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Clock Period Minimization Method of Semi-Synchronous Circuits
by Delay Insertion

Yukihide KOHIRA†a), Nonmember and Atsushi TAKAHASHI†, Member

SUMMARY Under the assumption that clock can be inputted to each
register at an arbitrary timing, the minimum feasible clock period can be
determined if delays between registers are given. This minimum feasi-
ble clock period might be reduced if delays between some registers are
increased by delay insertion. In this paper, we propose a delay insertion
algorithm to reduce the minimum clock period. First, the proposed al-
gorithm determines a clock schedule ignoring some constraints. Second,
the algorithm inserts delays to recover ignored constraints according to the
delay-slack and delay-demand of the obtained clock schedule. We show
that the proposed algorithm achieves the minimum clock period by delay
insertion if the delay of each element in the circuit is unique. Experiments
show that the amount of inserting delay and computational time are smaller
than the conventional algorithm.
key words: delay insertion, clock period minimization, semi-synchronous
circuit, delay-slack, delay-demand

1. Introduction

The semiconductor manufacturing process technology has
improved the scale, speed and power consumption of LSI
circuits. However, increasing ratio of routing delay in sig-
nal propagation delay makes the simultaneous clock distri-
bution of every register difficult. The increases of size and
power consumption of a clock distribution circuit have be-
come serious issues in conventional synchronous circuits.
While, a semi-synchronous circuit, in which the clock is
assumed to be distributed periodically to each individual
register though not necessarily to all registers simultane-
ously, is expected to give an essential solution. By using
semi-synchronous framework, the improvements of clock
frequency, clock distribution circuit size, peak power con-
sumption, and etc. are expected to be achieved.

In recent studies of semi-synchronous circuit, clock
scheduling algorithms [1] and clock distribution circuit syn-
thesis algorithms [2] for given logic circuits were proposed.
However given logic circuits are synthesized for complete-
synchronous framework. In order to improve the clock pe-
riod in complete-synchronous framework, the circuits are
synthesized so that the maximum delay between registers is
as small as possible. Thus, the size of a module tends to
be large, since it is synthesized under the tighter delay con-
straints. Larger transistors and wider wires are used to re-
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duce the delay. Moreover, a number of buffers is required in
recent technology to reduce the delay of a long interconnect.
However, in semi-synchronous framework, the clock period
might not be reduced even if the maximum delay is reduced.
The effort in complete-synchronous framework might de-
grade the circuit performance in semi-synchronous frame-
work. So the optimization of circuit synthesis that takes
semi-synchronous framework into account must be inves-
tigated.

As logic circuit improvement methods for semi-syn-
chronous circuits, the delay insertion method was proposed
in [3] and the gate sizing method was proposed in [4]. The
algorithm in [3] achieves the minimum clock period in semi-
synchronous framework which can be achieved by delay in-
sertion, but it cannot be applied to large circuits since it in-
serts too much delay and takes too much time. While, the
algorithm in [4] does not necessarily achieve the minimum
clock period by delay insertion.

In this paper, we propose a delay insertion algorithm
to reduce the minimum clock period of a circuit in semi-
synchronous framework, especially for the circuit synthe-
sized in complete-synchronous framework. The proposed
algorithm will remove the resources added in synthesis in
complete-synchronous framework which degrade the per-
formance in semi-synchronous framework. The proposed
algorithm increases delays as small as possible to reduce
the minimum clock period in semi-synchronous framework.
Since the amount of inserting delays by the proposed algo-
rithm is small, the improved circuits are obtained by small
modifications. Even though we do not consider the detailed
delay insertion methods, the delay insertion will be realized
by replacing a large module with a small module synthe-
sized under looser delay constraints, by using smaller tran-
sistors and narrower wires, and by deleting buffers from long
interconnects, as well as by inserting buffers to short inter-
connects. The area of the obtained circuit will be almost the
same as the original circuit.

