
論文 / 著書情報
Article / Book Information

Title General Conversion for Obtaining Strongly Existentially Unforgeable
Signatures

Authors Isamu Teranishi, Takuro Oyama, Wakaha Ogata

Citation IEICE Transaction, Vol. E91-A, No. 1, pp. 94-106

Pub. date 2008, 1

URL  http://search.ieice.org/

Copyright  (c) 2008 Institute of Electronics, Information and Communication
Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/


94
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.1 JANUARY 2008

PAPER Special Section on Cryptography and Information Security

General Conversion for Obtaining Strongly Existentially
Unforgeable Signatures∗

Isamu TERANISHI†,††a), Takuro OYAMA††b), Nonmembers, and Wakaha OGATA††c), Member

SUMMARY We say that a signature scheme is strongly existentially
unforgeable (SEU) if no adversary, given message/signature pairs adap-
tively, can generate a signature on a new message or a new signature on a
previously signed message. We propose a general and efficient conversion
in the standard model that transforms a secure signature scheme to SEU sig-
nature scheme. In order to construct that conversion, we use a chameleon
commitment scheme. Here a chameleon commitment scheme is a variant
of commitment scheme such that one can change the committed value af-
ter publishing the commitment if one knows the secret key. We define the
chosen message security notion for the chameleon commitment scheme,
and show that the signature scheme transformed by our proposed conver-
sion satisfies the SEU property if the chameleon commitment scheme is
chosen message secure. By modifying the proposed conversion, we also
give a general and efficient conversion in the random oracle model, that
transforms a secure signature scheme into a SEU signature scheme. This
second conversion also uses a chameleon commitment scheme but only re-
quires the key only attack security for it.
key words: signature scheme, strong unforgeability, standard model,
chameleon commitment, chosen message security

1. Introduction

Strong Existential Unforgeable Signature Scheme:
Strong existential unforgeability (SEU) is a stronger vari-
ant of the usual security notion, existential unforgeability,
for a signature scheme. Ordinary existential unforgeability
prohibits an adversary from forging a valid signature on a
message which a signer has not signed. However, this does
not prohibit an adversary from forging a new valid signature
on a message which a signer has already signed. That is, the
adversary, by giving a message/signature pair (M, σ), may
be able to forge a new valid signature σ′ � σ on M. SEU is
a security notion that ensures not only existential unforge-
ability but also that no adversary can execute the type of
forgery mentioned above.

SEU is useful in constructing many applications, such
as IND-CCA2 secure public-key encryption schemes [6],
[10] and a group signature scheme [4]. We review how SEU
signatures are used in such applications. In the encryption
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schemes [6], [10], an SEU signature σ is used as one part
of a ciphertext. It is a signature on the other part, C, of the
ciphertext. The SEU property ensures the IND-CCA2 se-
curity of these schemes. Indeed, if the signature scheme is
not SEU, an adversary may be able to obtain a new cipher-
text (C, σ′) by modifying the signature of another ciphertext
(C, σ). This means that the encryption is malleable [10], and
hence is not IND-CCA2 secure.

In group signature schemes [4], an authority issues a
signature σ on a user’s secret key x in advance. The sig-
nature will be used as an ID of the user. Hence, if the user
succeeds in forging a signature, he also succeeds in forging
his ID. Therefore, no signature should be able to be forged,
especially, no new signature σ′ � σ on the user’s secret key
x should be. This is the reason we require not only the usual
existential unforgeability but SEU property.

Chameleon Commitment Scheme: Chameleon com-
mitment scheme [13], [14] (which is also called random-
ized trapdoor hashing scheme) is a variant of commitment
scheme such that one can change the committed value after
publishing the commitment, if one knows the secret key.

It is known that one can construct such scheme based
on the discrete logarithm assumption [13], [14]. The com-
mitment of this scheme is equal to that of Pedersen com-
mitment [16]. That is, the commitment of a message M is
C = gMhR, where (g, h) is a public key and R is a random
value. If one knows the discrete logarithm x of h based on
g, one can change the committed value of C to an arbitrary
message M′, by finding R′ which satisfies C = gM′hR′ .

The security notion for the chameleon commitment
scheme is similar to that for the ordinary commitment
scheme, but its binding property is a bit stronger. That is,
it has to satisfy the following strong binding property: no
one can find two different pairs, (M1,R1) and (M2,R2), such
that the commitment Com(M1,R1) of M1 generated by us-
ing the random string R1 is the same as the commitment
Com(M2,R2) of M2 generated by using the random string
R2.

Krawczyk and Rabin [13], [14] also showed that their
commitment scheme is secure under the discrete logarithm
assumption.

1.1 Our Contributions

In this paper, we do the following things:

• We define a new and stronger security notion for

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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a chameleon commitment scheme and propose new
chameleon commitments satisfying this notion.

• By using the above study, we propose two general and
efficient conversions, both of which transform a secure
signature scheme to a SEU signature scheme.

Results for Chameleon Commitment: The known defi-
nition of the strong binding property is weak in the sence
that an adversary is not allowed to access any oracle. In this
sence, we can say that the known definition is of the key only
attack scenario. Therefore, we can consider a stronger secu-
rity notion, strong binding property against chosen message
attack, where the adversary can access an oracle knowing a
secret key, and make the oracle commit values, and change
the commmited values.

In this paper, we give the formal definition of this secu-
rity notion, and propose two schemes satisfying it. The first
scheme is based on the discrete logarithm assumption. The
second scheme is constructed from a chameleon commit-
ment scheme satisfying only the security against key only
attack.

Chosen message secure chameleon commitment can be
useful when it is used as a component of protocols. We will
show that it is useful when we construct a SEU signature
scheme. It is also useful in the Zhang’s work [26]. Zhang
proposed a conversion which transforms a tag based en-
cryption to a CCA2 secure public-key encryption, by using
some kind of a chameleon commitment. One can show that
our chosen message secure chameleon commitments can be
used for their purpose.

Results for SEU signature: By using a chameleon commit-
ment scheme, we propose two general and efficient conver-
sions, both of which transform a secure signature scheme
into a SEU signature scheme. The conversions ensure the
tight security reduction to the underlying security assump-
tions. That is, if there exists an adversary who succeeds in
breaking the SEU property of the converted scheme with
probability ε′ within t′ steps, there exists an adversary who
can break at least one of the underlying assumptions with
probability ε � ε′ within t � t′ steps.

Moreover, the schemes transformed by our conversions
satisfy the on-line/off-line property [21], if we use suitable
chameleon commitment schemes. That is, signers can pre-
compute almost all operations on the signing before they are
given a message. Therefore, the signer can generate signa-
tures quite efficiently.

There is a trade-off between the securities of these
two conversions. The security of a signature scheme trans-
formed by the first conversion can be proved in the stan-
dard model, but requires chosen message security for the
chameleon commitment scheme. In contrast, the security of
a signature scheme transformed by the second conversion
can be proved only in the random oracle model, but only
requires key only attack security for the chameleon commit-
ment scheme.

This trade-off between securities effects the efficiency

of the converted schemes. The second conversion only re-
quires weaker security property for the chameleon com-
mitment scheme and therefore can be implemented by the
most efficient chameleon hashing scheme C = gMhR. It
means that the second conversion generates an efficient con-
verted scheme. In contrast, the first conversion has to be
implemented by a more complicated chameleon hashing
scheme because it requires chosen message security for the
chameleon hashing scheme. Therefore, the first conversion
only generates somewhat less efficient converted scheme
than the second conversion does, although only the first con-
version ensures the security to the converted scheme under
the standard model.

1.2 Theoretical Interests

From the above results, we can conclude that a chosen mes-
sage attack secure chameleon commitment scheme and a
SEU conversion exist if a claw-free permutation pair exists.
This is because we constructed the commitment scheme
and the SEU conversion based on a key only attack secure
chameleon commitment and because Krawczyk and Rabin
[13] constructed a key only attack secure chameleon com-
mitment from a claw-free permutation pair.

1.3 Related Works

Comparing With Trivial Construction of SEU conver-
sion: Rompel [19] showed that oneway function is
constructable from an existentially unforgeable signature
scheme. Moreover, a SEU secure signature scheme is con-
structable from oneway-based signature scheme (see 6.5.2.
of [12], for instance). Combining of these facts means that
we can trivially construct a SEU conversion.

Theoretically, this trivial conversion is superior to our
conversion. It requires no additional assumption when we
prove the SEU security of the converted scheme, although
our conversion requires the existence assumption of a claw-
free permutation pair additionally.

