.47 97.54 97.51
20 97.41 97.60 97.51

GPT2LM𝑦 5 96.93 96.05 96.48
10 96.47 95.59 96.03
20 95.76 95.14 95.45

Table 3.8: Results of tuning 𝛼𝑠𝑒𝑔 for prediction in task (a). The highest score in each
metric among different 𝛼𝑠𝑒𝑔 for prediction is indicated in bold.

Model 𝛼𝑝𝑎𝑟 for training Span Nuclearity Relation

LMR𝑟 0 97.25 92.21 83.37
10 97.46 92.71 83.23
20 97.50 93.02 83.44

GPT2LM𝑟 0 97.36 92.07 79.11
10 96.93 90.80 80.76
20 96.79 90.66 80.94

Table 3.9: Results of tuning 𝛼𝑝𝑎𝑟 for training in task (b). The highest score in each
metric among different 𝛼𝑝𝑎𝑟 for training is indicated in bold.

Model 𝛼𝑝𝑎𝑟 for prediction Span Nuclearity Relation

Oracle 5 98.66 96.41 92.11
10 99.30 98.03 94.43
20 99.47 98.48 95.42

LMR𝑟 5 97.50 93.02 83.44
10 97.50 92.46 83.30
20 97.29 92.25 83.30

GPT2LM𝑟 5 96.79 90.66 80.94
10 94.26 81.08 70.82
20 93.27 77.20 66.67

Table 3.10: Results of tuning 𝛼𝑝𝑎𝑟 for prediction in task (b). The highest score in each
metric among different 𝛼𝑝𝑎𝑟 for prediction is indicated in bold.

In task (b), we utilized beam search in each stage of the base parser and after two stages
we computed the perplexity to keep top-𝛼𝑝𝑎𝑟 parsings. We tuned 𝛼𝑝𝑎𝑟 ∈ {0, 10, 20} for
training while 𝛼𝑝𝑎𝑟 for prediction was fixed as 5. Table 3.9 shows that when 𝛼𝑝𝑎𝑟 for
training was set to 20, both the LMR𝑟 and GP2TLM𝑟 achieved the highest 𝐹1 scores
for the relation label. Then we tuned 𝛼𝑝𝑎𝑟 ∈ {5, 10, 20} for prediction by using the
LMR𝑟 and GP2TLM𝑟 trained with top-20 candidates. Table 3.10 shows the LMR𝑟 and
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Model 𝛼𝑠𝑒𝑔 for prediction Precision Recall 𝐹1

Oracle 5 99.93 99.65 99.79
10 99.93 99.65 99.79
20 99.93 99.65 99.79

LMR𝑦 5 97.96 97.74 97.85
10 97.32 97.39 97.36
20 97.33 97.53 97.43

GPT2LM𝑦 5 96.94 95.91 96.42
10 96.45 95.63 96.04
20 95.75 95.35 95.55

Table 3.11: Results of tuning 𝛼𝑠𝑒𝑔 for prediction in task (c). The highest score in each
metric among different 𝛼𝑠𝑒𝑔 for prediciton is indicated in bold.

Model 𝛼𝑝𝑎𝑟 for prediction Span Nuclearity Relation

Oracle 5 95.05 92.95 89.02
10 95.93 94.73 91.25
20 96.21 95.36 92.45

LMR𝑟 5 94.39 90.12 80.88
10 94.39 89.45 80.74
20 94.18 89.24 80.63

GPT2LM𝑟 5 93.65 87.80 78.59
10 91.18 78.55 68.99
20 90.30 74.96 65.19

Table 3.12: Results of tuning 𝛼𝑝𝑎𝑟 for prediction in task (c). The highest score in each
metric among different 𝛼𝑝𝑎𝑟 for prediciton is indicated in bold.

GP2TLM𝑟 achieved the highest 𝐹1 scores for all labels when 𝛼𝑝𝑎𝑟 = 5. Thus, 𝛼𝑝𝑎𝑟 was
set to 20 and 5 for training and prediction, respectively.

In task (c), we skipped tuning 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 for training and instead directly used
the tuned models from task (a) and (b). To tune 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 for prediction, same
as in task (a), we tuned 𝛼𝑠𝑒𝑔 ∈ {5, 10, 20} for predicting discourse segmentation by
using the LMR𝑦 and GP2TLM𝑦 trained with top-20 candidates for task (a), Table 3.11
shows the result. Because LMR𝑦 and GP2TLM𝑦 achieved highest scores when 𝛼𝑠𝑒𝑔 = 5,
while LMR𝑦 achieved higher scores than GP2TLM𝑦, we utilized LMR𝑦 to select the best
segmentation from top-5 segmentations for following discourse parsing. Then same as
in task (b), we tuned 𝛼𝑝𝑎𝑟 ∈ {5, 10, 20} for predicting discourse parsing by using the
LMR𝑟 and GP2TLM𝑟 trained with top-20 candidates for task (b). Table 3.12 shows the
result that LMR𝑟 and GP2TLM𝑟 yield highest scores when 𝛼𝑝𝑎𝑟 for prediction was set
to 5. Buidling upon these results, 𝛼𝑠𝑒𝑔 and 𝛼𝑝𝑎𝑟 were both set to 5 for prediction.

In tasks (b) and (c), LMR𝑑 and Enhance𝑑 cannot distinguish the candidates with the
same span labels but different nulearity or relation labels, LMR𝑢 and Enhance𝑢 cannot
distinguish the candidates with the same nulearity labels but different relation labels.
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Model Precision Recall 𝐹1

Oracle 97.73 98.67 98.20

Pointer-networks* 93.34 97.88 95.55
Base segmenter 92.22 95.35 93.76
GPT2LM𝑦 94.05 95.72 94.88

LMR𝑦 95.31 97.56 96.43†
Enhance𝑦 95.54 97.93 96.72†
Extend𝑦 95.05 97.86 96.44†

Table 3.13: Results for the discourse segmentation task. * indicates the reported score
by Lin et al. [2019]. The highest score in each metric among the models is indicated
in bold. † indicates that the score is significantly superior to GPT2LM with a p-value
< 0.01.

Under this condition, in the following experiments, in task (b), for training data with
span or nuclearity labels, we used the beam sizes 20 and 1 in the first and second stages
of the base parser, respectively, as presented in Table 3.6. And the indistinguishable
parsings would be ranked by the base parser.

3.5.2 Effect of Reranking
Table 3.13 shows the experimental results for the discourse segmentation task, where
LMR𝑦 significantly outperformed GPT2LM𝑦.10 We think the reason is similar to what
Zhu et al. [2020] reported: BERT-based bidirectional encoder-only Transformer encodes
more rhetorical features than GPT2-based unidirectional decoder-only Transformer. Us-
ing Average label embeddings is more helpful than using Concatenate label embeddings
for LMR𝑦. Enhance𝑦 achieved the state-of-the-art 𝐹1 score of 96.72, which outperformed
both the base segmenter and the pointer-networks.

Table 3.14 shows the experimental results for the sentence-level discourse parsing
task with gold segmentation. In Table 3.14, LMR𝑢 achieved the highest span and
nuclearity 𝐹1 scores of 98.31 and 94.00, respectively. Enhance𝑟 achieved the state-of-
the-art relation 𝐹1 score of 84.69, which is significantly superior to the base parser.
Although using Average label embeddings improved LMR𝑟 , it can provide no or only
limited improvement for LMR𝑢 and LMR𝑑 . We guess that this difference is caused by
the number of different kinds of labels in span, nuclearity, and relation. The performance
of GPT2LM𝑟 is even worse than the base parser. We think this is because we added the
relation labels to the vocabulary of GPT-2 and resized the pre-trained word embeddings.
Although Enhance𝑎 implements more label representations than Enhance𝑟 , it actually
achieved lower 𝐹1 scores in terms of span, nuclearity, and relation. This discrepancy

10We chose GPT2LM𝑦 for the significance test because we had only reported scores for the pointer-
networks.
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Model Span Nuclearity Relation

Oracle 98.67 95.88 90.07

Pointer-networks* 97.44 91.34 81.70
Base parser 97.92 92.07 82.06
GPT2LM𝑟 96.35 88.11 77.86

LMR𝑑 98.23‡ 92.31 82.22
Enhance𝑑 98.27‡ 92.39 82.42
LMR𝑢 98.31‡ 94.00† 83.63†
Enhance𝑢 98.31† 93.88† 83.56†
LMR𝑟 98.00 93.09† 83.99†
Enhance𝑟 98.12 93.13† 84.69†
LMR𝑎 97.84 92.90 84.11
Enhance𝑎 98.04 92.74 84.18

Table 3.14: Results for the sentence-level discourse parsing task with gold segmentation.
* indicates the reported score by Lin et al. [2019]. The highest score in each metric
among the models is indicated in bold. † and ‡ indicate that the score is significantly
superior to the base parser with a p-value < 0.01 and < 0.05, respectively.

may be attributed to the fact that Enhance𝑎 has a larger number of label types, leading to
difficulties in training and causing the training loss not decreasing in our 2 out of 5 runs.
As a consequence, the parsing results with automatic segmentation did not include the
results using this type of tree.

Table 3.15 shows the experimental results for the sentence-level discourse parsing task
with automatic segmentation. The second and third blocks in the table show the results
for the first and second stages, discourse segmentation and sentence-level discourse
parsing, respectively.11 Enhance𝑟 achieved the highest relation 𝐹1 score of 81.18, which
is a significant improvement of 2.43 points compared to the base parser. Enhance𝑑
and LMR𝑢 achieved the highest span and nuclearity 𝐹1 scores of 94.00 and 89.90,
respectively. Because LMR∗ and Enhance∗ were the models trained in task (b), and
Enhance𝑦 achieved the 𝐹1 score of 96.79 in discourse segmentation, it is not surprising
to find that the tendency of those results is similar to that in sentence-level discourse
parsing with gold segmentation.

