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PAPER Special Section on Information Theory and Its Applications

Construction Algorithm for Network Error-Correcting Codes
Attaining the Singleton Bound

Ryutaroh MATSUMOTO†a), Member

SUMMARY We give a centralized deterministic algorithm for con-
structing linear network error-correcting codes that attain the Singleton
bound of network error-correcting codes. The proposed algorithm is based
on the algorithm by Jaggi et al. We give estimates on the time complexity
and the required symbol size of the proposed algorithm. We also estimate
the probability of a random choice of local encoding vectors by all interme-
diate nodes giving a network error-correcting codes attaining the Singleton
bound. We also clarify the relationship between the robust network coding
and the network error-correcting codes with known locations of errors.
key words: error correction, MDS code, network coding, random network
coding, Singleton bound

1. Introduction

Ahlswede et al. [1] proposed the notion of network cod-
ing that multicasts data from a single sender to multiple
receivers at a rate at which the ordinary store and forward
routing cannot multicast the data. Such high rate multicast
becomes feasible by allowing intermediate nodes to encode
and decode the data. A sender is usually called a source and
a receiver is called a sink. A network coding is said to be lin-
ear if every intermediate node outputs a linear combination
of its inputs [10].

A study of network coding usually assumes that an er-
ror does not occur in networks. Recently, Cai and Yeung
[2], [13] considered errors in network coding, and proposed
the network error correcting codes that allow sinks to re-
cover the information even when errors occur on interme-
diate edges in the network. After formulating the network
error correction, they proposed the lower and upper bounds
on the number of messages in a network α-error correcting
code, and one of their upper bound was a natural generaliza-
tion of the Singleton bound for the ordinary error-correcting
codes. Recently, Zhang [14] and Yang et al. [11] indepen-
dently observed that the Singleton bound can be refined. We
note that the problem formulation in [2], [13] was later inde-
pendently presented in [4]. (The proceedings paper of [2],
[13] appeared in 2002.)

Cai and Yeung mostly considered the case that inter-
mediate nodes perform only simple encoding and decoding
without delay, such as computing the output of the node as a
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linear combination of its inputs, and the sinks perform com-
plex decoding computation. The network error correcting
codes can avoid introducing decoding computation and de-
lay into intermediate nodes, which is the advantage over use
of ordinary error correcting codes between nodes.

Note that a similar type of network failure in a slightly
different context was considered in [7, Sect. V] and [6,
Sect. VI] in which every sink is assumed to know the set of
failed edges and failed edges are assumed to emit zero sym-
bols. Network error correction does not assume the knowl-
edge of edges causing errors, and the problem formulation
is different from [6], [7]. Note also that Kurihara [8] con-
sidered the different notion of robustness. In his paper, he
considered network coding that allows sinks to recover par-
tial information with edge failures.

For the construction of the network error-correcting
codes, Jaggi et al. [5] proposed a randomized construc-
tion that uses coding among different time intervals. Their
method produces codes attains the Singleton bound with
high probability with sufficiently long block length, where
the block length refers to the number of time intervals
among which coding is done. It is desirable to have a net-
work error-correcting code that does not code among differ-
ent time intervals and thus does not introduce delay. Con-
currently to this paper, Yang et al. [11] proposed an explicit
construction algorithm that produces codes attaining the re-
fined Singleton bound. The idea in [11] is similar to this
paper in the sense that they also regard errors as informa-
tion from the source and add extra components in the global
encoding vectors corresponding to errors.

In this paper, we give a deterministic and centralized
algorithm that constructs a network error-correcting code
that attains the Singleton bound of network error-correcting
codes obtained in [13]. We also give a relationship between
the success probability and the field size for successful con-
struction of network error-correcting codes when intermedi-
ate nodes choose their encoding coefficients randomly and
independently. The proposed algorithms are based on [6].
Our network error-correcting codes make multicast robust to
errors without introducing delay in the transmission, which
is very attractive to delay sensitive multicast applications,
such as multicast of video or audio. Our method is also
useful for cryptographic applications, because it can toler-
ate modification and deletion of data by an adversary.