However, our conversion is quite more efficient than
this trivial conversion. Moreover, our conversion ensures
the tight reducibility. Therefore, we can say that our con-
tribution is in proposing a conversion which is efficient and
ensures the tight reducibility.

The Result of Boneh, Shen, and Waters [5]: In PKC
2006, Boneh, Shen, and Waters [5] proposed a SEU sig-
nature scheme by modifying the Waters signature scheme
[25]. They also showed that their modification is applicable
to not only the Waters scheme but also any existentially un-
forgeable signature schemes satisfying the partitioned prop-
erty [5]. However, there are signature schemes, which
seems to be non-partitioned, such as DSS, the Camenisch-
Lysyanskaya scheme [7], and Okamoto scheme [20]. More-
over, the modified scheme does not satisfy the on-line/off-
line property. Our conversions are the first ones that can
tightly convert any signature scheme, and are also the first
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ones that ensure the on-line/off-line property.

The Result of Steinfeld, Pieprzyk, and Wang [23]: Stein-
feld, Pieprzyk, and Wang [23] propose a similar conversion
to our conversion of the standard model. Their work was
done independently and concurrently when we published
the extended abstract version [24] of this paper, and the key
idea behind the construction of their conversion is the same
as that of ours.

We can say that the results of this full paper is a gen-
eralization of both our result of the extended abstract [24]
and their result [23]. Our proposed conversion implemented
with our proposed first or second chameleon commitment
scheme is coincident with our conversion of the extended
abstract [24] or Steinfeld et al.’s conversion respectively.

The Result of Zhang [26]: Zhang [26] independently de-
fined a weaker variant of our chosen message security of a
chameleon commitment, named the oracle collision resis-
tance (OCR), and gave an OCR secure scheme under a non-
standard assumption, the one-more discrete log assumption
[17]. His OCR is equivalent to a variant of our chosen mes-
sage security where an adversary is not allowed to select
committed value and to access the committing oracle twice
or more times. We remark this was considered under a dif-
ferent scenario, namely, achieving the CCA2 security of a
public-key encryption scheme.

2. Preliminary

2.1 Chameleon Commitment

Chameleon commitment scheme [13], [14] (which is also
called randomized trapdoor hashing scheme) is a variant of
commitment scheme such that one can change the commit-
ted value after publishing the commitment, if one knows the
secret key:

Definition 2.1 (Chameleon Commitment Scheme). Cha-
meleon commitment scheme is a tuple Ω = (Gen, {Rcpk},
Com, Cham) as follows.

• Gen is called a key generation algorithm. On inputting
1κ, Gen outputs a pair of public key cpk and a secret
key csk.

• {Rcpk} is a family of sets Rcpk. Each Rcpk is a set of
random numbers associated with a public key cpk. One
can take an element R ∈ Rcpk uniformly and randomly
in polynomial time.

• Com is called committing algorithm. On inputting cpk,
a message M and an element R ∈ Rcpk, Com outputs a
commitment C of M with respect to the witness R. The
algorithm Com has to be deterministic.

• Cham is called chameleon algorithm. On inputting
csk, a message M, a witness R and another mes-
sage M′, Cham outputs a witness R′. For any mes-
sages M and M′, and for any R ∈ Rcpk, if we
set R′ = Chamcsk(M,R,M′), then Comcpk(M,R) =
Comcpk(M′,R′) holds.

—Gen(1κ)—
g← G, x← Zq, h← gx,
cpk← (g, h), csk← x. Outputs (cpk, csk).
Rcpk = Zq

—Comcpk(M,R)—
C ← gH(M)hR. Outputs C.
—Chamcsk(M,R,M′)—
Randomly select R′ ∈ Zq

satisfying H(M) + Rx = H(M′) + R′x mod q.
Outputs R′.

Fig. 1 Chameleon commitment of [13], [14].

Let κ be a security parameter. For non-negative val-
ued functions t = t(κ) and ε = ε(κ), we say that Ω =
(Gen, {Rcpk}, Com, Cham) is (t, ε)-secure if it satisfies both
of the following two security requirements, uniformity and
(t, ε)-strong binding property:

Definition 2.2 (Uniformity). We say thatΩ satisfies unifor-
mity if it satisfies the following property: Let (cpk, csk) be a
public key/secret key pair. Let M and M′ be arbitrary mes-
sages. For a uniformly randomly selected witness R ∈ Rcpk,
we set R′ = Chamcsk(M,R,M′). Then R′ distributes uni-
formly on Rcpk.

Definition 2.3 ((t, ε)-Strong Binding Property (against
the key only attack)). Let A be an adversary. We
consider the following game: (cpk, csk) ← Gen(1κ),
((M,R), (M̂, R̂)) ← A(cpk), and output win if and only if
both (M,R) � (M̂, R̂) and Comcpk(M,R) = Comcpk(M̂, R̂)
hold. We say that Ω satisfies (t, ε)-strong binding property
if, for any adversary A which terminates within t steps, the
probabilityA wins is less than ε.

We should note the following two points about the
above definition. First, we use the term “strong” binding
property, because an adversary is required to satisfy not
the condition M � M̂ but the stronger condition (M,R) �
(M̂, R̂). Krawczyk and Rabin [13], [14] also define (t, ε)-
binding property where an adversary is required to satisfy
only M � M̂, but we do not use this property in this paper.

Second, one can easily show that a “perfect hiding
property” of the commitment scheme follows from its uni-
formity. That is, if Ω satisfies the uniformity, then the dis-
tribution of Ccpk(M,R) and Ccpk(M̂, R̂) are perfectly indis-
tinguishable, where M and M̂ are arbitrary messages and R
and R̂ are randomly selected witnesses.

Krawczyk and Rabin [13], [14] proposed the chame-
leon commitment scheme described in Fig. 1, and they show
that their scheme is secure under the discrete logarithm as-
sumption.

Definition 2.4 (Discrete Logarithm Assumption). Let κ be
a security parameter, and {Gκ} be a family of cyclic groups
G = Gκ with the prime order q = qκ. Let t = t(κ) and
ε = ε(κ) be non-negative valued functions.

We say that the (t, ε)-discrete logarithm assumption
holds in {Gκ} if, for any adversary A which terminates
within t steps, Pr(h ← G, z ← Zq, g ← hz, u ← A(g, h) :
z = u) < ε. holds.
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Theorem 2.5. [13], [14] Let G be a group on which (t, ε)-
discrete logarithm assumption holds. Then the chameleon
commitment scheme described in Fig. 1 is (t, ε)-secure.

2.2 Other Notions

Definition 2.6. (Existential Unforgeability [11], Strong
Existential Unforgeability (SEU) [1]) Let κ be a security
parameter, Σ = (Gen,Sig,Ver) be a signature scheme, and
A be an adversary. Let Osig

sk be an oracle named signing or-
acle which, on inputting a message M, outputs a signature
σ on M. We consider the following game:

(pk, sk)← Gen(1κ),

(M0, σ0)← AOsig
sk (pk)

If Verpk(M0, σ0) = reject, return 0
Return 1.

We set (Mi, σi) to the pair of the i-th signing query of
A and the corresponding answer. We say thatA wins if the
output of the above game is 1 and M0 � Mi holds for any i.
We also say that A wins strongly if the output of the above
game is 1 and (M0, σ0) � (Mi, σi) holds for any i.

Let t = t(κ), qS = qS (κ), and ε = ε(κ) be non-
negative valued functions. We say that Σ = (Gen,Sig,Ver)
is (t, qS , ε)-existentially unforgeable (resp. (t, qS , ε)-strongly
existentially unforgeable (SEU)) if for any adversaryA such
that it terminates within t steps and has made at most qS

queries to the signing oracle, the probability thatA will win
(resp. strongly win) is less than ε.

If Σ = (Gen,Sig,Ver) is a signature scheme in the
random oracle model [2], we say that Σ is (t, qS , qH , ε)-
existentially unforgeable (resp. (t, qS , qH , ε)-strongly exis-
tentially unforgeable (SEU)) if for any adversary A such
that it terminates within t steps and has made at most qS

queries to the signing oracle and at most qH queries to
the random oracle, the probability that A will win (resp.
strongly win) the above game is less than ε.

Definition 2.7 (Collision Resistant Hash Function). Let κ
be a security parameter and Let {Hκ} be a family of functions
H = Hκ : {0, 1}∗ → {0, 1}κ named hash functions. Let t =
t(κ) and ε = ε(κ) be non-negative valued functions. We say
that {Hκ} is (t, ε)-collision resistant if any adversaryA, who
terminates within t steps, satisfies Pr((m0,m1) ← A(1κ) :
H(m0) = H(m1)) < ε.

