T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

oo /00000
Article / Book Information
oo@a) OO0000000O0DOOooOood
Title(English) On the Structure of Intractable Complexity Classes
oo@a) OO0
Author(English) O. Watanabe
oo@a) oo:0o00a0,
OOooooOo:0oo0ooa,
OO000:0016880,
O0000:19870 50 310,
ooooo:0o0o0a,
Oo0o:
Citation(English) Degree:Doctor of Engineering,
Conferring organization: Tokyo Institute of Technology,
Report number:[J [0 168801,
Conferred date:1987/5/31,
Degree Type:Thesis doctor,
Examiner:
oooo@a) oood
Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

On the Structure

of
Intractable Complexity Classes

BY

Osamu WATANABE

Department of Computer Science
Tokyo Institute of Technology
Ookayama, Meguro-ku
Tokyo 152, JAPAN

A dissertation
submitted for the degree of doctor of engineering
at Tokyo Institute of Technology
January, 1987

ACKNOWLEDGEMENTS

I am indebted to my advisers, Professor Takuya Katayama and
Professor Kojiro Kobayashi, for their encouragement and support
throughout my preparing this dissertation. Professor Kojiro
Kobayashi also has helped me and given me invaluable advice since I

started my research in theoretical computer science.

I would like to thank Professor Ronald Book who invited me to
University of California, Santa Barbara. There I could have fruitful
discussions with Professor Ronald Book, Professor Ker-I Ko, Dr.
Pekka Orponen, Dr. David Russo, and Professor Uwe Schbning
which contributed to this work. Professor Ronald Book and Profes-
sor Eric Allender read an earlier version of this manuscript carefully

and gave me helpful comments.

I would like to thank staffs and colleagues in Department of
Information Sciences and Department of Computer Science, Tokyo
Institute of Technology for the good environment to study computer

science and to prepare manuscripts.

ABSTRACT

This dissertation explores the meaning of several structural pro-
perties. Structural properties provide the method to investigate the
"intractability” of problems. We estimate the difficulty of a problem
by showing that it does (or does not) posses some structural pro-
perty. During this decade, several structural properties have been
introduced expecting that they express certain tractability/intracta-
bility concepts. However, for many structural properties, we have
not understood their meaning mathematically in the context of com-
putational complexity theory. This dissertation is devoted to the
investigation of what these properties express and how they do it in

computational complexity theory.

Structural properties have been introduced to attack the'
unsolved P # NP question. They are expected to express certain
(in)tractability notions and to show how and why NP-computation is
more powerful than P-computation. Note that it is difficult to prove
the latter type of intuitions since we do not even know whether P =
NP. However we can examine the former type of intuitions by
studying these structural properties on the class of problems which is
known to be intractable. The class EXP (= DTIME (ZIin)) is the smal-
lest time complexity class such that we can prove so far that (a) it
properly includes P and that (b) it contains the essential part of NP.
Hence, in order to investigate thé meaning of each structural pro-

perty, we study how it works on EXP.

Four basic structural properties and the related concepts are stu-

died: several polynomial time reducibilities and completeness

it

notions; similarity of Si-complete sets; polynomial time reducibility
to a set of small density; and lowness and highness notions. We
solve several conjectures concerning these structural properties on
EXP. Although we state our results for EXP, many results and
proofs which we develop are also applicable to other complexity
classes. The possibility and a way to investigate other complexity

classes are also discussed.

iii

TABLE OF CONTENTS

ACKNOWIEdEEMENTS ...ceuiiiiiiiii i i
ADSITACE oo e ii
Chapter 1: Introductionccceeevveviieniiiiniiniaiiinnannn. eeaeiiieeaea, 1
Chapter 2: PrElitinariesooveeeeeeeeeeeeeeeeeees oo 18
Chapter 3: Comparison of Polynomial Time Reducibilities 25
3.1 Sf; -Completeness and S§—Completeness 27
3.2 Si-Completeness and S};-Completeness 40
Chapter 4: P-Isomorphism of Si-Complete Sets i 48
4.1 One-to-One Length-Increasing Equivalence Relation 51
4.2 The Structure of the Class of Si-CompIete Sets ..oooiiiininnn. 63
Chapter 5: Polynomial Time Reducibility to a Set of Small Density 77
5.1 Density of Hard Sets ..o 78
5.2 Non-Existence of Polynomial Time Pseudo Algorithms 91
Chapter 6: Polynomial Lowness and EXP LOWNESScouvueneneenennnnnnn.. 95
Chapter 7: Conclﬁding Remarkscooveiiiiiiiiiiiii e, 106
REfEIENCES ..vninitiiiii et 109

iv

1. Introduction

In the course of developing computational complexity theory we have
established several concepts and techniques to measure the computational dif-
ficulty of a given problem. During this decade, several authors have
developed and extensively studied different ways to show the "intractability"
of problems which are called structural methods. In a structural method we
consider a structural property which expresses (or seems to express) the com-
putational difficulty: we estimate the difficulty of a problem or a class of
problems by showing that they do (or do not) posses such a property. For
example, the "NP-completeness” notion is a typical one. Since "NP-
completeness” asserts being one of the hardest problems in NP, by showing
"NP-completeness” for a given problem we prove that it is one of the hardest

problems in NP.

Thus a structural property is a key in a structural method. For each
structural property, we need to make its meaning precise and to understand
how it shows “tractability/intractability”. In order to attack the unsolved P #
NP question, we have introduced many structural properties. Many of them
are imported from recursive function theor'y‘ into complexity theory.
Although such properties have meaning and express certain concepts in recur-
sive function theory, we cannot unconditionally assume this meaning in com-
plexity theory: they may not inherit their meaning properly. Furthermore
there are some structural properties arising in complexity theory which have
no correspondence in recursive function theory. For them our intuition on
their meaning has no background in mathematical logic. Therefore it is
necessary for us to reconsider or to investigate the phenomena that structural

properties express and how they do this in the context of complexity theory.

