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l PAPER <Special Issue on the 2nd Karuizawa Workshop on Circuits and Systems>

A Switch-Box Router “‘BOX-PEELER’’ and
Its Tractable Problems
Atsushi TAKAHASHI!, Nonmember and Yoji KAJITANIt, Member

SUMMARY Given a switch-box, let C be a connection require-
ment. If there is a polynomial time algorithm (router) to com-
plete C, C is said to be tractable by the algorithm. There have
been proposed a number of switch-box routers but none that
makes clear its tractable problems. We propose a switch-box
router, or rather a principle, BOX-PEELER with a simple charac-
terization of a class of tractable problems. BOX-PEELER is
developed to be an underlying concept in switch-box routing as
LEFT-EDGE method has been in 2-side channel routing.

1. Introduction

The concept of channel routing was initiated by Ref.
(1) introducing the concept of 2-layer 2-side channels.
They proposed an algorithm (router) “LEFT-EDGE” to
complete a given connection requirement (problem)
with the fewest tracks in polynomial if the net list is
consisting of 2-terminal nets and the vertical constraint
is empty. After then, a number of highly sophisticated
routers have been proposed to compete with more
difficult cases. However, LEFT-EDGE has been the only
method for which we can recognize its tractable prob-
lems, i. e. the problems for which the router guarantees
in polynomial time the optimal connections.

A generalized version of routing is the 4-side chan-
nel (switch-box) routing, which is the subject of this
paper. The most significant difference of the switch-box
routing from the 2-side channel routing is in that the
switch-box includes the concept of fixed area, without a
natural optimization problem such as “to minimize the
area”. Thus, it leads to a decision problem that if a
given problem is completely routable. However, among
a number of routers, even a router cannot be found that
characterizes its tractable problems.

This paper demonstrates a certain class of tractable
problems with a linear time switch-box router. The
router is called BOX-PEELER by its manner in routing
as it fixes the outmost net one after another. Executing
the nets from outside is a popular idea in heuristic
routers (e.g. Refs.(2), (3)).

The connection requirements which the router con-
siders are simplest and basic but not trivial. BOX-

PEELER is developed to be a conceptual switch-box
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router as LEFT-EDGE has been in 2-side channel rout-
ing. For actual use, it could be developed some method
that extracts a maximal sub-netlist that matches BOX-
PEELER and executes the rest by a maze router, for
example. But it is not mentioned here about those ideas.

2. Definitions

A switch-box is a rectangular grid area bounded by
the four walls on which terminals are assigned. Orthog-
onal grids are called horizontal and vertical tracks and
linear wire segments are placed on them. Terminals are
on the (end of) tracks and labeled with positive integers.
The set of terminals with the same label is called a net
and referred to by the label.

The switch-box routing problem is given in terms of
net list and design rule. Net list N is the set of nets
demanding all the terminals of each net be connected by
the set of wire segments which is called the connection
of the net.

Our switch-box routing is constrained by ;

[NET CONSTRAINTS]

Each net is assumed to satisfy
SINGLE-TERMINAL-TRACK : There is at most one
terminal on a track, and
THROUGH-NET : Each net is consisting of two termi-
nals on opposite walls.

[DESIGN CONSTRAINTS]
NO-KNOCKED-KNEE-AND-MIN : Two wire seg-
ments of distinct connections are allowed to cross but
not to share corners (knocked knees) or otherwise
overlap. Each connection is consisting of two bends and
three segments.

A net whose terminals are on the top and bottom
walls is called a vertical net and the set of such nets is
denoted by N,. Horizontal nets and the set N, are
analogously defined.

In the following, definitions and descriptions are
symmetric with respect to “vertical” and “horizontal”,
and with respect to “right” and “left”. Taking this into
account, we often give only one of them. For the terms
related to “vertical”, “horizontal”, “right”, and “left”,
we use the letters “v”, “h”, “r”, and “1” (or their capi-
tals), respectively.

