
論文 / 著書情報
Article / Book Information

Title Evaluation of Placement and Access Asignment for Replicated Object
Striping

Author Makoto Kataigi, Dai Kobayashi, Tomohiro Yoshihara, Takashi
Kobayashi, Ryo Taguchi, Haruo Yokota

Journal/Book name Proc. of International Special Workshop on Databases For Next
Generation Researchers (SWOD 2006), Vol. , No. , pp. 100-105

Issue date 2006, 4

DOI 10.1109/ICDEW.2006.57

URL http://www.ieee.org/index.html

Copyright (c)2006 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Evaluation of Placement and Access Asignment for Replicated Object Striping

Makoto Kataigi1, Dai Kobayashi2, Tomohiro Yoshihara2, Takashi Kobayashi3,
Ryo Taguchi4, and Haruo Yokota3,2

1 Faculty of Engineering, Tokyo Institute of Technology
2 Grad. School of Info. Sci. and Eng., Tokyo Institute of Technology

3 Global Scientific Info. and Comp. Center, Tokyo Institute of Technology
4 Science and Technical Research Laboratories, Japan Broadcasting Corporation

mkataigi@de.cs.titech.ac.jp, daik@de.cs.titech.ac.jp, yoshihara@de.cs.titech.ac.jp,
tkobaya@gsic.titech.ac.jp, taguchi.r-cs@nhk.or.jp, yokota@cs.titech.ac.jp

Abstract

The number of stored objects that should be targets of
high throughput retrieval, such as multimedia stream ob-
jects, is increasing recently. To implement a high through-
put storage system, striping technique using multiple disk
drives are commonly used. However, the ordinary disk
striping methods implemented in RAID 0, 3-5 have prob-
lems of the flexibility, extensibility, and quality of services
(QoS). We have proposed the autonomous disk cluster to re-
alize the flexible and extensible storage system by treating
each target object as a unit for management. It also adopts
the primary-backup technique for the object to satisfy re-
quired QoS. We have shown that the autonomous manage-
ment for the object unit is effective. However, there is room
for improving its throughput. In this paper, we consider
an approach for importing a flexible striping technique into
the autonomous disk system to provide high throughput. It
is important to locate fragments of an object into a part of
disk cluster appropriately with considering workload skews
to derive the required throughput. We use access history
to decide their location. We also propose a method to di-
vide access load into fragmented primary and backup adap-
tively. The experimental results using PC cluster indicate
that the proposed methods are effective.

1 Introduction
The amount of data stored in a computer system has

been very large recently. To implement a reliable large-
capacity storage system at reasonable price, the storage sys-
tem is commonly composed a number of hard disk devices.
However, the enlargement of storage size makes the storage

management very complex. The management of the large
storage system should be enough flexible with satisfying the
required quality of services (QoS).

To tackle the problem, a number of approaches to utilize
the computation resources in each storage devices for man-
aging the large amount of data [4, 5, 7]. We have also pro-
posed the autonomous disks with a number of methods of
realizing the flexible data management functions to balance
amount and workload among storage devices, tolerate disk
failures, recover from the failures, change the cluster size
online, and so on [6, 8, 11]. In autonomous disks, we have
assumed that a target object is stored in a storage device to
simplify the strategy and processes for these functions, and
adopts the primary-backup method for an object to guaran-
tee the QoS.

On the other hand, the number of stored objects, such as
multimedia stream objects, which should be targets of high
throughput retrieval, is increasing. At the same time, variety
of the stored objects requires variety of retrieval throughput.
If the required throughput is higher than a storage device
limit, it cannot be obtained by storing the object into the
storage device only.

To implement a high throughput storage system, strip-
ing technique using multiple disk drives are commonly used
[3,9,10]. However, the number of disks for striping groups
is fixed and the placement manner of fragments is static in
the ordinary disk striping methods used for RAID 0, 3-5.
Because it is difficult for them to provide different through-
put for each objects and to reconfigure the cluster online,
they have less flexibility and extensibility. Moreover, the
parity calculation technique in RAID 3-5 cannot guarantee
the QoS under failures and during system reconfiguration.

