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The World Of Flathess

Saed Samatiand Akinori Nishihar&'
*Concordia University;*Tokyo Institute of Technology

Abstract— In the published literature on circuit theory  interested in actuarial sciences have been pioneers in
and signal processing, the maximally flat FIR filters are ysing digital filtering techniques to suppress errors
commonly attributed to O. Herrmann. It is the purpose of g3nd smooth data. Moreover they were among the

this paper to elucidate the status of these filters before and first who discovered a special class of filters called
after Herrmann’s paper. Our survey shows that both the . .
today maximally flat FIR filters.

formula and the shape of the magnitude response of these ! A ' L
filters had been known to actuaries and mathematicians  IN this contribution, we provide a brief introduc-
before the publication of Herrmann’s paper. We provide tion to the convolution-based graduation techniques
a broad outline of the contributions made by actuaries developed by actuaries and mathematicians. The
and mathematicians on this class and other related FIR main emphasis is on the connection between these
‘;'(';\i;sv'\:dome recent developments and extensions are alsqyathods and the maximally flat FIR filters. We see
' that T.N.E. Greville, in a 1966 paper, developed the
. INTRODUCTION first formula for maximally flat FIR filters from a

, ._.general formula for data smoothing discovered in
‘A'n actua.rﬁ,”as def'ned.by th? Oxford Eng.l'sqghe early 20th century by W.F. Sheppard. We also
Dictionary, is "an official in an insurance office,

. . - review |.J. Schoenberg’s 1946 proof of the equiv-
whose duty ... is to compile statistical tables 9 . . -
. . lence of time domain conditions for exact repro-
mortality, and estimate therefrom the necessary rates .. o
. ) : uction of a polynomial signal and the frequency-
of premium, etc.; or one whose profession ...

. : : Epmain flathess conditions at the origin. We then
to solve for insurance companies or the public, all_ . .
view some recent developments on maximally flat

. . . . 1
monetary guestions that involve a consideration E?R filters which have been of special interest to the

the separate or combined effect of interest and prob-
authors.

ability, in connexion with the duration of human L . . .
i . . The organization of the remainder of this paper is
life, the average proportion of losses due to fire . . .
: . . .as follows. In Section 2, we provide a more precise
or other accidents, etc.” Actuaries use an operatiQ . ) .
. ) o . troduction to what the actuaries traditionally refer
traditionally referred to as “graduation” in their dat

. h . .. 10 as graduation by linear compounding or moving
processing tasks in order to remove irregularities : . ;
. averages and introduce the two features a “good
from data. A popular method of graduation con- . ) :

. . ) raduation technique is usually expected to possess.

sists in “replacing each term of a sequence : ) ,
) .0ne of the features is the “exactness” of the tech-
weighted mean of a number of terms, so as to give : i
nique with respect to the polynomial component

an opportunity for neighboring erors of OppOS|t8f the data. This topic is dealt with in Section 3,

signs_ to balan_ce one another” [1]'. n _engineerinvghere we quote a proof, originally developed by
tgrmlnqlogy, th's‘. method of.gragluatlon IS known a§choenberg, of the fact that exactness with respect
digital filtering with an FIR filter in order to remove, polynomials is equivalent to the flatness of the

noise and smooth data. For a reader who is famillfa\r . )
requency response at the origin. In Section 4, we

W'th digital fllterlng_through Its roots in englneerlngs% how the second feature, the “smoothness” of the
it may be interesting to know that actuaries have

o o raduation results, is treated by Sheppard and quote
been aware of such digital filtering methods from. , . .
. .._his general formula. Sheppard’s formula, given in
the late 19th century. Actuaries and mathematicians . .
he form of a transfer function defining a three-
'!For a modern descripton of the profession visitParameter family of smoothing digital filters, is

http://www.beanactuary.org. not known among the members of the engineering



less, the relation

P(r)+e(r) Ideal graduation ﬂ)

P(r)=Y_ pP(r-1) ()

l=—n

be satisfied. To ensure the smoothness of the grad-

Fig. 1. Ideal graduation of a polynomial with additive noi® the uated values, a measure of the form

observed data, = P(r) + e(r). n
> (Amp)?
. . . £ R — (3)
community. We then see, following Greville, that m om
Sehppard’s formula, in its limiting form, results in m

what is called a maximally flat lowpass FIR filter. In .