The proposed algorithm consists of two stages. First,
the proposed algorithm determines a clock schedule that
achieves the minimum clock period by ignoring some con-
straints. Second, the algorithm inserts delays to recover ig-
nored constraints according to the delay-slack and delay-
demand of the obtained clock schedule. We show that the
proposed algorithm achieves the minimum clock period by
delay insertion if the delay of each element in the circuit is
unique (that is, maximum delay = minimum delay for each
element). Experiments show that the amount of inserting

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



KOHIRA and TAKAHASHI: CLOCK PERIOD MINIMIZATION METHOD BY DELAY INSERTION
893

delay and computational time are smaller than the conven-
tional algorithm [3].

2. Preliminaries

In this paper, we consider a circuit consisting of registers
and gates, and wires connecting them. We refer to them
as elements. A circuit is represented by the circuit graph
G = (Vg, Eg), where Vg is the vertex set corresponding to
elements in the circuit and Eg is the directed edge set cor-
responding to signal propagations in the circuit. In this
paper, we assume each element has a unique delay. Let
d(v) be the weight of v ∈ Vg which corresponds to the
delay of corresponding element. Let d(e) = d(u), where
e = (u, v) ∈ Eg (u, v ∈ Vg). This means that an edge weight
is equal to the weight of the head vertex of the edge. Let
d(P) =

∑i
k=1 d(ek), where P = (e1, e2, . . . , ei) is a path in G.

Let Vr be the register set of G. Necessarily, the register
set is a subset of Vg. An example of the circuit graph is
shown in Fig. 1. In Fig. 1, {a, b, c, d} is the register set, and
the figure in each vertex represents its weight.

In semi-synchronous circuits, the clock input timing of
a register may be different from other registers. The clock
timing S (r) of register r is defined as the difference in clock
arrival time between r and an arbitrary chosen reference reg-
ister.

A circuit works correctly with clock period T if the fol-
lowing two types of constraints are satisfied for every regis-
ter pair with signal propagations [5].

Setup (No-Zero-Clocking) Constraints

S (ri) − S (r j) ≤ T − dmax(ri, r j)

Hold (No-Double-Clocking) Constraints

S (r j) − S (ri) ≤ dmin(ri, r j)

where dmax(ri, r j) is the maximum delay and dmin(ri, r j) is
the minimum delay from register ri to r j (Fig. 2).

Since complete-synchronous circuits have the premise
that a clock ticks all the register simultaneously, the clock
period must be larger than the maximum delay between reg-
isters. On the other hand, semi-synchronous circuits can
work correctly with the clock period which is smaller than
the maximum delay between registers, if all the register pair
with signal path satisfies two types of constraints.

Fig. 1 Circuit graph G.

Let TS (G) be the minimum clock period of a circuit G
in semi-synchronous framework under the assumption that
clock can be inputted to each register at an arbitrary timing.
Hereafter, we simply call TS (G) the minimum clock period
of G. TS (G) is determined by the constraint graph H(G, T )
for G with clock period T defined as follows. The vertex
set Vr of H(G, T ) corresponds to registers in G. The di-
rected edge set Ar of H(G, T ) corresponds to two types of
constraints. An edge from ri to r j with dmin(ri, r j), called
the D-edge, corresponds to the Hold constraint, and an edge
from r j to ri with T − dmax(ri, r j), called the Z-edge, corre-

Fig. 2 Timing chart.

(a) Constraint graph H(G, T ).

(b) Constraint graph H(G, 9).

(c) Semi-synchronous circuit with clock circuit.

Fig. 3 Semi-synchronous circuit and its constraint graphs.
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(a) Circuit graph G′.

(b) Constraint graph H(G′, 7).

Fig. 4 Circuit after delay insertion to G in Fig. 1.

sponds to the Setup constraint.
Let the weight of a directed cycle in the constraint

graph be the sum of edge weights on the directed cycle. We
refer to the cycle whose weight is 0 and negative as zero-
cycle and negative-cycle, respectively.

