T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

Od/dodn
Article / Book Information

Title Dynamic Bayesian network-based acoustic models incorporating
speaking rate effects

0 O / Citation IEICE Transactions on Information and Systems, Vol. E87-D, No. 10,
pp. 2339-2347

0000 /Copyright OO0000000000000O0DO0DOO0ODOOooOgn
Copyright (c) 2004 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Tokyo Institute Research Repository)


http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. INF. & $YST.. VOL.E87 -D. NO.10 OCTOBER 2004

2339

[PAPER

)

Dynamic Bayesian Network-Based Acoustic Models Incorporating

Speaking Rate Effects

‘Takahiro SHINOZAKI'", Nonmember and Sadaoki FURUI', Fellow

SUMMARY  One of the most important issues in spoataneous speech
recognition is how to cope with the degradation of recognition accuracy
due to speaking ratc fluctuation within an utterance. This paper proposes
an acoustic model for adjusting mixture weights and transition probabilities
of the HMM [or each frame according to the local speaking rate. The pro-
posed model is implemented along with variants and conventional models
using the Bayesian network framework. The proposed model has a hidden
variable representing variation of the “mode” of the speaking rate, and its
value controls the paramelers of the underlying HMM. Model training and
maximum probability assignment of the variables are conducted using the
EM/GEM and inference algorithms for the Bayesian networks. Utterances
from meetings and lectures are used for evaluation where the Bayesian
network-based acoustic models are used to rescore the likelihood of the
N-best lists. In the experiments, the proposed model indicated consistently
higher performance than conventional HMMs and regression HMMs using
the same speaking rate information.

key words:  spontaneous speech recognition, speaking rate, dynamic
Bayesian network, acoustic modeling

1. Introduction

Although conventional HMM-based recognition systems
work well for speech in the form of reading a written text,
performance is quite poor for spontaneous speech. One
of the main factors that makes the recognition of sponta-
neous utterances difficult is a large variation of the speaking
rate. This paper explores several extensions of the HMM to
explicitly model the effects of the speaking rate variation.
These models are realized by using the dynamic Bayesian
network framework, which has an ability to model complex
probabilistic dependencies.

Various analyses of spontaneous speech recognition re-
sults have revealed that the speaking rate affects recogni-
tion performance on many levels. The relationship between
individual differences in the speaking rate, defined as an
averaged phone rate for a speaker, and the averaged word
accuracy was analyzed in [1]|. Dependency between the
utterance-level speaking rate and the accuracy was reported
in [2]. A word-level analysis was conducted in our previ-
ous study using the Corpus of Spontaneous Japanese [3], in
which the capability of predicting recognition errors of de-
cision trees was used to measure the influence of word at-
tributes including the speaking rate [4]. The results show
that the speaking rate, the number of occurrences in the
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training sct. and the numbcer of phones arc the most im-
portant word attributes for the prediction. Specifically. as
shown in Fig. 1, decision trees using these three attributes
are as effective as trees using all the attributes listed in Ta-
ble 1. The trees were trained to predict whether a word could
be correctly recognized, using pairs of word attributes and
correctness of the recognition result. The performance was
evaluated by whether prediction of each recognition result
is true or false for words in spontaneous speech that are in-
dependent of those used for training the trec. In the figure,
ANAU indicates the corrcctness of the trees using all the at-
tributes. P, R, and W indicate the number of phonemes in
a word, the speaking rate and the word frequency, respec-
tively. It can be seen that omitting any one of the three at-
tributes degrades the prediction performance of the trees.

The reasons for the adverse effect of speaking rate fluc-
tuation include pronunciation variation such as phone dele-
tion, spectral modification. and more directly, the deviation
of the speaking rate itself which then causes a mismatch in
transition probabilities modeled by the HMM.

