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The World Of Flatness

Saed Samadi∗ and Akinori Nishihara∗∗
∗Concordia University,∗∗Tokyo Institute of Technology

Abstract— In the published literature on circuit theory
and signal processing, the maximally flat FIR filters are
commonly attributed to O. Herrmann. It is the purpose of
this paper to elucidate the status of these filters before and
after Herrmann’s paper. Our survey shows that both the
formula and the shape of the magnitude response of these
filters had been known to actuaries and mathematicians
before the publication of Herrmann’s paper. We provide
a broad outline of the contributions made by actuaries
and mathematicians on this class and other related FIR
filters. Some recent developments and extensions are also
reviewed.

I. INTRODUCTION

An actuary1, as defined by the Oxford English
Dictionary, is ”an official in an insurance office,
whose duty ... is to compile statistical tables of
mortality, and estimate therefrom the necessary rates
of premium, etc.; or one whose profession ... is
to solve for insurance companies or the public, all
monetary questions that involve a consideration of
the separate or combined effect of interest and prob-
ability, in connexion with the duration of human
life, the average proportion of losses due to fire
or other accidents, etc.” Actuaries use an operation
traditionally referred to as “graduation” in their data
processing tasks in order to remove irregularities
from data. A popular method of graduation con-
sists in “replacing each term of a sequence by
weighted mean of a number of terms, so as to give
an opportunity for neighboring errors of opposite
signs to balance one another” [1]. In engineering
terminology, this method of graduation is known as
digital filtering with an FIR filter in order to remove
noise and smooth data. For a reader who is familiar
with digital filtering through its roots in engineering,
it may be interesting to know that actuaries have
been aware of such digital filtering methods from
the late 19th century. Actuaries and mathematicians

1For a modern description of the profession visit:
http://www.beanactuary.org.

interested in actuarial sciences have been pioneers in
using digital filtering techniques to suppress errors
and smooth data. Moreover, they were among the
first who discovered a special class of filters called
today maximally flat FIR filters.

In this contribution, we provide a brief introduc-
tion to the convolution-based graduation techniques
developed by actuaries and mathematicians. The
main emphasis is on the connection between these
methods and the maximally flat FIR filters. We see
that T.N.E. Greville, in a 1966 paper, developed the
first formula for maximally flat FIR filters from a
general formula for data smoothing discovered in
the early 20th century by W.F. Sheppard. We also
review I.J. Schoenberg’s 1946 proof of the equiv-
alence of time domain conditions for exact repro-
duction of a polynomial signal and the frequency-
domain flatness conditions at the origin. We then
review some recent developments on maximally flat
FIR filters which have been of special interest to the
authors.

The organization of the remainder of this paper is
as follows. In Section 2, we provide a more precise
introduction to what the actuaries traditionally refer
to as graduation by linear compounding or moving
averages and introduce the two features a “good”
graduation technique is usually expected to possess.
One of the features is the “exactness” of the tech-
nique with respect to the polynomial component
of the data. This topic is dealt with in Section 3,
where we quote a proof, originally developed by
Schoenberg, of the fact that exactness with respect
to polynomials is equivalent to the flatness of the
frequency response at the origin. In Section 4, we
see how the second feature, the “smoothness” of the
graduation results, is treated by Sheppard and quote
his general formula. Sheppard’s formula, given in
the form of a transfer function defining a three-
parameter family of smoothing digital filters, is
not known among the members of the engineering
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Fig. 1. Ideal graduation of a polynomial with additive noiseas the
observed dataur = P (r) + e(r).

community. We then see, following Greville, that
Sehppard’s formula, in its limiting form, results in
what is called a maximally flat lowpass FIR filter. In
Section 5, we provide a review of some recent de-
velopments in the design of various FIR maximally
flat filters with a focus on explicit expressions for
the transfer function.

II. GRADUATION BY CONVOLUTION

In the actuarial literature, graduation is defined
as an operation performed in order to secure, from
an irregular set of observed data, a corresponding
smooth set of values consistent in a general way
with the observed values. The sequence of observed
data is usually denoted byur, and the symbolvr

is customarily reserved for the graduated values.
A well-known method of graduation among math-
ematicians and actuaries uses a weighted moving
average, i. e., an FIR digital filter, where the crude
valuesur and the graduated sequence are related as

vr =
n

∑

l=−n

ρl ur−l. (1)