This paper is organized as follows. Section 2 in-
troduces notations and the model of errors. Section 3
proposes an algorithm for constructing network error-
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correcting codes attaining the Singleton bound. Section 4
shows how to modify the algorithm in Sect. 3 to attain the
refined Singleton bound, the success probability of the ran-
dom construction of network error-correcting codes, and the
relationship between the robust network coding [6], [7] and
the network error-correcting codes with known locations of
errors [12]. Section 5 gives concluding remarks.

2. Preliminary

2.1 Basic Notations

We consider an acyclic directed graph G = (V, E) with possi-
ble parallel edges of unit capacity. V � s denotes the source
and V ⊃ T denotes the set of sinks. Let n be the smallest
min-cut separating s from any t ∈ T throughout this paper.
For v ∈ V , Γ+(v) (resp. Γ−(v)) denotes the set of edges leav-
ing (resp. reaching) the node v, and start(e) (resp. end(e))
denotes the node at which the edge e starts (resp. ends).

We consider linear coding over a finite field Fq with
q elements. The source s gets k (≤ n) input symbols from
Fq. The symbol y(e) ∈ Fq carried by an edge e is a linear
combination of the symbols carried by the edges entering
start(e). The local encoding vector me : Γ−(start(e)) → Fq

determines the coefficients of this linear combination, that
is,

y(e) =
∑

e′∈Γ−(start(e))

me(e′)y(e′).

In this paper, a nonsink node performs only the com-
putation of linear combination of its inputs, and they do not
correct errors. An error is assumed to occur always at an
edge. When an error occurs at an edge e, the symbol re-
ceived by end(e) is different from one sent by start(e), and
end(e) computes its outputs as if there was no error at e.
The error value at an edge e is defined by the received sym-
bol minus the transmitted symbol at e. Note that we express
a failure of a node v ∈ V in a real network as errors on edges
in Γ+(v) in our model. The number of errors is the num-
ber of edges at which errors occur. A network code is said
to correct α errors if every sink can recover the original in-
formation sent by the source when α or less errors occur at
arbitrary edges. We call the recovery of information by a
sink decoding.

We represent errors occurred in the whole network by
a vector �e in F|E|q , where |E| denotes the number of elements
in E. Fix some total ordering in E, and enumeration of the
error values gives �e.

Regarding on the number of messages in a network α-
error correcting code, Cai and Yeung obtained the following
result.

Proposition 1: [13] The number M of messages in a net-
work α-error correcting code, not necessarily linear, is upper
bounded by

M ≤ qn−2α.

Very recently, Zhang [14] and Yang et al. [11] observed
that the above proposition can be refined as follows.

Proposition 2: [11], [14] Let nt be the min-cut from the
source s to a sink t. If the sink t can correct any αt errors
then the number M of messages in the network correcting
code, not necessarily linear, is upper bounded by

M ≤ qnt−2αt .

2.2 Jaggi et al.’s Algorithm for Construction of an Ordi-
nary Network Code

In this subsection, we review Jaggi et al.’s algorithm [6] for
construction of an ordinary network coding. The proposed
algorithm uses a modified version of their algorithm.

Since linear coding is used, the information carried by
an edge e is a linear combination of k information symbols
in Fq. We can characterize the effect of all the local encod-
ing vectors on an edge e independently of a concrete k in-
formation symbols using global encoding vectors �b(e) ∈ Fk

q.

When the information from the source is�i ∈ Fk
q, the trans-

mitted symbol on an edge e is equal to the inner product
of�i and �b(e). In order to decide the encoding at the source
node s, we have to introduce an imaginary source s′ and k
edges of unit capacity from s′ to s. We regard that s′ sends
k symbols to s over k edges.

We initially computes an s′-t flow f t of magnitude k
for each t ∈ T and decomposes this flow into k edge disjoint
paths from s′ to t. If an edge e is on some flow path W from
s′ to t, let f t←(e) denote the predecessor edge of the edge
e on the path W. Jaggi et al.’s algorithm steps through the
nodes v ∈ V in a topological order induced by the directed
graph G. This ensures that the global encoding vectors of all
edges reaching v are known when the local encoding vectors
of the edges leaving v are determined. The algorithm defines
the coefficients of me for one edge e ∈ Γ+(v) after the other.
There might be multiple flow paths to different sinks through
an edge e. Let T (e) denote the set of sinks using e in some
flow f t and let P(e) = { f t←(e) | t ∈ T (e)} denote the set of
predecessors edges of e in some flow path. The value 0 is
chosen for me(e′) with edges e′ � P(e).