3. Chosen Message Security of Chameleon Commit-
ment

The known definition of strong binding property, given in
Sect. 2.1, is weak in the sence that an adversary is not al-
lowed to access any oracle. In this sence, we can say that the
known definition is of the key only attack scenario. There-
fore, we can consider a stronger security notion, strong bind-
ing property against chosen message attack, where the ad-
versary can access an oracle knowing a secret key, and make

—O(csk, ·)—
(At the beginning of an experiment,
initialize List to ε and i to 0.).
/* Here i is the number of COM-query.*/
If a query (M,COM) is input,

i← i + 1, R← Rcpk, C ← Comcpk(M,R),
List← List ∪ {(i,C,M,R)}, outputs C.

If a query (i,M′,CHAM) is input,
If there is some (C,M,R) satisfying (i,C,M,R) ∈ List,

R′ ← Chamcsk(M,R,M′).
List← List \ {(i,C,M,R)}, output R′.

Otherwise
Output ⊥.

Fig. 2 The description of oracle O.

the oracle commit values, and change the commmited val-
ues.

In this section, we formalize this security notion, and
construct two chameleon commitment schemes satisfying it.

3.1 Definition of Chosen Message Security

In the chosen message attack scenario, an adversary is al-
lowed to access an honest commiter. Formally, the honest
commiter is realized as an oracle O(csk, ·). The descrip-
tion of the oracle O(csk, ·) is as follows. If an adversary
sends a message Mi with a symbol COM, O selects Ri ∈
Rcpk uniformly randomly, computes Ci = Comcpk(Mi,Ri),
stores (Ci,Mi,Ri), and outputs Ci. If an adversary sends a
number i, message M′i , and a symbol CHAM, it computes
R′i = Chamcsk(Mi,Ri,M′i ) and outputs R′i . For each i, an
adversary is allowed to make query (i,M′i ,CHAM) at most
once. Moreover, the adversary is not allowed to make query
(i,M′i ,CHAM) such that i is more than the number of COM-
query. If the adversary makes such queries, O outputs ⊥.
The formal definition of O is depicted in Fig. 2.

Definition 3.1 ((t, ε, q)-Strong Binding Property against
the Chosen Message Attack). LetΩ = (Gen, {Rcpk}, Com,
Cham) be a chameleon commitment scheme. Let A be an
adversary. We consider the following game: (cpk, csk) ←
Gen(1κ), ((M,R), (M̂, R̂)) ← AO(csk,·)(cpk), and output win
if and only if both (M,R) � (M̂, R̂) and Comcpk(M,R) =
Comcpk(M̂, R̂) hold.

We say that the chameleon commitment scheme Ω sat-
isfies (t, ε, q)-strong binding property against the chosen
message attack if, for any adversary A which terminates
within t steps, and makes COM queries at most q times,
(and therefore makes CHAM queries at most q times), the
probabilityA wins is less than ε.

We say thatΩ is (t, ε, q)-secure against the chosen mes-
sage attack if it satisfies the uniformity property and (t, ε, q)-
strong binding property against the chosen message attack.

3.2 Idea behind Constructions

We will give two chameleon commitment schemes which
are secure against the chosen message attack in Sects. 3.3
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—Gen(1κ)—
g← G, x, y← Zq, (h1, h2)← (gx, gy),
cpk← (g, h1, h2), csk← (x, y). Outputs (cpk, csk).

Rcpk = Zq
2

—Comcpk(M,R)—
Parse R as (r, s), C ← gH(M)h1

rh2
s. Outputs C.

—Chamcsk(M,R,M′)—
Parse R as (r, s).
Randomly select R′ = (r′, s′) ∈ Zq

2

satisfying H(M) + rx + sy = H(M′) + r′x + s′y mod q.
Outputs R′.

Fig. 3 First chameleon commitment.

and 3.4. The basic idea behind the constructions of these
schemes are the same. That is, we construct chameleon
commitment schemes which have two secret keys.

We show why we can ensure the chosen message secu-
rity of such schemes. In both schemes, the key only attack
securities of the schemes are equivalent to the difficulty of
finding one of the secret keys. The other secret key is used
to simulate the oracle for the chosen message security. That
is, a simulator, who is given one of secret key, can run an
adversary against the chosen message security, simulate the
oracle by using this secret key, obtain an output of the ad-
versary, and find the other unknown secret key.

3.3 The First Proposed Chameleon Commitment

We construct a chosen message secure chameleon commit-
ment scheme based on the discrete logarithm assumption.
Let κ be a security parameter, G be a cyclic group with or-
der q. Our proposed scheme is described in Fig. 3.

Theorem 3.2. Let E be the exponentiation cost on a
group G. Suppose that the (t, ε)-discrete logarithm as-
sumption on G holds and the (t, ε)-collision resistance of
H holds. Then the chameleon commitment scheme Ω =
(Gen, {Rcpk},Com,Cham) described in Fig. 3 is (t′, ε′, q′)-
secure against the chosen message attack. Here

t = t′ + 2q′E + (lower terms),
ε = ε

′
3 − (lower terms).

Proof. Ω clearly satisfies the uniformity property. We
show that Ω satisfies the (t′, ε′, q′)-strong binding property
against the chosen message attack. Let us make a contradic-
tory supposition that Ω does not satisfy the (t′, ε′, q′)-strong
binding property against the chosen message attack. That is,
we assume that there exists an adversary A that can break
the strong binding property against the chosen message at-
tack with probability ε′ within t′ step and within q′ signing
queries. Then with probability ε′, A finally outputs a col-
lision pair ((M,R), (M̂, R̂)) satisfying (M,R) � (M̂, R̂) and
Comcpk(M,R) = Comcpk(M̂, R̂) holds. We parse R and R̂ as
(r, s) and (r̂, ŝ), respectively. Let ε1, ε2, and ε3 be the prob-
ability thatA outputs a collision pair and the following (1),
(2), and (3) hold, respectively.

(1) M � M̂ and (r, s) = (r̂, ŝ),

(2) r � r̂,
(3) s � ŝ

By using A as a subroutine, we will construct three
machines B1, B2, and B3, and will show the following facts:

• If ε1 ≥ ε′/3, B1 succeeds in breaking (t, ε)-collision
resistance of H.

• If ε2 ≥ ε′/3 or ε3 ≥ ε′/3, B2 or B3 succeeds in break-
ing (t, ε)-discrete logarithm assumption, respectively.

Clearly ε1 + ε2 + ε3 ≥ ε′ holds. Therefore, at least
one of εi is not less than ε′/3. This means that the theorem
holds.

The case where ε1 ≥ ε′/3 holds: By using A as a sub-
routine, we construct an adversary B1 which can break the
(t, ε1)-collision resistance of H. The adversaryB1 runsA as
follows:

Setup: B1 executes Gen(1κ) and obtains a public key cpk =
(g, h1, h2) and csk = (x, y) as outputs. Then B1 initializes
List to the empty list, and executesA(cpk).

Oracle Simulation: Since B1 knows the secret key csk, B1

can simulate O(csk, ·)-oracle.

Extraction: A finally outputs a pair ((M,R), (M̂, R̂)). With
the probability at least ε′, the properties (M,R) � (M̂, R̂) and
Comcpk(M,R) = Comcpk(M̂, R̂) hold.

We consider the case where these properties hold. We
parse R and R̂ as (r, s) and (r̂, ŝ), respectively. Since A
is type 1 adversary, (r, s) = (r̂, ŝ) holds. Since the equal-
ity Comcpk(M,R) = Comcpk(M̂, R̂) holds, it follows that
gH(M)h1

rh2
s = gH(M̂)h1

r̂h2
ŝ = gH(M̂)h1

rh2
s. Hence, H(M) =

H(M̂) holds. Since M � M̂ holds, this means that (M, M̂) is
a collision pair of H. That is, B1 succeeds in obtaining the
collision pair (M, M̂).

One can easily show that B1 terminates within t steps
and has the success probability ε1. If ε1 ≥ ε′/3, B1 breaks
the (t, ε)-collision resistance of H.

The case where ε2 ≥ ε′/3 holds: By using A as a subrou-
tine, we construct an adversaryB2 that can solve the discrete
logarithm problem. Let (g∗, h∗) ∈ G2 be an instance of the
discrete logarithm problem in G. The aim of B2 is to obtain
z∗ ∈ Zq satisfying h∗ = g∗z∗ . The adversary B2 runs A as
follows:

Setup: B2 selects y ∈ Zq randomly and sets cpk = (g, h1, h2)
to (g∗, h∗, g∗y). B2 initializes List to the empty list. Then B2

provides cpk toA and runsA.