3.5.3 Evaluation with Respect to Relation Labels
Figure 3.4 shows the comparison between the base parser and Enhance𝑟 with respect
to each ralation label. Overall, Enhance𝑟 outperformed 2-stage Parser in most relation
labels, with a few exceptions such as Explanation, Evaluation, and Topic-Comment.
While 2-stage Parser achieved an 𝐹1 score of 17.14 for label Temporal, Enhance𝑟 sig-

11Note that 𝐹1 scores for discourse segmentation in the second block are not the same as in Table 3.13
owing to the different test dataset.
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Model Seg Parse
Span Nuclearity Relation

Pointer-networks* - 91.75 86.38 77.52

Oracle𝑠𝑒𝑔 98.24 - - -
Base segmenter 93.92 - - -
LMR𝑦 96.51 - - -
Enhance𝒚 96.79 - - -
Extend𝒚 96.48 - - -

Oracle - 93.95 91.25 85.93
Base parser - 93.53 88.08 78.75
GPT2LM𝑟 - 92.02 84.20 74.49
LMR𝑑 - 93.96‡ 88.46 79.25
Enhance𝑑 - 94.00† 88.50 79.33
LMR𝑢 - 93.96† 89.90† 80.33†
Enhance𝑢 - 93.92‡ 89.74† 80.22†
LMR𝑟 - 93.65 89.08† 80.57†
Enhance𝑟 - 93.73 89.16† 81.18†

Table 3.15: Results for the sentence-level discourse parsing task with automatic seg-
mentation. * indicates the reported score by Lin et al. [2019]. The highest score in each
metric among the models for each block is indicated in bold. We used the discourse seg-
mentation results of Enhance𝑦 as the input of the discourse parsing stage for all models,
for fair comparison of sentence-level discourse parsing. † and ‡ indicate that the score is
significantly superior to the base parser with a p-value < 0.01 and < 0.05, respectively.
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Figure 3.4: Performance of 2-stage parser and Enhance𝑟 in the sentence-level discourse
parsing task with gold segmentation. The hollow bar denotes the number of different
gold labels in the training dataset. Blue and red lines indicate the 𝐹1 scores of Enhance𝑟
and 2-stage parser, respectively, for each relation label.

nificantly improved this score to 44.44 by reranking the parsing results from the 2-stage
Parser. Similar substantial improvements can also be observed for labels like Contrast,
Background, and Cause. This observation suggests that Enhance𝑟 tends to enhance the
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Figure 3.5: Confusion matrix for Enhance𝑟 in the sentence-level discourse parsing task
with gold segmentation. We show the ratio of the number of instances with predicted
labels (for a column) to the number of instances with gold labels (for a row) in the
corresponding cell.

performance for labels with limited training data.
Figure 3.5 shows a confusion matrix of Enhance𝑟 for each relation label. The matrix

reveals that Enhance𝑟 sometimes predicts the relation labels Comparison, Cause, and
Temporal incorrectly as Contrast, Joint, and Joint or Background, respectively, despite
the presence of at least 100 training instances for each label. We guess this might be
owing to some similarities between those labels.

By using the t-SNE plot [Van der Maaten and Hinton, 2008], we visualize the trained
relation label embeddings of LMR𝑟 and Enhance𝑟 . The results are presented in Fig-
ure 3.6(a) and Figure 3.6(b). In Figure 3.6(a), a clear diagonal division can be observed,
separating labels with parenthesis “(” from labels with “)”, while Figure 3.6(b) shows
more distinct divisions between labels.

3.6 Conclusion
This section proposed a language model-based reranker, LMR. Given the top-𝛼 dis-
course segmentations or parsings from the base model, as a reranker, the LMR achieved
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Figure 3.6: t-SNE plot of relation label embeddings trained in LMR𝑟 and Enhance𝑟 .

the state-of-the-art performances in both discourse segmentation and sentence-level dis-
course parsing. The experimental results also showed the potential of constructing
label embeddings from token embeddings by using label descriptions in the manual.
Furthermore, the experiments demonstrated the effectiveness of the combined approach
involving two strategies: implementing contrastive learning for optimization and utiliz-
ing bidirectional representations of target labels as input. This combination successfully
encouraged the language model to assign higher probability to natural and coherent
text, addressing concerns such as text degeneration. This promising result inspired the
application of this strategy to the seq2seq architecture, which will be discussed in the
subsequent chapter.
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Chapter 4

Bidirectional Transformer Reranker

Grammatical error correction (GEC) is a sequence-to-sequence task which requires a
model to aim to correct an ungrammatical sentence. An example is presented in Table 4.1.
Various neural models for GEC have emerged [Junczys-Dowmunt et al., 2018, Kiyono
et al., 2019, Kaneko et al., 2020, Rothe et al., 2021] owing to the importance of this task
for language-learners who tend to produce ungrammatical sentences.

Previous studies have shown that GEC can be approached as machine translation by
using a seq2seq model [Luong et al., 2015] with a Transformer architecture [Junczys-
Dowmunt et al., 2018, Zhao et al., 2019, Kiyono et al., 2019, Kaneko et al., 2020, Rothe
et al., 2021]. As a neural model consists of an encoder and a decoder, the seq2seq
architecture typically requires a large amount of training data. Because GEC suffers
from limited training data, applying a seq2seq model for GEC results in a low-resource
setting, that can be handled by introducing synthetic data for training [Kiyono et al.,
2019, Omelianchuk et al., 2020, Stahlberg and Kumar, 2021]. However, as pointed out
by Rothe et al. [2021], using synthetic data in GEC may result in a distributional shift and
require language-specific tuning, which can be time-consuming and resource-intensive.

Considering the limitations of the synthetic data, the current trend is to utilize the
learned and general representations from a pre-trained model, such as BERT, XLNet,
BART, and T5, which have been trained on large corpora and shown to be effective
for various downstream tasks. According to Kaneko et al. [2020], incorporating a pre-
trained masked language model into a seq2seq model could facilitate correction. In
addition, as reported by Rothe et al. [2021], the pre-trained T5 model achieved state-of-
the-art results on GEC benchmarks for four languages after successive fine-tuning with
the cleaned LANG-8 corpus (cLang-8) [Rothe et al., 2021].

Although the seq2seq model with pre-trained representations has shown to be effec-
tive for GEC, its performance was still constrained by its unidirectional decoding. As
suggested by Liu et al. [2021], for an ungrammatical sentence, a fully pre-trained seq2seq
GEC model [Kiyono et al., 2019] could generate several high-quality grammatical sen-
tences using beam search. However, even among these candidates, there may be still a
gap between the selected hypothesis and the most grammatical one. Our experimental
results, listed in Table 4.14, also demonstrate their investigation. To solve this decoding
problem, given the hypotheses of a seq2seq GEC model, Kaneko et al. [2019] used
BERT to classify between ungrammatical and grammatical hypotheses, and reranked
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Source However , it is a good practice not to intesively use social media all the time .
Gold 1 However , it is a good practice not to intensely use social media all the time .
Gold 2 However , it is good practice not to intensively use social media all the time .
Candidate 1 (R2L, RoBERTa, T5GEC) However , it is good practice not to intesively use social media all the time .
Candidate 2 However , it is good practice not to intensely use social media all the time .
Candidate 3 (BTR) However , it is good practice not to insensitively use social media all the time .
Source It is true that social media makes people be able to connect one another more conveniently .
Gold 1 It is true that social media allows people to connect to one another more conveniently .
Gold 2 It is true that social media make people able to connect with one another more conveniently
Candidate 1 (RoBERTa, T5GEC) It is true that social media makes people be able to connect with one another more conveniently .
Candidate 2 (BTR, R2L) It is true that social media makes people able to connect with one another more conveniently .
Candidate 3 It is true that social media makes people able to connect to one another more conveniently .
Source Speed camera can be placed in many locations along a highway .
Gold 1 Speed cameras can be placed in many locations along a highway .
Candidate 1 (RoBERTa, T5GEC) A speed camera can be placed in many locations along a highway .
Candidate 2 (BTR, R2L) Speed cameras can be placed in many locations along a highway .
Candidate 3 A Speed camera can be placed in many locations along a highway .
Source Disadvantage is parking their car is very difficult .
Gold 1 A disadvantage is that parking their cars is very difficult .
Gold 2 A disadvantage is that parking their car is very difficult .
Gold 3 The disadvantage is that parking their car is very difficult .
Candidate 1 (R2L, RoBERTa, T5GEC) Disadvantage is parking their car is very difficult .
Candidate 2 (BTR) The disadvantage is parking their car is very difficult .
Candidate 3 The disadvantage is that parking their car is very difficult .

Table 4.1: Examples of reranked outputs. The 3 candidate sentences were generated
using T5GEC (§4.4.1). Blue indicates the range of corrections. “Candidate 1 (T5GEC)”
denotes that T5GEC regards “Candidate 1” as the most grammatical correction. Exam-
ples in the first two and last two block were extracted from the CoNLL-14 [Ng et al.,
2014] and JFLEG test corpus [Napoles et al., 2017], respectively.

them on the basis of the classification results. The previous studies [Kiyono et al., 2019,
Kaneko et al., 2020] also showed that the seq2seq GEC model decoding in an opposite
direction, i.e., right-to-left, is effective as a reranker for a left-to-right GEC model.

Therefore, to further improve the performance of the pre-trained seq2seq model for
GEC, it is essential to find ways to leverage the bidirectional representations of the
target context. In this study, on the basis of the seq2seq-style Transformer model, we
propose a bidirectional Transformer reranker (BTR) to handle the interaction between
the source sentence and the bidirectional target context. The BTR utilizes a BERT-
style self-attention mechanism in the decoder to predict each target token using MLM.
Given several candidate target sentences from a base model, the BTR can re-estimate
the sentence probability for each candidate from the bidirectional representation of the
candidate, which is different from the conventional seq2seq model. During training,
for guiding the reranking, we adopt negative sampling for the objective function to
minimize the unlikelihood while maximizing the likelihood. In inference, considering
the robustness of pre-trained models, we compare the reranked top-1 results with the
original ones using an acceptance threshold 𝛽 to decide whether to accept the suggestion
from the BTR.

We regard the state-of-the-art model for GEC [Rothe et al., 2021], a pre-trained
Transformer model, T5 (either T5-base or T5-large), as our base model and utilize its
generated candidates for reranking. Because the BTR can inherit learned representations
from a pre-trained Transformer model, we construct the BTR on top of T5-base. Our
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experimental results showed that, by reranking candidates from a fully pre-trained and
fine-tuned T5-base model, the BTR on top of T5-base can achieve an 𝐹0.5 score of 65.47
on the CoNLL-14 benchmark. The BTR on top of T5-base also outperformed T5-base
on the BEA test set [Bryant et al., 2019] by 0.76 points, achieving an 𝐹0.5 score of 71.27.
Adopting negative sampling for the BTR also generated a peaked probability distribution
for ranking, and so grammatical suggestions could be selected by using 𝛽. Furthermore,
the BTR on top of T5-base was robust even when reranking candidates from T5-large
and improved the performance by 0.26 points on the BEA test set.

4.1 Related Work on Grammatical Error Correction
For directly predicting the target corrections from given input tokens, Omelianchuk
et al. [2020] and Malmi et al. [2022] regarded the encoder-only Transformer as a non-
autoregressive GEC sequence tagger. The experimental results of Omelianchuk et al.
[2020] showed that, compared with the randomly initialized LSTM, the pre-trained
models, such as RoBERTa [Liu et al., 2019], GPT-2, and ALBERT [Lan et al., 2020],
can achieve higher 𝐹0.5 scores as a tagger. Sun et al. [2021] considered GEC as a
seq2seq task and introduced the Shallow Aggressive Decoding (SAD) for the decoder
of the Transformer. With the SAD, the performance of a pre-trained seq2seq model,
BART, surpassed the sequence taggers of Omelianchuk et al. [2020]. The T5 xxl model
is a pre-trained seq2seq model with 11B parameters [Raffel et al., 2020]. After fine-
tuning with the cLang-8 corpus, T5 xxl and mT5 xxl [Xue et al., 2021], a multilingual
version of T5, achieved state-of-the-art results on GEC benchmarks in four languages:
English, Czech, German, and Russian [Rothe et al., 2021]. This demonstrated that
performing a single fine-tuning step for a fully pre-trained seq2seq model is a simple
and effective method for GEC without incorporating a copy mechanism [Zhao et al.,
2019], the SAD or the output from a pre-trained masked language model [Kaneko et al.,
2020]. Despite the improvements brought about by the pre-trained representations, the
conventional seq2seq structure suffers from a prediction bias due to its unidirectional
decoding. According to Liu et al. [2021], by using beam search, a fully pre-trained
seq2seq GEC model [Kiyono et al., 2019] can generate several high-quality grammatical
hypotheses, which include one that is more grammatical than the selected one.