We introduce two algorithmic variables Bt and Ct that
are updated by Jaggi et al.’s algorithm. Ct contains one edge
from each path in f t, namely the edge whose global encod-
ing vector was defined most recently in the path. Bt = {�b(e) |
e ∈ Ct} is updated when Ct is updated. The algorithm deter-
mines me so that for all t ∈ T , Bt is linearly independent.

After finishing the algorithm, every sink can decode the
original information because Bt is linearly independent.

3. Construction Algorithm

We shall propose an algorithm constructing a network α-
error correcting code carrying k information symbols in Fq

with n − k ≥ 2α, which is equivalent to the Singleton bound
(Proposition 1). The proposed construction is based on [6].
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We assume that the size of alphabet Fq satisfies

q > |T | ·
(|E|
2α

)
. (1)

Definition 3: For the original information �i ∈ Fk
q and the

error �e ∈ F|E|q , let φt(�i, �e) ∈ F|Γ
−(t)|

q be the vector of symbols
carried by the input edges to t.

Lemma 4: If a sink t can decode the original information�i
with any 2α or less errors whose locations are known to the
sink t, then the sink t can decode the original information
with any α or less errors without the knowledge of the error
locations under the assumption that the number of errors is
≤ α.

Note that errors with known locations are called erasures in
[12] and the properties of erasures are also studied in [12].
Proof: Denote the Hamming weight of a vector �x by w(�x).
The assumption of the lemma implies that for any�i � �j and
�e with w(�e) ≤ 2α we have

φt(�i, �e) � φt(�j, �0). (2)

Equation (2) implies that for any �i � �j and �e1, �e2 with
w(�e1) ≤ α and w(�e2) ≤ α we have

φt(�i, �e1) � φt(�j, �e2),

which guarantees that t can decode the original information
under the assumption that the number of errors is ≤ α by
exhaustive search. �

Remark 5: The above lemma does not guarantee the exis-
tence of an efficient decoding algorithm.

Fix F ⊂ E with |F | = 2α. We shall show how to con-
struct a network error-correcting code that allows every sink
to decode the original information when the errors can occur
only at F. We call F the error pattern. The following de-
scription is a condensed version of the proposed algorithm,
which is equivalent to the full description with F = {F} in
Fig. 2.

1. Add the imaginary source s′ and draw k edges from s′
to s.

2. Add an imaginary node v at the midpoint of each e ∈ F
and add an edge of unit capacity from s′ to each v.

3. For each sink t, do the following:

a. Draw as many edge disjoint paths from s′ to t
passing through the imaginary edges added at
Step 2 as possible. Let mF

t (≤ 2α) be the number
of paths.

b. Draw k edge disjoint paths passing through s that
are also edge disjoint from the mF

t paths drawn in
the previous step.

4. Execute the algorithm by Jaggi et al. with
∑

t∈T (k+mF
t )

edge disjoint paths constructed in Step 3.

Fig. 1 Example of a network with imaginary nodes and edges. Nodes A
and B are the imaginary nodes added in Step 2 and the dashed lines from s′
to A and B represent the imaginary edges added in Step 2. See Example 6
for explanation.

Example 6: In Fig. 1, we give an example of addition of
imaginary nodes and edges. The network structure in Fig. 1
is taken from [3, Fig. 2]. Nodes A and B are the imaginary
nodes added in Step 2 and the dashed lines from s′ to A and
B represent the imaginary edges added in Step 2.

The min-cut from s to every sink is 4 in the original
network. The set F of edges with errors consists of the edge
from s to node 1 and the edge from node 1 to node 5.

