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Abstract  This paper proposes a new multi-modal speech recognition method us-
ing optical-flow analysis, evaluating its robustness to acoustic and visual
noises. Optical flow is defined as the distribution of apparent velocities
in the movement of brightness patterns in an image. Since the optical
flow is computed without extracting speaker’s lip contours and location,
robust visual features can be obtained for lip movements. Our method
calculates a visual feature set in each frame consisting of maximum and
minimum values of integral of the optical flow. This feature set has
not only silence information but also open/close status of the speaker’s
mouth. The visual feature set is combined with an acoustic feature
set in the framework of HMM-based recognition. Triphone HMMs are
trained using the combined parameter set extracted from clean speech
data. Two multi-modal speech recognition experiments have been car-
ried out. First, acoustic white noise was added to speech wave forms,
and a speech recognition experiment was conducted using audio-visual
data from 11 male speakers uttering connected Japanese digits. The
following improvements of relative reduction of digit error rate over the
audio-only recognition scheme were achieved, when the visual informa-
tion was incorporated into silence HMM: 32% at SNR=10dB and 47%
at SNR=15dB. Second, a real-world data distorted both acoustically
and visually was recorded in a driving car from six male speakers and
recognized. We achieved approximately 17% and 11% relative error
reduction compared with audio-only results on batch and incremental
MLLR-based adaptation, respectively.

Keywords: multi-modal speech recognition, optical flow, robust to noise, speaker
independent

1. INTRODUCTION

Automatic Speech Recognition (ASR) systems are expected to play
important roles in an advanced multi-media society with user-friendly
human-machine interfaces such as ubiquitous computing environments
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[Furui et al., 2001]. High recognition accuracy can be obtained for clean
speech using the state-of-the-art technology even if the vocabulary size
is large, however, the accuracy largely decreases in noisy conditions.
Therefore, increasing the robustness to noisy environments is one of the
most important issues of ASR.

Multi-modal speech recognition, in which acoustic features and other
information are used jointly, has been investigated and found to in-
crease robustness and thus improve the accuracy of ASR. Most of the
multi-modal speech recognition methods use visual features, typically
lip information, in addition to the acoustic features [Nakamura et al.,
2000; Miyajima et al., 2000; Potamianos et al., 1997; Bregler and Konig,
1994]. By using the visual information, acoustically similar sounds, such
as nasal sounds: /n/, /m/, and /ng/, become easier to recognize [Basu
et al., 1999; Mase and Pentland, 1991]. In most of the studies, a lip is
found from an image by mouth tracking, subsequently the lip contour
is extracted, and visual features are obtained by pattern matching tech-
niques or signal processing methods such as FFT. Since it is not easy to
determine a mouth location and extract a lip shape, lip marking is often
needed to ensure robust extraction of visual features in these schemes.

Mase and Pentland reported their lip-reading system for recogniz-
ing connected English digits using an optical-flow analysis [Mase and
Pentland, 1991]. Optical flow is defined as the distribution of apparent
velocities in the movement of brightness patterns in an irmage [Horn and
Schunck, 1981]. The following advantages exist with using the optical
flow for audio-visual multi-modal speech recognition. First, the visual
features can be detected robustly without extracting lip locations and
contours. Second, it is more reasonable to use lip motion for lip reading
rather than using a lip shape. Third, the visual features are independent
of the speaker’s mouth shape or beard.

We have proposed a multi-modal speech recognition scheme using
the optical-flow analysis for extracting visual information [Iwano et al.,
2001). We have used variances of horizontal and vertical elements of
optical-flow vectors as a visual feature set, and found that they are es-
pecially useful for estimating pause/silence periods. We achieved about
30% relative error reduction compared with audio-only results when rec-
ognizing white-noise-added speech at 10dB SNR level condition. How-
ever, robustness of the proposed method to visual noise using an audio-
visual data in real environments has not yet been evaluated.- Increasing
the visual robustness is crucial to make the method applicable to mobile
environments.

