
論文 / 著書情報
Article / Book Information

Title Activity Scheduling in Web-Service Based Workflow Managementfor
Balancing Load and Handling Failures

Author Hideyuki Katoh, Takashi Kobayashi, Haruo Yokota

Journal/Book name Proc of 2006 International Workshop on Future Mobile and Ubiquitous
Information Technologies (FMUIT'06), Vol. , No. , pp. 245-248

Issue date 2006, 5

DOI 10.1109/MDM.2006.28

URL http://www.ieee.org/index.html

Copyright (c)2006 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Activity Scheduling in Web-Service Based Workflow Management
for Balancing Load and Handling Failures

Hideyuki Katoh† Takashi Kobayashi‡ Haruo Yokota‡,†

† Graduate School of Information Science and Engineering, Tokyo Institute of Technology
‡ Global Scientific Information and Computing Center, Tokyo Institute of Technology

katoh@de.cs.titech.ac.jp, tkobaya@gsic.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract
In a workflow management system, appropriate allo-

cation of its activities greatly contributes to the improve-
ment of its efficiency. We have proposed OXTHAS, a load-
balancing method of scheduling the activities in workflow
management systems using Web-services. The OXTHAS
makes the activities to be assigned to appropriate executors
based on the estimation of their processing capacity using
execution histories in workflow engines. In this paper, we
propose a failure-aware re-scheduling method for the OX-
THAS using process time-outs under network and system
failures. To allocate activities appropriately, the estimated
processing capacity and time-out duration are re-calculated
with consideration of the penalty for a failure when a pro-
cess time-out occurs. We then evaluate the effectiveness of
the proposed methods through simulations.

1. Introduction

The Web-services architecture is now attracting inter-
ests extensively. It allows the connection of widely dis-
tributed and heterogeneous systems chiefly with the HTTP
and SOAP protocols. The strength of the Web-service tech-
nology mainly resides in its ability of surpassing incompati-
bilities in computing environments. Moreover, there is a no-
ticeable tendency towards the Web-service based workflow
management supported by researches on specifications such
as BPEL4WS [1]. However, the load-balancing or failure
handling of the Web-service based workflow management
is slightly mentioned but not in detail in these specifications.

To cope with this issue, we have proposed theOXTHAS
(Observed Execution Time History and Activity Size based
scheduling), a novel scheduling strategy for load-balancing
in Web-services based workflow management [4, 5]. In the
OXTHAS, the estimated processing capacity is calculated
on the base of history of the previous execution of the dif-
ferent activity instances in terms of processing load size and
execution time, as observed by each workflow engine. An

activity instance is allocated to an appropriate executor by a
workflow engine based on the estimated processing capac-
ity and the processing load index. But, we have not made
mention of the failure handling in it yet.

In this paper, we propose a re-scheduling method for
handling network and system failures in the OXTHAS using
process time-outs. In the proposal method, the estimated
processing capacity and time-out duration are re-calculated
with consideration of the penalty for a failure, to allocate
activity instances appropriately under the Web-services and
network failures.

2. Supposed Workflow Management Model

2.1. Workflow Management Architecture

The workflow management system (WFMS) architec-
ture we assume in this paper mainly consists of workflow
engines and executors. The workflow engine controls and
manages the process and activity instances. A process rep-
resents a series of works and is composed of some activities,
meaning a part of the works [2]. The outline of its internal
functions is described as follows:

Workflow engine maintains a queue in which the clients
insert the process instances and a queue in which the
executors insert the activity instances that are pro-
cessed. The workflow engine has the information of
the process instances.
The workflow engine pulls out an activity instance
from the queue and inserts the activity instance in the
queue of executors to process it. Moreover, it inserts
the activity instance in the queue of executors to inform
the executors of ACK/NACK. If multiple requests of
the same activity instance occur, the last request is
adopted.

Executor maintains a queue in which the workflow en-
gines insert the activity instances. The executor pulls
out an activity instance from the queue and processes

the activity instance. When it finishes processing of
the activity instance, it inserts the activity instance in
the queue in the workflow engine.

It becomes possible to perform load-balancing of the
whole system by defining a strategy by which the executors
are being assigned the different activities instances. Here,
we assume that two or more workflow engines exist and
each workflow engine is premised on the ability of arbi-
trary sharing the executors. Moreover, we assume that each
workflow engine knows to which executor the activity in-
stances under management are passed.

2.2. Web-service based Workflow Manage-
ment

In what follows, we consider a Web-services based
WFMS and we build on the following two characteristics:

(1) The processing of an activity instance by an executor
is a Web-service.