A net or its connection is called left-turn if it turns
to the left forwarding from one terminal of the net
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Fig. 1 Definitions of net type.
vertical left-turn net : Ny,={1, 2}
vertical right-turn net: N,r={3, 4,5}
horizontal left-turn net : N..={6, 7, 8}
horizontal right-turn net : Nx-={9, 10}

following NO-KNOCKED-KNEE-AND-MIN. Note that
whichever of terminals of a net is the starting one, a net
is uniquely defined to be left-turn or right-turn. The set
of horizontal left-turn nets is denoted by Nx.. Thus, net
list N is partitioned as

N:NUZUer UNhlUNhT.

We can assume that Ny UNyr#+¢ and NuUNur+ ¢,
since otherwise the problem is that of 2-side channel
routing. A net list N is called L-R type if only N,; and
Nur of the four are nonempty. See Fig. 1. for these
definitions.

A net or terminal is called fixed if its connection is
realized, otherwise unfixed. The routing algorithms
proposed here go in such a fashion that one net is fixed
after another. Following terms are defined at a stage on
the way where NJSCN, denotes the set of the unfixed
vertical nets.

Let %, be a vertical net. By the net and design
constraints, its connection is unique except on which
horizontal track its horizontal segment is placed. If
horizontal track #» has an enough empty interval for the
horizontal segment of #, to be put, # is said to accept
no. If #, accepts #n, and has no unfixed terminal, ¢, is
said to ¢-accept #n.. If 7, is fixed putting its horizontal
segment at 7y, it is simply said that net #. is fixed at ..
If # ¢-accepts any one member (not necessarily all
simultaneously) of N, it is said that # ¢-accepts Nif.

Suppose that NJ =+ ¢. The leftest terminal of nets of
N7 and the track on which the terminal exists are called
the left border terminal and left border track, respec-
tively, of N. See Fig. 2. Bounded by the left and right
vertical border tracks, the switch-box area is par-
titioned into three zones, the left outside, right outside,
and inside of N, the last including the border tracks. If
N¥=¢, we define that all the area is outside of NF. A
vertical marginal track of N is a track in the outside of
N that ¢-accepts Ni.

Let a vertical marginal track #» exist in the left
outside of N¥. If a border terminal of N is on the left

marginal border terminal of N.*
track tvm
* 12 3 4 5 marginal
border |+ track tum
terminal—>6 )
of Nh* 7 _ 410
5l .
9 .
) A7
10]-
1|
' -|g border
e |8 «+terminal
o

outside of N,* inside of N,* outside of N.*

Fig. 2 Definitions of border terminals and tracks, outside and
inside zones, marginal tracks, and corner terminals.
Nr={1,2,3,4,5)
Ni¥={6,7,8,9, 10,11}
Terminal 6 on the left wall (border terminal of N¥) is a
corner terminal with respect to marginal track fum, but
terminal 8 on the right wall is not a corner terminal.
Terminals 1 and 5 on the top wall are corner terminals
with respect to fim.

wall, the terminal is called the corner terminal with
respect to #». It may be that there is no corner terminal
with respect to a marginal track #».

Neglecting the horizontal net, suppose that we are
going to fix all the vertical nets at the minimum number,
let it b€ T'(Ny), of horizontal tracks. As is well-known,
one way to get such a routing is LEFT-EDGE. It is
sometimes convenient to treat all the horizontal seg-
ments on the same track as one segment. We call it a
fusion segment. Thus, we say that N, can be fused into
T(Ny) fusion segments.

Vertical and horizontal densities D, and D, are
defined conventionally as follows. For a vertical line /
that cuts the switch-box, Dy(/) is the number of nets
whose one terminal is on / or two terminals are in
different sides of /. D, is the maximum of D,(I) over
distinct /. By the design constraint, they are given by

szlNh|+ T(Nv), thlNu|+ T(Nh)

3. Routing Rule and Lemma

Our algorithm always follows ;
[BASIC RULE]
(1) The nets are fixed one after another.
(2) A net is fixed at a track that ¢-accepts it.
BASIC RULE makes the following three lemmas
hold. Since the proof are trivial by definition, they are
omitted.
[Lemma 1] Let #» be a vertical marginal track in the
left outside of N&. For any n.EN#, let # be the
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horizontal track that contains a terminal of #s in the
left outside. Then, after fixing 7. at tn, t» ¢-accepts Ni.
[Lemma 2] Let %4, be a vertical marginal track.
Assuming that there is a corner terminal with respect to
tn, let it be a terminal of #,& N and at the horizontal
track ¢ (4 is a border track of N¥.) Then, after fixing
%r at In, f» is a horizontal marginal track for currently
unfixed net set N¥— {n.}.

