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Combinations of Language Model Adaptation Methods applied to
Spontaneous Speech

Luc LUSSIER!, Edward W. D. WHITTAKER', and Sadaoki FURUI!

1 Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan
Abstract This paper presents results for combinations of unsupervised language model adaptation methods ap-
plied to the CSJ corpus. Data sparsity is a common problem shared by all automatic speech recognition tasks but
it is specially acute in the case of spontaneous speech recognition. The method proposed in this paper combines
information from two readily available sources, clusters of presentations from the training corpus and the tran-
scription hypothesis, to create word-class n-gram models that are then interpolated with a general language model.

Experimental results show that a relative reduction in word error rate of 10.4%, 10.4% and 5.0% is obtained on the

three test sets used.
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1. Introduction

The performance of state-of-the art automatic speech
recognition systems has steadily improved as both new
research and a larger amount of data are applied to
this challenging task. This is especially true about the
difficult spontaneous speech recognition task where the
availability of the “Corpus of Spontaneous Japanese”
(CSJ) [9] has provided a considerable amount of appro-
priate training data.

Our current baseline mean word error rate for the CSJ
corpus using-the 3 test sets described by Kawahara et
al. [4] i§ 26.8%, In order to reduce the word error rate,
we propgée a/n;ethod that combines information from
the transcription hypothesis as well as from clusters of
presentations and interpolate those models with a gen-

eral language model.

2. Language model adaptation

The language models used to conduct our experiments
are based on the combination of a general language
model and one or more specialized language models us-
ing linear interpolation as illustrated by the following

formula:

T
p(wlh) = Ao - py (wlh. To) + D Ay ps (wlh, Ty) (1)
j=I
where w is the current word for which the probability
is calculated, h represents the history, A; is the weight
attributed to each model such that > A; =1, p, is the
general language model built from the whole training
corpus 1y, |1T'| gives the number of clusters and p, cor-
responds to a specialized language model distinguished
by its training source 7.

2.1 Clustering presentations

All the documents found in the CSJ training corpus
are grouped into topic clusters. Each cluster, referred to
by the symbol 1; where 1 £ j £ |T| and |7 is the num-
ber of presentation clusters, contains a certain number
of presentations and each presentation is a member of a
single cluster such that T, NT; = @ Vi j,4 + j. The
entire corpus of training presentations is referred to as
To.

The clustering method used is a bottom-up, agglom-
erative type of clustering based on a word co-occurrence
metric. It was used in [3], [10] and is based on [11]. The
clustering process works according to the following al-
gorithm:

e Place each presentation P in a single cluster.
e Iterate, until only one cluster is left.

~ For each pair of presentation clusters P; and Pj,
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compute the similarity metric S;;.

— Merge the two clusters that have the highest sim-
ilarity.
To determine how similar are two presentation clusters,

the following similarity metric Sy; is used:

Sy= >

weEPNP,

Ny 1

X 2
7 B 1B ()

where P; and P, represent two presentation clusters,
|?*“fis the number of presentation clusters that contain
the word w, |P;| is the number of unique words in the

cluster ; and N, defined as follow:

\ IN; + N; .
‘”:vmxm (3)

where N; which represents the number of presentations
in the cluster, is a normalization factor used to prevent
the development of a single large cluster.

The clustering is based on all the words from each pre-
sentation and the sequence of merge operations is pre-

served so that any number of clusters can be obtained.

2.2 Building models

Two different kinds of n-gram models are used in our
experiments, word n-gram models and word-class n-
gram models. The general language model is always
a word n-gram model but specialized models can be of
either type.

When word-class models are used, the word-class def-
inition is built using the word clustering algorithm de-
scribed by Kneser and Ney[5] to create |C| different
word classes where each word is a member of only one
class such that C; NC; =@ Vi.ji ¥ j.

Also, when using word-class models, an extended no-
tation based on a triplet of variables is used to describe
the origin of the data used to train each component of
the model resulting in the slightly augmented notation
illustrated in the following way:

ps (wlh. D. N W) = p(w|C (w, D), W) - (4)
p(C(w,D)|C (h.D). N

where the extra parameters are used to describe the
source from which are trained the word-class definition
D, the word-class n-gram distribution N and the word-
given-class probability 4.

Using the notation (D|N|W) to describe each source

of training data, the parameter setting used by
Yokoyama et al. in[14],[15] would be described by the
following tuple: (Ty|H|H) where 1), represents the entire

training corpus and A the transcription hypothesis.

3. Experimental conditions

3.1 Acoustic model

The acoustic features used for the experiments are 25
dimensions vectors consisting of 12 MFCC, their delta as
well as the delta log energy. All the models used are gen-
der dependent triphone HMMs with 3000 shared states
and 16 Gaussian mixtures. Cepstral mean subtraction
is also applied to each utterance.