A possible strategy to manage this problem is first es-
timating the speaking rate and then adjusling a recognizer
based on the speaking rale. Sentence level acoustic model
selection has been described in [5]. The lastest sentences
are selected based on the speaking rate calculated by us-
ing the 1st pass recognition results, and re-recognized us-
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Fig.1  Contribution of the word attributes to explaining the recognition
errors. AAUW indicates the correctness of the trees using all the attributes.
P, R, and W indicate the number of phonemes in a word, the speaking rate
and the word trequency. respectively.
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Table 1 Word attributes.
Number of phonemes in the word
Word duration (number of frames)
Speaking rate (number of phonemesfnumber of frames)
Averaged acoustic frame likelihood
Ratio of a certain phoneme class such as vowel or nasal
Part of speech (noun, verb, etc.)
Filled pause or not
Repair or not
Quotation or not
Loan word or not
Word frequency in the training set
Bigram score
‘Trigram score
Back off class
Word order in the sentence from either beginning or end
Part of speech of the Ieft/right context word
Left/Right context word is filled pause or not
Left/Right context word is repair or not
Left/Right context word is quotation or not
Left/Right context word is loan word or not

ing an acoustic model adapted to those fastest sentences.
This method is easy to implement and computationally in-
expensive but cannot compensate for speaking ratc variation
within a sentence. In [6]. frame level regulation using re-
gression HMMs has been reported. In this case, acoustic ob-
servation density is controlled for each frame, but transition
probability is left untouched. A way of modifying pronunci-
ation and acoustic likelihood using a hidden mode is shown
in [7]. This modification of pronunciations based on the
hidden mode variable has been implemented in [8]. Modi-
fication of the acoustic likelihood has been conducted in [9]
where speaking rate information is used for each frame. In
this method, transition probability was partially controlled
in addition to the acoustic observation probability. One dif-
ficulty of this modeling was a large increase in the number
of model parameters.

Since standard HMM is not powerful enough to model
complex dependencies, several extensions have been made.
However. such kind of extensions often require large effort
for their realization and many other possible extensions are
then left untouched. For example. there are many possibili-
ties for how to use the hidden mode variable. The Bayesian
network is a flexible statistical framework on which such
novel probabilistic models can be rapidly employed [10]-
| 13]. In [10], an idea of using a Bayesian network for com-
pensating for a changing speaking rate is also mentioned,
but experiments using the network were not conducted. This
paper explores possibilities of several DBN based acous-
tic models that have hidden mode variable to deal with the
speaking rate variation. These models extend a conventional
HMM by modifying the parameters of Gaussian mixturcs
and/or transition probabilities according to the speaking rate
frame by frame. These models are evaluated using utter-
ances from meetings and lectures as test sets by rescoring
N-best lists which are generated by a Bigram decoder with
a 30k vocabulary size.

‘This paper is organized as follows. In Sect. 2, the con-
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ventional and proposed models arc formulated as a Bayesian
network. In Sect. 3, several techniques for measuring speak-
ing rate are reviewed. Experimental results are described
and discussed in Sect. 4. 1t is shown that the proposed mod-
els using a hidden mode variable are more effective in im-
proving the recognition rate than a regression HMM using
the same speaking rate information. Especially, a hidden
mode HMM that adjusts both mixture weights and transi-
tion probabilities depending on the speaking rate is the most
effective. Finally, the paper is concluded in Sect. 5.

2. DBN Based Acoustic Modeling

In this seclion, a way of formulating the HMM as a Bayesian
network is reviewed and u baseline network for encoding
the HMM is defined. Then, several models that extend the
HMM uare described. Since model complexity and estima-
tion accuracy of the parameters from a training set always
pose a trade-off, special attention is payed for the number of
parameters of the models.

2.1 Bayesian Network

Bayesian networks are directed graphs in which nodes rep-
resent random variables, and edges represent probabilistic
dependency relations. A Bayesian network is defined by the
graph structurc and the Conditional Probability Distribution
(CPD) at each node. There are several ways how to define
the CPDs. For example, if the variable of the node and those
of its parents arc both discrete, the CPD can be represented
as a Conditional Probability Table (CPT), which lists the
probability that the node takes on each of its different values
for each combination of values of its parents. When the vari-
able of the node is continuous and the parents are discrete-
valued, a set of Gaussian mixtures can be used where each
element corresponds to a combination of values of its par-
ents [ 14].

