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ABSTRACT
In this paper, we �rst present the notion of stateful identity-
based encryption (IBE) and then extend standard security
de�nitions for IBE to the stateful setting. After that, we
demonstrate a concrete stateful IBE scheme, whose security
meets the strongest de�nition in the setting in random or-
acle model, and whose encryption and decryption are very
e�cient, compared to existing IBEs: one pairing each for
encryption and decryption.
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1. INTRODUCTION
Motivation. Recently, Bellare et al. [2] showed how to en-

crypt with just one 160-bit exponentiation in some public-
key encryption schemes. This is a dramatic improvement
with respect to encryption speed, since most previous schemes
require more exponentiations. For example, the Kurosawa-
Desmedt variant [11] of the Cramer-Shoup public-key en-
cryption schemes [8], which is considered one of the most ef-
�cient schemes so far, needs three exponentiations (or more)
for encryption. The reason why the public-key encryption
schemes of Bellare et al. [2] achieve such encryption e�-
ciency is from the idea of making them stateful. Namely,
some randomness and exponentiations are kept unchanged
throughout many encryptions as state, so that the encryp-
tion algorithms do not have to compute the values again and
again any more.
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Bellare et al. [2] have focused on the case of public-key
encryption (PKE) schemes. As with the usual (i.e. non-
stateful) PKE ones, the management of the public keys may
cause obstacles for deployment of stateful PKE schemes in
the real world, since each user must be securely linked to
his public key. To avoid the obstacles related to the public-
key management, in this paper, we show how to use the
idea of stateful encryption in another important asymmet-
ric setting: Identity-Based Encryption (IBE). In particular,
we �rst de�ne the model of security for stateful IBE scheme
and then present a concrete stateful IBE scheme whose se-
curity meets the (strongest) de�nition in the model, while
its encryption and decryption algorithms are also extremely
e�cient. In particular, we show how to encrypt securely
with just one pairing in identity-based setting. Let us now
look at the above statements in some more details.
The Stateful Model and Security De�nition for Stateful IBE
Schemes. Brie�y, there are two security issues to be consid-
ered. Roughly speaking, the �rst issue, which is the same
as in de�nitions in literature, is the coalition of users should
not compromise the privacy of any other user. As with the
de�nitions in the literature[4], [7], this issue is addressed by
giving the adversary against stateful IBE schemes a private
key extraction oracle.
However, using a stateful IBE scheme, a sender maintains

state information which can be used throughout his/her
many encryptions (e.g., in a work day.) This use of state
causes some path for attack not covered by the classical
de�nitions of security for (non-stateful) IBE schemes (e.g.,
IND-ID-CCA [4]). This fact leads us to the second issue
below.
The second issue, which is raised only in stateful model, is

that encrypted messages can be dependent, since they might
depend on the same or related state (which is unknown to
the adversary), and hence the ability of seeing numerous ci-
phertexts (from one sender to many receivers, namely iden-
tities) might lead to the ability of compromising the privacy
of the sender. We address this path of attack by giving the
adversary an encryption oracle, from which it can adaptively
obtain ciphertexts computed under the sender's state, and
any identity ID, any message of its choice.
De�nitions captured the both issues are provided in Sec-

tion 2. We also make some comparison and contrast with
Bellare et al.'s de�nitions, which concentrate on public-key
encryption schemes. As will become evident, stateful en-



cryption apparently �ts IBEs more than PKEs. Below, when
saying a stateful IBE scheme is IND-ID-CCA secure, we
mean that it meets the corresponding de�nition in Section
2.

A Concrete Stateful IBE Scheme: SIdent. This is a state-
ful variant of the Boneh-Franklin IBE scheme called Basi-
cIdent [4], which was proven to be IND-ID-CPA secure in
non-stateful setting. On the contrary, we show in this pa-
per that the variant enjoys being IND-ID-CCA secure in the
stateful setting, while being able to save two exponentiations
in encryption. Indeed, SIdent requires (at most) one pairing
for encryption, while its original version needs two exponen-
tiations and one pairing. Costs for decryption in the both
scheme are the same, which is one pairing. Note that since
pairing computation is more expensive than that of expo-
nentiation in general, it would be more desirable to reduce
the number of pairings. However, we comment that the use
of pairing is tightly related to the BDH assumption (and re-
lated ones), so one pairing in the encryption and decryption
of SIdent would be unavoidable.
At the same CCA-security level, we would like to com-

pare the proposed SIdent with the fully secure version of
BasicIdent, which is called FullIdent in [4]. With respect
to computation cost, SIdent is much more e�cient, beating
FullIdent at a margin of two exponentiations in encryption
and one exponentiation in decryption. (The latter requires
two exponentiations (also one pairing) for encryption and
one exponentiation (also one pairing) for decryption.)
With respect to security assumption, the security of the

scheme SIdent is based on the Gap Bilinear Di�e-Hellman
(Gap-BDH) assumption, while that of FullIdent is relied on
the BDH assumption, which is potentially weaker. However,
the factor loss in our reduction for SIdent, approximately qH ,
is tighter than that in the latter, approximately q3

H
1, where

qH is the bound for the number of hash queries (to any hash
function in the schemes). This result has its own interest,
since a tighter reduction from a given assumption can be
preferred to a loose reduction from a potentially weaker as-
sumption.

Our Contributions. In summary of what have been discussed
above, the main contributions of this paper are: extending
the security notion of usual IBE schemes to the case of state-
ful IBE schemes, and showing that the security is achiev-
able and meaningful by demonstrating the concrete scheme
SIdent whose security meets the IND-ID-CCA de�nition in
the stateful setting. Furthermore, the scheme SIdent is ex-
tremely e�cient: only one pairing each for encryption and
decryption.