Theorem 1 ([5], [6]): TS (G) is the minimum t such that
there is no negative-cycle in the constraint graph H(G, t).

For example, the delay from register d to a in G in
Fig. 1 is 12 which is the maximum delay between regis-
ters. So the minimum clock period in complete-synchronous
framework is 12. The constraint graph H(G, T ) for G in
Fig. 1 is shown in Fig. 3(a). Since H(G, 9) shown in Fig. 3(b)
includes no negative-cycle and the cycle (a, d, b) is a zero-
cycle, the minimum clock period TS (G) of G is 9. The
semi-synchronous circuit that achieves the clock period 9
is shown in Fig. 3(c).

Delay insertion to a circuit is represented by replace-
ment of an edge with a series of two edges with a pos-
itive weight vertex. The circuit G′ obtained from G in
Fig. 1 by inserting delays is shown in Fig. 4(a). In the con-
straint graph H(G′, T ), only edge weights are changed from
H(G, T ) according to the delay insertion. Since H(G′, 7)
shown in Fig. 4(b) includes no negative-cycle, and the cy-
cles (a, d, c, b) and (a, d, b) in H(G′, 7) are zero-cycles, the
minimum clock period TS (G′) is 7. In this case, the mini-
mum clock period is improved by delay insertion.

3. Previous Algorithm

3.1 A Lower Bound of the Clock Period

If a circuit does not work correctly with a clock period t, all
the negative-cycles in the constraint graph should be elim-
inated so that the circuit works correctly. Edge weights

should be increased in order to eliminate all the negative-
cycles. Since D-edge weight is dmin and Z-edge weight is
T − dmax, we should increase minimum delays or reduce
maximum delays so that edge weights are increased.

In semi-synchronous circuits, the lower bound of the
clock period that can be achieved by delay insertion is equal
to the maximum delay-to-register ratio TB(G) [3].

Definition 1 ([3]): The maximum delay-to-register ratio is
defined as

TB(G) = max
L∈all cycles in G

D(L)
N(L)

,

where N(L) is the number of registers in directed cycle L in
G and D(L) is the weight of L.

We refer to the maximum delay-to-register ratio TB(G)
as the minimum clock period by delay insertion.

In complete-synchronous framework, TB(G) can be
achieved if an arbitrary amount of retiming is allowed. How-
ever, the number of registers might be increased, and gate
decompositions might be required.

Theorem 2 ([3]): If TS (G) > TB(G), every zero-cycle in
H(G, TS (G)) contains at least one D-edge.

Therefore, the minimum clock period is improved by
delay insertion to the circuit if TS (G) > TB(G).

3.2 Delay-Slack

The maximum delay-to-register ratio TB(G′) of the circuit
G′ which is obtained from a circuit G by inserting delays
must not become greater than TB(G) so that G′ achieves
the lower bound of the clock period of G. TB(G′) does not
change from TB(G) if D(L) of any cycle L in G′ is at most
TB(G) · N(L). For each edge of G, the delay-slack [3] is
defined as the maximum delay insertion that keeps the min-
imum clock period by delay insertion.

Definition 2 (delay-slack): For a directed cycle L in G, the
cycle-slack is defined as

cycle-slack = TB(G) · N(L) − D(L).

The delay-slack of an edge (u, v) in G is the minimum cycle-
slack over all cycles that contain (u, v).

The delay insertion to (u, v) less than or equal to the
delay-slack of (u, v) keeps the minimum clock period by de-
lay insertion.

In the algorithm in [3], the delay equal to delay-slack
of an edge is inserted to the edge when the edge belongs to
the minimum delay path from ri to r j where (ri, r j) is a D-
edge in a negative-cycle in H(G, TB(G)). The delay-slack of
each edge is recalculated after each delay insertion. For ex-
ample, cycle-slacks of G in Fig. 1 are determined as shown
in Fig. 5(a). The circuit obtained from G by the algorithm in
[3] is shown in Fig. 5(b).