To address the shortcoming of the unidirectional decoding, previous studies [Kiyono
et al., 2019, Kaneko et al., 2019, 2020] introduced reversed representations to rerank
the hypotheses. Kiyono et al. [2019] and Kaneko et al. [2020] utilized a seq2seq
GEC model that decodes in the opposite direction (right-to-left) to rerank candidates,
which was effective to select a more grammatical sentence than the original one. This
finding motivated us to use a bidirectional decoding method for our model. Instead
of using a seq2seq model, Kaneko et al. [2019] fine-tuned BERT as a reranker to
evaluate the grammatical quality of a sentence. By using masked language modeling,
BERT learned deep bidirectional representations to distinguish between grammatical
and ungrammatical sentences. However, BERT did not account for the positions of
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corrections, as it discarded the source sentence and considered only the target sentence.
This made it difficult for BERT, as a reranker, to recognize the most suitable corrected
sentence for an ungrammatical sentence. Salazar et al. [2020] proposed the use of
pseudo-log-likelihood scores (PLL) for reranking. They demonstrated that RoBERTa,
with the PLL for reranking, outperformed the conventional language model GPT-2 when
reranking candidates in speech recognition and machine translation tasks. Chapter 3
also proved that the pre-trained model, MPNet, was more effective than GPT-2 when
using PLL for reranking in discourse segmentation and parsing.

Zhang and van Genabith [2021] proposed a bidirectional Transformer-based alignment
(BTBA) model, which aims to assess the alignment between the source and target tokens
in machine translation. To achieve this, BTBA masked and predicted the current token
with attention to both left and right sides of the target context to produce alignments
for the current token. Specifically, to assess alignments from the attention scores in
all cross-attention layers, the decoder in BTBA discarded the last feed-forward layer
of the Transformer model and directly predicted masked tokens from the output of the
last cross-attention layer. Even though the target context on both sides was taken into
consideration, one limitation of BTBA was that the computed alignments ignored the
representation of the current token. To produce more accurate alignments, Zhang and
van Genabith [2021] introduced full context based optimization (FCBO) for fine-tuning,
in which BTBA no longer masks the target sentence to use the full target context.

This chapter, to determine the most appropriate correction for a given erroneous
sentence, models the BTR as a seq2seq reranker, which encodes the erroneous sentence
using an encoder and decodes a corrected sentence using a decoder. In contrast to the
conventional seq2seq model, we use masked language modeling to mask and predict
each target token in the decoder and estimate the sentence probability for each candidate
using PLL. Unlike BTBA, the BTR preserves the last feed-forward layer in the decoder
to predict masked tokens more accurately. Because the original data of the masked
tokens should be invisible in the prediction, the FCBO fine-tuning step is not used in
the BTR. Compared with BTBA, the BTR keeps the structure of the Transformer model
and can easily inherit parameters from pre-trained models.

4.2 Generating Corrections with Discriminative Models
Given an ungrammatical sentence 𝑋 = (𝑥1, . . . , 𝑥𝐼), a GEC model corrects 𝑋 into its
grammatical sentence 𝑌 = (𝑦1, . . . , 𝑦𝐽). Because the pre-trained T5 model with Trans-
former architecture achieved state-of-the-art results in GEC by using beam search for
decoding [Rothe et al., 2021], this chapter regards the T5 as the base model for generating
candidates, whose last hidden state is computed as described in Section 2.7.1. However,
previous studies [Li and Jurafsky, 2016, Vijayakumar et al., 2018] have suggested that
beam search tends to generate sequences with slight differences. This can constrain
the upper bound score when reranking candidates [Ippolito et al., 2019]. To select the
optimal decoding method for a Transformer-based GEC Model, T5GEC, we compared
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Method Gold (%) Unique (%) Oracle (𝐹0.5)

Nucleus sampling 28.70 43.61 49.27
Top-𝑘 sampling 29.62 48.57 48.40
Beam search 37.97 98.93 55.11
Diverse beam search 28.46 38.78 50.39

Table 4.2: Results for the T5GEC on the CoNLL-13 corpus with various decoding
methods.

beam search with diverse beam search [Vijayakumar et al., 2018], top-𝑘 sampling [Fan
et al., 2018], and nucleus sampling [Holtzman et al., 2020]. For each pair of data in
CoNLL-13 corpus [Ng et al., 2013], we required all decoding methods to generate 5
candidate sequences with a maximum sequence length of 200. When using diverse
beam search, we fixed the beam group and diverse penalty to 5 and 0.4, respectively.
Meanwhile, we set the top-𝑘 as 50 and the top-𝑝 as 0.95 for top-𝑘 sampling and nucleus
sampling, respectively.

Table 4.2 presents the compared results among different decoding methods. Unique
(%) indicates the rate of unique sequences among all candidates. Gold (%) indicates the
rate of pairs of data whose candidates include the correct answer. The results show that
beam search generates more diverse sentences with the highest Oracle score compared
to nucleus sampling, top-𝑘 sampling, and diverse beam search. This may be because,
in the GEC task, most of the tokens in the target are the same as the source, which
causes a peaked probabilities distribution to focus on one or a small number of tokens.
And thus, a top-𝑘 filtering method like beam search generates more diverse sentences
than sampling or using probability as a diverse penalty. Based on these results, we have
chosen beam search as the decoding method for T5GEC during inference. For evaluating
T5GEC, it generates the top-ranked hypothesis with a beam size of 5. To generate the
top-𝛼 candidates Y𝛼 = {𝑌1, . . . , 𝑌𝛼} for reranking, it generates hypotheses with a beam
size of 𝛼 and a maximum sequence length of 128 and 200 for the datasets in training
and prediction, respectively.

46



Input
Sentence

Base 
Model

Bidirectional 
Transformer

!!"#$

Best 
Corrected 
Sentence

Top-"
Corrected 
Sentences

!%&'

Figure 4.1: Overview of the reranking procedure by using the bidirectional Transformer
reranker (BTR).

4.3 Reranking Corrections with Bidirectional Represen-
tations from Transformer

The BTR uses MLM in the decoder to estimate the probability of a corrected sentence.
Given an ungrammatical sentence 𝑋 , a base GEC model first generates the top-𝛼 cor-
rected sentences Y𝛼, as described in Section 4.2. Assume 𝑌𝑏𝑎𝑠𝑒 ∈ Y𝛼 is the top-ranked
hypothesis from the base GEC model. The BTR selects and accepts the most optimal
corrected sentence 𝑌𝐵𝑇𝑅 from Y𝛼 on the basis of the estimated sentence probability, as
described in the following. Figure 4.1 shows the overview of the BTR for the whole
procedure.

4.3.1 Target Sentence Probability
As PLL has been effective in estimating the sequence probability for reranking, we
decompose the conditional sentence probability of 𝑌 as:

log 𝑝(𝑌 |𝑋; 𝜃) ≈ PLL(𝑌 |𝑋; 𝜃) =
|𝑌 |∑

𝑗=1,𝜅={ 𝑗}
log 𝑝(𝑦 𝑗 |𝑌\𝜅, 𝑗 , 𝑋; 𝜃). (4.3.1)

As in Equation ( 2.7.2), a linear transformation with the softmax function is utilized for
the final hidden state 𝑠 𝑗\𝜅 to predict 𝑝(𝑦 𝑗 |𝑌\𝜅, 𝑗 , 𝑋; 𝜃).

Same as the seq2seq-style Transformer architecture, 𝑠 𝑗\𝜅 is the result of 𝑠 𝑗\𝜅 after the
cross-attention and feed-forward layers, as presented in Equation ( 2.7.7). We assume
the decoder consists of 𝐿 layers. To capture the bidirectional representation, for ℓ ∈ 𝐿,
we compute 𝑠ℓ

𝑗\𝜅 as:

𝑠ℓ𝑗\𝜅 = Attn𝑠 (𝑠ℓ−1
𝑗\𝜅 , 𝑆

ℓ−1
\𝜅 , 𝑆

ℓ−1
\𝜅 ), (4.3.2)

where 𝑠0
𝑗\𝜅 is the embedding of the ( 𝑗 − 1)th word in 𝑌\𝜅 and 𝑠1 is the state of the start

token <sos>. 𝑆ℓ−1
\𝜅 = (𝑠ℓ−1

1\𝜅 , . . . , 𝑠
ℓ−1
𝐽\𝜅 ) denotes a set of hidden states for the shifted right

𝑌\𝜅, i.e. the joint sequence of <sos> and 𝑌\𝜅 without <eos>. The procedure of using
the BTR to predict 𝑝(𝑦1 |𝑌\{1}, 1, 𝑋; 𝜃) is shown in Figure 4.2(a). Figure 4.2(b) shows
our fully-visible attention mask for computing 𝑆ℓ\𝜅 in parallel, where “\𝜅” is omitted for
easier reading.
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Figure 4.2: The bidirectional Transformer architecture (a) utilizes a fully-visible self-
attention mechanism (b) in the decoder, distinguishing it from the conventional Trans-
former.

4.3.2 Objective Function
We followed LMR to consider a subset Y𝛼 of all corresponding corrected sentences Y
based on the top-𝛼 results from the base GEC model instead. Let 𝑌𝑔𝑜𝑙𝑑 ∈ Y denote the
gold correction for 𝑋 . For𝑌 ∈ Y𝛼 ∪ {𝑌𝑔𝑜𝑙𝑑}, we follow the setting of BERT to randomly
mask 15% of 𝑌 and denote 𝜅 as the set of masked positions. As a result, the distribution
of the masked tokens satisfies the 8:1:1 masking strategy. Following the LMR, given the
masked sentence𝑌\𝜅, the model parameter 𝜃 of the BTR is optimized by maximizing the
likelihood and minimizing the unlikelihood as:

𝜃∗ := arg max
𝜃

log 𝑝(𝑌𝜅 |𝑌\𝜅, 𝑋; 𝜃)

≈ arg max
𝜃

∑
𝑗∈𝜅

[1𝑌 log 𝑝(𝑦 𝑗 |𝑌\𝜅, 𝑗 , 𝑋; 𝜃) + (1 − 1𝑌 ) log(1 − 𝑝(𝑦 𝑗 |𝑌\𝜅, 𝑗 , 𝑋; 𝜃))],

(4.3.3)
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where 𝑝(𝑦 𝑗 |𝑌\𝜅, 𝑗 , 𝑋; 𝜃) is computed as in Section 4.3.1. 1𝑌 is an indicator function
defined as follows:

1𝑌 :=

{
1 if 𝑌 = 𝑌𝑔𝑜𝑙𝑑
0 if 𝑌 ≠ 𝑌𝑔𝑜𝑙𝑑

. (4.3.4)

4.3.3 Inference
Following the LMR, in inference, for 𝑌 ∈ Y𝛼, the BTR scores 𝑌 by

𝑓 (𝑌 |𝑋) = exp(PLL(𝑌 |𝑋; 𝜃)/|𝑌 |)∑
𝑌 ′∈Y𝛼

exp(PLL(𝑌 ′|𝑋; 𝜃)/|𝑌 ′|) . (4.3.5)

Hereafter, we denote 𝑌𝐵𝑇𝑅 ∈ Y𝛼 as the candidate with the highest score 𝑓 (𝑌𝐵𝑇𝑅 |𝑋)
for given 𝑋 in the BTR. Here, 𝑓 (𝑌 |𝑋) is also considered to indicate the confidence of
the BTR. Because the BTR is optimized with Equation ( 4.3.3), a high score for 𝑌𝐵𝑇𝑅
indicates a confident prediction while a low score indicates an unconfident prediction,
as proved in Section 4.5.7.