Random Oracle Model. For schemes in the random oracle
(RO) model [5], any of the constituent algorithms may have
access to a RO, and in the security game, the adversary has
access to it as well. We will use this model in the security
analysis of SIdent.

2. DEFINITIONS

1This value is borrowed from [10] (full version, p. 9). That
work showed a �aw in the change from BasicIdent to FullI-
dent via the Fujisaki-Okamoto transformation [9]. Our work
does not use the transformation, so it does not fall into the
mistake.

In this section, we formalize the de�nition of stateful IBE
scheme, and security notions for it. We then compare and
contrast one of the security de�nitions with its counterpart
in public-key setting.

Stateful IBE Scheme. A stateful identity-based encryption
scheme StIBE = (Setup, Extract, NwSt, Enc, Dec) is spec-
i�ed by �ve algorithms (all possibly randomized except the
last).

Setup: takes a security parameter κ and returns system
parameters params, which is publicly known, and master
key msk, which is kept secret.

Extract: takes as input params, msk, an identity ID, and
returns a private key SKID.

NwSt: (New State) takes as input params and outputs
the system state st, which will be used for encryption.

Enc: takes params, an identity ID, a message m, and a
system state st, and returns a ciphertext C and an update
system state st (may be the same with the previous one or
not.)

Dec: takes as input a ciphertext C, and identity ID and a
private key SKID, and returns a message m (may be reject).

As we can see, there are some di�erences between a stateful
IBE scheme with a (non-stateful) IBE scheme, which are in
NwSt, and Enc. NwSt creating system state st, which is
used by Enc, is the basic algorithm distinguishing a stateful
IBE scheme from a non-stateful one. The algorithm Enc
also returns an update system state beside a ciphertext. In
all concrete stateful IBE schemes later in this paper, Enc
does not modify the state and just returns the same state.

IND-ID-CCA Security for Stateful IBE. To de�ne IND-ID-
CCA security of a stateful IBE scheme StIBE = (Setup, Ex-
tract, NwSt, Enc, Dec), we consider an adversary A played
with the following (ind-id-cca) game:

• Setup: The algorithm Setup is run with a security pa-
rameter κ generating system parameters params and
master key msk. params is given to A, while msk is
kept secret.

• State Generation: The game runs the algorithm NwSt
with input params to generate a state st, which will
be used for encryption.

• Phase 1: The adversary A adaptively issues queries
q1, . . . , qm of the following types:

� Extraction query IDi. The game responds by
running algorithm Extract to generate the private
key SKIDi , and returns this private key to A.

� Decryption query (IDi, Ci). The game returns
Dec(SKIDi , Ci), where SKIDi is obtained from
Extract.

� Encryption query (IDi, mi). The game runs the
algorithm Enc to encrypt mi using identity IDi

under the encryption state st. The output of Enc
is a ciphertext and a state, but only the ciphertext
is given to A.



• Challenge: The adversary outputs two equal-length
plaintexts m0, m1 and an identity ID∗ on which it
wants to be challenged. The only constraint is that
ID∗ did not appear in any private key extraction query
in Phase 1. The game in turn picks a random bit
b ∈ {0, 1} and computes (C∗, st) $← Enc(params,
ID∗, mb, st), and only C∗ is returned to A.

• Phase 2: The adversary may adaptively issue more
queries qm+1, . . . , qn of the following types:

� Extraction query IDi(6= ID∗). The game re-
sponds as in Phase 1.

� Decryption query (IDi, Ci) 6= (ID∗, C∗). The
game responds as in Phase 1.

� Encryption query (IDi, mi). The game responds
as in Phase 1.

• Guess: Finally, A outputs a bit b′ as its guess of b.

De�ne the ind-id-cca-advantage of A:

Advind−id−cca
stIBE (A) = |Pr[b′ = b]− 1

2
|.

We say that stIBE is IND-ID-CCA secure if the advantage of
any polynomial time adversary A is negligible in the security
parameter κ.
The above notion follows the notion in the literature [4],

except that the adversary A now can have its own mes-
sages encrypted with its maliciously-chosen identities, un-
der a �xed (and unknown to A) encryption state. This
additional feature aims to capture the adversary ability of
observing encrypted messages which are dependent under
the same or related system state, as discussed in the second
issue mentioned in Section 1.

IND-ID-CPA/ IND-sID-CPA/ IND-sID-CCA. The above def-
inition can be modi�ed to obtain more kinds of security in a
usual manner. Brie�y, in an IND-ID-CPA game, the adver-
sary A is not allowed to submit (IDi, Ci) for decryption as
above. IND-sID-CPA game is the same as the IND-ID-CPA
one, except that A must output the target identity ID∗ at
the beginning of the game, before Setup is run. Allowing the
decryption query (IDi, Ci) in the IND-sID-CPA game gives
us IND-sID-CCA game. Note that the notion of selective-ID
(sID) is �rst introduced by Canetti et al. [7].

Comparison and Contrast with Public-Key Setting. In the
�rst place, security de�nitions for stateful IBEs are more
natural, compared to its counterparts for stateful PKE. In
details,

• In public-key setting [2], an adversary is challenged
on a random,�honest" public key. The adversary is
able to create malicious public-keys via an oracle, and
can have messages encrypted under these public-keys
(and the honest public-key also) via another oracle.
These correspond to the encryption oracle in the above
notion, although in ID-based setting, the adversary
is challenged on a target identity of its own choice.
The fact that all identities (except the challenge one)
might be malicious simpli�es the security de�nition for
stateful IBE schemes, since we do not need the oracle
creating malicious public-key any more.

• Also, in [2], Bellare et al. separate the unknown secret
key (USK) model from the known secret key (KSK)
model. Brie�y, the KSK model means the adversary
has to possess a corresponding secret key when regis-
tering a malicious public-key, while in the USK model
it does not have to. They needed the KSK model
for the security proof of the stateful variant of the
Kurosawa-Desmedt encryption scheme [11]. In con-
trast, in ID-based setting, the adversary knows the
corresponding private key SKID of all identity ID
( 6= ID∗) via the key extraction oracle, so the separa-
tion between the USK and KSK model is not necessary
any more.