Table 1 shows the number of presentations and how
many hours are used to train the acoustic models. The
academic only models are used for the first and second
test set and models containing both academic and ex-
temporaneous presentations are used for the third test

set.,

Table 1 Summary of the data used to create the acoustic models

Model # talks (# hours)

Female l Male
Academic only 166 (42) | 787 (186)
Academic and extemporaneous | 988 (176) | 1508 (310)

3.2 Baseline language model

The baseline language model is built from the tran-
scribed content of about 2590 presentations providing
almost 7.5 million words of training data with a vocab-
ulary size of 30678 words. Because there are generally no
spaces between characters in written Japanese, the con-
cept of word boundary is not clearly defined. Thus, as
defined by Shinozaki and Furui [12], the term word refers
to a Japanese morpheme, that is an arbitrary amount
of characters, extracted by a morphological analyzer de-
veloped by Uchimoto et al. [13] for the CSJ corpus.

All of the training data was used to build a forward
word bigram and a reverse word trigram as needed by
the Julius speech recognition engine. This baseline lan-
guage model is referred to as the general language model
(G-LM). A variation of the smoothing technique devel-
oped by Kneser and Ney introduced in [2] is used with

all language models.

3.3 Development and evaluation sets
The first of the three test sets defined in the CSJ
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benchmark paper by Kawahara et al. [4] is used as a de-
velopment set and the last two as evaluation sets. Each
test set contains 10 presentations, test set one and two
contain only academic presentations while test set three
1s made of extemporaneous presentations. In addition,
test set one contains only presentations made by male
speakers whereas test set two and three contain both fe-
male and male speakers in equal proportion. The num-
ber of words in test sets 1 and 2 are similar but test set
3 is smaller and contains slightly less than 66% of either
test set 1 or 2 as summarized in Table 2.

Table 2 Total number of words per test set

[ Test set number I Number of words ]

1 (dev) 26515
2 26923
3 17213

3.4 Recognition engine

The recognition-is performed with the Julius speech
recognition engine version 3.3p3 developed by Lee et
al.[6]. In order to accommodate various combinations
of word and word-class models, Julius was slightly mod-
ified such that language model probabilities could be

obtained from an external library.

3.5 Language modelling tools

All the language models used are built with an ex-
tended set of tools originally based on the CMU lan-
guage modelling toolkit [1].

4. Experimental results

4.1 Results on the development set

We first investigated the relationship between adapta-
tion on a per-utterance and per-presentation basis. Ta-
bles 3, 4 and 5 show the word error rate for all combina-
tions of |1 equal to 1, 4, 8 and 16 presentation clusters
and word n-grams or |C| word-classes equal to 258, 514
and 1026 word-class n-grams. All word-class models are
built with the (1;|7}|T;) parameter setting.

It was found in [7] that the word error rate obtained
when combining the general language model (G-LM)
with a single best word-class model (WC) with a fixed
ratio was giving inferior results compared to when all the
available models were assigned an interpolation weight
with the EM algorithm. The resnlts for tests where the
single best word-class model giving the lowest perplex-

ity value on a single transcribed utterance is chosen are

Table 3 Average word error rate (%) for test set 1, combining the
general language model with the best model, based on

per utterance perplexity, with a fixed ratio of 65:35

Word |C|
IT|
| model [ 258 | 514 [ 1026
1| 2767 |27.22] 27.36 | 27.56
4 | 2715 [26.94] 26.98 | 27.15
8 | 2692  26.90|26.73 | 27.07
16 | 20.79 | 28.39 | 28.50 | 28.49 |

Table 4 Average word error rate (%) for test set 1, combining all

models with the EM algorithm based on per utterance

perplexity
Word [&]
[T
model | 258 | 514 | 1026
1 27.67 | 27.28 | 27.07 | 27.43
27.11 | 26.69| 26.61 | 26.79
26.97 | 26.78 | 26.52 | 26.77
16 29.20 | 27.71 1 28.35 | 29.00

Table 5 Average word error rate (%) for test set 1, combining all

models with the EM algorithm based on per presentation

perplexity
n Word 1|
model | 258 | 514 | 1026
1 | 2767 |26.86]| 27.08 |27.18
4 | 2669 |2637| 2661 |26.47
8 | 26.76 | 26.28|26.09 | 26.10
16| 2761 |26.91 | 26.90 | 27.20

shown in Table 3. Table 4 gives results where the EM
algorithm is used to adjust the interpolation weights of
all models in order to minimize the perplexity on a sin-
gle utterance. Results obtained when the interpolation
weights are adjusted based on the transcription hypoth-
esis of the entire presentation are given in Table 5.