[Lemma 3] Let f{» be a vertical marginal track.
Suppose that N consists only of the same type nets.
Then one of two border terminals of Nf is the corner
terminal with respect to fn.

4. Basic Router, BOX-PEELER I

The class of problems we are going to concern are
characterized by the conditions on cardinalities, types of
nets, distribution of marginal tracks, and density. They
are respectively described under [CARD], [TYPE],
[MARG], and [DENS].

We provide five routers BOX-PEELER I~V. This
section is devoted to describe the most basic router
BOX-PEELER I for studying the concept of “peeling the
box” which is common in all the BOX-PEELER’s.

Note that to define an algorithm is to define the
order of the nets to be processed and assign the track at
which each net is fixed, since each net is to be routed
with three line segments.

If all the nets of NV are able to be fixed, it is said that
N is completely routable.

[THEOREM 1] Net list N subject to the following
conditions is completely routable by the router BOX-
PEELER 1.

[CARD] : |[N,|=|Nul.

[(TYPE] : The type is either of L-L, or L-R, or R-L, or
R-R.

[MARG] : There is at least one marginal track.
{(Router : BOX-PEELER I}

Let {» be a given marginal track.

A@*‘A@,Am%‘A&.

Apply the following subroutine for NJf UN#¥, and #a,
while NJUN#f=+¢. Else stop and get a solution.
{PEEL-THE-BOX [NXUN¥, tul>

Find a corner terminal with respect to #» and let it
be at track f.. Let its net be 7. and its the other terminal
be at track #. Fix = at fn. Return with N¥U NF<—N¥
UNE—{nc}, and tnet.. (END)
(Proof) According to Lemma 3, there is a corner
terminal with respect to any marginal track at each
stage. Lemma 2 says that a marginal track exists in
each stage when a corner terminal’s net is fixed at a
marginal track. Routing continues to fix with respect to
the horizontal nets and vertical nets alternately. Since
the number of vertical nets equals that of the horizontal
nets, BOX-PEELER I runs until the net list is empty.

]

Example 1: Given a switch-box routing problem
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Fig. 3 Routing problem SB1. After one time application of
PEEL-THE-BOX, net 1 has been fixed at #» and #
becomes a marginal track of the next stage.
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Fig. 4 Application of BOX-PEELER I to SBI.

SB1 as shown in Fig. 3, we can apply BOX-PEELER 1
since N is R-R type and there is one vertical marginal
track #». The corner terminal with respect to #» is
terminal 1 on the left wall. Thus we start with fixing net
1 at #». Next we find net 2 being the second to be
processed. It will be nets 3, 4, -+, 10 to follow. The
result is shown in Fig. 4. (END)
After fixing a corner terminal’s net at a marginal
track in subroutine PEEL-THE-BOX, it is all right to
consider that the resulting switch-box is the one
obtained by discarding net ., and shrinking #» and #,
and considering f; as a marginal track. In the process,
IN¥| and |N#| are equal or differ by 1 depending on
evenness or oddness of the times of applications of the
subroutine. At the following stage, the marginal track
¢-accepts the no smaller set. The key issue is the
balance of |N¥| and |N#| within 1. Therefore, we have
the following.
COROLLARY 1: Net list N subject to the following
conditions is completely routable by the router BOX-
PEELER L
[CARD] : [Ny]—|Ni|==1.
[TYPE] : The type is either of L-L, or L-R, or R-L, or
R-R.
[MARG] : There is at least one marginal track that
¢-accepts the no smaller set. (END)
Often it is not necessary to provide one marginal
track to fix a net. In fact, it is easy to see that SB1 can
be routed without using the marginal track which can-
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not be obtained as far as we apply PEEL-THE-BOX.
However it is also true that there are cases for which
the router provides critical solutions.

5. BOX-PEELERS for [CARD] Constraint Problems

BOX-PEELER 1 is generalized to be applicable to
the problems without [TYPE] constraints. The main
idea is to partition a given switch-box into three sub-
switch-boxes such that each satisfies the conditions of
THEOREM 1.