Considering that we build the base GEC model from a fully pre-trained seq2seq
model and the BTR from an insufficiently pre-trained model, we introduce an acceptance
threshold 𝛽 to decide whether to accept the suggestion from the BTR. We accept 𝑌𝐵𝑇𝑅
only when it satisfies the following equation; otherwise, 𝑌𝑏𝑎𝑠𝑒 is still the final result:

𝑓 (𝑌𝐵𝑇𝑅 |𝑋) − 𝑓 (𝑌𝑏𝑎𝑠𝑒 |𝑋) > 𝛽, (4.3.6)

where 𝛽 is a hyperparameter tuned on the validation data.

4.4 Experimental Setup

4.4.1 Compared Methods
We evaluated the BTR as a reranker for two versions of candidates, normal and high-
quality ones, generated by two seq2seq GEC models, T5GEC and T5GEC (large). We
compared the BTR with three other rerankers, R2L, BERT, and RoBERTa.

T5GEC: We used the state-of-the-art model [Rothe et al., 2021] as our base model for
GEC. This base model inherited the pre-trained T5 version 1.1 model (T5-base) [Raffel
et al., 2020] and was fine-tuned as described in Section 2.7.1. We denote this base
model as T5GEC hereafter. Although the T5 xxl model yielded the most grammatical
sentences in Rothe et al. [2021], it contained 11B parameters and was not suitable for
our current experimental environment. Thus, we modeled T5GEC on top of a 248M-
parameter T5-base model. To reproduce the experimental results of Rothe et al. [2021],
we followed their setting and fine-tuned T5GEC once with the cLang-8 dataset.

T5GEC (large): To investigate the potential of the BTR for reranking high-quality
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Model Inputs Targets

Self-supervised learning for pre-training

BERT / RoBERTa Thank you so <M> me to your party <M> week . Thank you for inviting me to your party last week .
T5 / R2L Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>
BTR Thank you <X> me to your party <Y> week . <X> for <M> you last <Z>

Supervised learning for fine-tuning

BERT Thank you for inviting me to your party last week . <1>
T5 / R2L Thank you for invite me to your party last week . Thank you for inviting me to your party last week .
BTR / RoBERTa Thank you for invite me to your party last week . Thank you so <M> me to your party <M> week .

Table 4.3: Examples of data pairs for self-supervised and supervised learning used by
each model. The grammatical text is“ Thank you for inviting me to your party last
week .”<M> denotes a mask token. <X>, <Y>, and <Z> denote sentinel tokens
that are assigned unique token IDs. <1> denotes the input sentence is classified as a
grammatical sentence. Red indicates an error in the source sentence while Blue indicates
a token randomly replaced by the BERT-style masking strategy.

candidates, we also fine-tuned one larger T5GEC model with a 738M-parameter T5-large
structure. We denote this model as T5GEC (large).

R2L: The decoder of the conventional seq2seq model can generate a target sentence
either in a left-to-right or right-to-left direction. Because T5GEC utilized the left-to-
right direction, and previous research [Sennrich et al., 2016, Kiyono et al., 2019, Kaneko
et al., 2020] showed the effectiveness of reranking using the right-to-left model, we
followed Kaneko et al. [2020] to construct four right-to-left T5GEC models, which we
denote as R2L. R2L reranks candidates based on the sum score of the base model (L2R)
and ensembled R2L.

BERT: We followed Kaneko et al. [2019] to fine-tune four BERT with 334M pa-
rameters. During fine-tuning, both source and target sentences were annotated with
either <0> (ungrammatical) or <1> (grammatical) label for BERT to classify. During
inference, the ensembled BERT reranks candidates based on the predicted score for the
<1> label.

RoBERTa: We fine-tuned four 125M parameters RoBERTa to compare our bidirec-
tional Transformer structure with the encoder-only one. During fine-tuning, the source
and target sentences were concatenated, and RoBERTa masked and predicted only the
target sentence as the BTR. During prediction, the ensembled RoBERTa reranks candi-
dates with the acceptance threshold 𝛽 as the BTR.

4.4.2 Setup for the BTR
Because there was no pre-trained seq2seq model with a self-attention mechanism for
masked language modeling in the decoder, we constructed the BTR using the 248M T5
model (T5-base) and pre-trained it with the Realnewslike corpus [Zellers et al., 2019].
To compare the BTR with R2L, we also constructed R2L using T5-base, and pre-trained
both models as follows. To speed up pre-training, we initialized the BTR and R2L
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Figure 4.3: Pre-training loss for R2L (left) and the BTR (right).

Dataset Usage Lang Level # of data (pairs)

Realnewslike pre-train EN - 148,566,392
cLang-8 train EN - 2,372,119

CoNLL-13 (cleaned) valid EN - 1,381
CoNLL-14 test EN - 1,312
JFLEG test EN - 747

A 1,107
B 1,330
C 1,010BEA test EN

N 1,030

Table 4.4: Dataset sizes.

model parameters with the fine-tuned parameters 𝜃 of T5GEC. During pre-training, we
followed Raffel et al. [2020] for self-supervised learning with a span masking strategy.
Specifically, 15% of the tokens in a given sentence were randomly sampled and removed.
The input sequence was constructed by the rest tokens while the target sequence was
the concatenation of dropped-out tokens. An example is provided in Table 4.3. We
pre-trained the BTR and R2L with 65536 = 216 and 10000 steps, respectively. Because
the BTR masked and predicted only 15% of the tokens in Eq. ( 4.3.3), the true steps for
the BTR were 216 × 0.15 ≈ 10000. We used a maximum sequence length of 512 and
a batch size of 220 = 1048576 tokens. In total, we pre-trained 10000 × 220 ≈ 10.5B
tokens, which were less than the pre-trained T5 with 34B tokens. The pre-training for
R2L and the BTR took 2 and 13 days, respectively, with 2 NVIDIA A100 80GB GPUs.
This indicates the BTR requires more training time and resources than R2L. We provide
a plot of the pre-training loss in Figure 4.3, the training loss of R2L suddenly dropped
from 1.48 to 1.3 after the first epoch (7957 steps).

After pre-training, we successively fine-tuned the BTR with the cLang-8 dataset. Like
R2L, BERT, and RoBERTa, our fine-tuned BTR is the ensemble of four models with
random seeds.
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Hyperparameters T5GEC BERT RoBERTa R2L (pretrain) R2L (finetune) BTR (pretrain) BTR (finetune)

# of updates 15 (epochs) 15 (epochs) 15 (epochs) 10000 15 (epochs) 65536 15 (epochs)
Max src / tgt length (train) 128 128 128 512 128 512 128
Max src / tgt length (eval) 512 1 512 512 512 512 512
𝛼𝑡𝑟𝑎𝑖𝑛 - - {0, 5, 10, 20} - - - {0, 5, 10, 20}
𝛼𝑝𝑟𝑒𝑑 - {5, 10, 15, 20} {5, 10, 15, 20} - {5, 10, 15, 20} - {5, 10, 15, 20}
Threshold (𝛽) - - {0, 0.1, 0.2,. . . ,0.9} - - - {0, 0.1, 0.2,. . . ,0.9}

Table 4.5: Used hyperparameters.

4.4.3 Datasets
For fair comparison, we pre-trained R2L and the BTR with the Realnewslike corpus.
This corpus contains 37 GB of text data and is a subset of the C4 corpus [Raffel et al.,
2020]. To shorten the input and target sequences, we split each text into paragraphs.
During fine-tuning, we followed the steps of Rothe et al. [2021] and regarded the cLang-8
corpus as the training dataset.

While the CoNLL-13 dataset was used for validation, the standard benchmarks from
JFLEG, CoNLL-14, and the BEA test set were used for evaluation. While the CoNLL-
14 corpus considers the minimal edit of corrections, JFLEG evaluates the fluency of a
sentence. The BEA corpus contains much more diverse English language levels and
domains than the CoNLL-14 corpus. Each sentence in the BEA test set is classified into
either A (beginner), B (intermediate), C (advanced), or N (native) corresponding to the
Common European Framework of Reference for Languages (CEFR) level [Council of
Europe., 2001]. We used a cleaned version of CoNLL-13 with consistent punctuation
tokenization styles. Section 4.5.5 lists our cleaning steps and the experimental results
on the cleaned CoNLL-14 set. Table 4.4 summarizes the data statistics.

4.4.4 Evaluation Metrics
The evaluation on the BEA test set was automatically executed in the official BEA-19
competition in terms of span-based correction 𝐹0.5 using the ERRANT [Bryant et al.,
2017] scorer. For the CoNLL-13 and 14 benchmarks, we evaluated the correction 𝐹0.5
using the official 𝑀2 [Dahlmeier and Ng, 2012] scorer. For the JFLEG corpus, we
evaluated the GLEU [Napoles et al., 2015].

We report only significant results on the CoNLL-14 set, because the gold data for
the BEA test set is unavailable, and the evaluation metric GLEU for the JFLEG test set
requires a sampling strategy for multiple references. We used the paired 𝑡-test to evaluate
whether the difference between 𝑌𝐵𝑇𝑅 and 𝑌𝑏𝑎𝑠𝑒 on the CoNLL-14 set is significant, as
only limited 𝑌𝐵𝑇𝑅 differed from 𝑌𝑏𝑎𝑠𝑒 among the suggestions from the BTR.

4.4.5 Hyperparameters
Table 4.5 lists the hyperparameter settings used for each model. And Table 4.6 lists the
used artifacts. The setting for T5GEC (large) was the same as T5GEC. We followed the
setting of Kaneko et al. [2019] to use a 0.0005 learning rate for the BERT reranker. We
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Used artifacts Note

T5-base https://huggingface.co/google/t5-v1_1-base
T5-large https://huggingface.co/google/t5-v1_1-large
T5GEC https://github.com/google-research-datasets/clang8/issues/3
RoBERTa https://huggingface.co/roberta-base
BERT https://huggingface.co/bert-large-cased
cLang-8 https://github.com/google-research-datasets/clang8
CoNLL-13 File revised/data/official-preprocessed.m2
CoNLL-14 File alt/official-2014.combined-withalt.m2
JFLEG File test/test.src
ERRANT https://github.com/chrisjbryant/errant
Fairseq https://github.com/facebookresearch/fairseq/
HuggingFace https://github.com/huggingface/transformers/
BEA-19 competition https://competitions.codalab.org/competitions/20229

Table 4.6: Used artifacts.