The above convolution is sometimes referred to as a
linear smoothing formula [2]. This method of data
smoothing has also been called graduation by linear
compounding [3]. “Smoothness” and “fit” are two
main requirements the weightsρl should fulfill in
order to achieve an acceptable graduation. The term
fit refers to the consistency ofvr with the observed
dataur, whereas smoothness is a desirable quality
of the graduated values. A common practice among
the actuarial mathematicians, as a means to ensure a
reasonable fit to the observed data, is to require that
the formula be exact for the degreej, or in other
words, for every polynomialP (x) of degreej or

less, the relation

P (r) =
n

∑

l=−n

ρl P (r − l) (2)

be satisfied. To ensure the smoothness of the grad-
uated values, a measure of the form

R2
m =

n
∑

l=−n

(∆mρl)
2

(

2m

m

) (3)

is employed [2], [3], where the difference operator
∆m is defined recursively by

∆0ρl =ρl,

∆1ρl =ρl+1 − ρl,

∆mρl =∆(∆m−1ρl),

(4)

for integer values ofm. In many graduation formu-
las, the coefficientsρl are determined in a manner so
as to minimizeRm, which is called the smoothing
coefficient of orderm [2], for a given m. The
rationale behind the minimization ofRm becomes
clear if we model the observationsur as

ur = wr + er, (5)

where wr is the “true” value ander is the error
or noise term. It is further assumed that eacher is
randomly and independently distributed according
to

E[en] = 0, E[enem] =

{

σ2 n = m;

0 n 6= m.
(6)

The variance of the error contained in∆mur is
computed as

E[(∆mer)
2] =σ2

(

2m

m

)

. (7)

On the other hand, the corresponding variance after
graduation is given by

E[(∆m

n
∑

l=−n

ρler−l)
2] =σ2

n
∑

l=−n

(∆mρl)
2. (8)

Thus, in a graduation formula with a minimized
Rm, the variance of themth difference of the error
term is reduced as much as possible. Obviously, the



minimization should result in a value forRm that is
less than unity.

As an illuminating example of the impact of the
minimization of the smoothness measure on the
graduated sequence, let us consider the case where
m = 0. The minimization ofR2

0 is equivalent to
that of

∑n

l=−n ρ2
l . If the weighting coefficientsρl

simultaneously satisfy the exactness conditions (2),
and the observations are modeled as

ur = P (r) + e(r), (9)

whereP (r) is a polynomial of degreej, or less, and
the error term satisfies (6), then

vr = P (r) +

n
∑

l=−n

ρl er−l. (10)

It follows that

E[vr] = P (r), (11)

and, therefore,

E[(vr − P (r))2] =

n
∑

l=−n

ρ2
l . (12)

Thus by choosing the weights to minimizeR2
0, we

are actually minimizing the mean square error in
the graduated sequence and the resulting operation
is identical to smoothing by least squares. Ideally,
the error after graduation would be zero as depicted
in Fig. 1.

III. EXACTNESS = FLATNESS

The conditions, given by (2), for the exact re-
production of polynomials by a graduation formula
were studied by I.J. Schoenberg, a mathematician
with significant contributions to the spline theory, in
connection with his “characteristic function”φ(u).
We follow his treatment of this topic as presented
in [4] for the symmetric smoothing formulas, i. e.,
those for which

ρl = ρ−l.

Schoenberg’s treatment starts by considering a
smoothing formula with a general infinite-length
weighting sequence

vr =
∞

∑

l=−∞

ulρr−l. (13)

In the following, we see how he transformed the
exactness conditions to the equivalent relations on
what we call the frequency response function today.

A. Exactness Conditions in Explicit Form

Schoenberg wrote down the exactness conditions
for the basic monomials1, x, x2, . . . , xj , and derived
the relations

∞
∑

l=−∞

lsρn−l = ns, s = 0, 1, . . . , j. (14)

The reader is noted to an equivalent form of (14)
given by

∞
∑

l=−∞

ls ρl =

{

1 s = 0;

0 s = 1, . . . , j.
(15)

employed by some other authors.

B. Power Moments

As an insightful remark, we discuss an interesting
byproduct of the imposition of the exactness condi-
tions. It can be shown that for an exact smoothing
formula, the power moments oful are preserved up
to the orderj, i. e.,

∞
∑

l=−∞

ls ul =
∞

∑

l=−∞

ls vl. (16)

This fact can be easily established by writing
∞

∑

l=−∞

ls vl =
∞

∑

l=−∞

ls
∞

∑

l′=−∞

ul′ ρl−l′

=

∞
∑

l′=−∞

ul′

∞
∑

l=−∞

ls ρl−l′

=

∞
∑

l′=−∞

ul′

∞
∑

l=−∞

ls ρl′−l

=

∞
∑

l′=−∞

ul′l
′s.