In Tables 3, 4 and 5 the best results are obtained with
|T'| equal 8 and |C| equal 514.

The next step taken was to experiment on the opti-
mum amount of transcription data used to adjust the
weight distribution. Table 6 shows the word error rate
when calculating the weight distribution based on hy-
pothesis segments of increasing length. While we ini-
tially expected to find a maximum between both ex-
tremes, the results show that for presentations of the
length found in our development set it is more appro-
priate to use the entire transcription hypothesis to cal-
culate interpolation weights.

We then investigated in[8] a method proposed by

Yokoyama et al. [14], [15] where several combinations of
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Table 6 Average perplexity and word error rate (%) for test set
1, combining all models with the EM algorithm based

on the perplexity of various window lengths

. . [T|=8|C| =514

Adaptation window -
Perplexity | Word error rate

Single utterance 93.63 26.52

1/8 of presentation 68.72 26.27

1/4 of presentation 68.37 26.18

L/2 of presentation 68.31 26.10

Whole presentation 68.31 26.09

(D|N|W) parameter settings are studied. Table 7 shows
the results of experiments where, based on [14], [15], the
interpolation weight of A\; = 0.30 and the number of
word-classes |C| equal 130 are used. The only variations
between the 4 experiments are the settings of the pa-
rameter tuple. The first line in the table corresponds to
the experiment performed by Yokoyama et al. with the
(Tv|H|H) parameter setting. Best results are obtained
when both the word-class definition and word-class n-
gram model are trained on the entire training corpus
and the unigram distribution is taken from the tran-
scription hypothesis with parameter setting (73|75 H).
Another experiment, to build a unigram and perform the
subsequent recognition on only half of the transcription
hypothesis with the parameter setting (Tp|To| {%} H),
led to less than optimal results. This suggests that the
amount of training data was not sufficient to create an

appropriate model.

Table 7 Average word error rate (%) for test set 1 using word-
class trigram with the interpolation weight (A = 0.30)

and number of word-classes |C| = 130 common for each

test
L Model | Word error rate I
G-LM + WC 3-gram LM (Ty|I1|H) 25.22
G-LM + WC 3-gram LM (Ty|H|Th) 27.14
G-LM + WC 3-gram LM (Ty|To| {1} H) 26.61
G-LM 4+ WC 3-gram LM (Ty|TyiH) 24.89

A desirable improvement to the methods shown in Ta-
ble 7 is to be able to compute the interpolation weights
A; in an unsupervised manner.

The intuitive notion that the EM algorithm can not
be used to adjust the interpolation weight between the
general langnage model and a word-class model with
(To|H!H) parameter setting is validated by the distri-
bution weights shown in Table 8. However, by using
the (7p|Zu|1o) parameter setting to adjust the weight

distribution gives results in line with our expectations.

Table 8 Per presentation weight distribution using the EM al-
gorithm depending on the word-class parameter settings

used

(TolH|LT)
/\Q | Al

{To|To|To)
Ao | A1

Presentation

0.05|0.95|0.87|0.13
0.08(0.92(0.82(0.18
0.03(0.97]083|0.17
0.04|0.96 |0.840.16
0.04|0.96 |0.84|0.16
0.15{0.85 {091 | 0.09
0.080.92|0.88 | 0.12
0.03(097(0.76 | 0.24
0.07]0.93|0.87]0.13

10 0.03(097(0.840.16
Average 0.0610.94 |10.85|0.15

U= Bv N ECS B B I R N S N N

Table 9 Average word error rate (%) for test set 1 using word-
class trigram with the following parameter settings
{TolLo|H) (A = f(EM))
| Model

| Word error rate |

2484 |

[ G-LM + WC 3-gram LM |

After the weight distribution is computed, the uni-
gram component is replaced by the one built on the tran-
scription hypothesis such that the (Tp|7p|H) parameter
settings are used for recognition.

While the average of A = 0.15 obtained with the EM
algorithm suggests that the results will be sub-optimal
according to[14], [15], Table 9 shows that this is not the
case. To be able to determine the interpolation weight
in an unsupervised manner is important since it allows
the method to be applied to different tasks without hav-
ing to perform empirical calibration on held-out data.
This method can also be extended to adjust the weights
between more than two models by using the (T}|T;|T})
parameter settings for each word-class model. Since this
method 1s applied in an unsupervised manner, its perfor-

mance on all test sets will be given in the next section.

4.2 Results on all test sets

Table 10 gives the baseline word error rate and per-
plexity for the 3 tesvt sets using the general language
model. The relative improvement in word error rate
compared to the baseline will be given in each of the fol-
lowing tables while perplexity values will not be given
for word-class based methods since the unigram compo-
nent is built from the transcription hypothesis.