𝛼𝑡𝑟𝑎𝑖𝑛 # of training data (pairs)

0 2,371,961
5 13,727,133
10 22,396,187
20 30,423,347

Table 4.7: Number of sentence pairs for cLang-8 dataset with candidates. All pairs of
data that satisfy the length constraint of 128 are listed.

used a 0.0001 learning rate for the RoBERTa reranker. For both BERT and RoBERTa, we
utilized the adam optimizer, “inverse square root” learning rate schedule, and 1.2 epochs
warm-up steps. For other models based on a T5 structure, we used a 0.001 learning rate
and adafactor optimizer. The batch size was 1048576 tokens for all models. We used the
Fairseq [Ott et al., 2019] and HuggingFace [Wolf et al., 2020] to reproduce all models
and run the BTR.

4.5 Results

4.5.1 Candidate and Threshold Tuning
We followed the setting of the LMR to separately tune 𝛼 for training and prediction,
based on the model performance on the validation dataset with candidates generated by
T5GEC. Table 4.7 lists the size of training data with candidates generated by T5GEC.
We denote 𝛼 for training and prediction as 𝛼𝑡𝑟𝑎𝑖𝑛 and 𝛼𝑝𝑟𝑒𝑑 , respectively. The threshold
(𝛽) for the BTR and RoBERTa was tuned together with 𝛼.

53



𝛼𝑡𝑟𝑎𝑖𝑛

𝐹0.5 Threshold(𝛽)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 45.34 49.36
5 49.14 49.10 49.64 49.86 49.92 49.87 49.61 49.19 49.37 49.36
10 48.84 49.50 49.62 50.09 50.10 50.07 49.96 49.91 49.91 49.57 49.36
20 49.13 49.42 49.74 50.08 50.22 49.89 50.00 49.92 49.62 49.46 49.36

Table 4.8: Results of tuning 𝛼𝑡𝑟𝑎𝑖𝑛 for BTR. 𝛼𝑝𝑟𝑒𝑑 was fixed to 5. The highest 𝐹0.5 score
on the CoNLL-13 corpus for each 𝛼𝑡𝑟𝑎𝑖𝑛 among different threshold is shown in bold. The
scores that were the same as those of the base model (𝛽 = 1) were ignored and greyed
out.

𝛼𝑡𝑟𝑎𝑖𝑛

𝐹0.5 Threshold(𝛽)
0 0.1 0.2, . . . , 1

0 46.48 49.35 49.36
5 44.89 49.38 49.36
10 45.68 49.38 49.36
20 41.91 49.38 49.36

Table 4.9: Results of tuning 𝛼𝑡𝑟𝑎𝑖𝑛 for RoBERTa. 𝛼𝑝𝑟𝑒𝑑 was fixed to 5. The highest
𝐹0.5 score on the CoNLL-13 corpus for each 𝛼𝑡𝑟𝑎𝑖𝑛 among different threshold is shown
in bold. The scores that were the same as those of the base model (𝛽 = 1) were ignored
and greyed out.

When tuning 𝛼𝑡𝑟𝑎𝑖𝑛 ∈ {0, 5, 10, 20} for the BTR, 𝛼𝑝𝑟𝑒𝑑 was fixed to 5.1 Because the
BTR with 𝛽 = 0.4 and 𝛼𝑡𝑟𝑎𝑖𝑛 = 20 achieved the highest score as shown in Table 4.8, 𝛼𝑡𝑟𝑎𝑖𝑛
was fixed to 20, this BTR was also used to tune 𝛼𝑝𝑟𝑒𝑑 ∈ {5, 10, 15, 20}. When tuning
𝛼𝑡𝑟𝑎𝑖𝑛 ∈ {0, 5, 10, 20} for RoBERTa, 𝛼𝑝𝑟𝑒𝑑 was fixed to 5. The results in Tables 4.8 and
4.9 indicate the different distributions of 𝐹0.5 score between RoBERTa and the BTR.
To investigate the reason, we compared the training loss and 𝐹0.5 score of RoBERTa
with the BTR. Figure 4.4 shows the comparison. Different from the BTR, when using
negative sampling (𝛼𝑡𝑟𝑎𝑖𝑛 > 0) for training RoBERTa, the 𝐹0.5 score on the CoNLL-13
corpus decreased with the epoch increasing. The training loss of RoBERTa also dropped
suddenly after finishing the first epoch. This result suggests that negative sampling in
the GEC task for an encoder-only structure leads in the wrong direction in learning
representations from the concatenated source and target. And therefore, we fixed 𝛼𝑡𝑟𝑎𝑖𝑛
to 0 for RoBERTa. This RoBERTa was also used to tune 𝛼𝑝𝑟𝑒𝑑 ∈ {5, 10, 15, 20}. The
results in Tables 4.10, 4.11, and 4.12 show that when 𝛼𝑝𝑟𝑒𝑑 was set to 5, the BTR, R2L,
RoBERTa, and BERT attained their highest scores on the CoNLL-13 corpus. Building
upon these results, in the following subsections, we set 𝛼𝑡𝑟𝑎𝑖𝑛 to 20, 0 for the BTR and
RoBERTa, respectively, and 𝛼𝑝𝑟𝑒𝑑 was set to 5 for all rerankers.

Tables 4.8 and 4.10 also show the performances of the BTR concerning 𝛽 on the
CoNLL-13 corpus with candidates generated by T5GEC. Without using any candidate
for training, the BTR(𝛽 = 0) could achieve the highest 𝐹0.5 score. When using 20

1Setting 𝛼 to 0 indicates training with only gold data.
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(d) Training loss of BTR

Figure 4.4: Performances of BTR and RoBERTa with various 𝛼𝑡𝑟𝑎𝑖𝑛 without 𝛽 during
fine-tuning. 𝛼𝑝𝑟𝑒𝑑 was fixed to 5 with candidates from T5GEC. Both 𝐹0.5 score and
training loss were averaged over the four trials.

𝛼𝑝𝑟𝑒𝑑

𝐹0.5 Threshold(𝛽)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5 49.13 49.42 49.74 50.08 50.22 49.89 50.00 49.92 49.62 49.46 49.36
10 48.92 49.34 50.01 49.85 49.85 49.51 49.71 49.62 49.49 49.39 49.40
15 48.91 49.22 49.65 49.36 49.21 49.18 49.04 49.08 48.90 48.92 48.88
20 36.50 36.83 38.21 38.85 40.24 41.84 43.11 44.41 45.65 46.87 49.40

Table 4.10: Results of tuning 𝛼𝑝𝑟𝑒𝑑 for BTR. The highest 𝐹0.5 score on the CoNLL-13
corpus for each 𝛼𝑝𝑟𝑒𝑑 among different threshold is shown in bold. The scores that were
same as those of the base model (𝛽 = 1) were ignored and greyed out.

candidates for training, the BTR (𝛽 = 0.4) achieved the highest 𝐹0.5 score of 50.22.
Table 4.13 shows the BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 20, 𝛽 = 0.8) achieved the highest 𝐹0.5 score on
the CoNLL-13 dataset with the candidates generated by T5GEC(large). Thus, in the
following subsections, our tuned 𝛽 for the BTR was set to 0.2 when 𝛼𝑡𝑟𝑎𝑖𝑛 = 0. When
𝛼𝑡𝑟𝑎𝑖𝑛 = 20, 𝛽 was set to 0.4 and 0.8 for the candidates generated by T5GEC and
T5GEC(large), respectively. Similarly, when 𝛼𝑡𝑟𝑎𝑖𝑛 = 0, our tuned 𝛽 for RoBERTa was
set to 0.1 for the two versions of candidates.
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𝛼𝑝𝑟𝑒𝑑

𝐹0.5 Threshold(𝛽)
0 0.1 0.2, . . . , 1

5 46.48 49.35 49.36
10 46.08 49.40
15 45.04 48.88
20 44.28 49.40

Table 4.11: Results of tuning 𝛼𝑝𝑟𝑒𝑑 for RoBERTa. The highest 𝐹0.5 score on the
CoNLL-13 corpus for each 𝛼𝑝𝑟𝑒𝑑 among different threshold is shown in bold. The
scores that were same as those of the base model (𝛽 = 1) were ignored and greyed out.

𝛼𝑝𝑟𝑒𝑑 R2L BERT

5 50.02 42.44
10 49.94 40.53
15 49.85 39.98
20 39.81 39.37

Table 4.12: Results of tuning 𝛼𝑝𝑟𝑒𝑑 for R2L and BERT. The highest 𝐹0.5 score on the
CoNLL-13 corpus for each reranker among different 𝛼𝑝𝑟𝑒𝑑 is shown in bold.

Model 𝛽

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RoBERTa 47.90 50.76 50.79
BTR 49.44 50.17 50.00 49.98 49.98 50.58 50.47 50.92 51.00 50.82 50.79

Table 4.13: Results of RoBERTa and BTR on the CoNLL-13 corpus with candidates
generated by T5GEC (large). The scores that were the same as those of the base model
(𝛽 = 1) were ignored and greyed out.
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Model CoNLL-13 CoNLL-14 BEA JFLEG
p r 𝐹0.5 p r 𝐹0.5 p r 𝐹0.5 GLEU

Oracle 65.50 33.71 55.11 73.74 51.38 67.87 - - - 61.13

T5GEC* - - - - - 65.13 - - 69.38 -
T5GEC 59.19 29.65 49.36 71.27 48.37 65.11 73.96 59.45 70.51 59.04
R2L 60.94 29.14 50.02 71.87 46.81 64.92 75.51 58.69 71.42 58.93

w/o L2R 59.56 28.97 49.19 71.36 46.68 64.54 73.51 57.96 69.76 58.69
BERT 44.53 35.74 42.44 55.93 53.18 55.36 49.91 64.37 52.26 55.69
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 59.20 29.63 49.35 71.14 48.42 65.04 74.04 59.37 70.55 59.17

w/o 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛽 54.83 28.88 46.48 65.64 47.24 60.90 65.85 57.71 64.05 57.49

BTR (𝛽 = 0.4) 59.87 30.54 50.22 71.62 48.74 65.47 74.68 60.27 71.27 59.17
w/o 𝛽 58.10 30.37 49.13 69.52 48.07 63.82 72.69 60.71 69.93 59.52
w/o 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛽 51.30 30.94 45.34 62.83 49.03 59.48 64.35 60.74 63.60 57.62

Table 4.14: Results for the models on each dataset with candidates from T5GEC. *
indicates the score presented in Rothe et al. [2021]. Bold scores represent the highest
(p)recision, (r)ecall, 𝐹0.5, and GLEU for each dataset.