Section 5, we provide a review of some recent dis €mployed [2], [3], where the difference operator
velopments in the design of various FIR maximally*™ IS defined recursively by

flat filters with a focus on explicit expressions for A% =p,

the transfer function.
Alpy =pi1 — pi, (4)

A" =A(A™ ),

for integer values ofn. In many graduation formu-
In the actuarial literature, graduation is definegs, the coefficients, are determined in a manner so
as an operation performed in order to secure, froga to minimizeR,,, which is called the smoothing
an irregular set of observed data, a correspondiggefficient of orderm [2], for a given m. The

smooth set of values consistent in a general W?ﬁﬁona'e behind the minimization cRm becomes
with the observed values. The sequence of obserggar if we model the observations as

data is usually denoted by,, and the symbob,

is customarily reserved for the graduated values. Uy = W, + e, (5)
A well-known method of graduation among mat'\i\/herew
ematicians and actuaries uses a weighted movi noiserterm. It is further assumed that eaglis

average, I. e., an FIR digital filter, where the cru ndomly and independently distributed according
valuesu, and the graduated sequence are relatedtgs

[I. GRADUATION BY CONVOLUTION

is the “true” value ande, is the error

- o’ n=m;
0= 3 pri @ Ble =0, Bleaen] = {0 ntm O
l=—n ’
The variance of the error contained iWN"u, is

The above convolution is sometimes referred to asg,
linear smoothing formula [2]. This method of data
smoothing has also been called graduation by linear E[(A™¢,)?] =02 <2m) )
compounding [3]. “Smoothness” and “fit” are two " m /)

main requirements the weights ShOU|d. fulfill in On the other hand, the corresponding variance after
order to achieve an acceptable graduation. The te M duation is given by

fit refers to the consistency aef with the observed
datawu,, whereas smoothness is a desirable qualit i

of the graduated values. A common practice gmoné Bla™ Z prer-1)’] =o” Z (A"p)% (8)

the actuarial mathematicians, as a means to ensure a I==n I==n

reasonable fit to the observed data, is to require tidtus, in a graduation formula with a minimized
the formula be exact for the degrge or in other R,,, the variance of thenth difference of the error
words, for every polynomialP(x) of degree;j or term is reduced as much as possible. Obviously, the

8mputed as

n



minimization should result in a value fdt,, that is A. Exactness Conditions in Explicit Form

less than unity. _ Schoenberg wrote down the exactness conditions
As an illuminating example of the impact of thg,, the pasic monomials, z, 22, . . ., 27, and derived
minimization of the smoothness measure on th&s relations
graduated sequence, let us consider the case where
m = 0. The minimization of B3 is equivalent to I _ 5 _ -
. o . -1 =n", s=0,1,...,7. 14
that of >°;"  p?. If the weighting coefficients, l;o Pt J (14)

simultaneously satisfy the exactness conditions (

2, _ :
and the observations are modeled as 1)he reader is noted to an equivalent form of (14)

iven b
ur = P(r) + () @ M
whereP(r) is a polynomial of degreg, or less, and - oo dl s=0; 15
the error term satisfies (6), then l—z—;o P 0 s=1,...,7. (15)
v, = P(r) + Z D1er_i. (10) employed by some other authors.

l=—n

B. Power Moments

It follows that o , . :
As an insightful remark, we discuss an interesting

Elv,] = P(r), (11) byproduct of the imposition of the exactness condi-
and, therefore, tions. It can be shown that for an exact smoothing
) G formula, the power moments af are preserved up
El(v. — P(r)] = > i (12) to the orderj, i. e.,
l=—n
Thus by choosing the weights to minimiZe&, we Z 15y, = Z 15 ;. (16)

are actually minimizing the mean square error in
the graduated sequence and the resulting operatj
is identical to smoothing by least squares. Ideally,
the error after graduation would be zero as depicted

in Fig. 1. SoFu=> 1> wpr

r|]s fact can be easily established by writing

I1l. EXACTNESS = FLATNESS = e fE
The conditions, given by (2), for the exact re- = Z uy Z I pr_p
production of polynomials by a graduation formula l=—c0 I=—c0 (17)
were studied by 1.J. Schoenberg, a mathematician 00 00
with significant contributions to the spline theory, in = Z uy Z I pr—i
connection with his “characteristic functio(u). V'=—c0 I=-o00
We follow his treatment of this topic as presented > e
in [4] for the symmetric smoothing formulas, i. e., - Z url™.
those for which =00
o= P C. Characteristic Function