In this paper, we consider an approach for importing a

flexible striping technique into the autonomous disk system
to provide high throughput. In other words, we try to apply
the storage management functions of balancing workload
and data amount, failure recovery and online cluster recon-
figuration to striped objects fragmented into an appropriate
number disks with dynamic placement.

However, it is difficult to enhance all functions of the
autonomous disk system to be able to handle the striping
objects at a time. We first try to locate fragments of an ob-
ject into a part of disk cluster appropriately with consider-
ing workload skews to derive the required throughput. We
use access history to decide their placement to balance the
workload. We also propose a method to divide access re-
quests to fragmented primary and backup adaptively. The
experimental results using PC cluster indicate that the pro-
posed methods are effective.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe terminology, the autonomous disk sys-
tem and disk striping as preliminaries. We then explain how
to apply flexible striping to autonomous disks in Section 3.
The method to adjust access load between the primary and
backup is described in Section 4. Section 5 reports experi-
ments and discuss the results. Finally we sum up this paper
and show future work in Section 6.

2 Preliminaries
2.1 Terminology

At first, we define the following terms:

Object An object is a semantical chunk of data such as a
file or a record.

AccessAn access is a series of following operations. First,
a client sends a single read or write request to the stor-
age system. Next, system returns a preservation place
for the object. Finally, the client transmits or receives
a file to/from the preservation place.

Fragment A fragment is data that divides the object into
the fixed length, and is a minimum unit of striping.

Subobject A subobject is a set of fragments of a same ob-
ject placed in the same storage device.

2.2 Autonomous Disks
The autonomous disk system is a high functional paral-

lel storage system we proposed [11]. It configures a disk
cluster by connecting intelligent disk devices to network di-
rectly, and automatically balances the workload and data
amount in the cluster. Failures in the cluster are also auto-
matically handled by recovering data in the damaged disks.
The cluster is easily reconfigured by adding or removing
disks with keeping the QoS.

To realize these functions, the the autonomous disk sys-
tem adopts a fat-Btree [12] and the primary-backup tech-

nique. The fat-Btree is a parallel Btree structure we pro-
posed to provide update-conscious balanced access path for
each distributed object. It is also useful for adjusting each
object location to balance the workload and data amount.
On the other hand, the primary-backup technique makes the
system tolerate the disk failures with guaranteeing the QoS.

To simplify the strategy and processes for these func-
tions, we have assumed that a whole target object is stored
into a storage device in the autonomous disk system. We
have demonstrated that the autonomous management for
the object unit in each storage device is effective. How-
ever, there is room for improving its throughput to meet
the requirement of high-throughput applications. In this pa-
per, we try to import a disk striping technique into the au-
tonomous disk system.

2.3 Disk Striping

The disk striping is the common technique to derive high
throughput, such as in many types of RAID systems [3,10].
In the ordinary disk striping technique, the number of disks
for a striping group is fixed and the placement manner of
the fragments is static in a storage system. The static place-
ment manner within the fixed group size is not suitable for
unifying the disk striping with the functions of autonomous
disks.

When an arbitrary number of disks are added to the stor-
age system or removed from it, many fragments need to be
replaced in the system to satisfy the manner. If the system
adopt the parity calculation technique in RAID 3-5 to toler-
ate disk failures, the system reconfiguration requires heavy
re-calculation of the parity. Moreover, the parity calcula-
tion technique cannot guarantee the QoS under failures and
during the reconfiguration.

There are many types of multimedia objects requiring
individual throughput. It is also useful to balance the work-
load considering the different throughput requirement. If
the system allow a dynamic placement manner within vari-
able striping group size, the flexibility in managing different
throughput for each object type increases. Moreover, the
storage system can use disks having different performance
properties while the ordinary striping assume a uniform per-
formance property in the system.