Model CoNLL-13 (𝐹0.5) CoNLL-14 (𝐹0.5) BEA (𝐹0.5) JFLEG (GLEU)

R2L 50.02 ± 0.15 64.96 ± 0.10 71.42 ± 0.05 59.09 ± 0.19
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 48.66 ± 1.20 63.96 ± 1.90 68.90 ± 2.88 58.68 ± 0.66
BTR (𝛽 = 0.4) 50.05 ± 0.07 65.29 ± 0.19 70.84 ± 0.05 59.12 ± 0.07

Table 4.15: The mean ± std results on each dataset with candidates from T5GEC. Bold
scores are the highest mean for each dataset.

4.5.2 Effect of Reranking
Table 4.14 presents our main results.2 While reranking by R2L yielded the highest 𝐹0.5
score of 71.42 on the BEA test set, it yielded only lower 𝐹0.5 and GLEU scores than
the BTR (𝛽 = 0.4) on CoNLL-14 and JFLEG test sets. Meanwhile, the improvements
brought by R2L depended on the beam searching score from L2R, suggesting that the
unidirectional representation offers fewer gains compared to the bidirectional representa-
tion from the BTR. Reranking candidates by BERT resulted in the lower 𝐹0.5 and GLEU
scores than T5GEC. This may be because BERT considers only the target sentence and
ignores the relationship between the source and the target. The BTR (𝛽 = 0.4) achieved
an 𝐹0.5 score of 71.27 on the BEA test set. On the CoNLL-14 test set, the BTR (𝛽 = 0.4)
attained the highest 𝐹0.5 score of 65.47, with improvements of 0.36 points from T5GEC.
The use of the threshold and negative candidates played an important role in the BTR.
Without these two mechanisms, the BTR achieved only 59.48 and 63.60 𝐹0.5 scores,
respectively, on the CoNLL-14 and BEA test sets, which were lower than those of the
original selection. In the meantime, the BTR without the threshold could achieve the
highest GLEU score of 59.52 on the JFLEG corpus, which indicates 𝛽 = 0.4 is too

2The mean and standard deviation results of the BTR, R2L, and RoBERTa are listed in Table 4.15.

57



Model Level Missing Replacement Unnecessary All

A 62.30 69.92 73.74 68.40
B 73.99 67.94 78.26 70.93
C 78.54 71.51 85.16 75.54
N 80.66 69.48 53.78 71.36

T5GEC

All 71.23 69.47 74.30 70.51

A 63.65 69.86 74.40 68.76
B 74.81 68.94 79.01 71.84
C 81.85 72.61 86.00 77.36
N 83.17 68.23 57.88 72.01

BTR (𝛽 = 0.4)

all 72.91 69.69 75.69 71.27

Table 4.16: Results for each operation type with classified CEFR levels on the BEA
test set with candidates from T5GEC. Edit operations are divided into Missing, Replace-
ment, and Unnecessary corresponding to inserting, substituting, and deleting tokens,
respectively. Bold scores are the highest 𝐹0.5 for each operation with the corresponding
level.

Model PUNCT DET PREP ORTH SPELL

T5GEC 74.62 77.57 73.33 70.32 78.38
BTR (𝛽 = 0.4) 75.73 79.08 73.77 70.72 78.87

Table 4.17: Results for the top five error types on the BEA test set. Bold scores are the
highest 𝐹0.5 for each error type. Error types PUNCT, DET, PREP, ORTH, and SPELL
are corresponding to punctuation, determiner, preposition, orthography, and spelling
errors, respectively.

high for the JFLEG corpus. This is because of the different distributions and evalu-
ation metrics between the CoNLL-13 and JFLEG corpus, as proved in Section 4.5.7.
Compared to RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 of the encoder-only structure, the BTR
(𝛽 = 0.4) can achieve higher 𝐹0.5 scores on CoNLL-13, 14, and BEA test sets, and a
competitive GLEU score on the JFLEG corpus. These results show the benefit of using
the Transformer with the encoder-decoder architecture in the BTR.

4.5.3 Evaluation with Respect to CEFR Levels and Error Types
Tables 4.16 and 4.17 present more details for different CEFR levels and error types.
Compared with A (beginner) level sentences, the BTR was more effective for B (inter-
mediate), C (advanced), and N (native) level sentences. As shown in Table 4.17, the
BTR (𝛽 = 0.4) improved T5GEC for all top-5 error types. Furthermore, as presented
in Table 4.16, the BTR (𝛽 = 0.4) could effectively handle Missing and Unnecessary
tokens but not Replacement for the native sentences. It was more difficult to correct
the Replacement and Unnecessary operations in the native sentences for both models
compared with the advanced sentences. This may be because the writing style of na-
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Model CoNLL-13 CoNLL-14 BEA JFLEG
p r 𝐹0.5 p r 𝐹0.5 p r 𝐹0.5 GLEU

Oracle 66.34 35.34 56.44 76.04 53.36 70.08 - - - 63.87

T5GEC (large)* - - - - - 66.10 - - 72.06 -
T5GEC (large) 60.24 31.20 50.79 73.10 49.76 66.83 75.65 60.87 72.15 61.88
R2L 61.55 30.03 50.87 73.60 48.47 66.68 77.06 60.24 72.98 61.32
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 60.22 31.17 50.76 73.12 49.76 66.85 75.74 60.83 72.20 61.85

BTR (𝛽 = 0.8) 60.54 31.28 51.00 72.71 49.76 66.57 75.91 61.13 72.41 61.97

Table 4.18: Results for the models on each dataset with candidates generated by T5GEC
(large). * indicates the score presented in Rothe et al. [2021]. Bold scores represent the
highest (p)recision, (r)ecall, 𝐹0.5, and GLEU for each dataset.

tive speakers is more natural and difficult to correct with limited training data, whereas
language learners may tend to use a formal language to make the correction easier.

4.5.4 Reranking High-quality Candidates
Table 4.18 lists the performances when reranking high-quality candidates. While R2L
still achieved the highest 𝐹0.5 score on the BEA test set, it was less effective than the
BTR on the JFLEG corpus. Although the BTR (𝛽 = 0.8) used only 248M parameters
and was trained with the candidates generated by T5GEC, it could rerank candidates
from T5GEC (large) and achieve 61.97 GLEU and 72.41 𝐹0.5 scores on the JFLEG and
BEA test sets, respectively. This finding indicates the sizes of the BTR and the base
model do not need to be consistent, and a smaller BTR can also work as a reranker for
a larger base model. RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 achieved the highest 𝐹0.5 score of
66.85 on the CoNLL-14 corpus with only 0.02-point improvement from T5GEC (large),
which reflects the difficulty in correcting uncleaned sentences.

4.5.5 Evaluation on the Cleaned CoNLL Corpus
The original texts of CoNLL-13 and 14 contain several styles of punctuation tokeniza-
tion, such as “DementiaToday,2012” and “known , a”. While these punctuation styles
with/without spaces are not considered grammatical errors by a human, they are often
identified as errors by automatic GEC scorers. Moreover, while most of the sequences in
CoNLL-14 are of sentence-level, several sequences are of paragraph-level owing to the
punctuation without spaces. In this chapter, we cleaned the texts of CoNLL-13 and 14
using the “en core web sm” tool in spaCy [Honnibal et al., 2020] so that all punctuation
included spaces. The paragraph-level sequences were split into sentences with respect
to the position of full stops. The cleaned CoNLL-14 corpus contains 1326 pairs of data.

Tables 4.19, 4.20, and 4.21 show the experimental results on the cleaned CoNLL-
14 corpus. Compared to the results on the original CoNLL-14 corpus (Tables 4.14
and 4.18), the Oracle performance on the cleaned version could achieve higher precision
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Model Precision Recall 𝐹0.5

Oracle 80.62 51.98 72.62

T5GEC 78.01 48.57 69.58
R2L 78.81 46.83 69.34

w/o L2R 77.69 46.55 68.52
BERT 58.84 53.53 57.70
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 77.86 48.62 69.50

w/o 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛽 71.07 47.36 64.60

BTR (𝛽 = 0.4) 78.52 48.82 70.00
w/o 𝛽 76.02 48.30 68.19
w/o 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛽 67.44 49.45 62.87

Table 4.19: Results for the models on the cleaned CoNLL-14 corpus with candidates
from T5GEC. Bold scores represent the highest precision, recall, and 𝐹0.5.

Model 𝐹0.5

R2L 69.36 ± 0.13
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 68.12 ± 2.39
BTR (𝛽 = 0.4) 69.80 ± 0.18

Table 4.20: The mean ± std results on the cleaned CoNLL-14 corpus with candidates
from T5GEC. Bold scores represents the highest mean.

Model Precision Recall 𝐹0.5

Oracle 82.01 54.19 74.38

T5GEC (large) 79.27 49.91 70.92
R2L 79.72 48.71 70.72
RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛 79.30 49.91 70.94

BTR (𝛽 = 0.8) 79.65 49.98 71.20

Table 4.21: Results for the models on the cleaned CoNLL-14 corpus with candidates
from T5GEC (large). Bold scores represent the highest precision, recall, and 𝐹0.5.
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𝛼𝑡𝑟𝑎𝑖𝑛, 𝛼𝑝𝑟𝑒𝑑

𝐹0.5 Threshold(𝛽)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0, 5 47.44 52.83 52.77 52.52 52.51
0, 10 44.93 52.65 52.37
0, 15 43.74 52.46 52.46 52.46 52.46 52.46 52.46 52.46 52.46 52.45
0, 20 31.01 51.86 52.21 52.33 52.38 52.41 52.42 52.44 52.45 52.45 52.47
5, 5 52.51 53.22 53.49 53.41 53.42 53.45 53.40 53.28 53.17 53.06 52.51
5, 10 51.21 53.19 53.52 53.41 53.40 53.56 53.34 53.21 53.15 53.04 52.37
5, 15 50.68 53.11 53.37 53.45 53.54 53.46 53.30 53.23 53.20 53.10 52.45
5, 20 30.44 32.42 34.86 36.39 38.28 41.33 42.73 43.90 45.16 46.67 52.47
10, 5 53.47 53.95 54.04 53.95 53.85 53.68 53.64 53.38 53.09 53.01 52.51
10,10 52.51 53.21 53.99 53.87 53.70 53.73 54.49 53.30 53.02 52.99 52.37
10,15 52.05 53.97 54.01 53.64 53.66 53.63 53.44 53.26 53.03 53.05 52.45
10,20 30.03 31.55 32.76 34.12 36.07 39.25 40.89 42.50 43.68 45.45 52.47
20, 5 53.26 53.87 53.85 53.75 53.79 53.77 53.70 53.50 53.31 52.98 52.51
20,10 52.37 53.15 53.75 53.77 53.91 53.83 53.54 53.44 53.24 53.15 52.37
20,15 52.29 53.69 53.82 53.85 53.84 53.64 53.46 53.33 53.21 53.21 52.45
20,20 29.68 31.03 32.11 33.47 35.15 38.52 39.99 41.64 43.25 44.95 52.47

Table 4.22: Results of tuning 𝛼𝑡𝑟𝑎𝑖𝑛 and 𝛼𝑝𝑟𝑒𝑑 for BTR on the BEA dev set. The highest
𝐹0.5 score for each pair of 𝛼𝑡𝑟𝑎𝑖𝑛 and 𝛼𝑝𝑟𝑒𝑑 among different threshold is shown in bold.
The scores that were the same as those of the base model (𝛽 = 1) were ignored and
greyed out.

and competitive recall scores, leading to an improved 𝐹0.5 score. The score distributions
on the cleaned corpus among the rerankers are similar to those observed in the original
corpus. In particular, the BTR (𝛽 = 0.4) maintains its position as the top-performing
reranker, achieving the highest 𝐹0.5 scores of 70.00 on the cleaned corpus using can-
didates from T5GEC. Meanwhile, different from the results on the original corpus, the
BTR (𝛽 = 0.8) could achieve the highest 𝐹0.5 score of 71.20 when employing candidates
from T5GEC (large), emphasizing the significance of using cleaned text in the process.