Oracle Simulation: Let i be a positive integer. If A
makes i-th COM-query (Mi,COM), B selects r′i , si ∈ Zq

randomly, computes Ci = g
H(Mi)h1

r′i h2
si (i,Ci,Mi, (r′i , si))

to List, and sends Ci back to A. If A makes CHAM-
query (i,M′i ,CHAM), B2 finds (i,Ci,Mi, (r′i , si)) ∈ List. If
there is no such (i,Ci,Mi, (r′i , si)), B2 sends ⊥ back to A.
Otherwise, B2 selects s′i ∈ Zq satisfying H(Mi) + siy =
H(M′i )+ s′iy mod q, remove (i,Ci,Mi, (r′i , si)) from List, and
outputs R′i = (r′i , s

′
i).

Extraction: Suppose that A succeeds in outputting
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—Gen(1κ)—
(cpk1, csk1)← Gen(1)(1κ), (cpk2, csk2)← Gen(2)(1κ),
cpk← (cpk1, cpk2), csk← (csk1, csk2). Outputs (cpk, csk).

Rcpk = R(1)
cpk1
× R(2)

cpk2

—Comcpk(M,R)—
Parse R as (R1,R2).
C1 ← Com(1)

cpk1
(M,R1), C2 ← Com(2)

cpk2
(C1,R2).

Outputs C2.
—Chamcsk(M,R,M′)—
Parse R as (R1,R2). R′1 ← Cham(1)

csk1
(M,R1,M′), R′2 ← R2.

Outputs R′ = (R′1,R
′
2).

Fig. 4 Second chameleon commitment.

((M,R), (M̂, R̂)) satisfying both (M,R) � (M̂, R̂) and
Comcpk(M,R) = Comcpk(M̂, R̂). We parse R and R̂ as (r, s)
and (r̂, ŝ) respectively. Then, from the definition of Com,
Comcpk(M,R) = Comcpk(M̂, R̂) means that gH(M)h1

rh2
s =

gH(M̂)h1
r̂h2

ŝ holds. Therefore, it follows g∗H(M)+ysh∗r =
gH(M)h1

rh2
s = gH(M̂)h1

r̂h2
ŝ = g∗H(M̂)+yŝh∗ r̂. Recall that r � r̂

holds. Therefore, z∗ = (H(M)+sy−H(M̂)− ŝy)/(r̂−r) mod q
is the discrete logarithm of g∗ based on h∗. Therefore, B2

outputs z∗ and stops.
One can easily show that B2 terminates within t steps

and has the success probability ε2. If ε2 ≥ ε′/3, B2 can
break the (t, ε)-discrete logarithm problem in G.

The case where ε3 ≥ ε′/3 holds: The construction of B3 is
quite similar to the construction of B2, although B3 embeds
(g∗, h∗) not to (g, h1) but to (g, h2). Therefore, we omit the
details. �

3.4 The Second Proposed Chameleon Commitment

We next construct a chosen message secure chameleon
commitment scheme by using key only attack secure
chameleon commitment schemes. Let κ be a security pa-
rameter,Ω(1) = (Gen(1), {R(1)

cpk},Com(1),Cham(1)) andΩ(2) =

(Gen(2), {R(2)
cpk},Com(2),Cham(2)) be two chameleon com-

mitment schemes. Our proposed scheme is described in
Fig. 4.

Theorem 3.3. Let U be the maximum of the computational
cost of Com(1) and that of Com(2). Let T be the maximum
of the computational cost of Cham(1) and that of Cham(2).
Suppose that Ω(1) and Ω(2) satisfy (t, ε)-security against the
key only attack. Then the chameleon commitment scheme
Ω = (Gen, {Rcpk},Com,Cham) described in Fig. 4 satisfies
(t′, ε′, q′)-security against the chosen message attack. Here

t = t′ + 2q(U + T ) + (lower terms)
ε = ε

′
2 − (lower terms)

Since we can construct a key only attack secure
chameleon commitment from a claw-free permutation pair
[13], we can obtain the following corollary:

Corollary 3.4. If there exists a claw-free permutation pair,

then there exists a chameleon commitment scheme which is
secure against chosen message attack. �

Proof of Theorem 3.3. One can easily show that Ω satisfies
the uniformity property. Therefore, we only show that Ω
satisfies the (t′, ε′)-strong binding property against the cho-
sen message attack. Suppose that there exists an adversary
A that can break the (t′, ε′)-strong binding property against
the chosen message attack. Then with probability ε′, A
finally outputs ((M,R), (M̂, R̂)) satisfying (M,R) � (M̂, R̂)
and Comcpk(M,R) = Comcpk(M̂, R̂) holds. We parse R
and R̂ as (R1,R2) and (R̂1, R̂2) respectively, and set C1 =

Com(1)
cpk1

(M,R1) and Ĉ1 = Com(1)
cpk1

(M̂, R̂1).

One can easily show that (M,R) � (M̂, R̂) holds if and
only if at least one of the following two properties holds:

(1) (M,R1) � (M̂, R̂1) and C1 = Ĉ1

(2) Either R2 � R̂2 or C1 � Ĉ1 holds.

Let ε1 (resp. ε2) be the probability thatA succeeds in com-
puting a collision pair with property (1) (resp. (2)).

By usingA as a subroutine, we will construct two ma-
chines B1 and B2, and will show the following facts:

• If ε1 ≥ ε′/2,B1 succeeds in breaking (t, ε)-strong bind-
ing property of Ω(1) against the key only attack.

• If ε2 ≥ ε′/2,B2 succeeds in breaking (t, ε)-strong bind-
ing property of Ω(2) against the key only attack.

Clearly, at least one of i ∈ {1, 2} satisfies εi ≥ ε′/2.
This means that the theorem holds.

The case where ε1 ≥ ε′/2 holds: By using A as a sub-
routine, we construct an adversary B1 which can break the
(t, ε1)-strong binding property of Ω(1) against the key only
attack. Let cpk∗1 be an input of B1. B1 runsA as follows:

Setup: B1 executes Gen(2)(1κ) and obtains (cpk2, csk2) as
an output. Then, B1 initializes List to the empty list, sets
cpk1 = cpk∗1 and cpk = (cpk1, cpk2) and executesA(cpk).

Oracle Simulation: Let i be a positive integer. If A
makes i-th COM-query (Mi,COM), B1 selects R1,i and R2,i

randomly, computes C1,i = Com(1)
cpk1

(Mi,R1,i) and C2,i =

Com(2)
cpk2

(C1,i,R2,i), adds (i,C2,i,Mi, (R1,i,R2,i)), and sends
C2,i back toA.

If A makes CHAM-query (i,M′i ,CHAM), B1 finds
(i,C2,i,Mi, (R1,i,R2,i)) ∈ List. If there is no such
(i,C2,i,Mi, (R1,i,R2,i)), B1 sends ⊥ back to A. Other-
wise, B1 selects R′1,i, computes C′1,i = Com(1)

cpk1
(M′i ,R

′
1,i)

and R′2,i = Cham(2)
csk2

(C1,i,R2,i,C′1,i,CHAM), removes
(i,C2,i,Mi, (R1,i,R2,i)) from List, and outputs R′i = (R′1,i,R

′
2,i).

One can easily show that C2,i = Comcpk(M′i ,R
′
i) holds.

By using the uniformity of Ω(1) and Ω(2), one can also easily
show that the distribution of the output of B is the same as
that of the output of the oracle O.

Extraction: A finally outputs a pair ((M,R), (M̂, R̂)). We
parse R and R̂ as (R1,R2) and (R̂1, R̂2) respectively. Let C1 =

Com(1)
cpk1

(M,R1) and Ĉ1 = Com(1)
cpk1

(M̂, R̂1). If (M,R1) �

(M̂, R̂1) and C1 = Ĉ1 hold, B1 outputs ((M,R1), (M′,R′1)).
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One can easily show that B1 terminates within t steps
and has the success probability ε2. If ε2 ≥ ε′/2, B1 breaks
(t, ε)-strong binding property of Ω(1) against the key only
attack.

The case where ε2 ≥ ε′/2 holds: By using A as a sub-
routine, we construct an adversary B2 that breaks the strong
binding property of Ω(2). Let cpk∗2 be an input of B2. The
adversary B2 runsA as follows:

Setup: B2 executes Gen(1)(1κ) and obtains (cpk1, csk1) as
an output of it. ThenB2 initializes List to the empty list, sets
cpk2 = cpk∗2 and cpk = (cpk1, cpk2) and executesA(cpk).