In this paper, we conduct recognition experiments for not only artifi-
cially noise-added speech but also real-world speech using a new visual
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(c) optical-flow vectors

Figure 1. An example of optical-flow analysis

feature extraction method. We describe recognition results comparing
with results with the audio-only recognition scheme, and evaluate both
acoustic and visual robustness of our method. This paper is organized as
follows: In Section 2 the principle of the optical-flow method is explained.
Our audio-visual multi-modal speech recognition system is described in
Section 3. Experimental setup and results for acoustic noise-added data
are shown in Section 4, and for real-world data are in Section 5. Finally
we conclude our research and describe our future works in Section 6.

2. OPTICAL-FLOW ANALYSIS

Optical flow is the distribution of apparent velocities in the movement
of brightness patterns in an image. We use the Horn-Schunck algorithm
[Horn and Schunck, 1981]. This algorithm has an advantage that it
needs no characteristic point in contrast with pattern-matching-based
algorithms, and that it requires only two images in processing. In this
method, brightness at every point is assumed to be constant during
movement for a short time. From this assumption, the time derivative
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of the brightness is zero:

dIl 0I dx oI dy oI
i~ @t oy w e " o
where I(z,y,t) is a brightness of a point (z,y) in an image at time ¢. In
this equation (1), if we let

dr dy

u=— and v=— (2)

then the following constraint is obtained:
Iy cu+Iy-v+1I; =0 (3)

Here u(z,y) denotes a horizontal element of optical flow at a point (z,y),
and v(z,y) denotes a vertical element. Since we cannot determine u(z,y)
and v(z,y) using only the equation (3), we incorporate another restraint
which minimizes the sum of the square values of the magnitude of the
gradient of u(z,y) and v(z,y) at every point:

// {(uz? + uy?) + (va* + va)} dzr dy — min (4)

Then the optical-flow vectors u(z,y) and v(z,y) are computed under
these two constraints (3) and (4) by an iterative technique using the
average of optical-flow velocities estimated over neighboring pixels. An
example of the optical-flow analysis is shown in Figure 1. The left im-
age (a) is extracted from a video sequence at a certain time, and the
right image (b) is the next picture. An image of optical-flow velocities
computed from these images is shown in (c).

3. A MULTI-MODAL SPEECH
RECOGNITION SYSTEM

3.1 Feature extraction and fusion

Figure 2 shows the structure of our audio-visual multi-modal speech
recognition system. Speech signals are recorded at a 16kHz sampling
rate, and 39-dimensional acoustic features, consisting of 12 Mel-Frequency
Cepstral Coefficients (MFCCs), normalized log-energy and their first and
second derivatives, are extracted at every 10ms. A video stream is cap-
tured with the frame rate of 15 frames/sec and the resolution size of
360x240. Before computing the optical flow, the resolution is reduced
to 180x 120 keeping the aspect ratio so that computation complexity
should be reduced, and the image is transformed into gray-scale. Low-
pass filtering (smoothing) and low-level noise addition are applied in
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Figure 2. Our multi-modal speech recognition system

(a) silence (b) opening

Figure 3.  Examples of optical-flow integral results

order to increase the precision of the optical flow. Then the optical flow
is computed from a pair of consecutive images with five iterations.

We extract a visual feature set from the optical-flow analysis. It con-
sists of maximum and minimum values of the integral of the optical-flow
vectors. The 3-D images of integral results are shown in Figure 3. When
a speaker is not speaking, the surface is almost flat as shown in the left
image (a). When the speaker’s mouth is opening, optical-flow vectors
point in diffusing directions around the mouth shape. As a result, a
mountain-like surface is created as shown in the center image (b), and
it produces the maximum value. When the mouth is closing, converging
vectors of optical flow occur around the lip contour. Then the integral
operation produces a dip in the mouth area, as shown in the right image
(¢), and the minimum value is observed. Therefore, this feature set con-
tains not only moving information but also open/close information of
the mouth. The 39-dimensional acoustic features and the 2-dimensional
visual features are combined into a 41-dimensional audio-visual vector,
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after synchronizing the visual frame rate with the audio frame rate using
a 3-degree spline function.