A number of related striping methods has been pro-
posed, such as the staggered striping [2] and striping with
a pseudo-random hash function [1]. The staggered striping
enable high-speed stable read access with different through-
put for each object. However, it requires complete data re-
construction for handling failures and reconfigure system
size because the data placement is fixed. The striping with
pseudo-random hash function can reallocate the fragmented
data, but the cost of the re-calculation of the hash function
becomes high when the number of fragmentation is varied.

�

���
� ����� �	��

���

�������
���
���

���

���
���

���

� �
�"!

���

�
�

$ %
& ')(*',+
.-
 (�0/ ' � '

1324'
+ -
 (�

57698;:=<

�

���
���

� ����� �	��

���

�������
���
���

���
���

���
���

���
���

� �
�"!

���
���

�
�

$ %
& ')(*',+
.-
 (�0/ ' � '

1324'
+ -
 (�

57698;:=<

Figure 1. Subobjects and Management Data

3 Dynamic Placement
3.1 Management Data for Subobject

To import the flexible striping technique into the au-
tonomous disk system, we first divide an object into sub-
objects, a set of fragments of the object placed in the
same storage device. The number of subobjects is decided
from the required throughput and performance properties
of disks. We prepare a management data for each object
to keep the information of the placement of the subobjects.
The structure of subobjects and management data enables
the dynamic placement within the striping group having
variable number of disks. The parallel Btree structure is
used as an index to provide an access path to the man-
agement data. Figure 1 illustrates the relationship between
the indexed management data and subobjects consisting of
fragments.

3.2 Placement of Subobjects
To balance access workload in the disk cluster, the place-

ment of subobjects is critical. It is important to reduce the
access concentration for subobjects store in the same disk
drive.

The subobjects should be migrated between disks to re-
duce the concentration under the dynamic workload fluc-
tuations. However, in this paper we assume the workload
for each object is not dynamically change as the first step.
We just decide the initial placement of each subobject using
access frequency history. Figure 2 show the outline of the
placement algorithm.

4 Backup Utilization
We inherit the primary-backup technique to the au-

tonomous disks system with the flexible striping. The same
structure of subobjects and management data is applied to
the backup. It means that there is a restriction for the sub-
object placement. A backup subobject has not to be place
the disk containing its primary. It guarantees the QoS under
disk failures and reconfiguration of a striping group.

Moreover, the backup data can be use to improve the
throughput for read access. In that case, we have to con-

input: the number of subobjcet:n
the number of fragment:k
the number of disks:M(> n)
a list of access frequency for each storage de-
viceAD[M]

output: disk ID list to store fragmentsf [k]
Step1: select n disks from AD[M], which have

low access frequency and make a disk list
Subobjects[n]

Step2: for i ∈ [0, k], let j = i mod n and f [i] =
Subobjects[j]

Step3: Outputf [k] and terminate.

Figure 2. Subobject Placement Algorithm

� ����� � ������	
	

����	�	 � �
����	�	

������

����������� � ��� �
 �

! "$#&%

')(+*-,

� ����� � ������	
	

����	�	 � �
����	�	

������

����������� � ��� �
 �

! "$#&%

')(+*-,

Figure 3. Primary-backup Read Ratio Adjust-
ment

sider the workloads of both disks containing the primary
subobject and its backup.

4.1 Read Time Minimization
If we adjust the ratio of dividing the read requests be-

tween the primary and backup, we can minimize the time
for read time. Figure 3 illustrates the image of the adjust-
ment. The read requests for a busy disk should decrease
while these for a non-busy disk increase. Here, we assume
that backups are up-to-date.