In the second place, the fact that the state of stateful IBEs
relies on system-wide parameters params, which are used by
all identites for encryption and decryption, appears to open
more ways to reduce encryption cost, compared to stateful
PKEs where each user needs a di�erent public key. We use
this fact (together with an algebraic property of bilinear
map) to get rid o� all exponentiations in SIdent, as will be
seen later.
In short, we gain more when using states in IBEs. Al-

though formalized later and can be viewed as an adaptation
from PKEs to IBEs, stateful encryption apparently �ts IBEs
more than PKEs.
An Extended Security Model and Equivalence with the Ba-
sic One. The above notion of security is a simpli�ed one,
considering only one sender with a �xed encryption state.
Like [2], one can consider an extended model where there
are many senders with many states, each of which may be
reset or compromised. Speci�cally, the adversary can has
access to three more oracles for creating senders with their
states, reseting a sender state, and revealing a sender state
with a natural restriction that the challenge state cannot
be revealed or reset. This extended security notion implies
forward-security of the system, namely it retains security
even if previous states are compromised. We note that the
simpli�ed notion is equivalent to the extended one up to
a polynomial loss factor. The equivalence proof is via a
standard guessing argument, and is almost identical to its
counterpart in [2], so we omit it. We therefore stick to the
simpli�ed security notion in the rest of this paper.

3. THE SIDENT SCHEME
This section is devoted to presenting the proposed SIdent

scheme. We �rst describe its building blocks, and then the
scheme, and �nally analyze its security.
Building Blocks. We �rst describe the building blocks used
and the assumptions about them.

• A BDH parameter generator G whose input is security
parameter κ and output is a quadruple (q, G1, G2, ê),
where q is a prime, G1 and G2 are cyclic groups of
order q, and ê is a pairing from G1 ×G1 to G2. Let P
be a random generator of G1.

� The BDH problem is: given (P, aP, bP, cP ) for
a, b, c

$← Zq, compute ê(P, P )abc.
� The decisional BDH (DBDH) assumption is: dis-
tinguish the tuples of the form (P , aP , bP , cP ,
ê(P, P )abc) from those of the form (P , aP , bP , cP ,



Z), where a, b, c
$← Zq and Z

$←G2. A DBDH or-
acle Odbdh is an algorithm which, given (P , aP ,
bP , cP , Z) as input, outputs 1 if Z = ê(P, P )abc

and outputs 0 otherwise.
� The Gap-BDH problem is: solve the BDH prob-
lem with the help of the DBDH oracle. We as-
sume the Gap-BDH problem is hard with respect
to G, captured by de�ning the gap-bdh-advantage
of an adversary AG as

Advgap−bdh
G (AG) = Pr[Z = ê(P, P )abc]

in the following experiment: P
$←G1

∗; a,b,c
$← Zq;

Z←A
Odbdh
G (P, aP, bP, cP ).

• A symmetric encryption scheme SE = (SEnc, SDec)
with key-length k. The scheme is assumed IND-CCA
secure, captured by de�ning the ind-cca-advantage of
an adversary ASE as

Advind−cca
SE (ASE) = |Pr[d = c]− 1

2
|

in the following experiment: K
$←{0, 1}k; c

$←{0, 1};
d

$←AOSE where O is one of the following: SEnc(K, ·),
LOR(K, ·, ·, c), SDec(K, ·). Here, LOR(K, m0, m1, c)

returns C∗s
$← SEnc(K, mc). ASE is allowed only one

query to this left-or-right oracle, consisting of a pair of
equal-length messages, and it is not allowed to query
SDec(K, ·) on C∗s .
We note that the security for SE is easily and cheaply
obtained via encrypt-then-mac generic composition [3].

Scheme and Security. The scheme SIdent = (Setup, Extract,
NwSt, Enc, Dec) is described as follows.
Setup: Given a security parameter κ ∈ Z+, the algorithm
works as follows: (1) Run the BDH generator on input κ
to generate a prime q, two groups G1 and G2 of order q,
and a pairing ê : G1 × G1 → G2. Also choose a random
generator P ∈ G1. (2) Pick s

$← Z∗q and Ppub ← sP . (3)
Choose two cryptographic hash function H1 : {0, 1}n → G∗1,
and H2 : G2 → {0, 1}k, where n is identity length and k is
the key length of the symmetric encryption scheme.
The public parameters params := (q, G1, G2, ê,P , Ppub,

n, k, H1, H2) and master secrete key msk := s.
Extract: Given the master secret key s and an identity ID ∈
{0, 1}n, the algorithm computes QID ← H1(ID), SKID ←
sQID, and outputs SKID as the private key for identity ID.
NwSt: Given the public parameter params, the algorithm
picks r

$← Z∗q and outputs (rP, rPpub) as the state of the
scheme.
Enc: Given params, an identity ID, a message m ∈ {0, 1}∗,
and an encryption state st, the algorithm does as follows:
(1) parses st as (R, R′), (2) computes QID ← H1(ID), (3)
sets K ← H2(QID, R, ê(QID, R′)), and (4) computes C

$←
(R, SEncK(m)). The algorithm returns the ciphertext C
and the unmodi�ed state st.
Dec: To decrypt ciphertext C under identity ID and its
corresponding private key SKID does the following: (1)
parse C as (S, Cs), (2) compute QID ← H1(ID) and K ←

H2(QID, S, ê(SKID, S)), and (3) output SDecK(Cs) (may
be reject).
This completes the description of SIdent. Its correctness

comes from the fact that the symmetric key K is the same in
both encryption and decryption algorithms when everything
is computed as above, since ê(QID, R′) = ê(sQID, rP ) =
ê(SKID, R).
It is worth noting that in NwSt, r is not output. This is

natural as done in most encryption schemes, and is in sharp
contrast with all the PKE schemes in [2]. The reason we can
omit r comes from the advantage of having the state rely on
system-wide parameters params. Indeed, the value Ppub is
in params, so we can use rPpub as a part of the state. This
will be impossible in a PKE related to SIdent below, since
Ppub will become a part of recipient's public key.
It appears that the encryption algorithm Enc is determin-

istic, but it does not. The randomness for the encryption
comes from the (IND-CCA secure) symmetric encryption al-
gorithm SEnc, which is an important component leads to
the following result.