3.2 Modeling

A set of triphone Hidden Markov Models (HMMSs) having three states
and two mixtures in each state is used in our system. After training the
audio-visual features with the EM algorithm, the streams of the states
in all triphone HMMs are divided into the 39-dimensional audio and
2-dimensional visual streams. The observation probability b;(Oay) of
generating an audio-visual feature O4y is given by the following equa-
tion:

bj(Oav) = ba;(04)* x by, (Oy)*V (5)

where b4,(0O4) and by, (Oy) are probabilities of generating an acoustic
vector O4 and a visual vector Oy in a state j respectively, and A4 and
Av are weighting factors for the audio and visual streams. By properly
controlling these weighting factors according to the noise condition, im-
provements of the recognition accuracy compared with the audio-only
ASR is expected.

4. EXPERIMENTS FOR NOISE-ADDED
DATA

4.1 Database

An audio-visual speech database was collected in a clean/quiet con-
dition from 11 male speakers, each uttering 250 sequences of connected
- digits in Japanese. Each sequence consisted of 2-6 digits, such as “3029
(san-zero-ni-kyw)” and “187546 (ichi-hachi-nana-go-yon-roku)”, with an
average of four digits. The total duration of our database is approxi-
mately 2.5 hours.

4.2 Training and recognition

Experiments were conducted using the leave-one-out method: data
from one speaker were used for testing while data from other 10 speak-
ers were used for training. This process was rotated for all possible
combinations. Since the visual features are considered to be effective
especially to detect silence, we controlled the stream weight factors, Ay
and Ay, only for the silence HMM under the following constraint:

Am+Ay =1, Aa>0, Ay >0 (6)
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Table 1.
SNR | Audio-only
5dB 39.50%
10dB 58.55%
15dB 78.25%
20dB 94.66%
clean 97.59%

43.22% (0.78)
71.89% (0.82)
88.21% (0.90)
94.74% (0.86)
97.94% (0.88)

Recognition results for white noise-added speech at various SNR levels

7

For any other triphone HMM, we fixed A4 and Ay at 1.0 and 0.0 respec-

tively.

4.3 Results

Figure 4 shows the digit recognition results at (a) 5dB, (b) 10dB, and
(c) 20dB SNR level conditions of white noise, and (d) clean condition.
The horizontal axis indicates the audio stream weight A4, and the ver-
tical axis indicates the percentage of digit recognition accuracy. The



Table 2. The error analysis results (the number of errors) with/without silence eval-
uations for noise-added audio-visual data consisting of 100 utterances per speaker

Del Sub Ins
Audio-only (with  silence) 14.36 25.01 4.12
(without silence) 9.64 18.90 12.91
Audio-visual (with  silence) 14.47 9.52 2.35
(without silence) 14.01 11.83 2.27

( Del: deletion error, Sub: substitution error, Ins: insertion error )

dotted line indicates the accuracy of the audio-only recognition scheme
as the baseline, while the solid line indicates the performance of our
multi-modal ASR method. Table 1 shows the best multi-modal recogni-
tion results and corresponding audio stream weights in comparison with
the audio-only results. These results show that our multi-modal ASR
system achieves better performance than the audio-only ASR in all envi-
ronments. Especially, approximately 47% and 32% of relative reduction
in the digit error rate, compared with the audio-only recognition scheme,
has been achieved in 15dB and 10dB SNR level condition, respectively.

4.4 Considerations

We consider that one of the reasons why the recognition performance
was improved is that digit insertion and silence deletion errors were re-
strained by audio-visual features. In real applications, it is important
that digits must not be inserted in pause/silence periods and silences
should not be inserted within digit sequences. Since silence deletion,
substitution and insertion errors were not counted in the above evalua-
tion, we needed to conduct another evaluation in which silence insertion
within speech periods and substitution of silences by digits as well as
digit insertion within silences were counted as errors. Table 2 shows the
comparison between results of evaluations “with silence” and “without
silence” for both audio-only and audio-visual methods at the best stream
weight factor A4 = 0.82 when SNR=10dB; The table shows the number
of errors within 100 utterances per speaker. The difference between the
results with/without silence is obvious for substitution and insertion er-
rors in the audio-only condition, whereas there are few differences in the
audio-visual condition. This means that silence periods are more cor-
rectly detected by the audio-visual method than the audio-only method.
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Figure 5.  An example of an image in our real-world database (sunlight and car-
frame shadow are observed)