To minimize the read time, we first consider the follow-
ing parameters:

• Read throughput of a disk containing primary:vp

• Read throughput of a disk containing its backup:vb

• Ratio for requiring primary:α
• Read time of primary subobject:TP

• Read time of backup subobject:Tb

• Size of a subobject:S

The relationship between the size and time is as follows:

Primary : αS = Tp · vp (1)

Backup : (1− α)S = Tb · vb (2)

The whole reading timeT = max{Tp, Tb} becomes mini-
mum when the primary read time is equal to the backup one.

�

�

�

�

�

���

���

� � � � � 	 �
 � �
��
�
������������������

��
�
!"�

!#$ %
&')(
*

Figure 4. Connections vs. Read Throughput

Therefore, we can minimize the reading time by calculating

α =
vp

vp + vb
, (3)

if vp andvb can be derived.

4.2 Connection based Adjustment

We expect that the number of connections for a disk sys-
tem reflects its read throughput. We measured the through-
put transition by changing the number of connections for
a disk system in an ideal environment by inhibiting other
accesses as a preliminary experiment. Figure 4 shows the
result.

From the graph in Figure 4, we can suppose the inverse
proportion between the number of connections and read
throughput, which can be expressed by following equation:

v =
k

conneciton number
(4)

wherek is a coefficient.
Based on the equation, we can derive the ratio using the

number of connections for primary and backup.

• Connection number of primary storage device:Lp

• Connection number of backup storage device:Lb

From them, the primary read throughputvp and the backup
read throughputvb are calculated as follows:

vp = k/Lp (5)

vb = k/Lb (6)

Under the assumption, the read request ratio for primary
objectRp to minimize the read time is

Rp =
Lb

Lp + Lb
, (7)

while it for backup object isRb = 1 − Rp. They do not
containk.

input the number of connection for primary disk :Lp

the number of connection for backup disk :Lb

the number of fragment in a subobject:k
Disk ID which primary object exist :Ip

Disk ID which backup object exist :Ib

Read rate calculation function :F (Lp, Lb)
output List of reading fragmentsList[k]
Step1: The number of reading fragment of primary

Sp = F (Lp, Lb) and the number of reading
fragment of backupSb = F (Lp, Lb) are cal-
culated.

Step2: pos = 0
Step3: List[i] = Ip for i ∈ [pos, pos + Sp]
Step4: pos = pos + Sp

if pos > k, go to Step7
Step5: List[i] = Ib for i ∈ [pos, pos + Sb]
Step6: pos = pos + Sb

if pos > k, go to Step8
else ifpos ≤ k, go to Step3

Step7: outputList

Figure 5. History Based Adjustment Algo-
rithm

4.3 History based Adjustment

Because the preliminary experiment was done under the
ideal environment, we cannot guarantee that the equation
(4) is established in any environment. Here, we consider
the other method using the access history.

We expect that the read throughput of storage devices
does not change on the same condition. Therefore, the read
throughput can be forecasted from the history of the combi-
nation of the number of connections and the read throughput
for the previous read accesses. As the history, the following
information is kept.

Beginning to Read The speed corresponding to the
number of connections is acquired from the
number of connections and the speed table.

End of Reading The connection and the average speed
of reading at that time are written in the number
of connections and the speed table.

The Figure 5 outline the algorithm using the history.

5 Experiment

We evaluate the dynamic placement within the striping
group having variable number of disks and backup utiliza-
tion with both the connection and history based adjustments
by comparing the ordinary striping approach.

5.1 Environment

We implement these algorithms on a PC cluster. Table 1
shows the specification of the cluster.