[THEOREM 2] Net list N subject to the following
conditions is completely routable by BOX-PEELER II.
[CARD] : |Ny|=|Nul.

[MARG] : There are at least three marginal tracks.
{Router : BOX-PEELER II>

Without loss of generality, we assume that |Ny-| is
not less than any of | Ny, | Nar|, and | Nad.

{Step 1> Partition the switch-box into three
subswitch-boxes SB?, SB? and SB® with net lists N*, N?,
and N® such that

SB': N'=N}.UN},, where Ni,=N,r and Njr is any
subset of Nyr satisfying |Ni-|=|N#|. A marginal track
is contained.

SB?: N?= N U N, where Ni=N,, and N#; is any sub-
set of Ny satisfying |[NZ|=|NZ|. A marginal track is
contained.

SB?: N®*=N:,UN3, all the nets not contained in the
above. A marginal track is contained.

{Step 2> Apply BOX-PEELER I to each sub-switch-
box and superimpose the results. (END)
(Proof) From [CARD] condition and the assumption.

k: |er| - |Nhr|
=|th|—|sz|§0.

Then it is obvious that all three sub-netlists are consis-
tently defined and each satisfies the conditions of THEO-
REM 1. Thus each sub-switch-box is completely routa-
ble. By BASIC RULE that each net in each subproblem
is fixed at the ¢-acceptable track, these three resultant
routings can be superimposed without violating
DESIGN CONSTRAINT. ]
Example 2: Given a switch-box routing problem
SB2 in Fig. 5, we can apply BOX-PEELER II. The result
is shown in the figure. (END)
The next algorithm BOX-PEELER III is another
variation of BOX-PEELER L
[THEOREM 3] Net list N subject to the following
conditions is completely routable by BOX-PEELER III.
[CARD] : |Ny|=|Nxl.
[MARG] : There is at least one horizontal marginal
track and one vertical marginal track.
{Router : BOX-PEELER III>
Without loss of generality, we assume that a=|No/|
is not less than any of &=|Nul, |Ns-|, and ¢=|Nw/| and
the given vertical marginal track is in the left outside of

YA,

Fig. 5 Application of BOX-PEELER II to SB2.
N'={1,2,3,4,5, 6}
N?={11, 12,13, 14}
N*={21, 22, 23, 24}

N,.
{Step 1> * Let tms and fm» be vertical and horizontal
marginal tracks, respectively.
* Let N;;kl‘_Nyl, N;kr‘_Nur, N;fz‘*‘th, and N);kr‘_Nhr.
+ Let Nj—Nor.
« Prepare three spaces SB?, SB?, and SB® which will be
completed as sub-switch-boxes when
SB': L-R type. The number of vertical nets and that of
horizontal nets are equally b.
SB?: R-L type. The number of vertical nets and that of
horizontal nets are equally c.
SB?: R-R type. The number of vertical nets and that of
horizontal nets are equally k=a—c.
/% It is not decided in advance which nets each sub-
switch-box contains. This is a difference from BOX-
PEELER II. %/
(Step 2> -+ Let NJtCN¥ be the set of nets that have
the lower terminals in the left outside of N}
« Let # be the maximum even integer not greater than
any of the numbers of vertical unfixed nets of SB* and
INE.
+ Let N&—NX— N
+ Apply PEEL-THE-BOX to SB? 2# times with
Input : N%UN7, and #mo,
OQutput : N UN#, and tno.
(Step 3> +If SB'is completed (NF=¢), then go to
Step 4, else apply PEEL-THE-BOX to SB’ 2 times with
Input : NiUN#, and fmo,
Output : NiUNZE, and fno.
» Go to Step 2.

(Step 4> - If k is even, apply BOX-PEELER I to SB?
with
Input : N UNZ, and fms,

else apply PEEL-THE-BOX to one horizontal unfixed
net of SB® with

Input: N UN#%, and tm,
and apply BOX-PEELER I to one vertical unfixed net of
SB?® and SB? with
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Input : N UNE, and fna. (END)
(Proof) It is obvious that the switch-box is completed
if SB?, SB?, and SB® are completed.