Theorem 1. Consider SIdent associated to BDH genera-
tor G and symmetric encryption scheme SE as above, and
suppose the hash functions H1, H2 are random oracles. Then
SIdent is IND-sID-CCA secure. More precisely, let A be an
IND-sID-CCA adversary against SIdent, then there are Gap-
BDH adversary AG with respect to G, and adversary ASE

against SE, whose running times are essentially the same as
that of A, such that
Advind−sid−cca

SIdent (A) ≤ Advgap−bdh
G (AG)+Advind−cca

SE (ASE).

The proof ideas of the theorem are as follows: we �rst show
that an attack against SIdent is reduced to an attack against
a stateful PKE scheme (de�ned below), by considering H1 as
a random oracle. Then by modeling H2 as a random oracle,
we reduce the attack against that stateful PKE scheme to
solving the Gap-BDH problem and attacking the underlying
symmetric encryption scheme. Although the roadmap of the
proof is the same as Boneh-Franklin [4], the proof details are
completely di�erent, which we will see later.

Proof. Recall that in the IND-sID-CCA game, A has to
commit a target identity ID∗ at the beginning of the game,
before Setup is run. And in stateful setting, A further can
ask queries of the form (ID, m) to an encryption oracle,
as de�ned in Section 2. We �rst want to make the state-
ful IND-sID-CCA game simpler by using a nice feature of
SIdent, so that all identities used in the encryption ora-
cle are only the identity ID∗. Indeed, suppose A submits
(ID, m), where ID 6= ID∗, as an encryption query. In this
case, A also can know SKID by the key extraction ora-
cle, so that it is able to encrypt m itself as follows: K ←
H2(H1(ID), R, ê(SKID, R)), C ← (R, SEncK(m)), where
R is the �rst part of the encryption state. The point now is
how A obtains R, but this is easy since A just makes an en-
cryption query (not a challenge query) like (ID∗, “GetR”)
in order to get R. The reasoning thus far enables us to
assume without weakening adversary's ability that A only
makes queries of the form (ID∗, ·) to the encryption oracle.
The following Lemma 1 will take advantage of this fact, and
the theorem follows directly from Lemma 1 and Lemma 2
below.
Before going further stating and proving Lemmas 1 and
2, we �rst de�ne a stateful PKE scheme, related to the



IBE SIdent, called SPub = (SPub.Setup, SPub.Keygen,
SPub.NwSt, SPub.Enc, SPub.Dec), using the same build-
ing blocks as the IBE SIdent. The components of SPub are
described as follows.
The algorithm SPub.Setup takes a parameter κ as in-

put, and returns sp = ((q, G1, G2, ê), P, H2), which respec-
tively consists of the output of the BDH generator G, a ran-
dom generator of group G1, and a hash function from G2

to {0, 1}k. With that sp as input, SPub.Keygen chooses
s

$← Zq, Q
$←G1, and sets Ppub ← sP , and �nally returns

pk = (Ppub, Q) as the public-key, and sk = sQ as the se-
cret key. With the parameter sp as input, the algorithm
SPub.NwSt chooses r

$← Zq, sets R ← rP , and returns
st = (r, R) as encryption state. SPub.Enc takes as in-
put the parameter sp, public key pk = (Ppub, Q), a mes-
sage m, and the encryption state st = (r, R); it then com-
putes K ← H2(Q, R, ê(Q, Ppub)

r), lets the ciphertext be
C

$← (R, SEncK(m)) and �nally returns both C and the
unchanged state st. SPub.Dec takes sp, pk, sk = sQ and
a ciphertext C = (S, Cs) as input, and computes symmet-
ric K ← H2(Q, S, ê(sk, S)) and outputs SDecK(Cs). This
completes the description of stateful PKE SPub, whose cor-
rectness is checked similarly as the stateful IBE SIdent.
The purpose of changing SIdent to SPub is to show that

the key extraction queries do not help the adversary against
SIdent. Indeed, we will show that any attack against SIdent
is reduced to an attack against SPub. (The attack against
SPub will be compactly presented in Lemma 1 below.) The
idea of changing an IBE scheme to a PKE scheme was used
to prove the security of (non-stateful) BasicIdent [4], but
the proof of Boneh-Franklin and the proof here are quite
di�erent, and we will comment about the di�erences after
the following lemma:

Lemma 1. Let H1 : {0, 1}n → G∗1 be a random oracle,
and A is an ind-sid-cca adversary against SIdent. Then there
exists an adversary B against SPub, whose running time is
essentially the same as that of A, such that

Advind−sid−cca
SIdent (A) = Advind−cca

SPub (B),

where the right-hand side is de�ned as follows

Advind−cca
SPub (B) = |Pr[b′ = b]− 1

2
|

in the following experiment: b
$←{0, 1}; b′ ← Bin game G;

where the game G plays with algorithm B as follows: given
parameter κ, the game �rst sets up: sp

$← SPub.Setup(κ);
(pk, sk)