Table 1. Performance of storage nodes

Number of Client nodes 4 nodes
Number of Disk nodes 8 nodes
CPU AMD Athlon XP-M 1800+ (1.53GHz)
MEM PC2100 DDR SDRAM 1GB
Network 1000BASE-T
HDD TOSHIBA MK3019GAX

(30GB，5400rpm，2.5inch)
OS Linux 2.4.20
Local File System reiser FS
Java VM Sun J2SE 1.5.003

Table 2. Result of Positioning
Average Standard
Throughput (MB/s) Deviation

Not striping 6.96 4.10
Random positioning 16.01 5.38
Access history 17.12 6.35

Each client reads or writes objects. At first, 100 objects
is stored to make the initial set of objects. Then, the objects
are read 200 times to derive the initial access history. Af-
ter that, read and write access are randomly sent from the
clients 2000 times in total under keeping the probability of
write 0.02. The clients prepare all objects to be stored and
randamly select objects to be sent from them based on Zipf
distribution with the parameter settingθ = 0.9. The size of
each fragment is8KB and the number of subobjects of an
object is set to3.

5.2 Effect of the Dynamic Placement
We verify the effect of the dynamic subobject plasement

by comparing throughput for the following setting: 1) with-
out striping, 2) striping with random subobject placement,
and 3) striping with subobject placement based on access
history. The results are shown in Table 2 and Figure 6. Fig-
ure 6 shows the transition of the average 100 times through-
put that matches all clients.

Comparing the throughput without striping and that uses
striping from Table 2, throughput has improved to more
than twice by the effect of striping. Figure 6 also shows
that the striping system achieves more than twice through-
put than the system of no striping. This is because the eight
storage devices in the maximum come to be used at the
same time by doing striping while only four storage device
in the maximum is used for reading at the same time in the
method of not doing striping.

Comparing the subobject placement with the history and
the use of random from Table 2 and Figure 6, we can ob-
serve that the former achieves higher throughput. Because
the read performance of the storage device decreases due to
the access concentration on a part of storage device by the

�
�
�
�
�
���
���
���
���
�	�
�
�

����� ���
� ���
� ���
��� �	���
� ���
�
� �������
� ����������� � !"��#$�

%&
'(
)*&
+)
,-/.
0132
4

576�8	9�8�:3;=<>;=?A@
BDC ?FEG6IH
JLKFKFMON�NAP ; N 8Q6I:SR

Figure 6. Throughput Transition by Place-
ment

Table 3. Result of Backup Use
Average Standard
Throughput (MB/s) Deviation

All Primary 17.12 6.35
P:B 1:1 21.87 8.02
Connection number 21.86 7.57
Access History 18.61 7.43

random subobjects placement. The reading performance of
the average become low because these storage devices are
often accessed. On the other hand, the read throughput of
storage device using the access history does not decrease
because the number of accesses across storage devices is
equalized in this technique.

However, the difference of the read throughput increases
as understood from the standard deviation of Table 2. This
is because the throughput of each object is polarized to high
throughput and low throughput in the technique that uses
the access history. Therefore, it is necessary to specify the
reason why throughput has been polarized, and to decrease
the reading with low throughput for stabilization and further
speed-up.

�
�

���
� �

� �

� �

� �

����� ���	�
���� ���	��� � � �	� �
����� �
���	�
� ������������� ����� �

!"
#$
%&"
' %
()+*
,-/.
0

132426587:9<;�=�7?>
587@96;�=�7?>BA4C8=ED	F�GEH � A �
IKJMLEN	DPOQ9RJMLTSUG	;WV�N	7
IKJMLEN	DPOQ9RJMLTXY9<Z[J\O]JM7^>

Figure 7. Throughput Transition by Backup
Utilization

5.3 Effect of Backup Utilization
Next, we verify the effect of the backup utilization by

comparing four setting: 1) reading fragments from only pri-
mary, 2) reading fragments from primary and backup at 1:1
ratio, 3) primary and backup at ratio settled based on the
connection number, and 4) primary and backup at ratio set-
tled by the access history.

A same request to the experiment with the positioning
method is transmitted and the change of the average reading
throughput for each object is measured. The result is as
shown in Table 3 and Figure 7. Figure 7 shows the transition
of the average 100 times throughput that matches all clients.

Throughput has been improved by reading backups. This
is because the number of accesses to each client is equalized
by the entire system by accessing the backup.