5. EXPERIMENTS FOR REAL-WORLD
DATA

5.1 Database

We collected another audio-visual database in a real environment to
evaluate both audio and visual robustness of our multi-modal ASR sys-
tem. Six male speakers different from those in the clean database re-
spectively uttered 115 sequences of connected digits in a driving car
on the expressway. The total duration of this database is about an
hour. There were several kinds of acoustic noises in our database, such
as engine sounds, wind noises, and nonstationary winker sounds. The
acoustic SNR level of this database is approximately 10-15dB. As for a
visual noise, extreme brightness changing when going through shadows
of viaducts and signs, head shaking on a bumpy road, and slow car-frame
shadow movement on a face when driving in a curve were observed. An
example of visual data in our database is shown in Figure 5.

5.2 Training and recognition

In this experiment, the clean audio-visual database was used for train-
ing, while the real-world database was used for testing. The stream
weight parameters were restricted by the equation (6). In order to
increase the robustness of ASR, Cepstral Mean Normalization (CMN)
and unsupervised adaptation using the Maximum Likelihood Linear Re-
gression (MLLR) [Leggetter and Woodland, 1995] technique were ap-
plied. The log-energy coefficient was removed from the feature set. The
audio-visual feature therefore consisted of 38-dimensional acoustic and
2-dimensional visual features.
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Figure 6.  The recognition results on various MLLR adaptations for real-world data

5.3 Results

Figure 6 shows the recognition results for the real-world audio-visual
data recorded in the driving car, under the condition of (a) no adap-
tation and unsupervised (b) batch/(c) incremental MLLR adaptations:
The batch MLLR adaptation is the method in which all test data were
used for adaptation before recognition. In the incremental MLLR adap-
tation, the test set was incrementally used for adaptation; Every time
an utterance is recognized, it is then used to update the HMMs. In both
methods, not only mean but also variance values of every HMM were
adapted, and the number of transformation matrices was three. In the
results shown in Figure 6, our system achieved about 17% and 11% rel-
ative error reduction compared with the audio-only results on batch and
incremental MLLR adaptation, respectively, while about 13% relative
error reduction was achieved when no adaptation was applied.
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Table 8. The error analysis results (the number of errors) with/without silence eval-
uations for real-world audio-visual data consisting of 100 utterances per speaker

Del Sub Ins
Audio-only (with  silence) 16.75 8.73 0.94
(without silence) 2.68 7.83 4.12
Audio-visual  (with  silence) 1.46 6.33 4.63
(without silence) 1.74 7.68 3.19

( Del: deletion error, Sub: substitution error, Ins: insertion error )

5.4 Considerations

We also conducted the evaluation in the same way as in Section 4.
Table 3 shows the error analysis results on unsupervised batch MLLR
adaptation comparing the audio-only method with our multi-modal ASR
system (Ag = 0.78). We evaluated only three speakers’ speech data
since others often uttered isolated digits, inadequate utterances for this
analysis. This result is almost as same as the one shown in Table 2.
Therefore, it is concluded that the improvement on recognition accuracy
is due to the better performance in silence detection by visual features.

6. CONCLUSIONS AND FUTURE WORKS

This paper has proposed a robust visual feature extraction technique
for audio-visual multi-modal ASR, and evaluated the robustness of our
method against both acoustic and visual noises using real-world data.
Our method has achieved the following digit error rate reduction com-
pared with the audio-only schemes: 46% reduction in the white noise
condition at 15dB SNR level, and 17% in the real environment on unsu-
pervised batch MLLR adaptation. These experimental results show that
our multi-modal ASR system performs well even in noisy conditions such
as mobile environments. The visual features are significantly useful for
detecting silence and reducing digit insertion errors in silence periods.
Since these experiments have been conducted in a speaker-independent
condition, it has also been confirmed that our method is effective for
speaker-independent tasks.

Our future works include: (1) investigation of more robust and infor-
mative visual parameters, such as features including the direction and
amount of lip movements, (2) optimization of the stream weight for
each triphone HMM to improve the performance by applying the maxi-
mum likelihood method or other algorithms, (3) investigation of fusion
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algorithm and audio-visual synchronization methods in order to invent
robust and high-performance multi-modal ASR techniques, and (4) ex-
tension to other tasks or applications such as an information retrieval
dialogue system.
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