T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

oo /00000
Article / Book Information

Title Memory Allocation Method for Indirect Addressing DSPs with + 2

Update Operations
Authors Nakaba Kogure, NOBUHIKO SUGINO, Akinori Nishihara
Citation IEICE Trans. Fundamentals., Vol. E81-A, No. 3, pp. 420-428
Pub. date 1998, 3
URL http://search.ieice.org/
Copyright (c) 1998 Institute of Electronics, Information and Communication

Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

420

IEICE TRANS. FUNDAMENTALS, VOL. E§1-A, NO. 3 MARCH 1998

[PAPER Special Section of Selected Papers from the 10th Karuizawa Workshop on Circuits and Systems

Memory Allocation Method for Indirect Addressing
DSPs with +-2 Update Operations

Nakaba KOGURE!, Nonmember, Nobuhiko SUGINO', and Akinori NISHIHARA', Members

SUMMARY Digital signal processors (DSPs) usually employ
indirect addressing using an address register (AR) to indicate
their memory addresses, which often introduces overhead codes
in AR updates for next memory accesses. In this paper, AR
update scheme is extended such that address can be efficiently
modified by £2 in addition to conventional +1 updates. An au-
tomatic address allocation method of program variables for this
new addressing model is presented. The method formulates pro-
gram variables and AR modifications by a graph, and extracts a
maximum chained triangle graph, which is accessed only by AR
+1 and +2 operations, so that the estimated number of overhead
codes is minimized. The proposed methods are applied to a DSP
compiler, and memory allocations derived for several examples
are compared with memory allocations by other methods.

key words: DSP compiler, memory addressing, code optimization

1. Introduction

Digital signal processors (DSPs) are widely used to im-
plement various real-time applications, such as filters,
FFTs, CODECs, MODEMs, etc. The programming
of such real-time algorithms on DSPs, however, is cost
and time consuming work; programmers are required to
have enough knowledge of both the processor architec-
ture and the processing algorithm to write an efficient
(short in execution time) program/code.

In order to reduce the heavy programming load,
software tools such as high-level languages and its com-
pilers are very important. Many programming tools and
compilers are presented by venders and researchers [1]-
[5]. In Ref.[4],[5] DIMPL (Digital network IMPle-
mentation Language) and its compiler have been pro-
posed. In these compilers, an efficient program benefits
from effective use of registers. Efficient access of mem-
ory in a program, however, is as important as effective
use of registers in order to derive an efficient program.

In many DSPs, memory content is accessed indi-
rectly through address registers (ARs). Although AR
must be updated before memory access, simple AR up-
date operations such as increment or decrement (AR
+1) operations can be concurrently performed in one
instruction cycle besides data operations such as addi-
tion, subtraction and date movement. When AR update
amount is beyond these simple AR operations, addi-

Manuscript received June 30, 1997.

Manuscript revised September 19, 1997,

TThe authors are with Department of Physical Electron-
ics, Faculty of Engineering, Tokyo Institute of Technology,
Tokyo, 152—-0033 Japan.

tional one instruction cycle is required for substituting
memory address for AR (immediate AR load opera-
tion), which becomes overhead in a program. In order
to derive an efficient program, reduction in the number
of such immediate AR loads is very important.

In Refs.[6]-[11], for a DSP with these indirect
memory addressing operations, methods to derive a
memory access pattern with less overhead codes have
been studied. These methods model program variables
and AR operations by an access graph (AG). Liao[6]
proposed a heuristic method to search a maximum-
weighted Hamiltonian path in the AG. Leupers[7] pre-
sented AR +1 and £k operations, and gave a method to
utilize additional registers. Wess[8] represented mem-
ory address allocation problem in a matrix form.

In this paper, a DSP with extended indirect mem-
ory addressing operations, where AR can be increased
or decreased by one (AR +1) or two (AR +2) besides
arithmetic operation or data movement in one instruc-
tion cycle, is assumed. Although additional hardware
is required for these new addressing operations, further
reduction in overhead codes is expected. For hardware
implementation of AR +2 operations, techniques in n-
bit up-down counter is applicable, so that additional
hardware amount is expected to be small.