$← SPub.Keygen(sp); st
$← SPub.NwSt(sp). The

game then gives B the parameter κ, sp, and public key pk.
B in turn has access to oracles SPub.Enc(sp, pk, ·, st)2,
LOR(sp, pk, ·, ·, b, st) 3, SPub.Dec(sp, sk, ·)4. B can
query the �rst and third oracles many times, but just one
time to the second left-or-right LOR oracle. The �rst and
second oracle outputs are a ciphertext and a state, but only
the ciphertext is given to B. In addition, B cannot submit
the output of LOR oracle to the third decryption oracle.5

2who receives a message m.
3who receives two equal-length messages m0, m1 and then
encrypts mb.
4who receives a ciphertext C.
5This notion is similar to the de�nition of IND-CCA for

The proof of this lemma is quite simple and is in Appendix
A. The reduction in Lemma 1 is tight, as opposed to its
counterpart in [4]. The point is, taking advantage of the
selective-ID game, the adversary B is able to simulate the
environment for A in a usual manner, avoiding Coron's tech-
nique [6] which made the reduction loose in [4].
Thanks to the fact that hash function H2 can be seen as

a random oracle, we have the following lemma.

Lemma 2. Consider the adversary B playing with game
G as de�ned in Lemma 1, and suppose that H2 is a random
oracle. Then

Advind−cca
SPub (B) ≤ Advgap−bdh

G (AG) + Advind−cca
SE (ASE),

where AG , ASE are respectively the Gap-BDH adversary,
and the adversary against symmetric encryption scheme SE.

The proof of this lemma, which is a bit intricate, is in Ap-
pendix B. The crux of it is as follows. Let K∗ = H2(Q,
R,ê(Q, Ppub)

r), where R = rP , be the (same) symmetric
key in the oracles SPub.Enc(sp, pk, ·, st) and LOR(sp, pk,
·, ·, b, st). We show that K∗ is indistinguishable from a
random key, based on the Gap-BDH assumption. With the
random key, the security of SPub then comes from the se-
curity of the symmetric encryption scheme SE.

4. FROM SELECTIVE-ID TO FULL SECU-
RITY

Theorem 1 gives us an IND-sID-CCA secure stateful IBE
scheme, but our goal is an IND-ID-CCA secure one. Results
about transformation from selective-identity security to full
security for non-stateful schemes are known in the litera-
ture [1]. To reach the goal without making unsubstantiated
claims, we present in this section a generic way to transform
an IND-sID-CCA secure stateful scheme to an IND-ID-CCA
one. We �rst need some notations. Let Π is a stateful IBE
scheme where all identities are bit strings of length n, and
H be a hash function from {0, 1}∗ to {0, 1}n. We denote by
ΠH the stateful IBE scheme derived from Π by �rst hashing
an arbitrary length identity, and then using Π with the hash
string. Note that by this method, all identities in ΠH are of
arbitrary length.
We say that a stateful IBE is (t, qextr, qe, qd, ε) IND-sID-

CCA secure (respectively, IND-ID-CCA secure) if no ad-
versary with time complexity t, asking qextr key extraction
queries, qe encryption queries, and qd decryption queries
has advantage (larger than) ε in the IND-sID-CCA game
(respectively, IND-ID-CCA game). The security of ΠH is
ensured by the following theorem.

Theorem 2. Model H as a random oracle. If Π is (t, qextr,
qe, qd, ε) IND-sID-CCA secure, then ΠH is (t, qextr, qe, qd,
ε′) IND-ID-CCA secure with

ε′ = ε(qH + qe)(1− qextr + qd

2n
)−1 ' ε(qH + qe),

where qH is the number of calls to H.

stateful PKE schemes [2], except that the ability of adver-
sary B is restricted: B can only gain encrypted messages un-
der one challenge public-key pk, rather than its maliciously-
chosen public keys as in [2]. Both SPub and this notion just
serve as a �bridge" for the proof of Theorem 1.



The proof of this theorem is in Appendix C.
Combining Theorems 1 and 2 lets us conclude that the

scheme SIdentH is fully secure under the Gap-BDH assump-
tion, as stated in the following theorem.

Theorem 3. The notions are as in Theorems 1 and 2. We
have

Advind−id−cca
SIdentH (A) / (qH + qe)Advgap−bdh

G (AG)

+ (qH + qe)Advind−cca
SE (ASE).

Remark that SIdentH deals with identities of arbitrary
length. Indeed, in SIdentH , an identity ID ∈ {0, 1}∗ is �rst
hashed to {0, 1}n by H, and then H(ID) is processed by
H1 : {0, 1}n → G∗1. The whole process can be seen as H1 ◦
H : {0, 1}∗ → G∗1, which can be seen as one hash function.
From the light of Theorem 3, all words SIdent in Section 1
should be precisely replaced by SIdentH , since SIdent is not
exactly fully secure. We however use SIdent for discussion
in Section 1, for the sake of simplicity, and because the both
schemes are the same except a hash function for identity.
Note that in practice, qe, the number of oracle queries to

the encryption oracle which uses the same state for encrypt-
ing is not large, compared to the number of hash queries
qH . We can thus assume that qe << qH , and hence the
factor loss in the security reduction in Theorem 3 can be
approximately considered as qH . This value was used in the
comparison with FullIdent in Section 1.

5. CONCLUSION
We have examined the de�nition of stateful IBE scheme,

its corresponding security notions, and a concrete stateful
IBE SIdent, which is IND-ID-CCA secure with tighter se-
curity reduction to the Gap-BDH assumption, and which is
e�cient in both encryption and decryption. Furthermore, it
produces very short ciphetexts.
The scheme SIdent is considered in ROM. It is interest-

ing to ask whether there are stateful IBE schemes whose
securities are proven in standard model (i.e., not ROM).

6. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for insightful com-

ments.

7. REFERENCES
[1] D. Boneh and X. Boyen, �E�cient Selective-ID Secure

Identity-Based Encryption Without Random Oracles,"
EUROCRYPT 2004, LNCS 3027, Springer-Verlag, pp.
223-238, 2004.