The computation time of this algorithm is O(ngp2),
where n is the number of vertices in the constraint graph,
and g and p are the numbers of vertices and directed edges
in the circuit graph, respectively.
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(a) Cycle-slacks of G (TB(G) = 7).

(b) Circuit G′′.

Fig. 5 Circuit obtained from G in Fig. 1 by the algorithm in [3].

4. Proposed Algorithm

In the proposed delay insertion algorithm, the clock timing
of each register is determined by Setup constraints before
delay insertion, and delays are inserted into subcircuits to
satisfy Hold constraints. We show that the circuit which
works correctly when the clock period is the minimum clock
period by delay insertion is obtained in short time.

4.1 Scheduling

We determine the clock timing of each register from the con-
straint graph consisting of only Z-edges with the clock pe-
riod T = TB(G) by clock-scheduling algorithm [6].

4.2 Delay Insertion

The clock schedule from Setup constraints may not satisfy
Hold constraints. So delays are inserted in order to satisfy
Hold constraints while keeping Setup constraints.

For any edge e ∈ Eg, let break(e) be the time when
the earliest signal arrives at e, complete(e) be the time when
the latest signal arrives at e, hold(e) be the earliest possible
time of signal arrival at e that can keep Hold constraints,
and setup(e) be the latest possible time of signal arrival at
e that can keep Setup constraints. Moreover, let delay-slack
slack(e) be setup(e)−complete(e), that means the amount of
delay which can be inserted, and delay-demand demand(e)
be hold(e)−break(e), that means the amount of delay which
must be inserted (Fig. 6). The above definitions are stated
formally as follows.

Definition 3: For a given clock schedule S of a circuit G,

Fig. 6 break, complete, hold, setup, slack, demand.

break, complete, hold, setup, slack, and demand of e =
(u, v) ∈ Eg are defined as follows; If u is a register (u ∈ Vr),

break(e) = S (u) + d(e),

complete(e) = S (u) + d(e),

otherwise,

break(e) = min
e′∈Fi(e)

{break(e′) + d(e)},
complete(e) = max

e′∈Fi(e)
{complete(e′) + d(e)},

where Fi(e) is the edge set whose tail is u. If v is a register
(v ∈ Vr),

hold(e) = S (v),

setup(e) = S (v) + T,

otherwise,

hold(e) = max
e′∈Fo(e)

{hold(e′) − d(e′)},
setup(e) = min

e′∈Fo(e)
{setup(e′) − d(e′)},

where Fo(e) is the edge set whose head is v. Moreover,

slack(e) = setup(e) − complete(e),

demand(e) = hold(e) − break(e).

Let e′ = (t, u) and e = (u, v) be the edges in Eg such
that u � Vr. If break(e) = break(e′) + d(e), we say that
e′ determines break of e or break of e depends on e′. Let
P = (e1, e2, . . . , en−1) be a path in G such that ei = (vi−1, vi),
v0 ∈ Vr, and vi � Vr(1 ≤ i ≤ n − 1). If ei depends on
ei−1(1 ≤ i ≤ n), then we say that P determines break of
en or break of en depends on P. If P determines break of
en, break(en) = S (v0) +

∑n
k=1 d(ek) = S (v0) + d(P) + d(en).

For example, break of e6 does not depend on e5 but depends
on e4 in Fig. 6. The path (e1, e3, e4) determines break of
e6. Similarly, dependency is defined for complete, hold, and
setup.

Theorem 3: A clock schedule S with clock period T sat-
isfies Setup constraints if and only if slack(e) ≥ 0 for all
edges e in Eg.

Proof. Let e be an edge whose complete depends on a path
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Fig. 7 The paths that determine complete and setup of e.