Oracle Simulation: If A makes i-th COM-query
(Mi,COM), B selects R1,i and R′2,i randomly, computes

C1,i = Com(1)
cpk1

(Mi,R1,i) and C2,i = Com(2)
cpk2

(C1,i,R′2,i), add
(i,C2,i,Mi, (R1,i,R′2,i)) to List, and sends C2,i back toA.

If A makes CHAM-query (C2,i,M′i ,CHAM), B2 finds
(i,C2,i,Mi, (R1,i,R′2,i)) ∈ List. If there is no such
(i,C2,i,Mi, (R1,i,R′2,i)), B2 sends ⊥ back to A. Other-

wise, B2 computes R′1,i = Cham(1)
csk1

(Mi,R1,i,M′i ), removes
(i,C2,i,Mi, (R1,i,R′2,i)) from List, and outputs R′i = (R′1,i,R

′
2,i).

One can easily show that C2,i = Comcpk(M′i ,R
′
i) holds.

By using the uniformity of Ω(1) and Ω(2), one can also easily
show that the distribution of the output of B is the same as
that of the output of the oracle O.

Extraction: A finally outputs a pair ((M,R), (M̂, R̂)). We
parse R and R̂ as (R1,R2) and (R̂1, R̂2) respectively. B2 sets
C1 = Com(1)

cpk1
(M,R1) and Ĉ1 = Com(1)

cpk1
(M̂, R̂1). Then B2

outputs ((C1,R2), (Ĉ1, R̂2)).

With probability ε2, A outputs a collision pair
((M,R), (M̂, R̂)) satisfying (M,R) � (M̂, R̂), Comcpk(M,R) =
Comcpk(M̂, R̂), and (C1,R2) � (Ĉ1, R̂2). In this case,
Com(2)

cpk2
(C1,R2) = Comcpk(M,R) = Comcpk(M̂, R̂) =

Com(2)
cpk2

(Ĉ1, R̂2). This means that B2 succeeds in com-

puting a collision of Com(2) with probability ε2. One can
easily show that B2 terminates within t steps. Therefore,
if ε2 ≥ ε′/2, B2 breaks (t, ε)-strong binding property of
Ω(2). �

4. Proposed Conversion of Signature Schemes in the
Standard Model

In this section, we construct a general and efficient con-
version in the standard model, such that the conversion
transforms a secure signature scheme to an SEU signature
scheme.

4.1 Idea behind Construction

The most basic idea behind our proposed conversion is the
same as that of the previous conversion in [5]. Therefore,
we first review the idea in [5]. A signature on the con-
verted schemes is a pair (σ,R′) satisfying the tricky prop-
erty σ = Sigsk(C(σ||M; R′)), where M is a message, σ

—Gen′(1κ)—
(pk, sk)← Gen(1κ), (cpk, csk)← CGen(1κ).
pk′ ← (pk, cpk), sk′ ← (sk, csk). Output (pk′, sk′).
—Sig′sk′ (M)—
Select R ∈ Rcpk randomly.
C ← Comcpk(0,R), σ← Sigsk(C),
R′ ← Chamcsk(0,R,M||σ).
σ′ ← (σ,R′). Output σ′.
—Ver′pk′ (M, σ′)—
Parse σ′ as (σ,R′). C ← Comcpk(M||σ,R′).
If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 5 Proposed conversion in the standard model.

is a signature on the original scheme and C(σ||M; R′) is a
chameleon hash value of σ||M generated by using the ran-
dom R′. A signer can compute such signature σ as follows:
compute commitment C(0; R) of a message 0, and a signa-
ture σ = Sigsk(C(0; R)), and change the committed value of
C from 0 to σ||M by using secret key.

Since σ = Sigsk(C(σ||M; R′)) holds, we can recognize
σ as “the signature on (the commitment of) the signature
itself.” Therefore, in order to forge a new signature (σ̂, R̂)
of the converted scheme on a message M, an adversary has
to forge a signature (that is, σ̂ = Sigsk(C(σ̂||M; R̂))) of the
original scheme on a new message C(σ′||M; R′). However,
this is impossible because the original scheme is existen-
tially unforgeable. Therefore, the converted scheme is SEU
secure.

However, the idea mentioned above does not work
generally. Recall that, when we prove the security of the
converted scheme, we have to construct a simulator which
can simulate a signing oracle without using the secret key.
Moreover, recall that one can change the committed value
only if he knows the secret key. Hence the simulator cannot
change the committed value and therefore cannot simulate
the signing oracle. (Therefore, the authors of the previous
paper [5] only consider a signature scheme satisfying some
special property.)

In order to enable a simulator to simulate the signing
oracle, we assume that the chameleon commitment scheme
is secure against the chosen message attack. That is, we as-
sume that the chameleon commitment scheme is secure even
if one can access an oracle which knows a secret key, com-
mits a value, and changes the commmited value. By making
this oracle change the commmited value, the simulator can
simulate the signing oracle.

4.2 Proposed Scheme

Let κ be a security parameter, G be a cyclic group with or-
der q, andΩ = (CGen, {Rcpk},Com,Cham) be a chameleon
commitment scheme. Let Σ = (Gen,Sig,Ver) be a signa-
ture scheme. Our conversion transforms the scheme Σ into
the signature scheme Σ′ = (Gen′,Sig′,Ver′) described in
Fig. 5.

We next study the on-line/off-line property of the con-
verted scheme Σ′. Before receiving a message, the signer
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can precompute the following parts of signing computa-
tions: C = Comcpk(0,R) and σ = Sigsk(C). Moreover, the
computation of the last part, R′ = Chamcsk(0,R,M||σ), is
quite efficient, if we set Ω to the first proposed chameleon
commitment scheme of Sect. 3. This means that our con-
verted scheme Σ′ satisfies on-line/off-line property if we set
Ω to such a chameleon commitment scheme.

Theorem 4.1. Let S be the signing cost of Σ. Let U and T
be the computational cost of Com and Cham.

Suppose that there exists an adversary that can break
the (t′, qS , ε

′)-SEU property of the signature scheme Σ′ =
(Gen′,Sig′,Ver′). Then, there exists an adversary that can
break either the (t, qS , ε)-existential unforgeability of the
underlying signature scheme Σ = (Gen,Sig,Ver), or the
(t, ε, qS )-strong binding property of Ω against the chosen
message attack. Here{

t = t′ + (S + U + T )qS + (lower terms),
ε = ε′/2 − (lower terms).

Proof. Let A be an adversary that breaks the (t′, qS , ε
′)-

SEU property of Σ′. The adversaryA is first given a public
key pk′ = (pk, cpk). A makes queries M1, . . . ,MqS to the

signing oracle OSig′

sk′ adaptively, and receives the signatures
σ′1 = (σ1,R′1), . . . , σ′qS

= (σqS ,R
′
qS

) on these messages. A
finally outputs a message M and a signature σ′ = (σ,R′).
We let Ci and C be Comcpk(Mi,R′i) and Comcpk(M,R′) re-
spectively.

Let ε1 and ε2 be the probability that A’s output is a
valid message-signature pair with the following property (1)
and (2), respectively.

(1) C � Ci for any i
(2) C = Ci for some i

By usingA as a subroutine, we will construct two machines
B1 and B2, and will show the following facts:

• If ε1 ≥ ε′/2, thenB1 succeeds in breaking the (t, qS , ε)-
existential unforgeability of Σ.

• If ε2 ≥ ε′/2, thenB2 succeeds in breaking the (t, ε, qS )-
strong binding property of Ω against the chosen mes-
sage attack.

This means that the theorem holds.

The case where ε1 ≥ ε′/2 holds: By using A as a sub-
routine, we construct an adversary B1 that can break the
(t, qS , ε1)-existential unforgeability of Σ. Let pk∗ be the in-
put of B1. The adversary B1 runsA as follows:

Setup: B1 computes (cpk, csk) = CGen(1κ) and sets pk =
pk∗ and pk′ = (pk, cpk). Then B1 provides pk′ toA.

Signing Oracle Simulation: Let Mi be the i-th queried mes-
sage of A. B1 executes the same algorithm as Sig′sk′(Mi)
except that B1 does not execute Sigsk but makes a query to
the signing oracle. More precisely, B1 executes the follow-
ing procedures. B1 selects R ∈ Rcpk randomly, computes
C = Comcpk(0,R), makes query C to the signing oracle, re-
ceives σ = Sigsk(C) from the oracle as an answer, computes

R′ = Chamcsk(0,R,M||σ), sets σ′ = (σ,R′), and sends σ′
back toA.