First, we show that the nets of SB' and SB? are
fixed in Steps 2 and 3. Initially there is a marginal track
with respect to N that ¢-accepts N#. In Step 2,
suppose that the nets of SB® have been fixed and there
is a marginal track with respect to N that ¢-accepts
Ni% in the left outside of N From the selection of
N, it is also a marginal track with respect to Ni. Then
there is a marginal track with respect to N that
¢-accepts N in the left outside of NJ when PEEL-
THE-BOX applies multiple of 4 times. In Step 3, there
is a marginal track in the left outside of N when
PEEL-THE-BOX applies 2 times. That is, at each step,
the condition that there is a marginal track with respect
to N that ¢-accepts N in the left outside is
maintained. Therefore Step 2 and 3 run consistently.

Next, we show that all the nets of SB? are fixed at
Step 2 if £ is even, and all the nets of SB® except one
vertical and one horizontal nets are fixed at Step 2 if £
is odd. In other words, 2| %/2] vertical nets are fixed as
the nets of SB®. A net of N, is a candidate to be a net
of SB? if the net in either side of it is the net of N, when
all the nets of Ny, and N,r are arranged in line along
with the horizontal coordinates of the terminal of N, on
the upper wall and the terminal of N, on the bottom
wall. Let a: be the number of nets of N,- such that their
lower terminals are between the upper terminals of Nu..
Then

a= a;.

Mo

The number of candidates of SB? is
b
g(JZLaf/ZJ;a—-b—l;a-—c—1=k—1.

The first equality holds if all a; s are odd. If % is odd,
then at least one of a: s is even. The second inequality
holds, because ¢= ¢ = b from the assumption. Therefore

goztaf/m =9 k/2.

Then it is possible that enough number of nets are fixed
as the nets of SB®

In Step 4, when the number of nets of SB?® is even,
it is possible to fix SB? according to THEOREM 1. In
case the number of SB? is odd, fm, obviously ¢-accepts
the horizontal unfixed net of SB® and the vertical
unfixed net of SB? is of the same'type of vertical nets of
SB?%. Then from COROLLARY 1 it is possible to fix
them all. O

Example 3: Given a switch-box routing problem
SB3 shown in Fig. 6, we can apply BOX-PEELER III.
The numbers of vertical nets of N!, N2, and N3, which
are equal to those of horizontal nets, are 2, 3, and 2,
respectively. Initially, N ={11}. But no net is fixed at

1371
4 _ .4 ' _241522 1311
1 L e
21
23
3
14 :
16
12
e 21
23
: : : R —— 1
W o2 1518 i
Fig. 6 Application of BOX-PEELER III to SB3.
N'={1,2,3,4}

N*={11, 12, 13, 14, 15, 16}
N®={21, 22, 23, 24}

Step 2, because #=0. Thus, fix the nets 1 and 2 at Step
3 as the nets of SB'. Now, Ni={22, 24}. Fix 21, 22, 23,
and 24 at Step 2 as SB®. Next fix the nets 3 and 4 at Step
3 as SB!. Finally fix the nets 11, 12, 13, and 14 at Step
4 as SB% The result is shown in the figure. (END)

6. BOX-PEELER for [TYPE] Constraint Problems

Preceding BOX-PEELER’s are to use one track for
one net, thus tending to be inefficient. Following routers
try to pack as many nets in a track.

[THEOREM 4] Net list N subject to the following
conditions is completely routable by BOX-PEELER IV.
[TYPE] : Either L-L, or L-R, or R-L, or R-R.

[MARG] : There is at least one marginal track.
[DENS]: #=D,, m=D.

% : the number of horizontal tracks

m . the number of vertical tracks
{Router : BOX-PEELER IV>
{Step 1> + Apply LEFT-EDGE to N, and N; on the
tracks which have no terminals. Fuse the nets that are
fixed on the same track as a fusion net. Let two end
terminals of a fusion net be the terminals of the leftmost
and rightmost (topmost and bottommost) terminals of
all terminals of component nets.

{Step 2> + Apply PEEL-THE-BOX with respect to the
fusion nets until either N3 or N¥ is empty.

Input : N;¥UN#, and a marginal track.

Output : N¥UN#¥, and a marginal track.