[2] M. Bellare, T. Kohno, and V. Shoup, �Stateful
Public-Key Cryptosystems: How to Encrypt with One
160-bit Exponentiation," ACM CCS 2006. Full version
available at http://eprint.iacr.org/2006/267.

[3] M. Bellare, C. Namprempre, �Authenticated
Encryption: Relations among Notions and Analysis of
the Generic Composition Paradigm," ASIACRYPT
2000, pp. 531-545, 2000.

[4] D. Boneh, M. Franklin, �Identity-Based Encryption
from the Weil Pairing," SIAM J. of Compt., Vol. 32,
No. 3, pp. 586-615, 2003.

[5] M. Bellare and P. Rogaway, �Random oracles are
practical: a paradigm for designing e�cient

protocols," 1st ACM Conference on Computer and
Communications Security, pp. 62-73, 1993.

[6] J.S. Coron, �On the exact security of Full Domain
Hash", Proceedings of Crypto 2000, LNCS vol. 1880,
Springer-Verlag, pp. 229-235, 2000.

[7] R. Canetti, S. Halevi, and J. Katz,�A Forward-Secure
Public-Key Encryption Scheme," Eurocrypt 2003,
LNCS Vol. 2656, Springer-Verlag, pp. 255-271, 2003.

[8] R. Cramer, V. Shoup,�Design and analysis of practical
public-key encryption schemes secure against adaptive
chosen ciphertext attack," SIAM J. of Comt., Vol. 33,
pp.167-226, 2003.

[9] E. Fujisaki, T. Okamoto, �Secure Integration of
Asymmetric and Symmetric Encryption Schemes",
Proc. of Crypto '99, LNCS 1666, Springer-Verlag, pp.
537�554, 1999.

[10] D. Galindo, �Boneh-Franklin Identity Based
Encryption Revisited," In ICALP'05, LNCS 3580,
pp.791-802, 2005. Full version available from the
author's homepage:
http://www.cs.ru.nl/ dgalindo/ICALP2005full.pdf.

[11] K. Kurosawa and Y. Desmedt,�A New Paradigm of
Hybrid Encryption Scheme," CRYPTO 2004, pp.
426-442, 2004.

[12] V. Shoup, �Using hash functions as a hedge against
chosen ciphertext attack," Eurocrypt'00, pp. 275-288,
2000.

[13] V. Shoup, �Sequences of games: a tool for taming
complexity in security proofs," manuscript, 2006.
Available from http://www.shoup.net/papers/.

APPENDIX

A. PROOF OF LEMMA 1

Proof. Let A be an ind-sid-cca adversary against the scheme
SIdent, we will build the adversary B, who controls the ran-
dom oracle H1 and plays with the game G as de�ned above.
B runs A and simulates the environment for A as follows.
It �rst gives A the security parameter κ and lets A output
a target identity ID∗ ∈ {0, 1}n. It then gives A the tuple
(q, G1, G2, ê, P , Ppub, n, k, H1, H2) as params, since it has
sp = (q, G1, G2, ê, P, H2) and the public key pk = (Ppub, Q),
both of which received from the game G. (The value n, k
are known from the description of H1, H2.) Note Q is not
given to A and we will take advantage of this fact later. The
adversary A makes many oracle queries, which are in turn
handled by B, as follows:

� H1-oracle query ID: If ID = ID∗, then B returns
QID∗ = Q to A. Otherwise, if ID was not queried be-
fore, B picks bID

$← Zq, and returns QID ← bIDP to A. B
also keeps a record of all asked (ID, QID, bID) by a data
structure Hlist

1 and uses this structure to answer identical
repeated queries.

� Key extraction query ID (6= ID∗): B takes the corre-
sponding (ID, QID, bID) from Hlist

1 . (If such a record was
not existed yet, B just goes ahead and calls the H1 oracle
algorithm so that the record exists. B can do so because it
controls the random oracle H1.) Then, B returns to A the
value bIDPpub(= bID(sP ) = sQID), which is a legitimate
private key for the identity ID .



� Encryption query m (only under ID∗): B takes m
from A and gives the message to its own encryption or-
acle SPub.Enc(sp, pk, ·, st) to receive a ciphertext of the
form (rP, SEncK∗(m)), where K∗ is internally computed
as H2(Q, rP, ê(Q, Ppub)

r) (= H2(QID∗ , rP, ê(QID∗ , rPpub)))
by the encryption oracle. B then returns (rP, SEncK∗(m))
to A.

� (One) challenge query (m0, m1) (under ID∗): B gives
(m0, m1) to its LOR(sp, pk, ·, ·, b, st) oracle to obtain (rP ,
SEncK∗(mb)) (K∗ is as above). B then returns C∗ = (rP ,
SEncK∗(mb)) to A.

� Decryption query (ID∗, C), where C 6= C∗: B feeds
C into its decryption oracle SPub.Dec(sp, sk, ·), then takes
and forwards the output to A. This decryption simulation
is legitimate since the symmetric key in SPub.Dec(sp, sk, ·)
after feeding C = (S, Cs) is H2(Q, S, ê(sQ, S)), which is ex-
actly the symmetric key to decrypt C under ID∗ in SIdent.

Note that in the above simulation, the IBE's state is con-
sidered as (rP, rPpub), while the PKE's state is (r, rP ). The
simulation is perfect from the viewpoint of the adversary A.

Finally, A returns a bit b′, which is in turns output by B.
From the fact that the simulation is perfect and the outputs
are the same, we have

Advind−sid−cca
SIdent (A) = Advind−cca

SPub (B),

which concludes the proof of Lemma 1.