Since speech recognition is a process for time series
of feature vectors, Dynamic Bayesian Networks (DBN) [15]
are ideally suited for this purposc. DBNs are Bayesian net-
works that have directed edges pointing in the dircction of
time. DBNs have a repeating topology of a common core
structure, and the CPDs do not change with time.

2.2 Bascline Model

Figure 2 shows an example of a phone HMM set model-
ing phones /a/ und /b/. Each phone model consists of three
states with a left-to-right topology. Figure 3 shows the
DBN structure that models the phone HMM sequence for
mode] training and N-best rescoring [ 10| where the discrete
variable Phone-Counter indicates position in the phone se-
quence and its value is incremented when binary random
variable Phone-Transition posts it is phone trunsition. The
node End-of-utterance is necessary to ensure that the pro-
cess ends with a transition out of the last phone. In the fig-
ure, observed variables are indicated by shading their nodes.
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Also. continuous nodes are denoted by circles while discrete
nodes are expressed by squares.

In the phone HMM set, a probability density function
for acoustic feature vectors is specified by a phone index and
the state index of the phone. The Bayesian network has a
node Phone that represents a phone index and Phone-State
that represents a state index of the phone. As abbreviated in
Fig. 4. the node Observation which corresponds to acoustic
observation, has incoming arrows from the nodes Phone and
Phone-State. This means that the probability the value of
Observation takes is dependent on these values since cach
node in a Bayesian network represents a random variable.
Similarly, a phone state transition probability to the next
HMM state is modeled by a node Phone-State-Transition
that has incoming arrows from Phone and Phone-State in-
dicating probabilistic dependency on these variables. Equa-
tion (1) and Eq. (2) show these dependencics of the acoustic
observation and the transition probabilities, respectively.

P=P(OIPS). (1
P =P(TIP.S). (2)

In the equations. O is a single-letter abbreviation of the Ob-
servation variable for referential convenicnce, P is Phone,
S is Phone-State, and 7 is Phone-State-Transition.

The node Phone-State-Transition represents a binary
random variable that indicates either staying at the HMM
state or moving to the next state, since the HMM has a left-
to-right topology. In this example, cardinalities of the dis-
crete random variables Phone and Phone-State are two and
three, respectively. corresponding to the number of phones
and the maximum number of states for each phone. The

NNOQON

Fig.2 A phone HMM set consisting of two phones. Each phone is model
by a three-state left-to-right HMM.
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acoustic observation is a vector of real numbers and Obser-
vation is u continuous random variable.

A Bayesian network used as a baseline acoustic model
has the same structure but larger cardinality for Phone. The
CPD of the observation node Observation is defined using
a set of diagonal covariance Gaussian mixtures. Parameters
of the network are trained using EM/GEM algorithm on a
Baycsian network. Decoding is performed by assigning val-
ues for all the hidden variables so as to maximize the joint
probability of the entire network. Hereafter, the baseline
network is referred to as BASE.

2.3 Regression HMM

One possible way of controlling acoustic observation prob-
ability density is to use regression models, in which mean
values of the Gaussian components are modeled by linear
combination of explanation variables. A multiple-regression
HMM has been proposed in [16] where FO) information was
used as an auxiliary feature for the explanation variables.
The mean vector g of each Gaussian component is expressed
as,

U=R-E+puy, (3

where R is the regression coeflicient matrix. pg is the con-
stant term. and £ is the auxiliary vector. Similar models
has been proposcd and implemented as DBNs in [6],[17]
in which FO and speaking rate are used as auxiliary infor-
mation.

lal b/
Phone (P)
0,1,2

Phone-State(S)

.1
D Phone-State-Transition(T)

Observation(0)

Fig.4 A portion of a time slice of the DBN in Fig. 3 that encodes the
conventional HMM. (BASE)

. End-of-utterance=1

! Phone-Counter

. Phone-Transiticn

Phone
. Phone-State-Transition

! Phone-State

. Observation

Time

Fig.3 DBN representation of the phone HMM sequence. Circles denote continuous-value nodes,
squares denote discrete nodes, clear means hidden. and shaded symbols indicate observed nodes.
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Speaking-Rate (R) SN
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Fig.§  Regression model. (REG)