Moreover, when we compare the method of adjusting
reading ratio to 1:1 between primary and backup and the
method of deciding reading ratio by using connection num-
ber, the average throughput of the two methods is the same
as shown in Figure 7 and Table 3. This is because influence
of change of connection number and system process cannot
be considered.

The reading throughput is steady by changing the read-
ing rate. This is because low throughput reading decreased,
though high throughput reading decreased by using the ratio
of the number of connections too.

Throughput has not been improved by the method using
access history, because all of the access history is used in
this experiment. So it becomes difficult to reflect a present
performance. Moreover, the throughput begins to decrease
when the number of request is more than 200 as show in
Figure 7. Therefore, we consider that throughput decrease
is suppressed by setting the maintenance period to the his-
tory and deleting the old history.

6 Conclusions and Future Work
In this paper, we import the flexible striping technique

into the autonomous disk system to improve its throughput
with the rich management functions. We prepare a man-
agement data for each object to keep the information of
the placement of the subobjects. We use access history to
decide the placement of the subobjects to balance access
workload in the disk cluster. We then propose methods to
utilize the backup subobjects by adjusting the access ratio
using connection number and access history to improve the
throughput with balancing workload. The experimental re-
sults using a PC cluster indicate that the proposed methods
are effective.

As future work, we plan to do more experiment to evalu-
ate the dynamic subobject placement with different param-
eters. The data amount balance with the dynamic subobject
placement keeping the workload balance is also an impor-
tant issue to be attacked. We have to consider the situation

of dynamic workload change. For that situation, we have
to consider the cost and effect of the subobject migration.
Moreover, we have to consider the influence of buffering
effect with the semiconductor memory.

Acknowledgements
This work is partially supported by the JST CREST,

SRC, MEXT of Japanese Government via Grant-in-Aid for
Scientific Research #16016232 and the MEXT 21st Century
COE Program.

References

[1] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju. Stag-
gered striping in multimedia information systems. InSIG-
MOD ’94: Proceedings of the 1994 ACM SIGMOD inter-
national conference on Management of data, pages 79–90,
New York, NY, USA, 1994. ACM Press.

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient,
distributed data placement strategies for storage area net-
works. InACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 119–128, 2000.

[3] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson. Raid: High-performance, reliable secondary stor-
age.ACM Comput. Surv., 26(2):145–185, 1994.

[4] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
FAB: enterprise storage systems on a shoestring. InHOTOS
2003, Kauai, HI, May 2003.

[5] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-
* storage: Brick-based storage with automated administra-
tion. Technical Report CMU-CS-03-178, Carnegie Mellon
University, Aug 2003.

[6] D. Ito and H. Yokota. Automatic reconfiguration of an au-
tonomous disk cluster. InProc. of 2001 Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC 2001),
pages 169–172. IEEE, Dec. 2001.

[7] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for stor-
age infrastructure. InOSDI, pages 105–120, 2004.

[8] M. Nakano, D. Kobayashi, A. Watanabe, T. Uehara,
R. Taguchi, and H. Yokota. The versioning system balanc-
ing data amount and access frequency on distributed storage
system. InICDE Workshops, page 1264, 2005.

[9] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (raid). In H. Boral and
P.-Å. Larson, editors,SIGMOD Conference, pages 109–116.
ACM Press, 1988.

[10] K. Salem and H. Garcia-Molina. Disk striping. InPro-
ceedings of the Second International Conference on Data
Engineering, pages 336–342, Washington, DC, USA, 1986.
IEEE Computer Society.

[11] H. Yokota. Autonomous disks for advanced database appli-
cations. InProc. of International Symposium on Database
Applications in Non-Traditional Environments (DANTE’99),
pages 441–448, Nov. 1999.

[12] H. Yokota, Y. Kanemasa, and J. Miyazaki. Fat-btree: An
update-conscious parallel directory structure. InProc. of the
15th Int’l Conf. on Data Engineering, pages 448–457, 1999.