(2) Each workflow engine cannot know the inside infor-
mation of executors.

First, it is necessary to consider the processing capacity for
each activity, since an executor may provides more than
one kind of the processing of activity instances as a Web-
service. It is furthermore necessary to assume that the pro-
cessing time is affected by the fact that the input file size
of each activity instances is not constant. In this paper, it is
proportional to the file size. In addition, we should consider
the environment of provider, network and so on.

Next, if we take into consideration the possibility that
multiple WFMS may coexist, then a number of workflow
engines may share the same executor(s) through the In-
ternet. Hence, a workflow engine cannot know the queue
length of executors but can know only the time from the
leaving of activity instances to the returning of them since
requests of activity instances in executors’ queue belong to
multiple workflow engines. Note that the time includes pro-
cessing time, queueing time, network delay, and so on.

3. OXTHAS Re-scheduling

3.1. OXTHAS Scheduling Strategy

In this section, we briefly explain the OXTHAS schedul-
ing strategy we have proposed. Please refer to [4,5] for the
details of the OXTHAS scheduling strategy.

The OXTHAS-N dispatches each activity instances to
top N executors capable of processing the activity. To es-
timate the performance of each executor for a certain activ-
ity, we introduce a measure,Estimated Processing Capacity
(EPC), which is calculated as the mean value of workload
for each unit time, using execution history in the workflow
engine. We defined the EPC,ck,j , for the activity instance

aj assigned to the executorek, as follows:

ck,j =

l∑

i=1

(
si,j

ti,j
·mi,j,k)

l∑

i=1

mi,j,k

wherei is the process instance number forP = {p1 . . . pl},
ti,j is the observed execution time of thejth activity in-
stanceaj in pi, mi,j,k is the possibility of mappingaj in
pi to ek, andsi,j is the processing workload size ofaj . In
this paper, we assume thatsi,j is proportional to the input
file size. If the mapping to the executor is possible,mi,j,k is
equal to 1, otherwise it is equal to 0. When the EPC is large,
it means that we guess the performance of the executor will
be high. Note that we can treat both the potential capability
and the load of executors with the EPC because we calculate
the EPC by using execution history dynamically.

To distribute activity instances to topN executors, the
thresholds of a processing load size set up by dividing the
area intoN areas and the executors of topN EPC are allo-
cated activities’ instances from the size of a processing load
size, based on those thresholds. As methods for dividing
the area, size of the area can be equal or proportional to the
EPC, integer progression, or others. We choose the integer
progression division based on a preliminary experiment, by
setting the thresholds (wr, 1 ≤ r ≤ N − 1) are as follows:

wr =
(r∑
x=1

x
/ N∑

y=1

y
) · Smax

whereSmax is maximum load size of the activity instance
in the execution history.

3.2. Executor Failures
The reasons of delay of the response from the executors

are network congestion and failure of network or executors.
When the reason is network congestion, it is already consid-
ered by EPC because the processing is just performed late.
However, when the reason is failure of network or execu-
tors, the processing will be stopped. Therefore we introduce
the time-out concept to correspond to the failure.

In the OXTHAS re-scheduling strategy, when time-out is
occurred at one executor, workflow engine re-allocates ac-
tivity instance using OXTHAS-N for other executors again.
If the relationship betweenN of OXTHAS-N andNexe is
such that the number of executors that have not been allo-
cated that activity instance isNexe < N , OXTHAS-Nexe

is used instead.

3.3. Adjustment Methods
As described previously, when the time-out concept is

introduced, it is necessary to decrease the effect of failure of

executors. Accordingly we propose two adjustment meth-
ods: one is named “ EPC adjustment method”, and the other
is “Time-out adjustment method”. The definitions are as
follows:

EPC adjustment method
We re-calculate the EPC (c′k,j) by considering the fre-
quency of occurrence of time-outs at each executor.

c′k,j =
ck,j

1 + α ·Rexe

whereRexe is the number of time-outs in each execu-
tor andα is constant.

When the time-out is occurred, that EPC becomes
small and the unreliable executor is not allocated the
activity instances.

Time-out adjustment method
We define the time-out value (Texe) considering the
frequency of occurrence of time-outs at each executor.

Texe = Tinit − β ·Rexe

whereTinit is initial time-out value andβ is constant.

When the time-out is occurred, that time-out value
becomes small. Thereby the time-out is occurred soon
even if the unreliable executor is allocated the activity
instances.