In this paper, a DBN version of the multiple-regression
HMM is evaluated using a speaking rate and the second and
third order terms as explanation variables. The parameters
added to the BASE model are regression coefficient ma-
trix components that have the same row dimension as the
mean vectors and a column dimension of three. The ma-
trices are tied among Gaussian mixture components in each
phone to reduce the number of parameters required to de-
{inc the model. The Bayesian network representation of this
model is shown in Fig. 5 where there is an additional node
Speaking-Rate that represents the speaking rate compared
to BASE. An arrow directly connecting Speaking-Rate and
Observation expresses the dependency between Observa-
tion and Speaking-Rate. The acoustic observation proba-
bility is cxpressed as shown in Eq. (4). where O is the Ob-
servation variable, P is Phone, § is Phone-State and R is
Speaking-Rate. This model is hercafter called REG.

P=P(O|IP.S.R) €))

2.4 Hidden Mode Mixture Weight Model

Figure 6 shows a Bayesian network of our proposed model
in which the acoustic observation node Observation has
different probability density according to a “mode™ of the
speaking ratc. In this network, two nodes are added to
BASE; Mode and Speaking-Rate. Mode is a discrete hid-
den random variable that represents a “mode” of the speak-
ing rate. As indicated by a dotted line in the figure, Mode
depends on its counterpart in the previous time slice. This
depcndence is introduced based on an assumption that the
speaking rate changes continuously. A CPT is used at this
node. Speaking-Rate is a one-dimensional continuous ran-
dom variable of the speaking rate and a set of Gaussian dis-
tributions are used for CPD at this node. In this configura-
tion, both the acoustic observation node Observation and
the speaking rate observation node Speaking-Rate have the
node Mode as their parent.

The CPD at node Observation has a different Gaus-
sian mixture for each combination of the values of Phone,
Phone-State, and Mode. This means that the CPD has
[Mode| times more Gaussian mixtures than BASE, where
|Mode| is the cardinality of thc Mode variable. Usually,
Gaussian mixtures dominate the number of paramcters of
an HMM. To reduce the number of parameters for accu-
rate model cstimation, the Gaussian components are tied
for the different values of Mode. That is, different values
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|Phone(P
Mode ( M) ﬁ QPthe State(s)

\ /
Speaking-Rate (R) \. OCbservation(0)

Fig.6  Hidden mode mixture weight model. The dotted link represents
an edge from the previous time frame. (HM-MW)

N/
\ J DPhone State-Transition

Phone (P)

Mode (M) (Cphone-state (S)
,,,,, ( . /

/ DPhone State-Transition(T)

/

Speaking-Rate (R) @ observation

Fig.7  Hidden mode transition probability model. (HM-TRP)

of Mode specify different Gaussian mixture weights for the
same Gaussian component,

Speaking-Rate has different distributions of the speak-
ing rate depending on Mode, and this is used to detect a
mode of the speaking rate. The Gaussian mixtures of Ob-
servation are modificd based on a value of Mode by choos-
ing different Gaussian mixture weights, and this is how to
compensate for spectral change. Note that the speaking rate
mode of each frame is not completely determined simply by
the speaking rate but by considering the entire likelihood of
the network using an inference algorithm on a Bayesian net-
work. Hereafter. this model adjusting the mixture weights
for each time frame by using the hidden mode variable is
referred to as HM-MW.

Newly introduced parameters in addition to those used
in BASE are: a CPT of size |Mode|x|Mode| at Mode, a one-
dimensional Gaussian distribution for each value of Mode
for CPD at Speaking-Rate, und [Mode| — 1 mixture weight
vectors for each combination of the values of Phone and
Phone-State at Observation. Note that this configuration
is applicable not only to the speaking ratc but also to any
temporal fluctuation that affects specch features.