In Table 11, results are given for recognition ex-

periments performed with word-class models using
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(T;1T5|T,) parameter settings with the weight distribu-
tion determined by using the EM algorithm. It should
be noted that even though there is a similar reduction
in perplexity on test set 3, the reduction in word error
rate is much smaller than for other test sets.

Table 12 shows the word error rates obtained by di-
rectly using the method described in [14], [15], using the
empirically obtained fixed interpolation weight. Table
13 shows the results obtained by using (Tp|Ty H) pa-
rameter settings and estimating the weight of \; with
the EM algorithm.

Finally, Table 14 gives the word error rate obtained
with our proposed method where |T| = 8 clusters are
combined with the@_@flanguage model and word-
class models wit ’(/T;)[TJ |H) ;éﬁ:ameter settings are used.
The interpolation WEiﬁM{omaticaﬂy determined by
using the EM algorithm.

Table 10 Average word error rate (%) and perplexity baseline on

all test sets using the general language model

Baseline
Test set i
WER | Perplexity
1 (dev) | 27.67 72.33
2 27.05 71.67
3 25.78 90.86

Table 11 Average word error rate (%), perplexity and relative
improvement on all test sets using word-class trigrams
with the following parameter settings (75|T;|Ty) |T| =

81C| =514 (\j = f(EM))

Test set G-LM + WC 3-gram LM | Relative improvement
U [WER| Perplexity WER | Perplexity
1 (dev) | 26.09 68.31 5.71% 5.57%
2 25.65 67.34 5.18% 6.05%
3 25.29 85.65 1.90% |, 5.73%
Table 12 Average word error rate (%) and relative improvement

on all test sets using a word-class trigram with the fol-
lowing parameter settings (Fy|H|H) [T| = 1 |C] = 130
i .

b N

(/\1 = 0%0)
G-LM + WC 3-gramm LM
Test set —
Word error rate I Relative improvement
1 (dev) 25.22 8.85%
2 24 .81 8.28%
3 24.48 5.04% .

5. Discussion

A topic that is particularly relevant to language

Table 13 Average word error rate (%) and relative improvement
on all test sets using a word-class trigram with the fol-
lowing parameter settings (Ty|To|H) |T] = 1 |C| = 130
i = F (M)

G-LM + WC 3-gram LM
Test set T
Word error rate ; Relative improvement |
1 (dev) 24.84 10.23%
2 24.81 8.28%
3 24.75 4.00%

-
@ble 14 / Average word error rate (%) and relative improvement

" on all test sets using word-class trigrams with the fol-
lowing parameter settings (7'()[’13|H) |T|=8|C| =130
(A = £ (BM)) e

G-LM + WC 3-gram LM
Test set
Word error rate ’ Relative improvement
1 (dev) 24.79 10.41%
2 24.25 7 10.35%
3 24.50 L 4.97% /

model adaptation using the transcription hypothesis as
a source of information is the length of this hypothesis.
As was shown in Table 6 the word error rate gradually
decreases as more of the hypothesis output is used to ad-
Just the weights between models. Also, in Table 7, the
p (w]C) component of the word-class model built using
only half of the output hypothesis performs significantly
worse than the one trained on the whole output. In both
cases, a smaller amount of adaptation data leads to an
increase of the word error rate.

For test set 1, the average length of the output hypoth-
esis is 3176 words which means that when using only
half of the presentation to adjust the weight distribution,
less than 1600 words are available for the adaptation. It
is suspected that the relatively small improvement ob-
tained on test set 3 is caused by the short length of
the presentations which on average contain only 2167
words, that is about one third less than presentations in
test sets 1 and 2.

6. Conclusion

This paper described methods by which it is possible
to make further use of readily available information in
order to adapt, in an unsupervised way, statistical lan-

guage models to spontaneous speech recognition tasks.

(1) : While the reference transcription of test set 1 contain 26515
words, the transcription hypothesis contains 31764, including 2126

silence and 3164 short pause tokens.
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Among the studied methods, our proposed method of
combining a general word n-gram model with word-class
n-gram models using the (75|7;|H) parameter setting
has given the best relative word error rate reduction of
10.41%, 10.35% and 4.97% on the three CSJ test sets
that we have used. While our experiments have shown
that the lowest word error rate is obtained when using
the entire presentation transcription, this might not al-
ways be true for very long presentations. Thus, in future
work, it would be important to devise a way of determin-
ing how much adaptation data from the transcription
hypothesis gives an optimal word error rate reduction.
Also, as in the case of test set 3 where the size of the
presentation is smaller, 1t could be useful to extract even
more information from the decoder’s lattice or to obtain
an n-best list of transcriptions in order to increase the

amount of adaptation data.
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