We denote a path by enumerating nodes on the path. In
Step 3a for t1 we can find two edge disjoint paths, namely
(s′, A, 1, t1) and (s′, B, 5, 8, t1). On the other hand, in Step 3a
for t2, we can find only one edge disjoint path, namely
(s′, A, 1, B, 5, 8, t2) or (s′, B, 5, 8, t2). Therefore mF

t1 = 2
while mF

t2 = 1.
In Step 3b for t1, we find two edge disjoint paths

as (s′, s, 3, 6, 9, t1) and (s′, s, 4, 7, 10, t1). In Step 3b for
t2, we find three edge disjoint paths as (s′, s, 2, 6, 9, t2),
(s′, s, 3, 7, 10, t2), and (s′, s, 4, t2). We can use arbitrary two
paths among the three paths. In either case, we can find
n − mF

t paths in Step 3b. �

In Step 3b, we can guarantee the existence of k paths as
follows: Suppose that edges in mF

t paths used in Step 3a are
removed from the original network (V, E). Then the min-cut
from s to a sink t in the original network (V, E) is at least
n − mF

t , which is larger than or equal to k.
In Step 4 we use the algorithm by Jaggi et al. as if the

imaginary source s′ sent information on the α imaginary
edges added in Step 2. We denote by BF

t the set Bt of global
encoding vectors for k+mF

t edge disjoint paths. BF
t consists

of k + mF
t vectors of length k + 2α. We require that every

sink t is able to decode k information symbols, while t may
be unable to decode 2α error symbols in general because
mF

t ≤ 2α.
There are always two edges end at the added imagi-
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nary node v and one edge starts from v in Step 2. Since v
is imaginary, we cannot choose local encoding vectors at v.
Therefore, in Step 4, all components in the local encoding
vector at v must be selected to 1, which keeps Bt linearly in-
dependent. The reason is as follows: Let e be the edge from
s′ to v added in Step 2. The global encoding vector of e is of
the form

(0 j−1, 1, 0n− j),

that is, it has only 1 at the j-th component. All other global
encoding vectors in BF

t have zero at the j-th component,
since they are not in downstream of e when we choose lo-
cal encoding vectors at v. Therefore, the added imaginary
node v does not interfere with the execution of Jaggi et al.’s
algorithm.

Observe also that q > |T | guarantees the successful ex-
ecution of the algorithm as with the original version of Jaggi
et al.’s algorithm.

We shall show how each sink t can decode the original
information sent from the source s. After executing Step 4
we have decided all the local encoding vectors in the original
network (V, E). Consider the three linear spaces defined by

V1 = {φt(�i, �e) |�i ∈ Fk
q, �e ∈ F|E|q },

V2 = {φt(�i, �0) |�i ∈ Fk
q},

V3 = {φt(�0, �e) | �e ∈ F|E|q },
where components in �e corresponding to E \F are zero, and
φt is as defined in Definition 3. We consider V1, V2, and
V3 in the original network (V, E) without added imaginary
nodes and edges. Then we have

V1 = V2 + V3, dim V2 ≤ k. (3)

Since we keep BF
t linearly independent,

dim V1 ≥ k + mF
t . (4)

Since the maximum number of edge disjoint paths passing
through the imaginary edges added in Step 2 is mF

t , we have

dim V3 ≤ mF
t . (5)

Equations (3–5) imply

dim V1 = k + mF
t ,

dim V2 = k, (6)

dim V3 = mF
t ,

dim V2 ∩ V3 = 0. (7)

The number of nonzero components in φt(�i, �e) is k +mF
t and

the number of unknowns in φt(�i, �e) is k + 2α, which can be
larger than k +mF

t . However, by Eq. (7), the sink t can com-
pute φt(�i, �0) from φt(�i, �e) as follows: Write φt(�i, �e) as �u + �v
such that �u ∈ V2 and �v ∈ V3. By Eq. (7) �u and �v are uniquely
determined [9, p.19, Theorem 4.1]. We have �u = φt(�i, �0) and
the effect of errors is removed. The sink t can also compute

(* Initialization *)
Added imaginary node s′ and edges e1, . . . , ek from s′ to s. O(k)
foreach error pattern F ∈ F do

Initialize global encoding vector
�bF (ei) = (0i−1, 1, 0k+2α−i) ∈ Fk+2α

q . O((k + 2α)2)
foreach edge e ∈ F do

Add an imaginary node v at the midpoint of e ∈ F. O(1)
Divide e into an edge to v and an edge from v. O(1)
Draw an imaginary edge from s′ to v. (*) O(1)

endforeach
foreach sink t ∈ T do

Draw as many edge disjoint paths from s′ to t as possible
passing through the edge added in (*).