Schoenberg’s treatment starts by considering aSchoenberg’s defined the characteristic function
smoothing formula with a general infinite-lengttior the graduation coefficients as
weighting sequence o

& ¢(u) = pe
Uy = Z Wi Pr—1- (13) l:Zoo (18)
. - = po + 2p1cosu + 2pycos2u+ - -,
In the following, we see how he transformed the po = P2
exactness conditions to the equivalent relations amerei = +/—1. In the modern signal processing
what we call the frequency response function todagrminology, (18) is called the frequency response



of the system defined by (13). Now, assume that tfi&is is the well-known flatness property that the
weighting sequence tends to zero exponentially Esear-phase maximally flat filters exhibit around the
stated by the inequality origin.
_Bli| Actuaries refer to the frequency response function
< Ae ) (29 o o . )
as a “periodogram function.” An interesting paper
This tendency ensures that the characteristic funhat shows the knowledge of the actuaries about the
tion is regular in a strip of the complexplane. We shape of the periodogram function is [5], where it

can then write is observed that “the highest order of polynomials
reproduced by a graduatd@} is equal to the order
e = Z pr-ne (20) of contact of its periodogram with the horizontal
l=—o0 at 5 = 1. It turns out thatg = 1 corresponds
By expanding the left side of the above expressita ©» = 27 and, hence, ta: = 0 because of the
in w around the origin, we obtain periodicity of ¢(u).
u o, 4 = (in IV. MINIMUM R, FORMULAS AND MAXIMALLY
(14 50" (0) + kz_o k' FLAT FIR FILTERS

i 1, Y , i " Tpere exists an explicit expression, due to W.F.
=1+ qnu =g (0" = ¢ (0)u” — 5 (n* — 31 ¢"(08réppard, for the linear smoothing formulas of the
1 , @ A length (2n + 1) that are exact for the polynomials

+@(” —6n7¢"(0) + ¢V (0) u' + - . up to degreg = 2k + 1, and have a minimize®?,.
(21) In this paper, we reproduce this expression in the

Expansion of the right side in a similar manndPrm Of a transfer function by writing

results in n
P(z) = Z o2, (25)
Z Pr— ne Z Pl—n 1' Z lpl nU l=—n
l=—eo l=—eo [==o0 which is the two-sided:-transform of the coeffi-
1 < A 3 cientsp, of a linear smoothing formula. Using the
_ﬁlz o = ﬁlz Fprnu subscriptsk, m andn to associateP(z) with the
X . - particular values of these parameters, the versatile
= Z 1 i transfer function is shown to be [2]
T l=—00 Pk,m,n(x) =1
(22) . . .
. . . (1) (=n)*(m+n+1)°" |
Upon equating the coefficients of like powers of + 7 Sk —Dlm+k+ )
in (21) and (22), we obtain conditions of the form T os=ktl (26)
Z_X: Forn = wherea® = a(a+1)---(a+b—1) and
24271
n® — (;) n*~2¢"(0) + (Z) n* o™ 0) + - - -, r=1- 5 (27)
(23) Greville has proved that
fors=0,1,....

LW
Schoenberg concludes, in light of (14), that a |[Prma(sin” )| <1, O<w<m.  (28)

smoothing formula is exact for the polynomials olf:
degree(2k — 1) if and only if the Taylor expansion
of ¢(u) at the origin is of the form

urthermore, Py ,,, »(sin” %) has (n — k — 1) ex-
trema in the open |nterva{0 7). To obtain an
intuitive understanding of the general shape of

du) =1—au®* + - . (24) Pimn(sin®%), we have plotted the characteristic
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Fig. 2. Plots ofPs 10 (sin? Z). (@ m=0. (b)m = 5. (c) m = 10. (d) m = 50. The horizontal axis depicts the normalized frequesacy

function for selected values &f m andn in Fig. 2. with increasingm, i. e.,
The frequency variable in the plots is consistent with (m—1) _ ¢(m) (m—1) _ (m)
the modern notion of the normalized frequency § <&, Yy <y
for Py, m..(sin”%). The satisfaction of the tangencyyhere £m and y™ are the values of and y

shape of the curves around the origin. The mofigiting case of a minimuniz,, smoothing formula,
interesting property is the impact of the valuerof ¢ =1andy = 0 is achieved.