For this new DSP model, sophisticated memory
allocation is necessary to achieve overhead code re-
duction. Although the memory allocation method in
Ref.[8] deals with more generalized memory address-
ing model, it is easily estimated that it requires large
amount of computational period with a set of parame-
ters. Meanwhile, this paper presents a heuristic method
based on the graph representation and it gives an effi-
cient memory allocation with less computational cost.

2. Memory Addressing

When reading a datum from memory or writing a datum
into memory (in general, accessing a datum in memory),
memory address corresponding to the datum must be
pointed by some ways, which are called as memory ad-
dressing modes. In general purpose processors, several
memory addressing modes such as immediate address-
ing, indirect addressing, indexed addressing mode, and
so on, are provided, so that programmers easily imple-
ment various data structures. These addressing modes
are also utilized in compilers for general purpose pro-

KOGURE et al: MEMORY ALLOCATION METHOD FOR INDIRECT ADDRESSING DSPS WITH +2 UPDATE OPERATIONS

cessors. As for DSPs, memory addressing modes are
rather inferior to general purpose processors in return
for high performance in computation. Almost all the
DSPs have indirect addressing modes. They have so
called address registers (ARs) to point the memory ad-
dresses to be accessed.

In this paper, a DSP with the following indirect
addressing mode is assumed. AR update range of this
DSP is depicted in Fig. 1.

Memory addressing mode of a new DSP model

e Memory addresses are pointed by an address regis-
ter (AR).

¢ In one instruction cycle, AR can be increased or
decreased by one (£1) or two (£2) (hereafter AR
+1-£2) besides arithmetic operation or data move-
ment.

o Every AR can be simultaneously updated by %1
or &2 in one instruction cycle, whether one of the
ARs is refered for memory access or not. Updated
AR is valid after this cycle (post-modification).

e An “AR load” operation, which directly substi-
tutes a memory address to an AR, costs one in-
struction cycle only by itself.

The third feature shows an apparent difference
from the DSP model used in[9]-[11]. When a code

Memory
-4
- U
Lor % V] AR 0
t -1 AR +1
| +% V] AR +2
+

+lor+2 +3 L] AR Load

Fig. 1 AR update range of this DSP.

421

requires to read a datum from memory or to write a da-
tum into memory, an AR must be updated before this
cycle. For the conventional DSP model, an AR load is
required when this AR update amount is beyond =+1,
and this becomes an overhead in codes. Meanwhile, an
AR load is required when the AR update amount is be-
yond +2, for the new DSP model. Additional hardware
required for these new addressing operations is expected
to be small.

Let us think of memory address and AR operations
with a simple example, signal flow graph of a second
order IIR filter shown in Fig.2. After an appropriate
computational ordering, intermediate codes are derived
as shown in left hand side of Table 1, where A denotes
the intermediate results kept in the register.

The right hand side in Table 1 shows memory ac-
cess sequences and AR operations. For the conventional
DSP model, one may decide the addresses of variables as
they appears in the program, and it is shown in “Ap-
pearance Order” column of Table 1. By this method,
4 immediate AR loads between codes 4~6, 7~8, 8~9,
10~11, which are denoted as “LD” in Table 1, are re-
quired. Meanwhile, if memory address is appropriately
decided as shown in “Conventional DSP model” col-
umn of the same table, only 3 AR loads between codes
1~2, 3~4, 11~12 are required, and one immediate AR
load can be saved. For the new DSP model, AR can
be updated by £2 in one instruction cycle, so that no

Fig. 2 SFG of 2nd order TIR filter.