O(2α(|E| + k + 4α))
Draw k edge disjoint path from s′ to t passing through
s and also disjoint from paths made in the previous step.

O(k(|E| + k + 4α))
Initialize the basis BF

t = {�bF (ei) | ei is on a path to t}.
O((k + 2α)2)

endforeach
endforeach
(* Main loop *)
foreach edge e ∈ ⋃

F∈F EF \ {e1, . . . , ek} in a topological order do
if start(e) ∈ V then

Choose a linear combination �bF (e) =
∑

p∈PF (e) me(p)�b(p)
such that BF

t remains linearly independent for all t
and F by the method in [6, Sect. III.B]. (**)

else
me(p) = 1 for all p ∈ PF (e) and �bF (e) =

∑
p∈PF (e)

�b(p).
O(k + 2α)

endif
endforeach
return {me(·) | start(e) ∈ V}.

Fig. 2 Construction algorithm for a network α-error correcting code.
The rightmost O(·) indicates the time complexity executing the step.

the original information�i from φt(�i, �0) by Eq. (6).
We shall describe how to construct a network error-

correcting code that can correct errors in any edge set F ⊂ E
with |F | = 2α. Let F = {F ⊂ E : |F | = 2α}. The idea in this
paragraph is almost the same as the construction of the ro-
bust network coding in [6, Sect. VI]. Recall that BF

t is the set
of global encoding vectors on edge disjoint paths to a sink t
with an edge set F of errors. Execute Jaggi et al.’s algorithm
keeping BF

t linearly independent for all t ∈ T and all F ∈ F .
Then every sink t can decode the original information with
the knowledge of the edge set F on which errors actually
occur. As in [6, Sect. VI],

q > |T | · |F | = |T |
(|E|
2α

)

guarantees the successful execution of the algorithm.
We present a pseudo programming code of the pro-

posed algorithm in Fig. 2. In order to present a detailed
description, we introduce new notations. GF = (VF , EF)
denotes the network with added imaginary nodes and edges
in Steps 1 and 2 with the error pattern F ⊂ E. Let f t,F be the
flow established in Steps 3a and 3b in GF . Let f t,F

← (e) denote
the set of predecessor edges of the edge e in a flow path in
f t,F . Let T F(e) denote the set of sinks using e in some flow
f t,F and let PF(e) = { f t←(e) | t ∈ T (e)}.
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We shall analyze the time complexity of the proposed
algorithm in Fig. 2. As in [6] we assume that any arithmetic
in the finite field is O(1) regardless of the field size. First we
analyze that of the initialization part. Observe that |EF | =
|E|+ k+2|F | = |E|+ k+4α because each edge in F adds two
edges to E and there are k edges from s′ to s. The most time
consuming part in the initialization is construction of edge
disjoint paths, whose overall time complexity is O((|E|+ k+
4α)|F ||T |(k + 2α)).

Next we analyze the time complexity of the main
loop. By [6, Proof of Lemma 8], the time complexity of
choosing the local encoding vector me(p) in Step (**) is
O((|F ||T |)2(k+ 2α)), which is the most time consuming part
in the main loop. Choice of me(p) is executed for |E| edges
starting from a real node in V . Thus, the time complexity of
the main loop is O(|E|(|F ||T |)2(k+2α)), and the overall time
complexity is O(|F ||T |(k + 2α)[|E| + k + 4α + |F ||T |]). Note
that |F | =

(|E|
2α

)
.