B. PROOF OF LEMMA 2

Proof. We will prove the lemma via games G0 and G1 as
de�ned as follows.
Let game G0 be the original attack game, where B plays

in game G as mentioned in Lemma 1. Recall that K∗ =
H2(Q, R, ê(Q, Ppub)

r), where R = rP , is the (same) sym-
metric key in the oracle SPub.Enc(sp, pk, ·, st) and the or-
acle LOR(sp, pk, ·, ·, b, st). In addition, when B asks a de-
cryption query C = (S, Cs), game G0 uses the key K∗ to de-
crypt Cs if S = R; otherwise it uses K = H2(Q, S, ê(sQ, S)).
The change is just to rephrase game G0, and does not a�ect
the view of B.
Game G1 is the same as G0, except that the key K∗ is

now picked at random: K∗ $←{0, 1}k. Let F be the event
that B queries H2 at (Q, R, ê(Q, Ppub)

r) in game G1. It is
clear that games G0 and G1 are identical until F occurs. In
particular, it follows that T0 ∧ F = T1 ∧ F where T0 and T1

are the events the guess bit b′ is equal to the challenge bit b
in games G0 and G1, respectively. Thus, by the Di�erence
Lemma [13],

|Pr[T0]− Pr[T1]| ≤ Pr[F ]. (1)

We �rst claim that

|Pr[T1]− 1

2
| = Advind−cca

SE (ASE), (2)

Pr[F ] = Advgap−bdh
G (AG). (3)

Note that Advind−cca
SPub (B) = |Pr[T0] − 1

2
| by de�nition, and

Lemma 2 comes directly from (1), (2), and (3). It now
su�ces to justify the above claims.
We �rst justify (2). Intuitively, it comes from the fact that

K∗ is now truly random in game G1 and hence SEncK∗(mb)

gives no information about the challenge bit b if SE is IND-
CCA secure. Formally, ASE takes the parameter κ as input,
uses B as a subroutine, and outputs what B outputs (which
is the guess bit b′). Using κ, ASE itself generates all the pa-
rameters for B and, in particular, it knows the encryption
state (r, R) and the secret key sQ. ASE , by de�nition, fur-
thermore has access to oracles SEnc(K∗, ·), LOR(K∗, ·, ·, b),
SDec(K∗, ·) (K∗ is suggestively used here.) Utilizing these
oracles, ASE returns (R, SEnc(K∗, m)), and (R, LOR(K∗,
m0, m1, b)) respectively when B makes encryption query m
and challenge query (m0, m1). When B asks a decryption
query (S, Cs), ASE returns SDecK∗(Cs) if S = R and oth-
erwise returns SDecK(Cs) where K = H2(Q, R, ê(sQ, S)).
Thus ASE perfectly simulates the environment for B in game
G1, and forces B to guess the bit b in LOR(K∗, ·, ·, b). The
advantage of ASE is |Pr[b′ = b] − 1/2| by de�nition, which
is exactly |Pr[T1]− 1/2|. Equation (2) follows.
We now justify (3), which is more challenging. We will

construct AG solving the Gap-BDH problem, making use
of B as a subroutine. The input of AG is an instance (q,
G1, G2, ê) and random points (P, aP, bP, cP ) and it will
output ê(P, P )abc with the help of a DBDH oracle Odbdh,
provided that the event F occurs. AG runs B giving sp =
(q, G1, G2, ê) to B as security parameter. It then puts Ppub =
aP , Q = bP and set R = cP . The public key is pk =
(Ppub, Q), and the state is considered as st = (c, R) (Al-
though AG does not know a, b, c and sk = abP .) AG also
picks key K∗ $←{0, 1}k and random bit b

$←{0, 1}. Note
that F is now the event that B queries (bP, cP, ê(bP, aP )c)
to H2. The way which AG handles encryption queries m
(to SPub.Enc(sp, pk, ·, st)) and challenge query (m0, m1)
(to LOR(sp, pk, ·, ·, b, st)) is quite simple: it just returns (R,
SEncK∗(m)) and (R, SEncK∗ (mb)) respectively to B.
Processing hash queries and decryption queries is however

a bit intricate. Borrowing a technique originally used in [12],
AG manages the following lists, which is initially empty:
� V1: contains tuples of the form (T, S, e, K) ∈ G2

1×G2×
{0, 1}k for which K is the reply of the query (T, S, e) to H2.
� V2: contains tuples of the form (T, S, e) for which (T , S,

e, K) ∈ V1 for some K ∈ {0, 1}k and Odbdh(P, T, S, Ppub, e)
= 1 (namely, (P, T, S, Ppub, e) is a BDH tuple.)
� V3: contains tuples of the form (S, K) for which K is

the reply of the query (Q, S, ê(sk, S)), where sk = abP , to
H2.
Intuitively, AG uses V1, V2, V3 to handle both random ora-
cle queries and decryption queries from B. The list V1 keeps
records of all asked queries to H2, and V2 is related to BDH
tuples in V1. V3 is for processing decryption queries (S, Cs).
Note that the symmetric key for decryption is H2(Q, S,
ê(sk, S)), and given S, the value ê(sk, S) is �xed, although
unknown to AG . Knowing the value S is enough for simula-
tion, so it is kept in V3. Symmetric keys K may be added
into both independent lists V1 and V3, so AG must carefully
check the both lists before returning new keys to B. AG now
processes hash and decryption queries from B as follows.
• Hash oracle query (T, S, e) to H2: AG checks if (T , S,

e, K) ∈ V1 for some K. If so, K is returned to B.
Otherwise, AG uses the oracle Odbdh to check whether
(P, T, S, Ppub, e) is a BDH tuple.
� If so: AG �rst checks whether T = Q(= bP ) and

S = R(= cP ). If this is the case (and hence
the event F occurs), then AG halts and outputs



e; otherwise it adds (T, S, e) to V2 and furthermore
checks whether (S, K) is in V3 for some K. If so,
K is returned to B and (T, S, e, K) is added to V1;
otherwise a random key K ∈ {0, 1}k is chosen, and
(T, S, e, K) is added to V1.