Table 1 Intermediate code for Fig.2 and AR operations.
Instruction : Memory AR operation
Cycle Intermediate Code Access Appearance Conventional New
Sequence Order DSP Model [10] DSP Model
1 A — vg X mg vo 0) +1 0y LD 0) +2
2 A—A+v Xxme vy hy +1 2y 41 2) +1
3 Ae— A4vg X my vg 2) 41 3 LD 3y -2
4 vz — A v3 3 1 1
5 A— AxXmsg none LD +1)+1
6 A— A+v Xms vy l)+1 2)+1 2) +1
7 A— A+ vy X my vg 2)LD 3)_|_1 3)+1
8 vy — A on 4 LD 4 —1 4 1
9 A — vy U2 AR 3 1 3 -1
10 v — A vy Iy Lp 2y -1 2y 1
11 A+— w3 v3 3 —1 1y LD 1y 42
12 vy — A [2 3 3
[Number of immediate AR loads I 4 | 3 | 0 |

422

AR load is required as shown in “New DSP model”
column, when the same memory allocation is used for
the conventional DSP model.

In the case of the new DSP model, appropriate
memory address allocation is also very important as
well as the case of the conventional DSP model. An ap-
propriate memory address allocation can utilize 1 and
+2 AR operations as much as possible and can save im-
mediate AR address loads. The problem to find such an
efficient memory address allocation is called as “mem-
ory allocation issue” in this paper. Moreover, DSPs
usually have multiple ARs and utilization of these ARs
can improve memory access. The problem to find an
appropriate memory accesses assighment into multiple
ARs is called as “AR assignment issue.” In this paper,
however, only memory allocation issue is discussed.

The optimum memory allocation is given by ex-
amining all the possible combination of memory ad-
dress and variables. However that method costs a
plenty of time and is not appropriate for practical
use[11]. Therefore heuristic methods like the methods
in Refs.[6]—[11] are employed in this paper.

3. Memory Allocation Method
3.1 Access Graph

A given memory access sequence is modeled by an ac-
cess graph (AG), where each vertex and edge denote the
variable to be accessed and the required AR update,
respectively [9]-[11]. A unique AG is derived for a
given memory access sequence and a memory allocation
method is applied for this AG. After a memory alloca-
tion, a memory address is decided for each vertex, and
AR update operations are assigned to each edge. Note
that the number labeled on each edge is the address up-
date length which indicates the number of possible AR
+1 or +2 operations for the corresponding AR update.
For example, the AG of the memory access sequence
in Fig.3(a) is shown in Fig.3(b), where the number
labeled on each arrow in Fig.3(a) and each edge in
Fig. 3 (b) denote the length. In this paper, all the edges

@O DD HDHO

(a) Memory access in 5th order Wave Digital Lattice Filter

(b) The AG for the memory access in (a)

Fig. 3 An AG example.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

connected between two vertices are handled as an edge
group.

3.2 Triangle Graph and Chained Triangular Graph

For the above mentioned new DSP model, AR is up-
dated within 42 in one instruction cycle, so that no im-
mediate AR load is required for a triangle shaped AG
as shown in Fig. 4 (a). For a chain of triangle graphs as
shown in Fig. 4 (b), no immediate AR load is required,
and memory addresses for variables are easily decided.
In this paper, such a graph is called as Chained Triangu-
lar Graph (CTG). CTG is a kind of 2 path outer-plane
graphs (or 2 path maximum outer-plane graphs) in the
graph theory. In the case that two CTGs are linked by
edge groups as shown in Fig.4(c), no AR load is re-
quired. Such a graph is called as quasi-CTG in this
paper. A quasi-CTG linked with a CTG by an edge
group also forms a quasi-CTG. A CTG itself is also a
class of quasi-CTGs.

Generally, an AG includes some edges in addition
to a CTG or a quasi-CTG. Therefore, memory alloca-
tion method proposed in this paper extracts a quasi-
CTG in a given AG, since the quasi-CTG gives a mem-
ory allocation without need of any AR load. As a
result of extraction, some edges in a given AG are re-
moved. At these removed edges, immediate AR loads
are required according to their length and the decided
memory allocation.