2.5 Hidden Mode Transition Probability Model

In the model described in the previous subsection, observa-
tion probabilities of an underlying HMM are controlled by a
hidden mode variuble. Itis also possible to control transition
probabilitics by using the hidden mode variable as shown
in Fig. 7. The parameterization [or the variables Mode and
Speaking-Rate are the same as HM-MW. Mode is 2 dis-
crete hidden random variable used to represent the speaking
rate mode and Speaking-Rate is a one-dimensional contin-
uous random variable modeling the speaking rate.
Additional parameters to those used in BASE are: a
CPT of size [Mode| X [Mode| at Mode, a one-dimensional
Gaussian distribution for each value of Mode for CPD at
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Phone (P)
\\ (FPhone—Sta te(S)

X

f"\Ephone—State—Transition (T)

]
® |

Speaking-Rate(R) \.' Observation(0)

Fig.8 Hidden mode HMM. (HM-HMM)

Mode (M)

Speaking-Rate, and |[Mode| — 1 transition probabilities for
cach combination of the values of Phone and Phone-State
at Observation. Since the number of parameters required
for modeling transition probabilities are fewer than for the
Gaussian mixtures, they are separately modeled for each
value of Mode. This model is hereafter called HM-TRP.

2.6 Hidden Mode HMM

The controls of the mixture weights and the transition prob-
abilities can be combined as shown in Fig.8. The vari-
ables introduced to control the underlying HMM parame-
ters are Mode and Speaking-Rate. Mode is a discrete hid-
den random variable to represent the speaking rate mode
and Speaking-Rate is a one-dimensional continuous ran-
dom variable to model the speaking rate. as already ex-
plained in the previous subsections.

Additional parameters to those used in BASE are union
af the additional parameters of HM-MW and HM-TRP.
that is, a CPT of size |Mode| x |[Mode| at Mode. a one-
dimensional Gaussian distribution for each value of Mode
for CPD aL Speaking-Rate, and |Mode| — 1 mixture weight
vectors and transition probabilities for each combination of
the values of Phone and Phone-State at Observation. This
model is hereafter called HM-HMM.

3. Measurement of Speaking Rate

Many approaches have been reported for calculat-
ing/defining the speaking rate. They can be roughly di-
vided into two categories, that is, lexical measures and sig-
nal based measures.

Lexical measures count units such as words or phones
in a certain period. When correct transcription is available,
these measures can be calculated by the forced alignment
technique. When the correct transcription is not available, a
recognition hypothesis can be used instead. A disadvantage
of this method is that the hypothesis is not always correct
and the errors degrade the reliability of the estimated speak-
ing rate. Thus when the speaking rate is used to control the
recognition system, it is possible that the estimated speaking
rate is less accurate for speech segments where the control
1§ more important.

The signal based measures directly estimate speaking
rate without relying on the transcription and thus can avoid
the problem of the lexical measures. Enrate is one of such
measures proposed in [18]. This is defined as the first spec-
tral moment for the wideband energy envelope of the speech

2343

signal. The spectral range is approximately restricted be-
tween 1 and 16 Hz. The concept of the enrate is based on
the fact that the energy envelope of speech rapidly changes
when the speaking rate is high. The enrate can be consid-
ered as a conversion of TEMAX-gram [19], which was de-
veloped to observe the speaking rate as a spectrogram, into
a scalar value. Although the correlation between the enrate
and the phone or syllable rate is not high, it has been shown
in [18] that the enrate is a good predictor of recognition er-
rors.

To improve the correlation with the lexical measures,
mrate was proposed in [20]. This is a linear combination
of the enrate and peak-counting estimators. The correlation
between the syllable rate and the mrate is over 0.6. whereas
correlation with the enrate is approximately 0.4 for manu-
ally transcribed Switchboard data.

In |21], another way of estimating the speaking rate
by detecting vowels has been shown. Modified loudness
defined as a difference of higher frequency band loudness
and lower [requency band loudness is calculated for every
frame. The main part of the energy of a vowel concentrates
on lower frequencies, whereas that for the most consonants
is located at higher frequencies. Therefore, vowels make
peaks in the modified loudness and thus they can be detected
by finding maxima of the modified loudness. Speaking rate
is obtained by taking an inverse of the vowel frequency.

In the following experiments, lexical measures derived
from correct and hypothesized transcriptions and the enrate
signal based measure are used. These measures are calcu-
lated for each frame of acoustic observation features using
significantly overlapped analysis windows.