Extraction: Eventually, A outputs a message M and a
signature σ′ = (σ,R′). B1 outputs (C, σ), where C =

Comcpk(M,R′).
Clearly, B1 stops within t steps. We next estimate the

probability thatB1 succeeds in forging a new valid message-
signature pair. With probability ε1, (a) σ′ = (σ,R′) is a valid
signature on M, (b) (M, σ′) � (Mi, σ

′
i) holds for any i, and

(c) C � Ci holds for any i. If (a) holds, σ is a valid signature
on C. If (c) holds, B1 has never queried C to the signing ora-
cle. (Recall that the queries that B1 has made to the signing
oracle are C1, . . . ,CqS .) Consequently, the probability that
B1 succeeds in breaking existential unforgeability is at least
ε1.

The case where ε2 ≥ ε′/2 holds: By using A as a subrou-
tine, we construct a machine B2 that can break the (t, ε, qS )-
strong binding property of Ω against the chosen message
attack. Let cpk∗ be an input of B2. B2 runsA as follows:

Setup: B2 computes (pk, sk) = Gen(1κ) and sets cpk =
cpk∗ and pk′ = (pk, cpk). Then B2 provides pk′ toA.

Signing Oracle Simulation: Let Mi be the i-th queried
message of A. Recall that B2 is allowed to access the
oracle O. Recall also that B2 knows the secret key sk.
B2 makes COM-query (0,COM) to O, receives a commit-
ment Ci of the message 0 as an answer from it, computes
σi = Sigsk(Ci) by using the secret key sk, makes CHAM-
query (i,Mi||σi,CHAM) to O, and receives R′i as an answer
from it, sets σ′i = (σi,R′i ), and sends σ′i back toA.

Extraction: Suppose that A outputs a message M and
a valid signature σ′ = (σ,R′) on M such that (M, σ′) �
(Mj, σ

′
j) for any j. We also suppose that C = Ci holds for

some i. From the definition of C and Ci, Comcpk(M||σ,R′) =
C = Ci = Comcpk(Mi||σi,R′i) holds.

Since (M, σ′) � (Mi, σ
′
i), σ

′ = (σ,R′), and σ′i =
(σi,R′i) hold, (M||σ,R′) � (Mi||σi,R′i) holds. This means
that ((M||σ,R′), (Mi||σi,R′i )) is a collision pair of Comcpk.
Therefore, B2 outputs ((M||σ,R′), (Mi||σi,R′i)), as an answer
to the strong binding property game.

One can easily show that B2 succeeds in breaking
(t, ε2, qS )-strong collision resistance ofΩ against the chosen
message attack. �

5. Proposed Conversion in the Random Oracle Model

In this section, we construct a general and efficient con-
version in the random oracle model such that the conver-
sion transforms a secure signature scheme to an SEU sig-
nature scheme. Let κ be a security parameter and Ω =
(CGen, {Rcpk},Com,Cham) be a chameleon commitment
scheme. LetH : {0, 1}∗ → {0, 1}p be a hash function, which
we will replace with the random oracle when we prove the
security of the converted scheme. Let Σ = (Gen,Sig,Ver)
be a signature scheme. Our conversion transforms the
scheme Σ to the signature scheme Σ′ = (Gen′,Sig′,Ver′)
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—Gen′(1κ)—
(pk, sk)← Gen(1κ), (cpk, csk)← CGen(1κ).
pk′ ← (pk, cpk), sk′ ← (sk, csk).
Output (pk′, sk′).
—Sig′sk′ (M)—
Select R randomly.
C ← Comcpk(0,R), σ← Sigsk(C),
R′ ← Chamcsk(0,R,H(M||σ)).
σ′ ← (σ,R′). Output σ′.
—Ver′pk′ (M, σ′)—
Parse σ′ as (σ,R′). C ← Comcpk(H(M||σ),R′).
If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 6 Proposed conversion in the random oracle model.

described in Fig. 6.
As in the case of the conversion in the previous section,

the signer can precompute, before receiving a message, the
following parts of signing computations: C = Comcpk(0,R)
and σ = Sigsk(C). Moreover, the computation of the last
part, R′ = Chamcsk(0,R,H(M||σ)), is quite efficient if we
setΩ to the chameleon commitment of Sect. 2.1. This means
that our converted scheme Σ′ satisfies on-line/off-line prop-
erty if we set Ω to such chameleon commitment schemes.

Theorem 5.1. Let S and V be the signing and verification
costs of Σ, U and T be the computational cost of Com and
Cham and p be the bit length of hash values of H . We
let q = q(κ) be (maxC:bit string{Pr[C = Comcpk(0,R)]})−1.
(That is, q−1 is the min-entropy of the random variable
Comcpk(0,R).) Here the probability is in the case of where
cpk is taken by CGen(1κ) and R are taken uniformly ran-
domly from Rκ.

Suppose that there exists an adversary which can break
(t′, qS , qH , ε

′)-SEU property of the signature scheme Σ′ =
(Gen′,Sig′,Ver′) in the random oracle model.

Then there exists either an adversary which can
break either the (t, qS , ε)-existentially unforgeable of Σ =
(Gen,Sig,Ver) or (t, ε)-security (against the key only at-
tack) of Ω.

Here{
t = t′ + (S + V + U + T )qS + (lower terms),
ε= (ε′/3)−(qH+qS )qS /p−(qS /q)−(lower terms).

We note that, if we setΩ to the chameleon commitment
of Sect. 2.1, both the values q and p are the same as the order
of the group G.

Proof of Theorem 5.1. LetA be an adversary which breaks
the (t′, qS , qH , ε

′)-SEU property of Σ′. The adversary A is
first given a public key pk′ = (pk, cpk). A makes queries
M1, . . . ,MqS to the signing oracle OSig′

sk′ adaptively, and re-
ceives the signatures σ′1 = (σ1,R′1), . . . , σ′qS

= (σqS ,R
′
qS

) on

these messages as the answers from OSig′

sk′ . A finally out-
puts a message M and a signature σ′ = (σ,R′). We let
mi, m, Ci, and C be H(Mi||σi), H(M||σ), Comcpk(mi,R′i),
Comcpk(m,R′).

Let ε1, ε2, and ε3 be the probability that A will break

the SEU property and the following (1), (2), and (3) will
hold:

(1) C � Ci holds for any i.
(2) C = Ci holds for some i. Moreover, there is k such

that, when the signing oracle computesσk = Sigsk(Ck),
Mk ||σk has already been queried to the random oracle
by the signing oracle or the adversary.

(3) C = Ci holds for some i. Moreover, there exists no
such k as described in (2).

Note that the latter condition of (2) means that the
equality Mk ||σk = Mj||σ j holds for some j < k, or A suc-
ceeds in predicting σk and making query Mk ||σk to the ran-
dom oracle before the signing oracle computes σk.

Clearly, at least one of ε1, ε2, or ε3 is not less than
ε′/3. By using A as a subroutine, we will construct three
machines B1, B2, and B3 and will show the following facts:

• If εi ≥ ε′/3 holds for at least one of i = 1, 2, then Bi

succeeds in breaking the (t, qS , ε)-existential unforge-
ability of Σ.

• If ε3 ≥ ε′/3 holds, then B3 succeeds in breaking the
(t, ε, qS )-strong binding property against the key only
attack.

This means that the theorem holds.

The case where ε1 ≥ ε′/3 holds: Let pk∗ be a ran-
domly selected public key of the signature scheme Σ =
(Gen,Sig,Ver). By using A as a subroutine, we construct
an adversary B1 that can break the (t, qS , ε)-existential un-
forgeability of Σ. The adversary B1 runsA as follows:

Setup: B1 computes (cpk, csk) = CGen(1κ) sets pk = pk∗
and pk′ = (pk, cpk), provides pk′ toA, and runsA.

Random Oracle Simulation: Let X be a query of A. If
H(X) has already been determined, B1 sendsH(X) back to
A. Otherwise, B1 selects m ∈ Zq randomly, setsH(X) to m,
and sends m = H(X) back toA.

Signing Oracle Simulation: Let Mi be the i-th queried mes-
sage ofA. The adversary B1 selects Ri randomly, computes
Ci = Comcpk(0,Ri), makes the query Ci to its signing oracle,
and receives a signature σi on Ci as the answer.

B1 determines mi = H(Mi||σi) as in the case of the
random oracle simulation. That is, if H(Mi||σi) has not
been determined yet, B1 takes mi randomly and sets mi =

H(Mi||σi). Otherwise, B1 obtains the hash value mi from
the hash table.

Then B1 computes R′i = Chamcsk(0,Ri,H(Mi||σi)).
sets σ′ = (σ,R′i). One can easily show that σ′i is a valid
signature on Mi. Then B1 finally sends σ′i toA.