For example in Fig. 5, an edge between vertices 0
and 3 is removed to form a CTG, where the length is
labeled on each edge. For the case of Fig.5(a), an im-
mediate AR load is required at the removed edge as
marked by x. Meanwhile, no immediate AR load is

(b) A CTG

(c) A quasi-CTG

Fig. 4 Classes of AG.

Fig. 5 Length of edge.

KOGURE et al: MEMORY ALLOCATION METHOD FOR INDIRECT ADDRESSING DSPS WITH -2 UPDATE OPERATIONS

required, for the case of Fig. 5 (b), because the removed
edge allows 2 AR update operations (AR +4). In or-
der to evaluate edge length, a cost function mentioned
in the following section is introduced. By use of the
cost function, the method extracts a quasi-CTG of the
maximum cost, so that total cost of removed edges is
minimized.

3.3 Cost of Edge Group

In order to minimize the number of AR loads for a
memory allocation, it is preferable to extract a quasi-
CTG by removing the minimum number of edges.
When all the edge lengths are 1 or the memory al-
location method does not consider AR update oper-
ations at the codes without any memory accesses, the
number of AR loads equals to the number of removed
edges. In this case, the extracted quasi-CTG of the max-
imum edges gives the most efficient memory allocation.
However, the exact number of AR loads for edges with
lengths is not known until the memory allocation com-
pletes, because it is counted according to the placement
of variables in memory space. Therefore, the cost func-
tion w(u, v) estimates the number of AR loads for each
edge group (u,v) in terms of the number of edges in
(u,v) and their length.

Suppose variable b is accessed [cycles after an ac-
cess of variable a as shown in Fig. 6 (a), where the length
of this AR update is labeled on the edge. Note that AR
can be updated by 2/ at an edge of length I, when the
new DSP model with AR 42 operations is assumed.
When N variables are included in a given memory ac-
cess sequence, the number of possible address alloca-
tions is

NI

In some of N! address allocations, b is located in the
next address to a as shown in Fig. 6 (b), and the number
of these address allocations is given by

2. (N —1)- (N —2),

where 2 means that variables a and b are positioned in
2 ways. Similarly, the number of possible allocations
in which a and b are located in 2 address distance as
shown in Fig.6(c) is

2-(N—2)- (N —2)L

In general, the number of possible allocations in which
a and b are located in k address distance as shown in
Fig.6(d) is

2. (N—k)- (N -2

The number of possible allocations in which address
distance between the two variables is more than 2/ as

423

...%f B - -

(a) Memory access example

©
T Tl Il
®
Tl T TelT]

Fig. 6 Memory locations and edge lengths.

shown in Fig. 6 (e) is given by
k=N
> 2 (N—k)-(N-2)
k=2l+1
=(N-20-1)(N—-20)-(N-2),

and these allocations require an AR load at this AR
update. Note that 2/ < N is assumed, because AR up-
date of 20 > N is easily realized by use of AR +1 and
+2 operations. When edges between variable ¢ and b
are removed in the graph triangulation, variables ¢ and
b are not located within 2 address distance. The number
of possible allocations in which a and b are not located
within 2 address distance is given by

N'=2-(N-1)-(N=-2)l =2- (N ~-2)- (N —2)!
=(N-2)-(N—-3)-(N-2).
Consequently, the ratio of the number of possible allo-
cations in which address distance of the two variables is
more than 2/ to the number of overall possible alloca-
tions in which the two variables are not located within
2 address distance is given by
(N—=2l-1)(N=2)- (N -2)!
(N—-2)-(N=3)-(N-2)!
_(N=2)(N—-20-1)
- (N-2)(N-3)
P(N,1) estimates the number of AR loads at the edge
of | length, when this edge is removed.
For edge group (u,v), which contains multiple

edges of different lengths, the cost or weighting func-
tion w(u,v) is given by

P(N,1) =

424

ey

where a;(u,v) denotes the number of edges with length
! connected between vertices u and v.