4. Experiments
4.1 Corpora and Tasks

Two spontaneous speech corpora were used to train and
evaluate the DBN based acoustic models. One was a corpus
of the Meeting Recorder Project [22] and the other was Cor-
pus of Spontaneous Japanese (CSJ) [3]. Utterances gathered
by the Meeting Recorder Project are recorded from meet-
ings with natural settings, and contain background noises
and speech overlaps by other speakers. CSJ consists of
Japanese academic lecture speech and extemporancous pub-
lic speech. Speaker dependent experiments were conducted
for the meeting data and speaker independent systems were
evaluated using the lecture data. For both of the experi-
ments, utterances recorded using close talking microphones
were used.

Speaker dependent models were made using the ut-
terances produced by one male speaker extracted from the
meeting corpus. Utterances at nine meetings were used for
training. and one meeting was used for testing. Lengths of
the utterances for training and testing were 97 and 10 min-
utes. respectively. Speaker independent experiments were
conducted using academic lectures given by male speakers.
Ten lectures and five lectures were selected for training and
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Table2  Characteristic of the acoustic models of the tasks.
Task ICSI meetings CSJ lectures
Language English Japuanese
Model type SD S1
Feature kind MFCCODA | MFCCEDNZ
Feature dimension 39 25
Window width 25ms 25ms
Frame shift 10 ms 10 ms
# of phones 45 42
# of mixtures per state 64 28

testing, respectively. They were subsets of the CSJ official
Lest sets and there was no overlap between training and test-
ing speakers. The amount of the training set was 116 min-
utes and the test set was 16 minutcs. Table 2 shows these
conditions.

4.2 Model Training

First a monophone HMM set was made using the training set
and HTK. The paramecters of the DBN based acoustic mod-
els were initialized with the HMM. Then they were trained
by the EM/GEM algorithms using GMTK [23] with 10 iter-
ations.

Each phone of the monophone sct was modeled by a
three statc HMM with a left-to-right topology. The number
of Gaussian mixtures per monophone state was determined
so as to maximize the recognition rate of the task by pre-
liminary experiments; 64 for the meetings and 28 for the
lectures. Table 2 shows the characteristic of the acoustic
models.

Since the parameters of Mode and Speaking-Rate do
not have corresponding values in the HMM, they were ini-
tialized with arbitrary values. For HM-MW and HM-
HMM, the mixture weights were initialized by copying the
mixture weights of the monophone HMM. Similarly, for
HM-TRP and HM-HMM, the transition probabilities were
initialized by copying those of the monophone HMM. Re-
gression coefficient matrices for REG were initialized by
giving zeros to all the elements.

After the initialization. most of the trainable parame-
ters, including that of the Mode, Speaking-Rate, and the
regression coefficient matrices, were trained. Only the vari-
ances of the Gaussian components in the acoustic observa-
tion nodes Observation of the networks used for the meet-
ing task were kept constant. For these DBN acoustic models
other than BASE, speaking rate information was also used
in addition to the normal acoustic features. For REG, the
speaking rate was normalized so that the mean valuc be-
came zero for the training set. This made it reasonable to
initialize the Gaussian components of the model using those
of the monophone HMM.

4.3 Experiments Using Oracle Speaking Rate
To investigate the effect and limit of the acoustic models,

speaking rate information derived from forced alignment of
correct phone state sequences with the utterances were used

IEICE TRANS. INK & SYST.. VOL.E87- 1D, NO.10 OCTOBER 2004

2 BASE REG HM-MW HM-TRP HM-HMM
Acoustic models
.[d Correctness Ml Accuracy

Fig.9  Word correctness and accuracy of the meeting task given speaking
rate measurcd using true transcript.

for bath training and testing the acoustic models. The speak-
ing rate was defined as an inverse value of the state hold-
ing time. The observed valucs were smoothed using Eq. (5),
where S R, (¢) and § Ry (1) indicate time series of the speak-
ing rate before and after smoothing.