/% Fixing a fusion net is to fix each component net. * /
{Step 3> - Fix unfixed fusion nets in any order at
arbitrary tracks that ¢-accept them.

(Proof) In Step 1, a fusion net is left-turn or right-turn
if the component nets are all left-turn or right-turn,
respectively. Therefore if the original switch-box is a
type then the switch-box with respect to the fusion nets
is the same type. According to a similar argument for
the previous algorithm, Step 2 runs without a contradic-
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Fig. 7 Application of BOX-PEELER IV to SB4.
No={1,2,4,5,6,9,11,12,13, 14}
N»={3,7,8,10}

tion until either N or N is empty.

The problem is whether there are enough number of
tracks that ¢-accept all the unfixed nets in Step 3. We
check how many tracks ¢-accept unfixed nets.

Suppose that all the nets of N, were fixed in Step 2.
All the nets are fixed at marginal tracks in Step 2. It in
turn produces as many number of tracks that ¢-accept
N¥ by Lemma 1. A track that ¢-accepts N also
¢-accepts NiF*C N before nets of N — Ni* are fixed at
the track. Let X be the number of horizontal tracks
that have no terminal and Y be the number of horizon-
tal tracks at which nets have been fixed in Step 2. Then
at the end of Step 2, there are |N.|+X —Y tracks that
¢-accept Ni¥. The number of necessary tracks for
unfixed vertical nets is T(N,)—Y. By the density
condition

n=2|Nu|+ X = T(Ny)+|Ns|=Ds.
Thus, we have
|INo |+ X —Y=T(Ny)—Y.

This shows that there are enough number of empty
tracks at Step 3. Ol
Example 4: Given a switch-box routing problem
SB4 in Fig.7, we can apply BOX-PEELER IV. The
fusion nets are {1, 2}, {4, 5, 6}, {11, 12}, {7, 8} and single
nets. First, net 1 and 2 are fixed since there is a given
horizontal marginal track. And nets 3, 4, ---, 10 are fixed
at Step 2. Then N¥=¢. At Step 3, net 11, 12, 13, and 14
are fixed at tracks that ¢-accept them. The result is
shown in Fig. 7. (END)

7. BOX-PEELERS for Minimal-Constraint Problems

BOX-PEELER 1V is generalized to be more critical
in condition [DENS].
[THEOREM 5] Net list N subject to the following
conditions is completely routable by BOX-PEELER V.
[MARG] : There are at least two marginal tracks.
[DENS] : Either both of (1) and (2) or both of
(@) and ( B) is satisfied.

(1) #n=2|Nu|+max(T (Nor) —|Nirl, Srz)
+max(T(Nv:) — | Nud, 6r)
(2) mz2|Ny|+max(T(Nur)—|Norl, 1— Sze)
+max(T(Nw) = | Nol, 1—61)
(@) n=2|Nu+max(T(Nor)—|Nudl, Sre)
+max( T (Not) —|Nirl, Our)
(B) m=2|No|+max(T(Nwn)—|Norl, 1— &)
+max( T (Nur)— | Notl, 1— 6ir)

where, § is defined as:
If included

two horizontal marginal tracks: All &’s are 1.

one horizontal marginal track : One of kg, oL, One
of Ok, Sir are 1 and the others are 0.

no horizontal marginal track : All &’s are 0.
{Router : BOX-PEELER V>
{Step 1> Partition the switch-box into two subswitch-
boxes SB', SB? such that they are R-R and L-L type,
respectively if both of (1) and (2) are satisfied. They
are R-L and L-R type if both of (&) and (f) are
satisfied.

{Step 2> Apply BOX-PEELER IV to each sub-switch-
box and superimpose the results. (END)
(Proof) [DENS] shows that each sub-switch-box
satisfies [DENS] and [MARG] of THEOREM 4.

(1) guarantees that in case each sub-switch-box
is of R-R or L-L type, each has enough number of
horizontal tracks to fix the nets and contains a proper
horizontal marginal track.

(1) is transformed to

n= (ZlNhrl +max( T(er) - INhrl, SRR)
+ (2| Nl + max( T (Nop:) — | Nadl, S1)) (19

The first term of right hand side of (1”) shows that the
R-R type sub-switch-box satisfies [DENS] of THEO-
REM 4. That is, for horizontal tracks #ze and vertical
density Duzr of the R-R type sub-switch-box, it holds

NRR = (ZlNhrl +max( T(Nz;r) - INhr|, 6RR))
= T(Nur)+ |Nhr| :DvRR.