Extraction: Suppose that A succeeds in forging a mes-
sage/signature pair (M, σ′). That is, suppose thatA outputs
a message M and a valid signature σ′ = (σ,R′) on M, such
that (M, σ′) � (Mi, σ

′
i) holds for any i.

B1 determines m = H(M||σ) as in the case of
the random oracle simulation. Then B1 computes C =

Comcpk(m,R′). Since σ′ = (σ,R′) is a valid signature on
M, σ is a valid signature on C. If C � Ci holds for any i, B1
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outputs (C, σ). Otherwise, the simulation fails.

The number of steps until B1 terminates is clearly not
more than t. We estimate the success probability of B1. B1

succeeds in forging a signature ifA outputs a valid pair and
C � Ci holds for any i. Therefore, from the definition of ε1,
the probability that B1 will succeed in forging a signature is
at least ε1. If ε1 ≥ ε′/3, B1 breaks the (t, qS , ε)-existensial
unforgeability of Σ.

The case where ε2 ≥ ε′/3 holds: By using A as a subrou-
tine, we construct a machine B2 that can break the (t, qS , ε)-
existensial unforgeability of Σ.

B2 computes (cpk, csk) = CGen(1κ) sets pk = pk∗ and
pk′ = (pk, cpk), provides pk′ toA and runsA. B2 simulates
the random oracle similarly to B1, maintaining a hash table.
(The hash table contains pairs (X,m) where X is a hash query
and m is the answer of the query, that is,H(X) = m.)

For each k, when A makes k-th signing query Mk,
B2 simulates the initial steps of the singing oracle for
Σ′. That is, B2 selects Rk randomly and computes Ck =

Comcpk(0,Rk). Then B2 stops simulation of the singing or-
acle for Σ′ for a while. (We stress that B2 does not make
query Ck to the signing oracle for Σ at this point.)

Then B2 finds M||σ satisfying Verpk(Ck, σ) = accept
from the hash table. If there is such σ (in this case, we call
the current k an expected k), B2 checks that Ck = Ci holds
for some i = 1, . . . , k − 1, where Ci is the i-th signing query
B2 made. If Ck = Ci holds for some i, the simulation fails
and B2 outputs a symbol fail1 and terminates. Otherwise, B2

outputs (Ck, σ) as a forged pair.
In the case that k is not an expected one, that is, there

is no σ in the hash table satisfying the above condition, B2

determines (σk,Rk) similarly to B1, and continues the simu-
lation. (Remember that B2 makes a signing query Ck.)

If A outputs a forged pair before B2 finds expected k,
B2 outputs a symbol fail2 and terminates.

The number of steps until B2 terminates is clearly not
more than t. We estimate the probability that B2 succeeds in
forging a signature. From the definition of ε2, the probaility
that B2 does not output fail2 is at least ε2. Moreover, from
the definition of q, the equality Ck = Ci holds for the ex-
pected k and for some i with probability at most 1/q. There-
fore, B2 succeeds in forging a new message/signature pair
(Ck, σ) with probability ε2− (qS /q). Therefore, if ε2 ≥ ε′/3,
B2 breaks the (t, qS , ε)-existential unforgeability of Σ.

The case where ε3 ≥ ε′/3 holds: By using A as a sub-
routine, we construct a machine B3 that can break the (t, ε)-
strong binding property ofΩ against the key only attack. Let
cpk∗ be an instance of the game for the strong binding prop-
erty. The aim of B3 is to obtain ((M,R), (M̂, R̂)) satisfying
Comcpk(M,R) = Comcpk(M̂, R̂) and (M,R) � (M̂, R̂). B3

runsA as follows:

Setup: B3 computes (pk, sk) = Gen(1κ), sets cpk = cpk∗
and pk′ = (pk, cpk), provides pk′ toA, and runsA.

Random Oracle Simulation: Let X be a query of A. If
H(X) is already determined, B3 sends H(X) back to A.

Otherwise, B3 selects m ∈ Zq randomly, sets H(X) to m,
and sends m = H(X) back toA.

Signing Oracle Simulation: Let Mi be the i-th queried
message of A. B3 selects mi,R′i ∈ Zq randomly, and sets
Ci = Comcpk(mi,R′i ). By using the secret key sk, B3 com-
putes σi = Sigsk(Ci). If the hash value corresponding to
Mi||σi has already been determined, then the simulation fails
and B3 outputs a symbol fail1 and terminates. Otherwise, B3

sets the hash value H(Mi||σi) to mi. One can easily show
that σ′i = (σi,R′i) is a valid signature on Mi. Since Ω satis-
fies the uniformity property, σ′i = (σi,R′i) generated by B3

has the same distribution as that generated by the signing
oracle. B3 finally sends σ′i toA.

Extraction: Suppose that A outputs a message M and a
valid signature σ′ = (σ,R′) on M, such that (M, σ′) �
(Mi, σ

′
i) holds for any i. If there is no i satisfying C = Ci,

the simulation fails and B3 outputs a symbol fail2 and termi-
nates.

We consider the case where C = Ci holds for some i.
In this case, Comcpk(m,R′) = C = Ci = Comcpk(mi,R′i)
holds, where we let m and mi be H(M||σ) and H(Mi||σi).
If (m,R′) � (mi,R′i ) holds, this means that B3 succeeds in
computing a collision pair ((m,R′), (mi,R′i)) for Com. Oth-
erwise, the simulation fails and B3 outputs a symbol fail3
and terminates.

The number of steps until B3 terminates is clearly not
more than t.

We next estimate the probability that B3 will succeed
in attacking the strong binding property. We suppose the
following three events occur: (a) A succeeds in forging a
signature, (b) C = Ci holds for some i, and (c) there is no k
such that, when the signing oracle computesσk = Sigsk(Ck),
Mk ||σk has already been written in the hash table. Then, B3

does not output fail1 nor fail2. Further, from the definition
of ε3, these three events occur with probability at least ε3 ≥
ε′/3.

We estimate the probability that B3 will output fail3.
B3 outputs fail3 only if there exists i such that H(M||σ) =
H(Mi||σi) and R′ = R′i hold. On the other hand, if A
succeeds in computing a valid new message-signature pair,
(M, (σ,R′)) = (M, σ′) � (Mi, σ

′
i) = (Mi, (σi,R′i )) for all i.

Therefore, B3 outputs fail3 only if there exists i such that
M||σ � M′i ||σ′i andH(M||σ′) = H(Mi||σ′i ) hold.

Here we can estimate the probability that

∃�, ∃X ∈ (hash table) :

X � M� ||σ� ∧H(X) = H(M� ||σ�)
will hold is at most (qH + qS )qS /p. (Recall that A and the
signing oracle OSig′

sk′ makes at most qH and qS hash queries
respectively. Recall also that hash values are randomly se-
lected p bit strings. ) Then, the probability that B3 outputs
fail3 is clearly at most (qH + qS )qS /p.

From the above discussion, the probability that B3 will
succeed in attacking the strong binding property is at least
ε. �
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6. Concrete Conversions

We can implement our proposed conversions from Sects. 4
and 5, by using the chameleon commitment scheme from
Sects. 3.3 and 2.1 respectively. Then, we can obtain the con-
crete conversions based on the discrete logarithm assump-
tions. However, we can subtly simplify such conversions in
order to obtain more efficient scheme. Figure 7 and Fig. 8
shows these simplified conversions. In these figures, the
signing algorithm is simplified. That is, the signer com-
putes not the commitment C = gH(0)hr of the message 0 but
C = gw. One can easily show that the simplified schemes
are also secure.

From the proofs of Theorems 3.2, 4.1, and 5.1, the fol-
lowing two facts hold:

Theorem 6.1. Suppose that there exists a (t′, qS , qH , ε
′)-

adversary against the SEU property of the signature scheme
Σ′ = (Gen′,Sig′,Ver′) of Fig. 7. Let S ′ be the signing cost
of Σ′.

Then there exists an adversary that can break either
the (t, qS , ε)-existential unforgeability of the underlying sig-
nature scheme Σ = (Gen,Sig,Ver), the (t, ε)-discrete loga-
rithm problem in G, or (t, ε)-collision resistant of H. Here

t = t′ + qS S ′ + (lower terms),
ε = ε

′
4 − (lower terms).