In the adjustment methods, the more unreliable the execu-
tor is, the larger penalty it suffers. If the workflow engine
receives an activity instance from the executor that may be
crashed after the time-out occurred in that executor, EPC is
set tock,j from c′k,j and time-out value is restore toTinit,
because that executor is not failed nor recovered. Therefore
the adjustment methods can also correspond to temporary
failure of executors.

4. Experimental Validation

4.1. Simulation Description

In order to show the validity of our failure-aware
scheduling method, we have implemented simulation
system based on workflow management architecture in
Sect.2.1. We have simulated the architecture of the WFMS
on one computer. First, we vary the value of time-out value
and compare the obtained results of OXTHAS-N (N=3)
with different adjustment methods in the case of one ex-
ecutor having crashed. Next we verify the effect of the ad-
justment methods. We configureα = 1, β = Tinit/100.

Since the EPC is computed on the base of execution his-
tories, we used a random algorithm for the first 1000 steps,
made measurements 10 times respectively and computed

�������

� �����

�������

� �����

�������

	������

��������

�
������

�
������

��� ��� ��� ��
� ��� ��� ��

��
��
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

�
���

��
��

��
��

��
��

�
���

�
���

�
���

�
��
�

�
���

�
���

�
���

�������! #"%$&�('%)+*�$,�

- .
- /021
3.
456
6728
96
- 51

:�;=<?>A@CB�D�EGFIHJ:KELFIHMEGN�;J>
OQP#R <?>S@GB�D�EGFIHJ:KELFLHME�NT;U>
VXW FLH�YJ;&BKEZ<[>A@GB�D�EGFIHJ:KELFLHME�NT;U>
\ ;]EGN^<?>A@CB�D�EGFIHJ:KELFIHMEGN�;J>[D
_�W ` H=HTa�H?bJBKEc;Jd�e?:�; _ < Wgf B[dhH

iIj�klimkZnpopqsrtovuMwmkLqZnyxzj�o|{}ovucuGozj
u~wpxz��iIj�kL�vovn�nI���m���A���M���po�oX�mop�Z��u�kljCn

q�op�ZjGo�xvnpo�uMw}o�ov�c�Gop�#u�kZ�I�Gxz���A�Lj�o

Figure 1. Total processing step of each ad-
justment method for time-out step setting

�

� �

�����

� � �

�����

� � �

�����

� � �

�		
		 �		 �		
		
	

 �	
	

	
	

 �	
	

 �	
	

�		
	

��	
	

�
	
	

��	
	

��	
	

�		
	

��	
	

�
	
	

��	
	

��	
	

		
	

�	
	

	
	

�	
	

�	
	

�		
	

��	
	

�
	
	

��	
	

��	
	

�		
	

���������������������

� !
!" !#
$%&'
#
()*
+& !
, ! -
!(
% .)
/ 021432576982:<;9=?>@0A;B=?>A;DC�1E5

FHGJI 325K6982:L;D=?>20M;B=?>A;DC�1E5

NLO?PRQRSUTWV

N�PYXUP[Z]_^UTD`UabVUZcZ]PRXedfVgO?T�QRP[VhT

Figure 2. Queue length transition of the
crashed executor

their average. The error margin stick at each graph of simu-
lation results shows two-sided 95 percent confidence inter-
val.

We set the number of executors to six and set the num-
ber of workflow engines to two. Within each workflow en-
gine, the same number of process instances are processed.
The information about where each process instance is being
processed is only known to the workflow engine responsi-
ble of the process instance enactment. As for the consid-
ered business processes, we made simple processes without
branching. As for the processing performances of the ex-
ecutors, the size of a process instances, activity instances
and so forth, they are determined at random. Moreover, the
number of activity instances for all the process instances
was set to five. Finally, all the executors can carry out all
kind of activity instances and we only consider the complete
failure for executors.

4.2. Simulation Results
In Fig.1, we vary the value of the time-out when ex-

ecutor2 is crashed at 2000 step and we measure the total
processing step for the OXTHAS with different adjustment
methods: no adjustment method, EPC adjustment method,
Time-out adjustment method and both two methods. More-
over, we compare the case of six executors including an
unreliable executor with the case of reliable five executors
without executor2. In the obtained results, proposed ad-
justment methods is better than no adjustment method. At

�

� �

�����

� � �

�����

� � �

�����

� � �

��� 	��
�� ��� ��
��

� �
��

� 	
��

�

��

� �
�� ���

�
���
�

�	�
�

�
�
�

���
�

��
�

��
�

	�
�

�
�

��
�

	��
�

	��
�

		�
�

	
�
�

	��
�

���
�

���
�

�	�
�

�
�
�

���
�

��
�

���������������������

� "!
$
% &
� ' &
!
(#)
 '
*)+
,-
#.
/
*&
� %)
0

132543687:93;=<?>�@31A<�>�@B<DC32E6
FHG >�@JIK2E9A<L4�687?93;D<D>�@31B<�>�@A<DC32E6

MONQP"R"S5TBU

M3P"V5PXWZY\[5T^]5_�U5W�W`P8V�a\UbNQT�R"PXUcT

Figure 3. Time-out number transition of the
crashed executor

the proper time-out step, the case of six executors includ-
ing unreliable executor with proposed adjustment methods
is better than the case of five reliable executors with no ad-
justment method.