Moreover, § guarantees that the given marginal tracks
are assigned to each sub-switch-box. In other words, if
Sxe=1, then a horizontal marginal track is included in
the R-R type sub-switch-box, else, that is, 1—d=1, a
vertical marginal track is included.

Therefore, [DENS] and [MARG] of THEOREM 4
are satisfied. Thus, each sub-switch-box is completely
routable and the results are able to be superimposed.

U

Example 5: Given a switch-box routing problem

SB5 in Fig. 8, we can apply BOX-PEELER V. Here,

n=12, m=19,
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Fig. 8 Application of BOX-PEELER V to SB5.
N'={1,2,3,4,5,6,7,8}
N2=({11,12, 13, 14, 15, 16}
|Nvl|:5, Ierl:4y |Nhl|:2, |Nhr|:3,
T(NDZ)ZB, T(Nur)zz, T(Nhl)ZZ, T(Nhr)zz.

Then (1) of [DENS] is not satisfied because
7213210+max(2—3, k) +max(5—2, SL).

While ( @) and ( 8 ) are satisfied. N is partitioned into
N' and N? that are R-L type and L-R type, respectively.
The result is shown in the figure. (END)

8. Concluding Remarks

The concept of switch-box is so essential every-
where in channel routing that there have been proposed
a number of switch-box routers. But they are all heuris-
tics and, as a consequence, we have no knowledge what
connection problems are completely routable. It seems
that to study them is not meaningful because usually the
switch-box routing is a consequence of 2-side channel
routings and therefore, to control the switch-box connec-
tion problems is no other than to try a globally optimum
routing. Still, however, we find it worth from an obser-
vation of LEFT-EDGE in 2-side channel routing. It has
been a background in channel routing because, so we
believe, it is the only method that makes its tractable
problems clear.

The routing algorithm in this paper introduced a
routing principle PEEL-THE-BOX and studied the trac-
table problems. To show that the concept could be a
potential guideline for practical problems, we need a
systematic way to extract maximal tractable subprob-
lems from a given problem.

Acknowledgement

The authors wish to thank Prof. S. Ueno and Mr. H.
Miyano of Dept. of E. E. Engrg., Tokyo Inst. of Tech. for
their helpful and warm suggestions.

SWITCH-BOX ROUTER BOX-PEELER

1373

References

(1) A.Hashimoto and J. Stevens: “Wire routing by optimizing
channel assignment within large apertures”’, Proc. 8th
Design Automation Workshop, pp. 155-169 (1971).

(2) J.P. Cohoon and P.L. Heck: “BEVER: A computational-
geometry-based tool for switch-box routing”, IEEE Trans.
Comput.-Aided Des. Integrated Circuits & Syst., CAD-7, 6,
pp. 684-697 (1988).

(3) Y.Kawakami, S. Tsukiyama I. Shirakawa and H.Ozaki:
“A switch-box router-Tree-ring switch-box router”, Proc.
Joint Technical Conf. Circuits and Systems, pp.55-61
(1986).

Atushi Takahashi was born in Shizuo-
ka, Japan on December 27, 1966. He
received the B. E degree in electrical and
electronic engineering from Tokyo Insti-
tute of Technology, Tokyo, Japan in 1989.
He is now in the master course of Depart-
ment of Electrical and Electronic Engi-
neering, Tokyo Institute of Technology.
His current research interest is in layout
design from graph theoretical point of
view.

Yoji Kajitani received B. E, M. E, and D.
E. all from Tokyo Institute of Technol-
ogy, Tokyo, Japan. He is currently a
professor of Dept. of Electrical and Elec-
tronic Engrg., Tokyo Institute of Technol-
ogy. His main interests are in graph the-
ory with applications to communication
networks, VLSI layout and routing design,
and combinatorial problems. He is the
author of a book Graph Theory for Net-
works, and others. He received the best
paper awards in 1969, 1973, and 1985 and Yonezawa award in 1971
all from IEICE.