4.5.6 Tuning Parameters on JFLEG and BEA dev Datasets
The BEA and JFLEG corpus also provide a dev set with 4384 and 754 sentences for
validation, respectively. To determine the optimal 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛼𝑝𝑟𝑒𝑑 , and 𝛽 for the BTR listed
in Table 4.8 on these two datasets, we re-evaluated the performances of the BTR on the
corresponding dev sets. Tables 4.22 and 4.23 show the results on the BEA and JFLEG
dev sets, respectively. On the BEA dev set, the highest 𝐹0.5 score of 54.04 was achieved
with 𝛼𝑡𝑟𝑎𝑖𝑛 = 10, 𝛼𝑝𝑟𝑒𝑑 = 5, and 𝛽 = 0.2. On the JFLEG dev set, the highest GLEU
score of 54.46 was achieved with 𝛼𝑡𝑟𝑎𝑖𝑛 = 5, 𝛼𝑝𝑟𝑒𝑑 = 15, and 𝛽 = 0. These results
demonstrate the differences in evaluating the minimal edit and fluency for grammar
corrections. Given the previous 𝛼𝑡𝑟𝑎𝑖𝑛, 𝛼𝑝𝑟𝑒𝑑 and 𝛽, we re-evaluated the BTR on the
BEA and JFLEG test sets. Table 4.24 lists the results. Tuning hyperparameters on the
JFLEG dev set led to a higher GLEU score of 60.14 on the JFLEG test set, compared to
the tuned hyperparameters on the CoNLL-13 set. However, tuning hyperparameters on
the BEA dev set resulted in a lower 𝐹0.5 score of 71.12 on the BEA test set, compared
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𝛼𝑡𝑟𝑎𝑖𝑛, 𝛼𝑝𝑟𝑒𝑑

GLEU Threshold(𝛽)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0, 5 52.43 53.25
0, 10 51.91 53.25
0, 15 51.36 53.25
0, 20 44.59 52.97 53.25
5, 5 54.35 54.37 54.12 54.05 53.81 53.67 53.42 53.32 53.20 53.22 53.25
5, 10 54.41 54.34 54.05 53.68 53.48 53.31 53.30 53.26 53.26 53.25
5, 15 54.46 54.44 53.88 53.43 53.33 53.29 53.22 53.22 53.26 53.20 53.25
5, 20 44.42 44.99 45.82 46.32 46.80 47.43 47.73 48.13 48.98 49.37 53.25
10, 5 54.15 54.23 53.99 53.88 53.69 53.51 53.37 53.28 53.24 53.23 53.25
10,10 54.23 54.20 53.93 53.73 53.54 53.37 53.29 53.24 53.24 53.23 53.25
10,15 54.29 54.16 53.89 53.57 53.48 53.33 53.26 53.19 53.22 53.23 53.25
10,20 44.22 44.71 45.29 45.70 46.20 47.21 47.45 47.98 48.52 49.07 53.25
20, 5 53.92 53.87 53.85 53.68 53.60 53.49 53.50 53.38 53.25 53.26 53.25
20,10 53.92 53.88 53.65 53.54 53.53 53.42 53.32 53.22 53.23 53.26 53.25
20,15 54.12 53.89 53.61 53.42 53.42 53.38 53.28 53.23 53.19 53.22 53.25
20,20 44.37 44.79 45.22 45.56 45.98 46.93 47.36 47.83 48.48 49.08 53.25

Table 4.23: Results of tuning 𝛼𝑡𝑟𝑎𝑖𝑛 and 𝛼𝑝𝑟𝑒𝑑 for BTR on the JFLEG dev set. The
highest GLEU score for each pair of 𝛼𝑡𝑟𝑎𝑖𝑛 and 𝛼𝑝𝑟𝑒𝑑 among different threshold is shown
in bold. The scores that were the same as those of the base model (𝛽 = 1) were ignored
and greyed out.

Tuned on corpus 𝛼𝑡𝑟𝑎𝑖𝑛 𝛼𝑝𝑟𝑒𝑑 𝛽 BEA JFLEG

CoNLL-13 20 5 0.4 71.27 59.17
BEA dev 10 5 0.2 71.12 -
JFLEG dev 5 15 0 - 60.14

Table 4.24: Results for the BTR on the BEA and JFLEG test sets with tuned hyperpa-
rameters.

to the tuned hyperparameters on the CoNLL-13 set.
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Candidate Accept Reject Equal

Proportion(%) 12.50 21.11 66.39

𝑌𝑏𝑎𝑠𝑒 61.67 61.66† 68.78
𝑌𝐵𝑇𝑅 63.97† 57.28 68.78

Table 4.25: Results for the BTR (𝛽 = 0.4) on CoNLL-14 with candidates from T5GEC.
𝑌𝑏𝑎𝑠𝑒 and𝑌𝐵𝑇𝑅 denote the selections by T5GEC and suggestions by the BTR, respectively.
† indicates that the difference between𝑌𝐵𝑇𝑅 and𝑌𝑏𝑎𝑠𝑒 is significant with a p-value< 0.05.
Bold scores represent the highest 𝐹0.5 for each case.

4.5.7 Effect of 𝛽
Table 4.25 demonstrates the effect of using 𝛽. Equal denotes the suggestion 𝑌𝐵𝑇𝑅 is
exactly 𝑌𝑏𝑎𝑠𝑒. Accept denotes 𝑌𝐵𝑇𝑅 satisfies Section 4.3.3 and 𝑌𝐵𝑇𝑅 will be the final
selection, while Reject denotes 𝑌𝐵𝑇𝑅 does not satisfy the equation and 𝑌𝑏𝑎𝑠𝑒 is still the
final selection. Most of the final selections belonged to Equal and achieved the highest
𝐹0.5 score of 68.78. This indicates the sentences in Equal can be corrected easily by
both the BTR (𝛽 = 0.4) and T5GEC. Around 1/3 of the new suggestions proposed by
the BTR (𝛽 = 0.4) were accepted and achieved an 𝐹0.5 score of 63.97, which was a
2.3-point improvement from 𝑌𝑏𝑎𝑠𝑒. However, around 2/3 of the new suggestions were
not accepted, and the original selection by T5GEC resulted in a higher 𝐹0.5 score than
these rejected suggestions. These results show that, among the new suggestions, the
BTR was confident only for some suggestions. The confident suggestions tended to be
more grammatical, whereas the unconfident suggestions tended to be less grammatical
than the original selections.

To investigate the role of 𝛽, we also analyzed the relationship between 𝛽 and the
corresponding precision, recall, and GLEU scores. Figure 4.5 shows the performance
of the BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 20, 𝛼𝑝𝑟𝑒𝑑 = 5) on the CoNLL-13 and 14 corpus, respectively.
With 𝛽 increasing, the acceptance rate, i.e., the percentage of suggestions that the BTR
accepts, decreases while the precision and recall for the Accept suggestions increases.
This demonstrates our assumption in Section 4.3.3 that the value of 𝑓 (𝑌 |𝑋) indicates the
confidence of the BTR. It also reaffirms our previous findings, indicating that suggestions
with higher confidence tend to be more grammatical than the original selections. As
for the whole corpus, when 𝛽 = 0.7, this BTR achieved lower precision and recall
score than 𝛽 = 0.4 due to the limited amount of 𝐴𝑐𝑐𝑒𝑝𝑡 suggestions. Figure 4.6
shows the performance of BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 10, 𝛼𝑝𝑟𝑒𝑑 = 5) on the BEA dev and test
corpus, respectively. In Figure 4.6, the BTR shows a similar performance to that on
the CoNLL-13 and 14, where a larger 𝛽 leads to higher precision and recall for 𝐴𝑐𝑐𝑒𝑝𝑡
suggestions. However, the performance over the whole corpus also depends on the
acceptance rate. Differently, as shown in Figure 4.7, the experimental results of the BTR
(𝛼𝑡𝑟𝑎𝑖𝑛 = 5, 𝛼𝑝𝑟𝑒𝑑 = 15) on the JFLEG corpus achieved the highest GLEU score for the
whole corpus when 𝛽 ≤ 0.1. This may be because using 𝛼𝑝𝑟𝑒𝑑 = 15 makes a flatter
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Figure 4.5: Precision and recall of BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 20, 𝛼𝑝𝑟𝑒𝑑 = 5) with respect to different
𝛽 on the CoNLL-13 set (left, a - e) and CoNLL-14 set (right, f - j), respectively.

probability than 𝛼𝑝𝑟𝑒𝑑 = 5 as shown in Figure 4.8. Besides, recognizing the fluency of
a sentence by the BTR may be easier than recognizing the minimal edit of corrections.
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Figure 4.6: Precision and recall of BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 10, 𝛼𝑝𝑟𝑒𝑑 = 5) with respect to different
𝛽 on the BEA dev (left, a - e) and test (right, f - h) set.
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Figure 4.7: GLEU of BTR (𝛼𝑡𝑟𝑎𝑖𝑛 = 5, 𝛼𝑝𝑟𝑒𝑑 = 15) with respect to different 𝛽 on the
JFLEG dev (left, a - c) and test (right, d - f) set.
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Figure 4.8: Average probability for each rank on the CoNLL-14 (a), BEA (b) and
JFLEG (c) test set. The top candidate sentences were generated by T5GEC.
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Figure 4.9: Cross-entropy loss of 𝑦 𝑗 versus 𝑗 . The loss was averaged over CoNLL-14’s
149 tokenized utterances with length in interval [18, 20] (including <eos>).

4.5.8 Difference Among Rerankers
To investigate the difference among R2L, RoBERTa (𝛽 = 0.1) w/o 𝛼𝑡𝑟𝑎𝑖𝑛, and the BTR
(𝛽 = 0.4), we compared the precision and recall of the three rerankers in Table 4.14.
In most cases, R2L tended to improve the precision but lower the recall from T5GEC.
The improvements brought by RoBERTa from T5GEC for both precision and recall are
limited. Meanwhile, the BTR could improve both precision and recall from the original
ranking. Because T5GEC already achieved a relatively high precision and low recall,
there was more room to improve recall, which was demonstrated by the BTR.