Figure 2 shows the effectiveness of the EPC adjust-
ment method. For the OXTHAS with the EPC adjust-
ment method, the increase of queue length for executor2
is stopped earlier than for OXTHAS with no adjustment
method. By using this method, crashed executor2 is not
allocated as many activity instances as possible.

In Fig.3, we can understand why the Time-out adjust-
ment method is effective. For the OXTHAS with the Time-
out adjustment method, the increase of the number of time-
outs at executor2 is stopped earlier than for the OXTHAS
with no adjustment method. By using this method, if some
activity instances are allocated to the crashed executor, the
time-out step becomes short and they are re-allocated to the
other executors earlier.

5. Related Work

In [3], authors proposed a load-balancing technique that
reduces the waiting time before the workflow engine starts
processing the process instance by deciding to which work-
flow engine a certain process instance is allocated. In their
approach, authors studied a distributed WFMS architecture
with distributed worklist management mechanism and load
balancing sub system. Although this load index has realized
load-balancing between workflow engines, when we con-
sider the case that multiple workflow engines share the ex-
ecutors, it is important to consider load balancing between
executors. But this research does not deal with load balanc-
ing between executors.

Nonobe and Ibaraki have proposed an algorithm for
scheduling with resources restrictions [7]. It considers work
assignment in a closed WFMS where there is only one
workflow engine. The shortest work to be processed is as-
signed first. however, if we consider the case where there
are two or more workflow engines, if each workflow en-
gine is only aware of its assigned work, in case of network
changes , this algorithm cannot be used as it is.

[6] has proposed highly available and reliable distributed
execution of web-service based workflow management with
distributed control. But this research does not deal with
web-service based workflow management with centralized
control.

6. Conclusions
In this paper, we proposed a re-scheduling strategy for

load-balancing and failure handling for centralized Web-
services based workflow management. Specifically, we
have explained our model of Web-services based workflow
management and some characteristics of that model. We
have explained the OXTHAS scheduling strategy to bal-
ance executors’ load. In our proposal strategy, we proposed
two adjustment methods using the time-out concept to cor-
respond to the executor and network failure. Then we eval-
uated the effect of our proposal methods by implementing a
simulation system and showed that the methods are able to
hold down the effect of the failure and also able to process
the activities’ instances efficiently even if the unreliable ex-
ecutor is used.

As future directions, we intend to take into the consider-
ation the failure that cannot process only a part of activities.
We may also implement effectively a WFMS and confront
the results with the simulator results.

Acknowledgments
This work is partially supported by MEXT of Japanese

Government via Grant-in-Aid for Scientific Research
#16016232, the JST CREST and the Tokyo Tech 21st Cen-
tury COE Program.

References

[1] BPEL4WS. http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel/.

[2] Workflow Management Coalition. http://www.wfmc.org/.
[3] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load balanc-

ing in distributed workflow management system. InSAC2001,
8 2001.

[4] H. Katoh, T. Kobayashi, and H. Yokota. Simulation evalu-
ation of a load balancing method for workflow management
with web services (in japanese).DBSJ Letters, 4(2):25–28, 9
2005.

[5] H. Katoh, N. B. Lakhal, T. Kobayashi, and H. Yokota. Ox-
thas: A method for balancing loads in workflow management
systems with web services. Technical Report 06-0005, Tokyo
Institute of Technology, 3 2006.

[6] N. B. Lakhal, T. Kobayashi, and H. Yokota. Throws: An
architecture for highly available distributed execution of web
services compositions. InProc. of RIDE 2004, pages 103–
110, Mar 2004.

[7] K. Nonobe and T. Ibaraki. Formulation and tabu search al-
gorithm for the resource constrained project scheduling prob-
lem. In C. Ribeiro and P. Hansen, editors,Essays and Surveys
in Metaheuristics, pages 557–588. Kluwer Academic Pub-
lishers, 2002.