(17)

C. Characteristic Function

Schoenberg’s defined the characteristic function
for the graduation coefficients as

φ(u) =
∞

∑

l=−∞

ρle
ilu

= ρ0 + 2ρ1 cos u + 2ρ2 cos 2u + · · · ,

(18)

where i =
√
−1. In the modern signal processing

terminology, (18) is called the frequency response



of the system defined by (13). Now, assume that the
weighting sequence tends to zero exponentially as
stated by the inequality

ρl ≤ Ae−B|l|. (19)

This tendency ensures that the characteristic func-
tion is regular in a strip of the complexu-plane. We
can then write

φ(u)einu =
∞

∑

l=−∞

ρl−neilu. (20)

By expanding the left side of the above expression
in u around the origin, we obtain

(1 +
u2

2!
φ′′(0) +

u4

4!
φ(4)(0) + · · · )

∞
∑

k=0

(inu)k

k!

=1 +
i

1!
n u − 1

2!
(n2 − φ′′(0)) u2 − i

3!

(

n3 − 3 n φ′′(0)
)

u3

+
1

4!
(n4 − 6 n2 φ′′(0) + φ(4)(0)) u4 + · · · .

(21)

Expansion of the right side in a similar manner
results in

∞
∑

l=−∞

ρl−neilu =

∞
∑

l=−∞

ρl−n +
i

1!

∞
∑

l=−∞

l ρl−n u

− 1

2!

∞
∑

l=−∞

l2 ρl−n u2 − i

3!

∞
∑

l=−∞

l3 ρl−n u3

+
1

4!

∞
∑

l=−∞

l4 ρl−n u4

(22)

Upon equating the coefficients of like powers ofu

in (21) and (22), we obtain conditions of the form
∞

∑

l=−∞

lsρl−n =

ns −
(

s

2

)

ns−2φ′′(0) +

(

s

4

)

ns−4φ(4)(0) + · · · ,

(23)

for s = 0, 1, . . ..
Schoenberg concludes, in light of (14), that a

smoothing formula is exact for the polynomials of
degree(2k − 1) if and only if the Taylor expansion
of φ(u) at the origin is of the form

φ(u) = 1 − au2k + · · · . (24)

This is the well-known flatness property that the
linear-phase maximally flat filters exhibit around the
origin.

Actuaries refer to the frequency response function
as a “periodogram function.” An interesting paper
that shows the knowledge of the actuaries about the
shape of the periodogram function is [5], where it
is observed that “the highest order of polynomials
reproduced by a graduatorQ is equal to the order
of contact of its periodogram with the horizontal
at β = 1.” It turns out thatβ = 1 corresponds
to u = 2π and, hence, tou = 0 because of the
periodicity of φ(u).

IV. M INIMUM R∞ FORMULAS AND MAXIMALLY

FLAT FIR FILTERS

There exists an explicit expression, due to W.F.
Sheppard, for the linear smoothing formulas of the
length (2n + 1) that are exact for the polynomials
up to degreej = 2k+1, and have a minimizedR2

m.
In this paper, we reproduce this expression in the
form of a transfer function by writing

P (z) =

n
∑

l=−n

ρlz
l, (25)

which is the two-sidedz-transform of the coeffi-
cientsρl of a linear smoothing formula. Using the
subscriptsk, m and n to associateP (z) with the
particular values of these parameters, the versatile
transfer function is shown to be [2]

Pk,m,n(x) = 1

+
(−1)k

k!

n
∑

s=k+1

(−n)s(m + n + 1)s

s(s − k − 1)!(m + k + 3
2
)s

xs

(26)

whereab = a(a + 1) · · · (a + b − 1) and

x = 1 − z + z−1

2
. (27)

Greville has proved that

|Pk,m,n(sin
2 ω

2
)| < 1, 0 < ω ≤ π. (28)

Furthermore,Pk,m,n(sin
2 ω

2
) has (n − k − 1) ex-

trema in the open interval(0, π). To obtain an
intuitive understanding of the general shape of
Pk,m,n(sin

2 ω
2
), we have plotted the characteristic
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Fig. 2. Plots ofP3,m,10(sin
2 ω

2
). (a) m=0. (b)m = 5. (c) m = 10. (d) m = 50. The horizontal axis depicts the normalized frequencyω.

function for selected values ofk, m andn in Fig. 2.
The frequency variable in the plots is consistent with
the modern notion of the normalized frequencyω

for Pk,m,n(sin
2 ω

2
). The satisfaction of the tangency

conditions can be visually confirmed by the flat
shape of the curves around the origin. The more
interesting property is the impact of the value ofm

determining the order inR2
m. It can be seen that

m has a remarkable influence on the shape of the
curves in the vicinity ofω = π. We can visually
verify the following fact analyzed mathematically
by Greville in 1966 [2]. As the value ofm tends to
infinity, the shape ofPk,m,n(sin