3.4 Graph Triangulation

To minimize the number of AR loads, the proposed
memory allocation algorithm extracts a quasi-CTG in
a given AG according to the cost in the previous sub-
section. Extraction procedures are the followings.

3.4.1 Triangle Graph

In the first stage, costs of all the edge groups in the AG
are evaluated. And then, all the triangle graphs involved
in the AG are extracted. For each triangle graphs, its
cost is evaluated by the sum of their edge group costs.

Let us explain the procedure for evaluating triangle
graphs by using an example. Fugure 7 shows a triangle
graph, where the numbers labeled on edges denote their
costs. The first triangle cost function T3(a,b,c) of the
triangle graph (a, b,¢) in Fig.7 is given by

> wlu,0) @)
(u,w)EET
= w(a,b) +w(b,c) +w(c,a)
= 4,

T1 (a, b, C) =

where Ep denotes all the edge groups in the triangle
graph (a,b,c).

This triangle graph cost gives the number of AR
loads, if all the edge groups of this triangle graph are
removed in the graph triangulation procedure.

342 CTG

In the second stage, triangle graphs are jointed to form
CTGs. At first, a triangle of the maximum cost is cho-
sen as a CTG core. Then, the CTG is iteratively ex-
panded by jointing a triangle graph of the maximum
cost among triangle graphs adjacent to the CTG. These
procedures are repeated until no triangle graph is left.
Finally, several number of CTGs are derived.
Procedures to form a CTG are illustrated by an
example CTG in Fig.8 (a). Assume we have triangle
graphs (c,d,e) and (a,b,e) adjacent to this CTG. Fig-
ures 8 (b) and (¢) show CTGs after joint of these two

IEICE TRANS. FUNDAMENTALS, VOL. E81—-A, NO. 3 MARCH 1998

(c) Joint of the triangle graph (a, b, €)

Fig. 8 Joint of triangle graphs.

triangle graphs, respectively. In the figures, the numbers
labeled on edges denote their costs.

The triangle cost function T5(c,d,) of the triangle
graph (c,d,e) in Fig. 8 (b) is given by

Ty(c,d,e) = Ti(c,dye) — », w(u,v) (3)

(u,v)EEc
Ti(c,d,e) — (w(a,e) +w(b, e))
=1

?

where E¢ denotes all the removed edge groups to derive
the CTG (a,b,¢,d,€).

By similar procedure, the cost function T5(e, a, b)
of a triangle graph (e, a,b) in Fig.8(c) is given by

Ty(e,a,b) = Ti(e,a,b) - Z w(u,v)
(u,v)EEC
= Ti(e,a,b) — (w(c,e) + w(d,e))
— 0.4,

where F- denotes all the removed edge groups to de-
rive the CTG (e,qa,b,¢,d). According to the cost, the
adjacent triangle graph (c,d,e) is jointed to the CTG
in Fig.8(a), and Fig. 8 (b) is derived in this example.

3.4.3 Quasi-CTG

In the final stage, CTGs are linked together by appro-
priate edge groups, and a quasi-CTG is derived. These
edge groups are selected by evaluating their cost.
Procedures to link CTGs are explaind by an exam-
ple in Fig.9 (a). Assume we have edge groups (¢, d) and

KOGURE et al: MEMORY ALLOCATION METHOD FOR INDIRECT ADDRESSING DSPS WITH =42 UPDATE OPERATIONS

(c) Link by the edge group (b, f)

Fig. 9 Link of CTGs.

(b, f) between two CTGs (a,b,c) and (d,e, f). CTGs
linked by edge groups (c,d) and (b, f) form quasi-
CTGs depicted in Fig. 9 (b) and (c), respectively, where
the numbers labeled on edges denote their costs. The
edge cost function Fy(c,d) of the edge group (c,d) in
Fig.9(b) is given by

FEi(e,d) = w(e,d) — Z w(u, v) (4)
(u,v)EEq
= w(c,d) —w(b, f)
— 06,

where Eg denotes all the removed edge groups to derive
the quasi-CTG (a,b,¢,d, e, f).