20
SR (f) = Z SR (1 +5)- (20 —s]). (5)

s==-20

The DBN based acoustic models were evaluated by
rescoring N-best lists using GMTK with a single pass of
max-product inference. The N-best lists were generated us-
ing the monophone HMM that was used to initialize the
DBN models and a Bigram language model. The Bigram
model used for the meeting task was trained on the HUBSE
and the one used for the lecture task was trained on 6.7 mil-
lion words of transcriptions from the CSJ. Their vocabulary
sizes were both 30 k. The number of hypotheses generated
for each utterance was 50 and 100 for the meeting and the
lecture tasks, respectively. The cardinality of the hidden dis-
crete variable Mode was set to four.

Figure 9 shows the recognition results of the meeting
task. The word accuracy of the baseline model BASE was
52.7%, and the absolute improvement of the word accuracy
by REG and HM-MW compared to BASE was (.4% and
1.7% respectively. By controlling the transition probabili-
ties, HM-TRP improved the accuracy by 1.7%. The most
effective model was HM-HMM combining HM-MW and
HM-TRP. This model improved the accuracy by 3.2% tor
the absolute value by controlling both the mixture weights
and the transition probabilities. Similar results were ob-
tained for the lecture task as shown in Fig. 10. The improve-
ment by HM-HMM was 2.1% in this case. Thce sentence
level model selection corresponds to fixing the Mode vari-
able during an utterance. As an additional experiment, HM-
HMM was trained and evaluated with this constraint. 1n this
case, no apparent improvement was observed [or both of the
tasks.

Although both REG und HM-MW models modify
Gaussian mixtures based on the speaking rate, HM-MW
achieved higher improvement than REG. One disadvantage
of REG might be that it deterministically changes the mean
values of the Gaussian components according to the speak-
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Word correctness and accuracy (%)

REG  HM-MW HM-TRP HM-HMM
Acoustic models

7] Correctness [l Accuracy

Fig. 10  Word correctness and accuracy of the lecture task given speaking
rate measured using Lrue transcript.

Deletion and substitution error rate {%a)

SRO SR1 SR2
Speaking rute

—
| 7 petigask) Il DUHMIMM) Sub(BASE) [l Sub(HMHMM)

Fig. 11  Error distribution for speaking rate.

ing rate. Even if the true speaking rate information is used,
it is possible that at some time framc a given speaking rate
does not match the local effects of the speaking rate in terms
of the changes of the acoustic characteristics, since it has
been smoothed as mentioned above. Moreover, it is possi-
ble that the relationship between the speaking rate and the
change of speech spectra is essentially probabilistic. HM-
MW, on the other hand, probabilistically chooses a speak-
ing rate mode considering the entire likelihood of the nct-
work and therefore it has a capability to select a mode that
docs not directly match the speaking rate. This feature was
obtained by introducing the hidden variable Mode for rep-
resenting the mode of speaking rate.

Mean deletion and substitution error rates with BASE
and HM-HMM for different speaking rates are shown in
Fig. 11. The speaking rate was classified into four classes;
SRO is the slowest and SR3 is the fastest. The speaking rate
was calculated for each correct word by averaging phone
rales using correct transcription. Therefore, insertion crrors
are not counted. As can be seen in the figure. both the dele-
tion and substitution error increase for BASE as the speak-
ing rate increases. Reduction of the deletion error by HM-
HMM is higher at faster speaking rates. For substitution
errors, HM-HMM has relatively uniform effect across dit-
ferent speaking rates. Similar error tendencies are observed
for the lecture task, though the result is not shown in the
figure.
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Probability density
=

0.4 06 0.8 1
Speaking rate

Fig. 12 Gaussian distributions for the variation of the speaking rate mode
trained on the ICSI meetings.

Our proposed models, HM-MW. HM-TRP. and HM-
HMM have a discrete hidden variable Mode that represents
a speaking rate mode as explained in Sect. 2. Although the
cardinality of the variable is specified beforehand, the corre-
spondence between the value of the variable and the speak-
ing rate is obtained through a training process using a set of
Gaussian distributions at Speaking-Rate. The distributions
arc estimated so as to maximize the entire likelihood of the
network taking the dependencies on mixture weight and/or
transition probability into account. Figure 12 shows the four
one-dimensional Gaussian distributions of HM-HMM cor-
responding to each value of the Mode estimated using the
ICSI meetings. As can be seen in the figure, different values
of the Mode have different features of the speaking rate.