2 ω
2
) tends to that of

the magnitude response of a maximally flat lowpass
FIR filter. A more precise expression of this fact
is the following. Letξ denote the smallest positive
zero of Pk,m,n(x) in (0, 1), and y (a non-positive
number) denote the minimum value ofPk,m,n(x) in
(0, 1). Note thaty is both the numerically largest
negative value assumed byPk,m,n(x) in (0, 1) and
the largest deviation from zero in(ξ, 1). Then, for
fixed k andn, bothξ andy increase monotonically

with increasingm, i. e.,

ξ(m−1) < ξ(m), y(m−1) < y(m),

where ξ(m) and y(m) are the values ofξ and y

associated with a particular choice ofm. In the
limiting case of a minimumR∞ smoothing formula,
ξ = 1 andy = 0 is achieved.

Greville also shows that the minimumR∞

smoothing formula is given by

Pk,∞,n = (1−x)n−k

k
∑

s=0

(

n − k + s − 1

s

)

xs. (29)

This is identical to the formula of O. Herrmann [6].
He further observes that “this characteristic function
is unusual in that in[0, π] its only minimum is zero”
at ω = π “and its only maximum is unity” atω = 0
“so that it is everywhere positive except atω = π

and decreases monotonically in the interval.”

V. RECENT DEVELOPMENTS AND CONCLUDING

REMARKS

Most of the recent research on the maximally
flat FIR filters have been reported in the literature



dealing with circuits and systems or digital signal
processing. We review some recent developments,
mainly from the 1990’s onward, without making a
claim of comprehensiveness. The central theme is
the closed form formulas and discrete-time struc-
tures; we have not made any attempt to cover the
analytical methods that require an optimization step.

An influential insight into design of maximally-
flat (MAXFLAT) FIR filters was provided in [7]
through the Bernstein polynomials. The Bernstein-
form of the transfer function was used in [8] to
develop an exact multiplier-free structure for the
maximally flat lowpass filters. For fixed values
of the parameters, the structure can hierarchically
realize all of the related filters of lower orders.
The structure was further generalized in [9] to the
structures for maximally flat bandstop and bandpass
filters with an arbitrary center of flatness. Odd-order
maximally flat FIR filters were reported in [10].
A new type of Bernstein approximation was intro-
duced in [11]. The design problem ofM th band
maximally flat filters was first considered in [12],
[13] and completely solved in [14]. A generalization
of maximally flat filters with arbitrary group delay at
the origin (due to Baher), was proposed in [15] and
studied further in [16]. In [17], it was shown that
the maximally flat filters of Baher are a universal
class of lowpass filters that contain the fractional-
sample delay filters as well. Discrete-time cellular
structures, including multiplier-less ones, were de-
veloped in [17], [18], [19].

The customary criteria used in the evaluation of
the performance of digital filters deal with qualities
such as sharpness of the transition and the mini-
mization of the deviation from an ideal response.
However, as is clear from the historical background
provided in this paper, the maximally flat lowpass
filters of Herrmann have a profound signal pro-
cessing significance that overshadows the traditional
performance criteria. They are the only minimum
R∞ solutions that pass polynomial signals. Applica-
tion of this property, as shown for example in [20],
may prove insightful in dealing with problems in-
volving maximally flat digital filters.

Digital filters with smoothing properties that are
exact for other types of signals are not well studied.
The researchers in the field seeking new directions
of inquiry are well advised to study the generaliza-

tions of the concepts covered in this paper as made
by actuarial mathematicians. An interesting paper in
that direction is [21] where a new criterion for judg-
ing the properties of moving averages is given and
formulas are derived under a general assumption for
the noise. As noted in [21], there is no need to limit
the exactness condition to the polynomial signals.
Extensions to the second dimension and beyond are
also not thoroughly studied.

In recent years, various wavelet bases have been
constructed and enthusiastically studied by engi-
neers and mathematicians. Research on the con-
struction of compactly supported wavelets using
digital filters satisfying regularity conditions is di-
rectly related to the study of flat and maximally
flat digital filters. Even though the digital filtering
equivalents of the results introduced in this paper are
not new to the wavelet designers, it is expected that
the historical background introduced in this paper
would inspire new research directions. We conclude
this paper by the following excerpt from [22].
“There is a saying in the Orient, Onko-chishin,
which originated with Confucius in the 6th century
B.C. It means, by exploring the old, one can come
to understand the new, or more simply, take a lesson
from the past.”
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