A sink decodes the information by exhaustive search.
Specifically the sink enumerates all the possible informa-
tion and all the possible errors for all F ∈ F , then com-
pares the resulting symbols on incoming edges with the
actual received symbols by the sink. The computation of
the resulting symbols can be done by a matrix multiplica-
tion in O((k + α)2) time complexity. The number of possi-
ble information is qk and the number of possible errors is∑α

j=0

(|E|
j

)
(q − 1) j. Thus, the time complexity of decoding by

a sink is O(qk ∑α
j=0

(|E|
j

)
(q − 1) j(k + α)2).

4. Variants of the Proposed Method and Its Relation to
the Robust Network Coding

We shall introduce two variants of the proposed method in
this section.

4.1 Attaining the Refined Singleton Bound

Network error-correcting codes constructed by the proposed
method attains the Singleton bound (Proposition 1), while
they do not necessarily attains the refined Singleton bound
(Proposition 2). Yang et al. [11] concurrently proposed a
construction algorithm that produces a code attaining the
refined Singleton bound. In this subsection we modify the
proposed method so that it can produce a code attaining the
refined Singleton bound.

Let nt be the min-cut from s to t, and suppose that the
source s emits k symbols within unit time interval. A sink
t can correct α errors if 2α ≤ nt − k. Let Ft = {F ⊂ E :
|F | = nt − k} and F = ⋃

t∈T Ft. For fixed F ∈ F and t ∈ T ,
we cannot garuantee that there exists k edge disjoint paths in
Step 3b. For such F, the sink t cannot decode information
with errors occered at F. We exclude BF

t with such (t, F)
from the algorithm. Note that if |F | ≤ nt − k then there
always exist k edge disjoint paths in Step 3b.

In order to attain the refined Singleton bound we keep
the linear independence of all bases in {BF

t | t ∈ T , F ∈ F ,

|F | ≤ nt − k} in Step (**) in Fig. 2. By the exactly same
argument, we see that the produced code attains the refined
Singleton bound.

By almost the same argument as Sect. 3, we see that
the modified proposed algorithm runs in time complexity
O(|F ||T |(k+ 2αmax)[|E|+ k+ 4αmax + |F ||T |]), where αmax =

�(maxt∈T nt − k)/2. The required field size for successful
execution of the algorithm is |T | · |F |, and in this case |F |
depends on the structure of the network (V, E).

On the other hand, the time complexity of constructing
local encoding vectors by the method of Yang et al. [11] is

O

⎛⎜⎜⎜⎜⎜⎜⎝|E|qk
∑
t∈T

nt−k∑
j=0

(|E|
j

)
(q − 1) j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and the required field size is

∑
t∈T

(
nt + |E| − 2

nt − k

)
.

The time complexity of the proposed algorithm can be
smaller or larger depending on the network structure and
q than Yang et al. [11]. The required field size of the pro-
posed algorithm can also be smaller or larger depending on
the network structure. However, for the special case nt = n
for all t ∈ T , the required field size of the proposed method
is smaller than Yang et al. [11].

4.2 Completely Randomized Construction

By using the idea in the previous section, we can esti-
mate the success probability of constructing a network error-
correcting code by randomly choosing local encoding vec-
tors as follows. The idea behind its proof is almost the same
as [6, Theorem 12]. Observe that the random choice of local
encoding vectors completely remove the time complexity of
selecting encoding vectors in the centralized manner at the
expense of larger required field size q.

Proposition 7: Suppose that the source s transmits k sym-
bols within unit time interval, and let F = {F ⊂ E :
|F | = 2α} be the set of edges on which errors can occur. Sup-
pose also that local encoding vector coefficients are gener-
ated at random independently and uniformly over Fq. With
this network error-correcting code, all sinks can correct er-
rors in any edge set F ∈ F with probability at least 1 − δ if
q ≥ |E||T ||F |/δ.
Proof: First pick independent random local encoding vec-
tors for all edges in the network simultaneously. Then pick
an error pattern F ∈ F . For this F, execute Steps 1 and 2 in
page 1731 and compute the global encoding vectors �bF(e)’s
belonging to Fk+|F |

q . For each cut in the test whether BF
t ’s are

linearly independent for all t. This test fails with probability
at most |T |/q by the proof of [6, Theorem 9] provided that
this tests succeed on all the upstream cuts and n ≥ k + 2α.