Figure 4.8 shows the probability distribution of reranking. When 𝛼𝑡𝑟𝑎𝑖𝑛 > 0, the prob-
ability distribution of the BTR becomes peaked, which indicates that using Equation (
4.3.3) to minimize the unlikelihood could increase the probability gap between the 1st-
ranked candidate and the rest. Compared with the BTR, when 𝛼𝑡𝑟𝑎𝑖𝑛 > 0, the probability
distribution of RoBERTa is as flat as 𝛼𝑡𝑟𝑎𝑖𝑛 = 0, which suggests the effectiveness of
the encoder-decoder structure compared with the encoder-only one when minimizing
unlikelihood.

Figure 4.9 shows both T5GEC and R2L have a relatively high cross-entropy loss for
tokens at the beginning positions and a low loss for tokens at the ending positions, even
though the loss of R2L was the sum of two opposite decoding directions. This may be
because the learning by the auto-regressive models for the latest token was over-fitting
and for the global context was under-fitting, as Qi et al. [2020] indicated. RoBERTa has
a flatter loss with less sharp positions than T5GEC and R2L. Meanwhile, the BTR has
a flat loss, which is ideal for reranking candidate sentences with length normalization,
as suggested by Salazar et al. [2020]. Figure 4.4 also presents the difference between
RoBERTa and the BTR in training loss.

Table 4.1 provides examples of ranked outputs by T5GEC, R2L, RoBERTa w/o 𝛼𝑡𝑟𝑎𝑖𝑛
(𝛽 = 0.1), and BTR (𝛽 = 0.4). The first block of output results demonstrates the difficulty
of correcting spelling errors. In this block, the BTR outputs the token “insensitively”
with the correct spelling but a mismatched meaning, whereas other rerankers tend to
keep the original token “intesively” with a spelling error. The examples in the second
block show that both the BTR and R2L are capable of correctly addressing verb tense
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Model CoNLL-13 CoNLL-14 BEA JFLEG
dev test dev test

T5GEC 778 790 3,638 3,776 451 444

BERT 22 21 68 69 12 13
R2L 34 32 108 109 19 19
RoBERTa 82 88 333 386 46 69

BTR 194 199 740 738 113 122

Table 4.26: Time cost (seconds) in inference over the whole corpus with 5 candidates
generated by T5GEC.

errors. The examples in the third block show the methods utilized by various rerankers
for handling count-mass noun errors. The examples in the last block show that even
though the BTR recognizes the missing determiner “the” for the word “Disadvantage”,
it still misses a that-clause sentence.

In inference, we required all rerankers to compute one target sequence at a time to
estimate the time cost. For RoBERTa and the BTR, we rearranged the given target
sequence by masking each token. These rearranged sequences were then put into a mini-
batch for parallel computation. For T5GEC, given the source sentence, we used the
mini-batch with a size of 5 to parallelly compute all beams. Table 4.26 displays the time
cost for each model to estimate scores over the entire corpus with 5 candidates, using
one NVIDIA A100 80GB GPU. We only calculated the time for estimating probability
and ignored the time for loading the model and dataset. T5GEC costs the most time
among all rerankers, as it predicts tokens of the target sequence one by one. RoBERTa
and the BTR took longer than BERT and R2L due to the target sequence rearrangement
procedure. The BTR took 2 to 3 times as much as RoBERTa due to the additional
decoder structure.

4.6 Conclusion
This chapter proposed a bidirectional Transformer reranker (BTR) as an extension of
the LMR. The BTR is designed to rerank the top candidates generated by a pre-trained
seq2seq model for GEC. For a fully pre-trained model, T5-base, the BTR could achieve
65.47 and 71.27 𝐹0.5 scores on the CoNLL-14 and BEA test sets. Our experimental
results showed that the BTR on top of T5-base with limited pre-training steps could
improve both precision and recall for candidates from T5-base. Because using negative
sampling for the BTR generates a peaked probability distribution for ranking, introducing
a threshold 𝛽 benefits the acceptance of the suggestion from the BTR. This approach
showcases the effectiveness of contrastive learning in mitigating issues such as text
degeneration. Moreover, the BTR takes into account each position equally during
prediction, leading to enhanced overall performance and a comprehensive understanding
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of the entire context compared to T5GEC and R2L. This highlights the potential of
addressing exposure bias by utilizing bidirectional representations of the target context.
Furthermore, the BTR on top of T5-base could rerank candidates generated from T5-large
and yielded better performance. This finding suggests the effectiveness of the BTR even
in experiments with limited GPU resources. While the BTR in our experiments lacked
sufficient pre-training, it should further improve the performance with full pre-training
for reranking in future.
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Chapter 5

Conclusion

5.1 Conclusion
This thesis focuses on investigating the effectiveness of using pseudo-log-likelihood
scores (PLL) as rerankers in natural language processing tasks. The experimental results
obtained from three specific tasks, namely discourse segmentation, discourse parsing,
and grammatical error correction, provide compelling evidence of the effectiveness of
PLL-based models for improving the quality of predictions generated by discriminative
models. In fact, these models employed in the experiments outperformed existing
approaches and achieved state-of-the-art results. These findings yield three significant
insights that can guide future research in constructing PLL-based models and their
applications in addressing exposure bias and text degeneration.

The first insight focuses on the availability and benefits of constructing PLL-based
models from pre-trained language or seq2seq models. In the discourse segmentation and
discourse parsing tasks, the proposed PLL-based model, LMR, combines each source
and prediction pair into a new sequence, allowing a pre-trained language model to rerank
these combined sequences as a generative model. Additionally, the LMR utilizes dictio-
nary definitions to generate representations for unseen labels, promoting the application
of pre-trained representations in these tasks, as evidenced by the conducted experiments.
Similarly, in the grammatical error correction task, the proposed PLL-based model,
BTR, treats the source as background information and focuses on reranking the predic-
tions. This sequence-to-sequence setting aligns well with the architecture of pre-trained
sequence-to-sequence models, allowing effective utilization of their capabilities. The
benefits brought by pre-trained models to the natural language processing community
are notable. Researchers and practitioners could employ the existing advancements in
pre-trained models without extensive retraining or starting from scratch, because the
pre-trained models have already learned from vast amounts of data. This is particularly
advantageous in situations where labeled data is scarce or expensive to obtain, allowing
the constructed PLL-based models to effectively tackle challenges related to domain
shift and limited training data.

The second insight arising from the experimental results demonstrates that text de-
generation can be mitigated by using a reranking strategy. In contrast to discriminative
models that rely solely on the source text, using reranking procedure helps PLL-based
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models take advantage of additional information from predictions to more accurately
rank candidates. The use of negative sampling during the training of the BTR helps cre-
ate a more peaked probability distribution among candidates, ensuring that a probability
threshold can be applied to accept only the most convincing selections from the BTR.
This procedure effectively assists to prioritize natural text over repetitive or awkward
ones, resulting in outputs that exhibit improved fluency, coherence, and overall quality.

The final insight derived from the experimental findings highlights the potential of
addressing exposure bias by using bidirectional representations of the target context.
Auto-regressive-based discriminative models, which rely on past timestep representa-
tions to predict the next token, face challenges in accurately predicting tokens in early
timesteps due to the lack of available context and the presence of a large number of
unfactorized future timesteps. The proposed PLL-based models effectively overcome
these limitations by factorizing both past and future steps, allowing them to equally
consider each position for prediction and enhance overall performance with a compre-
hensive understanding of the entire context. To achieve this, this thesis employs two
techniques: masked language modeling and pseudo-log-likelihood. These techniques
enable the models to estimate the target sentence probability by predicting each corrupted
token using surrounding bidirectional representations, which encompass both past and
future timesteps. With such a comprehensive and balanced understanding of the context,
PLL-based models can select accurate and contextually appropriate outputs.

5.2 Future Work
Chapter 3 and Chapter 4 of this thesis have proved the effectiveness of our various
attempts to improve the applications of PLL-based models. Guided by the experimental
results, this section concludes the thesis by exploring potential future directions that
could benefit the natural language processing community.

5.2.1 Usage of Descriptions
In Chapter 3, we investigate the use of descriptions, specifically dictionary definitions,
as additional information to construct label embeddings. Two methods, namely Average
and Concatenate, are employed to represent these embeddings. The effectiveness of these
methods is demonstrated through experimental results, which involve a comparison to a
setting where no additional information is utilized.

As mentioned by Wang et al. [2018a], label embeddings have been extensively applied
for classification tasks, including image classification and text recognition in images, to
improve the prediction. Besides, label embeddings are particularly beneficial in zero-
shot tasks, where certain classes have not been encountered previously.

The Average method in this thesis is a quite simple component-wise mean function
and the Concatenate method may suffer from computational costs when dealing with
long text. To benefit classification tasks, a promising direction for future research is to
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explore more efficient techniques to incorporate these descriptions for unseen tokens,
particularly in scenarios involving limited computational resources.

5.2.2 Pre-training and Masking Strategies
In Chapter 4, we adopt the span masking strategy based on the evidence from Raffel et al.
[2020] as the optimal strategy for pre-training the Transformer model (referred to as T5)
with 34B tokens. Following the approach of Raffel et al. [2020], we apply this strategy
to pre-train the bidirectional Transformer (referred to as BTR) with 10.5B tokens on a
smaller-sized corpus. During the fine-tuning process, we adhere to the BERT setting
of randomly masking 15% of the target elements, with the masked tokens distributed
according to an 8:1:1 masking strategy. After fine-tuning, we observe that using BTR to
rerank predictions from T5 resulted in improved final results.

It is worth noting that, until now, there has not been a fully pre-trained seq2seq model
with a BERT-style self-attention mechanism in the decoder. Our findings emphasize the
potential advantages of a fully pre-trained bidirectional Transformer for natural language
processing. As a result, it would be worthwhile to explore other suitable strategies for
pre-training the bidirectional Transformer, in addition to the span masking strategy.
Additionally, future research should consider the scale of pre-training, the optimal mask
ratio, and the distribution of masked tokens as important factors in order to further
enhance the model’s performance.

5.2.3 Learning with Negative Samples
The experimental results presented in Chapter 3 and Chapter 4 demonstrate that imple-
menting the contrastive learning to distinguish positive and negative samples, resulting
in improved performance when using our PLL-based models as rerankers. Particu-
larly, the BTR model exhibits a notable characteristic of generating a peaked probability
distribution among candidate outputs.

Our thesis and the work of Welleck et al. [2020] both employ unlikelihood training to
minimize the likelihood of improbable generations while maximizing the likelihood of
true target outputs. A notable contribution from Liu et al. [2022] introduces an interesting
perspective that sentence probabilities should be correlated with their quality. According
to their proposal, the model should assign higher probabilities to higher-quality candidate
outputs. By incorporating such an insight, future research can focus on designing PLL-
based models that not only prioritize generating plausible outputs but also emphasize
the quality and relevance of the generated content.
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