4.4 Experiments without Using Oracle Speaking Rate

Rescoring experiments without relying on the true transcrip-
tion were conducted using two different speaking ratc mea-
sures for REG and HM-HMM. One measure was HYP
which was similar to the one used in the oracle experiments
with the exception of using the one-best hypothesis in the
N-best list as an approximation of the true transcription. For
the rescoring, the same acoustic models as the previous ex-
periments were used. The other was ENRATE which was
the enrate measure. Window width for the enratc calculation
was set at 400 ms based on our preliminary experiments.
When rescoring, acoustic models trained with enrate were
used.

Tables 3 and 4 show the results for the meeting and
lecture tasks. respectively. In the table, the results by the
baseline model without using the speaking rate information
indicated by BASE and those by using the speaking rate cal-
culated from true transcription indicated by ORACLE are
also shown. The cardinality of Mode was set to three and
four.

As can be seen in Table 3, no improvement was ob-
tained by the regression model REG for the meeting task
regardless of using HYP or ENRATE measures. This is
probably because the regression model is vulnerable to the
decrease of the quality of the speaking rate. Because the
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Table3  Word accuracy of the meeting task.
reG | HM-HMM | HM-HMM
|Mode|=3 IMode|=4
BASE 527
HYP 524 534 53.0
ENRATE | 525 53.5 531
ORACLE | 53.1 553 55.9
Table 4 Word accuracy of the lecture task.
ReGg | HM-HMM | HM-HMM
[Mode|=3 |Made|=4
BASE 48.5
HYP 49.0 493 49.7
ENRATE | 48.6 48.8 48.7
ORACLE | 493 50.0 50.5

one-best hypothesis includes recognition errors, HYP is
not an accurate approximation of the oracle speaking rate.
Although ENRATE is free from the recognition errors, it
seems to be less effective in explaining the change of acous-
tic features compared to the oracle speaking rate. HM-
HMM succeeded in cxploiting the speaking rate informa-
tion to improve the word accuracy. When cardinality of
Mode was set to three, an absolute improvement of 0.7%
and 0.8% was obtained for HYP and ENRATE. respec-
tively. For the lecture task. as Table 4 indicates, the high-
est improvement of 1.3% was found for HM-HMM with
HYP measure where the cardinality of Mode is set to four.
The optimal cardinality of Mode probably depends on the
underlying HMM complexity such as number of mixtures,
amount of training data, and estimation accuracy of the
speaking rate.

5. Conclusions

This paper has explored several dynumic Bayesian network
based acoustic models for improving recognition accuracy
of spontaneous speech using explicitly modeled eftect of the
speaking ratc. Although the DBN based recognition system
is slower than conventional systems that are highly tuned
for the speech recognition domain, it is beneficial to use the
DBN for analyzing underlying principles and prototyping.
When speaking rate information obtained from the true
transcription was given, our proposed models, HM-MW,
HM-TRP, and HM-HMM indicated higher performances
than BASE, which encodes conventional HMM, and REG.
which cncodes regression HMM using the same speaking
rate information. The absolute improvement achieved by
using HM-HMM was 3.2% and 2.1% for the meeting and
lecture tasks, respectively. These DBN based acoustic mod-
els were also evaluated using speaking rate measures with-
out using frue transcriptions. Two measures were used
for this purpose, best hypothesis-based speaking rate and
enrate. Although the regression model REG sometimes
failed in making use of the these speaking rates, HM-HMM
showed improvement over the conventional models for the
both tasks. In the best condition, HM-HMM improved the
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word accuracy by 0.8% for a meeting task and 1.3% for a
lecture task. For both of the experiments with and without
oracle speaking rate, our proposed models indicated con-
sistently higher performance than conventional HMM:s and
regression HMMs using the same speaking rate information.

Future works include investigating more cfficient ways
of utilizing speaking rate information, finding better meth-
ods for speaking rate estimation, incorporating other spon-
tancous speech features to further improve the recognition
accuracy, and implementing computationally efficient sys-
tems that can work with more general ELVCSR conditions
for promising probabilistic models found by using flexible
DBN toolkits.
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