� If not: a key K ∈ {0, 1}k is chosen at random, and
(T, S, e, K) is added to V1.

• Decryption query C = (S, Cs) (to SPub.Dec(sp, sk, ·)):
If (Q, S, e) ∈ V2 for some e, then AG takes the corre-
sponding (Q, S, e, K) ∈ V1, and returns SDecK(Cs) to
B. Otherwise, AG checks whether (S, K) is in V3 for
some K; if so, then SDecK(Cs) is returned to B, and if
that is not the case, then AG chooses K

$←{0, 1}k and
returns SDecK(Cs) to B.

AG thus perfectly mimics the environment for B. As seen
in the simulation of H2, whenever the event F occurs, AG
will output e = ê(P, P )abc, which is the Gap-BDH solution.
Equation (3) follows.

C. PROOF OF THEOREM 2
Proof. Let A be an adversary attacking ΠH , and its has

advantage ε′ = ε(qH + qe)(1 − qextr+qd
2n )−1 in the IND-ID-

CCA game. We will build an adversary B using A as a
subroutine, and B's advantage in the IND-sID-CCA game is
ε. B �rst chooses an index j

$←{1, . . . , qH + qextr + qe + qd}
and sets a counter ctr ← 0. Since B is in the selective-
ID game, it chooses id∗

$←{0, 1}n and outputs the string as
the �target" identity. B then receives params from the game,
and feeds this parameter to A. B simulates the environment
for A as follows.
� Hash oracle query ID ∈ {0, 1}∗: We assume wlog that

A never repeats a hash query and if A makes the other
queries (below) related to an identity, it has already made
a corresponding hash query. B �rst sets ctr ← ctr + 1 and
puts IDctr = ID. If ctr = j, then B returns id∗; otherwise,
it returns id

$←{0, 1}n.
� Key extraction query ID: We know that ID = IDi and

H(ID) = idi ∈ {0, 1}n for some 1 ≤ i ≤ qH +qextr +qe +qd.
If idi 6= id∗ then B forwards idi to its own key extraction
oracle, obtains back the private key corresponding to idi,
and gives the key to A. However, in the unlikely event that
idi = id∗, B cannot respond to this query, so it halts and
outputs a random bit as a guess of the challenge bit b of the
game.
� Encryption query (ID, m): B forwards (H(ID), m) to

its own encryption oracle, gets back the ciphertext and re-
turns it to A.
� Challenge query (ID∗, m0, m1): We know that ID∗ =

IDk and H(ID∗) = idk ∈ {0, 1}n for some 1 ≤ k ≤ qH +
qextr + qe + qd. If k = j (and hence idk = id∗), B forwards
(m0, m1) to its own challenger, receives back the challenge
ciphertext C∗ and gives it to A. Otherwise, namely k 6= j,
B halts and outputs a random bit.
� Decryption query (ID, C)( 6= (ID∗, C∗)): We know that

ID = IDk and H(ID) = idk ∈ {0, 1}n for some 1 ≤ k ≤
qH +qextr +qe +qd. If idk 6= id∗ or C 6= C∗ then B forwards
(idk, C) to its own decryption oracle, gets back the result
and gives it to A. Otherwise, B halts and outputs a random
bit.

Finally, if B does not halt as above, it outputs what A
outputs. This ends the description of B.
We begin to analyze B's advantage in guessing the challenge
bit b. Denote b′ the output of B, which is either a random
bit or A's output. We call NoHalt the event that B does not
halt before A's output. It is clear that if the event NoHalt
occurs, then B perfectly simulates the environment for A,
and the output of B is exactly the output of A, so that
|Pr[b′ = b|NoHalt]| − 1/2 = ε′. On the other hand, if the
event NoHalt occurs, then the output of B is random, so
that we have |Pr[b′ = b|NoHalt]| = 1/2. Thus,

Advind−sid−cca
Π (B) = |Pr[b′ = b]− 1

2
|

= |Pr[b′ = b|NoHalt] Pr[NoHalt]

+ Pr[b′ = b|NoHalt] Pr[NoHalt]− 1

2
|

= |(ε′ + 1

2
)Pr[NoHalt] +

1

2
(1− Pr[NoHalt])− 1

2
|

= ε′ Pr[NoHalt].
We now estimate Pr[NoHalt]. Additionally denote NoHalt1
the event that B does not halt while processing the challenge
query, and NoHalt2 the events that B does not halt while
processing the other queries. We have NoHalt = NoHalt1 ∩
NoHalt2 and hence

Pr[NoHalt] = Pr[NoHalt2] Pr[NoHalt1|NoHalt2].
We now proceed to compute Pr[NoHalt1|NoHalt2]. Note

that Pr[NoHalt1|NoHalt2] = Pr[k = j|NoHalt2]. The condi-
tional event NoHalt2 implies that k 6= j while B processes
extraction and decryption queries, so that

Pr[k = j|NoHalt2] =
1

(qH + qextr + qe + qd)− (qextr + qd)

=
1

qH + qe
.

Thus

Pr[NoHalt1|NoHalt2] =
1

qH + qe
.

We now compute Pr[NoHalt2]. The event NoHalt2 means
B does not halt while processing extraction queries and de-
cryption queries, which in turn means that idi 6= id∗ for all
idi appeared in the queries. Since id∗ is chosen randomly
from {0, 1}n, we have Pr[NoHalt2] = 1− qextr+qd

2n .

Thus, Pr[NoHalt] = 1
qH+qe

(1− qextr+qd
2n ), and hence

Advind−sid−cca
Π (B) = ε′ Pr[NoHalt] = ε,

which concludes the proof.