By similar evaluation, the cost function Fy (b, f) of
the edge group (b, f) in Fig. 9 (¢) is given by

El(b7f) = w(b7 f) - Z ’LU(U,,U)
(u,w)EEqg
= w(b, f) — w(e,d)
= —0.6,

where Eg denotes all the removed edge groups to derive
the quasi-CTG (q, ¢, b, f, e,d). Finally, according to the
cost, the edge group (c,d) is chosen to link two CTGs,
and a quasi-CTG in Fig.9 (b) is derived.

3.5 Memory Allocation Algorithm

By use of the edge group cost and the graph tri-
angulation procedures, the memory allocation algo-
rithm called as ALOMA-CTG (Address Load Oper-
ation Minimization Algorithm by use of CTG) is sum-
marized as the followings.

425

ALOMA-CTG

Input AG G = (V,E)
Memory area M = {z|z € N; 0< z < |V|}

Output Memory allocation (m : V — M) to minimize
the cost function

Cost function The number of immediate AR load op-
erations required in G

1. For all the edge groups (u,v) in G, evaluate cost
w(u,v) by Eq.(1).

2. Extract all the triangle graphs in G. For each tri-
angle, evaluate cost 77 by Eq. (2).

3. Select a triangle graph of the maximum cost 7} as
a core of CTG.

4. Extract all the adjacent triangle graphs to the core
of CTG. For each triangle, evaluate cost 75 by

Eq. (3).

5. Joint adjacent a triangle graph with the maximum
cost Ty to the CTG to derive the extended CTG.

6. Repeat 4 ~ 5 until no adjacent triangle graph is
left.

7. Repeét 3 ~ 6 until no core triangle graph is left.

8. Extract all the edge groups to link two of the de-
rived CTGs. For each edge group evaluate cost 7

by Eq. (4).

9. Link two of the derived CTGs by the edge group
of the maximum cost E;.

10. Repeat 8 and 9 until no edge group between two
CTGs is left.

11. For the vertices in the derived quasi-CTG, memory
addresses are decided.

Computational cost of this algorithm is evaluated
for three procedures separately. When a given graph has
v vertices, ¢ triangles and ¢ CTGs, computational costs
for triangle extraction procedure (step 1, 2), CTG form-
ing procedure (step 3 ~ 7) and CTG linkage procedure
(step 8 ~ 10) are given by O(t), O(¢? - ¢) and O(v? - ¢),
respectively. Totally, computational cost of the whole
algorithm is given by O((¢? +v?) - ¢).

Let us explain procedures of the proposed method
by using an example. An example of the whole pro-
cedure of memory allocation is shown in Fig. 10. Fig-
ure 10(a) shows an initial AG with 8 vertices, where
the numbers labeled on edges denote memory access
lengths.

At first, the cost of all the edge groups in the
AG are evaluated and they are labeled on every edge
group in Fig. 10(b). According to the 2nd procedure
of ALOMA-CTG, all the triangle graphs involved in
the AG are extracted as shown in Fig. 10(c), where the

426

(b) Cost of each edge group

(¢c) Extraction of triangle graphs

Fig. 10

(f) Decision of memory addresses

Procedure of memory allocation.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

number labeled on every triangle graph denotes its cost
T,.

Among these triangle graphs, the triangle graph
(a,b,c) of the maximum cost T} is selected first. Then,
a triangle graph (b,c,d) adjacent to the triangle graph
(a,b,c) is jointed together, and the CTG (a,b,c,d) is
derived. Similar procedure is started from the triangle
graph (e, f,g), and the CTG (e, f, g, h) is derived. The
derived CTGs are shown in Fig. 10(d).

The derived two CTGs can be linked by edge
groups (d,e) or {d, h) as shown in Fig. 10 (e). By evalu-
ating the costs E; of two edge groups, edge group (d, €)
of the larger cost is selected, and the quasi-CTG with
maximum cost is derived(Fig. 10(f)). Finally, memory
addresses of vertices a through h are decided for the
derived quasi-CTG, and they are labeled on vertices in
Fig. 10 (f).