PI = (eI
1, e

I
2, . . . , e

I
s) and whose setup depends on a path

PO = (eO
1 , e

O
2 , . . . , e

O
t ), where the head of eI

1 is the register ra

and the tail of eO
t is the register rb (Fig. 7). Note that

complete(e) = S (ra) + d(PI) + d(e),

setup(e) = S (rb) + T − d(PO),

dmax(ra, rb) ≥ d(PI) + d(e) + d(PO).

So we have

slack(e) = setup(e) − complete(e)

= S (rb) − S (ra) + T − (d(PI) + d(e) + d(PO))

≥ S (rb) − S (ra) + T − dmax(ra, rb).

If setup(e) < 0, we have

S (ra) − S (rb) > T − dmax(ra, rb).

This contradicts the assumption that the clock schedule S
satisfies Setup constraints.

The sufficiency can be proved similarly. �
Even if delay less than or equal to the amount of

slack(e) is inserted to e, Setup constraints are satisfied.
Following theorem can be proved similarly.

Theorem 4: A clock schedule S with clock period T sat-
isfies Hold constraints if and only if demand(e) ≤ 0 for all
edges e in Eg.

So we must insert delay so that demand(e) ≤ 0 for all
edges e in order to satisfy Hold constraints.

Assume that Hold constraint of e is violated. If the
delay equal to min{slack(e), demand(e)} is inserted to e, then
Setup constraints are not violated while Hold constraints are
relaxed.

4.3 Algorithm

We propose a delay insertion algorithm as follows.

Inputs : circuit graph G
Outputs : circuit graph G′ after delay insertion

Step 1 : Determining the clock timing of each register from
the constraint graph consisting of Z-edges with the
clock period T = TB(G).

Step 2 : Until an edge e whose demand(e) > 0 ex-
ists, repeat the following. Insert a delay equal to
min{slack(e), demand(e)} to e. Recalculate delay-slack
and delay-demand.

Step 3 : Output circuit graph G′ after delay insertion and
terminate.

Fig. 8 Delay-slack and delay-demand of edges in G in Fig. 1.

Fig. 9 Delay-slack and delay-demand after delay insertion.

For example, the proposed algorithm is applied to G
in Fig. 1. Delay-slack and delay-demand are determined as
shown in Fig. 8. Since a delay must be inserted where delay-
demand is positive and can be inserted where delay-slack is
positive, the algorithm inserts a delay as shown in Fig. 9. Af-
ter delay insertion, since delay-slack and delay-demand are
changed, the algorithm recalculates them. In Fig. 9, since
the edges whose delay-demand are positive exist, the algo-
rithm inserts delay more. Then, G′ in Fig. 4 is obtained, and
there is no edge with positive delay-demand. G′ achieves
the minimum clock period by delay insertion with less de-
lay insertion than G′′ in Fig. 5.

By the proposed algorithm, a delay is inserted to an
edge whose delay-demand is positive. So we need to show
that if there is a edge with positive delay-demand, then at
least one edge whose delay-slack is positive exists among
edges whose delay-demand are positive. Before proving the
theorem, we show the following convenient definition and
lemma.

Definition 4 (critical path): For a given clock schedule S
that satisfies Setup constraints with clock period T , a path
from register ri to r j is called a critical path, if the sum of
edge weights is S (r j) − S (ri) + T .

If all the register is ticked at the same time and
T is equal to the minimum clock period in complete-
synchronous framework, a path whose sum of edge weights
is the maximum delay between registers is a critical path.
So this definition is an enhancement of the definition in
complete-synchronous framework.

Lemma 1: When a clock schedule S with clock period T
satisfies Setup constraints, an edge e belongs to a critical
path if slack(e) = 0.

Proof. Assume that the paths that determine complete and
setup of e are defined as in the proof of Theorem 3. In this
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case, slack(e) is

slack(e) = S (rb) − S (ra) + T − (d(PI) + d(e) + d(PO)).