In the proposed algorithm in Fig. 2, we test linear inde-
pendence of BF

t ’s on |E| cuts in Step (**), which is sufficient
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Table 1 Comparison among the proposed methods and [5], [11]. We assumed that the min-cut is n
for all t ∈ T and k = n − 2α. I denotes the maximum of in-degrees of nodes.

delay required field size for the suc-
cess probability of code con-
struction to be ≥ 1 − δ

time complexity of code construction time complexity of decoding
by sinks

Figure 2 none |T |
(|E|
2α

)
O(

(|E|
2α

)
|T |(k+2α)[|E|+k+4α+

(|E|
2α

)
|T |]) O(qk ∑α

j=0

(|E|
j

)
(q − 1) j(k + α)2)

Sect. 4.2 none |E||T |
(|E|
2α

)
/δ O(I) O(qk ∑α

j=0

(|E|
j

)
(q − 1) j(k + α)2)

Paper [11] none |T |
(
n+|E|−2

2α

)
O(|E||T |qk ∑2α

j=0

(|E|
j

)
(q − 1) j) O(qk ∑α

j=0

(|E|
j

)
(q − 1) j(k + α)2)

Paper [5] large not explicitly estimated O(I) O((n × delay)3)

to garuantee the decodability of the information by every
sink. By the same reason, for each sink to be able to cor-
rect errors in F, one needs to consider linear independence
only on at most |E| such cuts with random choice of local
encoding vectors. By the union bound, the probability that
the the independence tests fails for any of |T | sinks in any
of the |E| cuts in any of the |F | error patters is at most δ if
q ≥ |E||T ||F |/δ. �

Jaggi et al. [5] do not provide an explicit estimate on
the relation between the success probability of their algo-
rithm and the field size q. Their method [5] uses coding
among different time intervals and thus introduces delays
while our methods do not introduce extra delay. In addi-
tion to this, α-error correcting codes by constructed by the
proposed methods allow sinks to correct less than α errors,
while the method in [5] does not. The advantage of the
method in [5] over the proposed methods in this paper is
that their method allows efficient decoding of information
by every sink, while our proposed methods require exhaus-
tive search of transmitted information.

We summarize the comparison among the proposed al-
gorithms and [5], [11] in Table 1.

4.3 Relation to the Robust Network Coding

We clarify the difference between the robust network coding
in [7, Sect. V],[6, Sect. VI] and the network error-correcting
codes with known locations of errors [12]. A network error
correcting codes that can correct errors on a known locations
F ⊂ E is a robust network coding tolerating edge failures on
F. However, the converse is not always true. Consider the
network consists of three nodes {s, t, v} with two directed
edges from s to v and one directed edge from v to t. The
source is s and the sink is t. The intermediate node v sends to
t the sum of two inputs from s. This network coding tolerate
single edge failure between s and v but cannot correct single
error between s and v.

5. Concluding Remarks

In this paper, we proposed an algorithm constructing net-
work error-correcting codes attaining the Singleton bound,
and clarified its relation to the robust network coding [6,
Sect. VI].

There are several research problems that have not been
addressed in this paper. Firstly, the proposed deterministic

algorithm requires tests of linear independence against
(|E|

2α

)
sets consisting of k + mF

t vectors, which is really time con-
suming. It is desirable to have a more efficient deterministic
construction algorithm.

Secondly, since there seems no structure in the con-
structed code, the decoding of the original information at a
sink t requires the exhaustive search by t for possible infor-
mation from the source and possible errors. It is desirable to
have a code with structure that allows efficient decoding.

Finally, the case |T | = 1 and |E| = n includes the or-
dinary error correcting codes as a special case. Substituting
|T | = 1, |E| = n and 2α = n − k into Eq. (1) gives q >

(
n

n−k

)
,

which can be regarded as a sufficient condition for the ex-
istence of the MDS linear code. On the other hand, a well-
known sufficient condition for the existence of the MDS lin-
ear code is q > n − 2, which suggests that Eq. (1) is loose
and that there is a room for improvement in Eq. (1).
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