determining the order ik2,. It can be seen that™ Greville also shows that the minimuni.

m has a remarl_<a_1b_|e influence on the sha_lpe of tQFhoothing formula is given by

curves in the vicinity ofw = 7. We can visually

verify the following fact analyzed mathematically - hn—k+s—1 i

by Greville in 1966 [2]. As the value aof: tends to Proon = (1-2) Z < s )x - (29)
infinity, the shape of? ,,, ,(sin %) tends to that of s=0

the magnitude response of a maximally flat lowpa3sis is identical to the formula of O. Herrmann [6].
FIR filter. A more precise expression of this fadtle further observes that “this characteristic function
is the following. Let¢ denote the smallest positives unusual in that in0, 7] its only minimum is zero”
zero of Py ,,..(x) in (0,1), andy (a non-positive atw = 7 “and its only maximum is unity” av = 0
number) denote the minimum value Bf ,,, ,(z) in “so that it is everywhere positive exceptat= m
(0,1). Note thaty is both the numerically largestand decreases monotonically in the interval.”
negative value assumed % ,,,(z) in (0,1) and
the largest deviation from zero ifg,1). Then, for
fixed £ andn, both& andy increase monotonically

V. RECENT DEVELOPMENTS AND CONCLUDING
REMARKS

Most of the recent research on the maximally
flat FIR filters have been reported in the literature



dealing with circuits and systems or digital signdlons of the concepts covered in this paper as made
processing. We review some recent developmertty,actuarial mathematicians. An interesting paper in
mainly from the 1990’s onward, without making dhat direction is [21] where a new criterion for judg-
claim of comprehensiveness. The central themeiig the properties of moving averages is given and
the closed form formulas and discrete-time struéermulas are derived under a general assumption for
tures; we have not made any attempt to cover tkiee noise. As noted in [21], there is no need to limit
analytical methods that require an optimization stefhe exactness condition to the polynomial signals.
An influential insight into design of maximally-Extensions to the second dimension and beyond are
flat (MAXFLAT) FIR filters was provided in [7] also not thoroughly studied.
through the Bernstein polynomials. The Bernstein- In recent years, various wavelet bases have been
form of the transfer function was used in [8] ta@onstructed and enthusiastically studied by engi-
develop an exact multiplier-free structure for theeers and mathematicians. Research on the con-
maximally flat lowpass filters. For fixed valuestruction of compactly supported wavelets using
of the parameters, the structure can hierarchicatligital filters satisfying regularity conditions is di-
realize all of the related filters of lower orderstectly related to the study of flat and maximally
The structure was further generalized in [9] to thigat digital filters. Even though the digital filtering
structures for maximally flat bandstop and bandpasguivalents of the results introduced in this paper are
filters with an arbitrary center of flathess. Odd-orderot new to the wavelet designers, it is expected that
maximally flat FIR filters were reported in [10].the historical background introduced in this paper
A new type of Bernstein approximation was introwould inspire new research directions. We conclude
duced in [11]. The design problem dif/th band this paper by the following excerpt from [22].
maximally flat filters was first considered in [12];There is a saying in the Orient, Onko-chishin,
[13] and completely solved in [14]. A generalizationvhich originated with Confucius in the 6th century
of maximally flat filters with arbitrary group delay atB.C. It means, by exploring the old, one can come
the origin (due to Baher), was proposed in [15] arntd understand the new, or more simply, take a lesson
studied further in [16]. In [17], it was shown thafrom the past.”
the maximally flat filters of Baher are a universal
class of lowpass filters that contain the fractional- REFERENCES
Sample delay filters as well. Discrete-time Ce”Ulatl] W.F. Sheppard, “Reduction of error by means of negligibl
structures, including multiplier-less ones, were de- differences,” in Proc. Fifth International Congress of Math-
veloped in [17]’ [18], [19]. ematicians, Cambridge, vol. 2, pp. 348-384, 1913.
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