So if slack(e) = 0, we have

d(PI) + d(e) + d(PO) = S (rb) − S (ra) + T.

Then, (PI , e, PO) is a critical path and e belongs to a critical
path. �

Theorem 5: If there is a register pair that violates a Hold
constraint in a clock schedule S that satisfies Setup con-
straints, there is at least one edge whose delay-slack is pos-
itive among edges whose delay-demands are positive.

Proof. Assume that (ra, rb) violates a Hold constraint in
clock schedule S that satisfies Setup constraints with clock
period T . Since (ra, rb) violates Hold constraint, we have

S (rb) − S (ra) > dmin(ra, rb). (1)

Let P = (e1, e2, . . . , ec) be a path that gives the mini-
mum delay from register ra to rb. Since each element has a
unique delay, we have

dmin(ra, rb) = d(P). (2)

Assume that all edges on P have no delay-slack. From
Lemma 1, ei belongs to a critical path. Let Pi be the critical
path from register rI

i to rO
i to which ei belongs. Let PI

i be the
path from rI

i to the previous edge of ei on Pi and PO
i be the

path from the next edge of ei to rO
i on Pi (Fig. 10). Note that

d(Pi) = d(PI
i ) + d(ei) + d(PO

i ).
Since Pi and Pi+1 are critical paths, we have

S (rO
i ) − S (rI

i ) + T = d(PI
i ) + d(ei) + d(PO

i ), (3)

S (rO
i+1) − S (rI

i+1) + T = d(PI
i+1) + d(ei+1) + d(PO

i+1). (4)

Notice also that (PI
i+1, P

O
i ) is a path from rI

i+1 to rO
i with

weight d(PI
i+1)+d(PO

i ). Since Setup constraint of the register
pair (rI

i+1, r
O
i ) is satisfied, we have

S (rI
i+1) − S (rO

i ) ≤ T − (d(PI
i+1) + d(PO

i )). (5)

From (3), (4), and (5), we have

S (rO
i+1)−S (rI

i )≤ (d(PI
i )+d(ei)+d(ei+1)+d(PO

i+1))−T.

Fig. 10 A path P that consists of edges with no delay-slack.

Note that (PI
i , ei, ei+1, PO

i+1) is a path from rI
i to rO

i+1.
Similarly we consider all edges on P. We have

S (rO
c ) − S (rI

1) ≤ (d(PI
1) + d(P) + d(PO

c )) − T. (6)

Since ra is the head of e1, rI
1 = ra and d(PI

1) = 0. Since rb is
the tail of ec, rO

c = rb and d(PO
c ) = 0. Then inequality (6) is

rewritten as

S (rb) − S (ra) ≤ d(P) − T.

Further this is rewritten by equality (2) as

S (rb) − S (ra) ≤ dmin(ra, rb) − T

< dmin(ra, rb).

This contradicts the inequality (1). Therefore there is at least
one edge whose delay-slack is positive among edges whose
delay-demand are positive. �

By delay insertion, delay-slack and delay-demand of
each edge never increase. If the delay is inserted to an edge
e, then slack(e) = 0 or demand(e) = 0. So delay is never
inserted to e again. Therefore, the delay insertion to edges
is repeated at most the number of edges.

4.4 Computational Complexity

As the algorithm in [3], let n be the number of vertices in
a constraint graph, m be that of directed edges in a con-
straint graph, g be that of vertices in a circuit graph, and
p be that of directed edges in a circuit graph. In Step 1,
the computation time for the maximum delay-to-register ra-
tio is O(mn) [7], the computation time for clock schedul-
ing is also O(mn). In Step 2, the computation times for
break, complete, setup, hold are O(g2). It is repeated at most
p times, so the computation time of this algorithm is O(g2 p).