Theorem 6.2. Suppose that there exists an adversary that
can break (t′, qS , qH , ε

′)-SEU property of the signature
scheme Σ′ = (Gen′,Sig′,Ver′) of Fig. 8 in the random or-
acle model. Let S ′ be the signing cost of Σ′ and E be the

—Gen′(1κ)—
(pk, sk)← SGen(1κ), (x, y)← Zq

2, g← G, (h1, h2)← (gx, gy).
pk′ ← (pk, g, h1, h2), sk′ ← (sk, x, y). Output (pk′, sk′).
—Sig′sk′ (M)—
w ∈ Zq, C ← gw, σ← Sigsk(C),
Randomly choose r′, s′ ∈ Zq satisfying w = H(M) + r′x + s′y.
σ′ ← (σ, r′, s′). Output σ′.
—Ver′pk′ (M, σ′)—
Parse σ′ as (σ, r′, s′). C ← gH(M)h1

r′hs′
2 .

If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 7 Concrete conversion in the standard model.

—Gen′(1κ)—
(pk, sk)← SGen(1κ), x← Zq, g← G, h← gx.
pk′ ← (pk, g, h), sk′ ← (sk, x). Output (pk′, sk′).
—Sig′sk′ (M)—
w ∈ Zq, C ← gw, σ← Sigsk(C),
Randomly choose r′ ∈ Zq satisfying w = H(M) + rx.
σ′ ← (σ, r′). Output σ′.
—Ver′pk′ (M, σ′)—
Parse σ′ as (σ, r′). C ← gH(M)hr′ .
If Verpk(C, σ) = accept then return accept.
Otherwise return reject.

Fig. 8 Concrete conversion in the random oracle model.

exponentiation cost on G.
Then there exists an adversary that can break either

the (t, qS , ε)-existential unforgeability of the underlying sig-
nature scheme Σ = (Gen,Sig,Ver), or the (t, ε)-discrete log-
arithm problem in G. Here{

t = t′ + qS (S ′ + E) + (lower terms),
ε = ε

′
9 − (qH+qS )qS

3q − (lower terms).

6.1 Estimations of Securities

We estimate the security of the converted schemes more in-
tuitively. In order to do it, we introduce the notions, which
we call difficulty. For an adversary X against (t, ε)-discrete
logarithm problem in G, we let X∗ be an adversary which
executes X until X succeeds in solving the problem. Then
X∗ solves the discrete logarithm problem with t/ε steps on
average and with success probability 1. This means that we
can use the value t/ε in order to estimate how difficult one
solves the discrete logarithm problem. Therefore, we say
that the discrete logarithm problem has difficulty T if there
is no (t, ε)-adversary X satisfying t/ε < T . We also define
the difficulties of the existential unforgeability and the SEU
property similarly.

Then we can obtain the following two facts:

Proposition 6.3. Let S be the signing cost of a signature
scheme Σ = (Gen,Sig,Ver), and E be the exponentiation
cost on a group G. Suppose that the existential unforgeabil-
ity of Σ, the discrete logarithm problem in G, and the colli-
sion resistance problem of H have difficulty T1, T2, and T3,
respectively. Let C1 and C2 be 2+ 2(E/S ) and 20(1+ E/S ).
Let T ′sm and T ′ro be the difficulties of the SEU property of the
signature scheme described in Fig. 7 and 8 respectively.

Then the following inequalities hold:

T ′sm ≥ min{T1, T2, T3}/C1 + (lower terms). (1)

T ′ro ≥ min{T1, T2}/C2 + (lower terms). (2)

Proof. Equation (1) clearly follows from Theorem 6.1.
Therefore, we here only show equation (2).

We will show that there exists an adversary A0

which can break the SEU property of Σ′ within 2E2κ/2 +
(lower terms) step and with the probability 1. Therefore,
by substituting A to A0 (if we need), we can assume that
t′/ε′ ≤ 2κ/2 + (lower terms) holds.

From the definition of qS and qH , the inequalities
S qS ≤ t′ and qH ≤ t′ hold. Since S ′ = S +E+ (lower terms)
holds, it follows that

t ≤ t′ + qS (S ′ + E) ≤ (1 + (S ′ + E)/S )t′

= (1 + (S + 2E)/S )t′ = (2 + 2E/S )t′,
(qH + qS )qS /(3qε′) ≤ (t′ + t′/S )(t′/S )/(3qε′)
� t′2/(3qS ε′) ≤ (t′/ε′)2/(3qS ) ≤ (2κ/2)2/(32κ−1S )

= 2/3S , and

ε = ε′/9 − (qH + qS )qS /(3q)

= ε′ · (1/9−(qH+qS )qS /(3qε′))≥ε′ · (1/9−2/3S )

≥ ε′/10,
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[5] Conv. of Fig. 7 Conv. of Fig. 8

Condition on Σ Partitioned Nothing Nothing
Model Standard Random Oracle Standard
Reduction Tight Tight Tight
Precomputation before Signing 0 S + E S + E
Signing using Precomp. data S + E 0 0
Total Signing Cost S + E S + E S + E
Verification Cost V + E V + E V + E
Signature Length |σ| + |q| |σ| + |q| |σ| + 2|q|

Fig. 9 Comparison.

(because S � 0 holds if κ � 0). Hence, it follows that

min{T1, T2} ≤ t/ε ≤ (2 + 2E/S )t′/(ε′/10)
= 20(1 + E/S ) · (t′/ε′) = C0 · (t′/ε′).

Hence, it follows that min{T1, T2} ≤ C0 · T ′. Therefore,
T ′ ≤ min{T1, T2}/C0 holds.

We finally construct A0. A0(pk′) computes the dis-
crete logarithm x of (g, h) by using the Baby Step and Gi-
ant Step (BSGS) algorithm [3], sends an arbitrarily mes-
sage M to the signing oracle as a query, receives the answer
σ′ = (σ, r), and computes m = H(M||σ) and C = gmhr.
Then Verpk(C, σ) = accept holds. A0 then selects an arbi-
trarily message M0 � M, computes m0 = H(M0||σ), se-
lects r0 ∈ Zq satisfying m0 + r0x = m + rx mod q, sets
σ0 = (σ, r0), and outputs (M0, σ0). One can easily show
that σ0 is a valid signature on M0 � M. Since BSGS al-
gorithm requires 2κ/2 + (lower terms) steps, the number of
steps ofA0 is also 2κ/2 + (lower terms). �

6.2 Comparison of Efficiencies

We finally compare the efficiency of the converted signa-
ture schemes of Fig. 7 and Fig. 8 with the signature scheme
transformed by the previous conversion [5]. See Fig. 9. In
this figure, S and V represent the computational cost of the
signing and verifying algorithms of the original signature
scheme Σ, respectively. The value E represents the exponen-
tiation cost on G, |σ| represents the bit length of a signature
of Σ, and |q| represents the bit length of q.

We assume that one computes gmhr by using the simul-
taneous exponentiation technique [15]. That is, we assume
that the computational cost to compute gmhr is equal to E.
We also assume that the computational cost of a multiplica-
tion on G and a hashing are very small.

The conversion reported in [5] is applicable for a sig-
nature scheme that satisfies the partitioned property [5].
However, there are signature schemes, which seems to be
non-partitioned, such as DSS, the Camenisch-Lysyanskaya
scheme [7], and Okamoto scheme [20]. In contrast, our two
conversions are applicable to any signature scheme.

The signing costs of all of three schemes are equal.
However, in the case of schemes transformed by our conver-
sions, signers can precompute almost all signing operations
before they are given messages.

The signature length of the signature scheme of Fig. 7

is longer than that of Fig. 8. But the security of the former
scheme is proved without assuming the random oracle, al-
though that of the latter scheme is proved only when one
assumes the existence of the random oracle.

7. Conclusion

We defined chosen message security for a chameleon com-
mitment scheme, and constructed two chameleon commit-
ment schemes which are secure against the chosen message
attack. The first proposed scheme was constructed by us-
ing group operations, and is secure against the chosen mes-
sage attack if the group satisfies the discrete logarithm as-
sumption. The second proposed scheme was generally con-
structed by using two chameleon commitment schemes, and
is secure against the chosen message attack if the original
two chameleon commitments are secure against the key only
attack.

By using chameleon commitments, we then con-
structed two conversions, which were the first that could
transform any secure signature scheme to a SEU signature
scheme. There were trade-off between the two conversions.
The first conversion did not use the random oracle but re-
quired the chosen message attack security for the chameleon
commitment scheme. In contrast, the second conversion
used the random oracle but only required the key only at-
tack security for the chameleon commitment scheme.

The proposed two conversions ensured the tight secu-
rity reduction to the underlying security assumptions. More-
over, signers of the converted schemes could precompute al-
most all operations on the signing before they were given a
message, (if we chose appropriate chameleon commitment
scheme). Therefore, the signer could generate signatures
quite efficiently.
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