4. Address Allocation Results

The above proposed methods are applied to the DIMPL
compiler [4],[5] for the above mentioned DSP model
and codes for several examples are generated. In these
examples, Wave Digital Filters (WDFs) include rather
complicated memory access sequences, and they are ap-
propriate for the comparison in memory addressing
methods. The numbers of their program steps, vari-
ables, accesses are shown in Table 2. Table 3 shows
the comparison of the proposed methods to the existing
method [11] and the optimal memory location, in terms
of the number of AR loads in the generated codes and
execution time which is in the range of seconds on a

Table 2 # of Steps, Variables, and Accesses.

#of # of # of

Steps | Variables | Accesses
WDF(5) 71 14 33
WDF(7) 113 23 53
WDF(9) 145 32 75
WDF(11) || 183 40 93
WDF(17) || 298 64 159
FFT(2%) 90 8 56
FFT(2%) 250 16 152

WDF(): Wave Digital Filter (Order)

Table 3 Comparison of memory allocation methods (# of AR loads and Execution Time (seconds)).

Conventional DSP A New DSP Model
Appearance | ALOMA-| Optimal/ | Execution || Appearance | ALOMA- | ALOMA- | Optimal/ | Execution

Order L[11] Suboptimal Time Order L(£2) CTG Suboptimal Time
WDEFE(5) 7 8 5 0.06 4 2 3 0 0.10
WDEFE(7) 16 15 11 % 0.07 7 9 4 3% 0.16
WDF(9) 28 22 15 % 0.09 14 17 7 6% 0.36
WDEF(11) 41 29 23 % 0.14 19 22 14 12 % 0.75
WDEF(17) 73 64 58 % 0.45 46 53 37 33% 5.20
FFT(2%) 26 25 23 0.06 19 15 11 9 0.10
FFT(24) 90 88 86 % 0.09 59 71 59 56 % 0.52

#: The minimum number of AR loads derived until now.

KOGURE et al: MEMORY ALLOCATION METHOD FOR INDIRECT ADDRESSING DSPS WITH +2 UPDATE OPERATIONS

JCC JS20/762. The column “ALOMA-L(+2)” shows
the result derived by the method for the new DSP model
with AR 42 operations in the ALOMA-L[11].

Memory allocation results derived by the pro-
posed methods need less AR loads than results derived
by the simple allocation method. They are near to
optimal/sub-optimal memory allocation results derived
by methods based on exhaustive and iterative search
methods.

5. Conclusion

In this paper, AR update operations by 42 in indirect
memory addressing mode are newly considered, and a
method to derive an efficient memory allocation utiliz-
ing both AR =1 and +2 update operations is proposed.
In this method, a given memory access sequence is mod-
eled by a graph, and it is triangulated by joint of CTGs
with considering the number and the length of edges.
The proposed methods are applied to the DSP compiler,
and resultant memory allocations for several examples
are near to the optimal/sub-optimal memory allocation.
The proposed methods simply input an access sequence
and output an address location, so that they are appli-
cable to other compilers.

Methods to utilize multiple ARs (AR assignment
issue) are under investigation now. For an indirect ad-
dressing mode with AR +2™ operations, which is easily
realized by n-bit up-down counter technique, methods
to derive an efficient memory address allocation will be
studied in future. Although computational complexity
of the algorithm increase, memory allocation methods
suitable for this DSP, which reduce overhead codes with
small additional hardware, are expected.

Acknowledgement

The authors are grateful to Prof. Fujii and Assoc. Prof.
S. Takagi of Tokyo Institute of Technology for the valu-
able discussions. This work is supported by the Re-
search Body of CAD21 (Computer Aided Design for
21th Century) in Tokyo Institute of Technology.

References

[1] R. Simar, Jr. and A. Davis, “The application of high-level
languages to single chip digital signal processors,” 1988
ICASSP, pp.1678—1681, 1988.