5. Experiments

We implemented the algorithm in [3] and the proposed algo-
rithm in a PC with a 3.06 GHz/512 K Intel Pentium-4 CPU
and 512 MB RAM. We performed delay insertion on the
LGSynth91 benchmark suite. In experiments, we assume
that each gate has unit delay, and routing delays and register
delays are zero. Moreover, inputs and outputs are regarded
as one vertex in constraint graph so that the clock timings of
inputs and outputs are set to same.

Among 24 circuits in benchmark suite, the maximum
delay between registers is determined by a self-loop (a sig-
nal path from a register to the same register) in 8 circuits. In
this case, the minimum clock period in semi-synchronous
framework is equal to that in complete-synchronous frame-
work. For the other 16 circuits, the minimum clock period
in semi-synchronous framework is improved 17.4% from
complete-synchronous framework on the average. Among
improved 16 circuits, the minimum clock period by delay
insertion is equal to the minimum clock period in 10 cir-
cuits. That is, the minimum clock period by delay inser-
tion is achieved without delay insertion in 10 circuits, but
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Table 1 Results.

Num. of clock period Algorithm in [3] Proposed algorithm
Circuit gates |Vr | |Ar | CS SS (%) Fin (%) delay Time [s] delay (%) Time [s] (%)

s298 119 15 84 9 6.00 (66.7) 5.34 (59.3) 71 0.17 14 (19.7) 0.08 (47.1)
s344 160 16 86 19 17.00 (89.5) 10.00 (52.6) 451 1.30 126 (27.9) 0.23 (17.7)
s349 161 16 86 19 17.00 (89.5) 10.00 (52.6) 451 1.14 126 (27.9) 0.24 (21.1)
s444 181 22 173 11 7.00 (63.6) 6.59 (59.9) 70 0.57 19 (27.1) 0.16 (28.1)
s526 193 22 165 9 6.00 (66.7) 5.50 (61.1) 66 0.38 12 (18.1) 0.18 (47.4)
s1423 657 75 1897 59 54.00 (91.5) 53.00 (89.1) 6172 217.72 3779 (61.2) 5.90 ( 2.7)

average — — — — — (77.9) — (62.6) — — — (30.6) — (27.3)

the minimum clock period can be improved by delay inser-
tion in 6 circuits. For these 6 circuits, the minimum clock
period in semi-synchronous framework is improved 22.1%
from complete-synchronous framework on the average and
improved 18.3% more by delay insertion on the average.

The results for the circuits that can be improved by de-
lay insertion are shown in Table 1. In Table 1, the number
of gates is shown by Num. of gates, the minimum clock pe-
riod in complete-synchronous framework by CS, the min-
imum clock period in semi-synchronous framework by SS
(the percentages in SS are the ratios of the minimum clock
period in semi-synchronous framework to that in complete-
synchronous framework), the minimum clock period by de-
lay insertion by Fin (the percentages in Fin are the ratios
of the minimum clock period by delay insertion to that in
complete-synchronous framework), and the amount of in-
serted delays in previous algorithm and proposed algorithm
by delay.

The amount of delay insertion is reduced by about
69.4% and computation time is reduced by about 72.7%
compared to the algorithm in [3].

6. Conclusion and Future Works

In this paper, we propose a clock period minimization algo-
rithm of semi-synchronous circuits by delay insertion and
compare it with the algorithm in [3] in terms of the amount
of delay insertion and computational complexity. We real-
ize a lower bound of the clock period by less delay inser-
tion than the algorithm in [3], because proposed algorithm
inserts delay less than or equal to the delay-slack. The pro-
posed algorithm is O( np

g
) times faster than the algorithm in

[3], and we show its efficiency by experiments.
As future works, we consider where delay is inserted

and how the clock timing for each register is determined for
the minimization of inserted delays and computation time.
Finally, we want to propose a delay insertion algorithm for
the real delay model (that is, maximum delay is not equal to
minimum delay for each element).
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