[2] J. Hartung, S.L. Gay, and S.G. Haigh, “A practical C
language compiler/optimizer for real-time implementa-
tions on a family of floating point DSPs,” 1988 ICASSP,
pp.1674—1677, 1988.

[3] E.A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya,
“Gabriel: A design environment for DSP,” IEEE Trans.
ASSP, vol.37, no.11, pp.1751-1761, Nov. 1989.

[4] N. Sugino, A. Toshikiyo, E. Watanabe, and A. Nishihara,
“Computational ordering of digital signal processing net-
works and its application to compilers for signal proces-
sors,” IEICE Tarns., vol.J71-A, pp.327-335, 1988.

427

[S] N. Sugino, S. Ohbi, and A. Nishihara, “Computational
ordering of digital network under the pipeline constraints
and its application to compiler for DSPs,” Proc. ECCTD
’89, pp.395-399, Sept. 1989.

[6] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang,
“Storage assignment to decrease code size,” ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pp.186—195, June 1995.

[7] R. Leupers and P. Marwedel, “Algorithms for address as-
signment in DSP code generation,” ACM/IEEE ICCAD,
pp.109-112, Nov. 1996.

[8] B. Wess, “Automatic code generation for integrated digi-
tal signal processors,” Proc. ISCAS 1996, pp.33—36, June
1996.

[9] N. Sugino, S. Iimuro, A. Nishihara, and N. Fujii, “DSP
code optimization utilizing memory addressing operation,”
IEICE Trans. Fundamentals, vol.E79-A, no.8, pp.1217—-
1224, Aug. 1996.

[10] N. Sugino, H. Miyazaki, S. Iimuro, and A. Nishihara,
“Improved code optimization method utilizing memory ad-
dressing and its application to DSP compiler,” Proc. IS-
CAS 1996, pp.249-252, May 1996.

[11] N. Sugino and A. Nishihara, “Memory allocation methods
for a DSP with indirect addressing modes and their appli-
cation to compilers,” Proc. ISCAS 1997, pp.2585—2588,
June 1997.

Nakaba Kogure was born in Tokyo,
Japan on December 12, 1973. He received
B.E. degrees in electrical and electronic
engineering from Tokyo Institute of Tech-
nology in 1997. He is now a postgraduate
student of Department of Physical Elec-
tronics, Faculty of Engineering, Tokyo In-
stitute of Technology. His main research
interests are in software for digital signal
processing.

Nobuhiko Sugino was born in
Yokkaichi, Mie, Japan on November
19, 1964. He received B.E., M.E. and
Dr.Eng. degrees in physical electronics
from Tokyo Institute of Technology in
1987, 1989 and 1992, respectively. Since
1992, he has been with Tokyo Institute of
Technology, where he is now a lecturer of
department of information processing, in-
terdisciplinary graduate school of science
and engineering. His main research inter-
ests are in hardware and software for digital signal processing,
especially in software development tools for digital signal pro-
cessors. Dr.Sugino is a member of IEEE.

428

Akinori Nishihara was born in
Fukuoka, Japan on February 26, 1951.
He received B.E., M.E. and Dr.Eng. de-
grees in electronics from Tokyo Institute
of Technology in 1973, 1975 and 1978, re-
spectively. Since 1978, he has been with
Tokyo Institute of Technology, where he
is now Professor of the Center for Re-
search and Development of Educational
Technology. His main research interests
are in filter design, 1D and multiD signal

processing, and educational technology. From 1990 to 1994 he
served as an Associate Editor of the IEICE Trans. Fundamen-
tals, and is now serving as an Associate Editor of the IEICE
Trans. Circuits & Systems II. He was 1995-96 Student Activi-
ties Committee Chair, IEEE Region 10 (Asia Pacific Region).
Dr.Nishihara is a member of IEEE, EURASIP, ECS and JET.

IEICE TRANS. FUNDAMENTALS, VOL. E81-A, NO. 3 MARCH 1998