This dissertation is devoted to the investigation of meaning of several

structural properties and to understand what they express and how they
express it in the context of polynomial time computations. To accomplish this
investigation we will take one approach: we investigate each structural pro-
perty by studying how it works on certain class of problems which is known to
be "intractable”. Before stating the contents of this dissertation we will give a
quick review on basic notions and structural properties considered throughout

this dissertation.

The Tractability Notion Based on Polynomial Time Computation

We will follow a standard framework in complexity theory (the reader
should be familiar with the material covered with a textbook like [HU79]).
We consider only decision problems (i.e., recognition problem) and formalize
each "problem" by a corresponding set. That is, a problem is defined by the
set of all strings that should be answered "Yes" in this problem. Throughout

this dissertation, by a problem A we mean the corresponding set.

We use standard deterministic/nondeterministic Turing machines for the
model of computation. In order to quantify the amount of resource needed to
recognize a given set we use complexity measures (or complexity functions): in
this dissertation we will mainly consider time complexity measured by the

number of Turing machine steps.

For several reasons which have been discussed in many contexts (see,
e.g., [Co71, GI79, Ha78, HU79]), we adopt the "tractability” notion based on
deterministic polynomial time computability (the word "deterministic” will be
omitted unless necessary). That is, a set which is recognizable by some deter-
ministic Turing machine within polynomial time should be considered "easy".
In other words, we ignore the differences for which some polynomial time

computation can compensate. Although we will consider weaker “tractability"

notions later on, polynomial time computability is an essential one. We
sometimes expand this way of thinking: we regard an amount bounded by
some polynomial as a "tractable amount”, which we refer as a "polynomial

criterion”.

The class of sets which are recognizable within polynomial time bound is
called P. Also varying "time bound" or “computation style” we can define
other classes: they are called complexity classes in general. In addition to the
class P we will consider the following complexity classes:

NP = the class of sets decidable by nondeterministic

Turing machines within polynomial time;
EXP = the class of sets decidable by deterministic

Turing machines within 29t time; and

NEXP = the class of sets decidable by nondeterministic

Turing machines within 29t time.
Note that it is provable that P G EXP [HU79]; thus, EXP is a provably

intractable complexity class.

Polynomial Time Reducibility

The notion of "polynomial time reducibility” was introduced [Co71,
Ka72] to analyze relative difficulty between two problems (i.e., sets). The
following is a general explanation of polynomial time reducibility: for any
two sets A and B, we say that A is polynomial time reducible to B if some
deterministic algorithm recognizes A within polynomial time provided an ora-
cle is available for Vdeciding x € B for all x. This situation means that the
intractability of A is at most that of B since A cannot be intractable unless B is

intractable (i.e., A € Pif B € P).

The notion of reducibility can be seen in recursive function theory
[Ro66]. Indeed, several types of reducibility have been introduced from

recursive function theory (see, e.g., [LLS76, Lo82]). Among them

reducibility notions available to analyze the relative intractability in terms of

polynomial time computations vary between S?-reducibility to S;-

p—

reducibility: that is, =g

reducibility is the most general (the weakest) and
Si -reducibility is the most restrictive (the strongest); we use SS to denote
any one of them. We refer reducibilities from Si to 5:1 as polynomial time
reducibility in géneral. Thus the above explanation for polynomial time redu-
cibility is also for the most general one, i.e., Si-reducibility. Restricting the
way of using an oracle, we obtain stronger reducibilities; and Si-reducibility
is the most restrictive one. We can explain si-reducibility in terms of
"transformation of a problem": A is s;-reducible to B if some polynomial
time computable function (called a Si-reduction) maps each instance x for A
to some instance y for B such that x € A iff y € B (one can see in this expla-

nation some restrictive way of using information from an oracle; thus, = _ is

. P
a special case of =).

The notion of "completeness” describes the idea of being most intractable
in a given complexity class. For any complexity class C , we say that a set A
is Sf-complete in Cif (i) A isin C and (ii) all sets in C are Sf-reducible to

A. That is, A is one of the hardest set (to recognize) in C with respect to

P
-

Sf—reducibility. Note that all =’ -complete sets in € are Sf-reducible to
cach other. Two sets are said to be Ef-equivalent if they are SS-reducible to
each other. So all Sf-complete sets in C are Ef-equivalent; in other words,
the class of Sf-complete sets consists one Ef-equivalence class, which is the
most difficult Ef—equivalence class in C.
ensit
Recall that a problem is defined by the set of all strings that should be

answered "Yes" in this problem. Then density of a problem is the density of

the corresponding set. Density is one of the basic and important structural
properties. In particular the property of "sparseness” is important here. A
set A is called sparse if there is a fixed polynomial such that for all n, the
number of elements in A~ is bounded by this polynomial in n (where A=
denote elements in A of length less than or equal to n).

 The "sparysenesfs'v’vi's another (and weaker) ndtion of "traétability”. Let A
be any spafsé set. For each n > 0, consider a table which lists up all elements
inA=". Having this table we can recognize A for all inputs of length up to n.
Since only polynomially many elements are in Asn, the size of ‘then table is
polynomially bounded; thus using this table, we can solve A up to length n
within polynomial time. With our "polynomial criterion" we regard this poly-
nomial size table as feasible. That is, AT s tractably solvable with a feasible
size of table: A is "tractable" in this sense. Of course, the construction of this
table may be hard and may need a huge amount of time; hence this idea of

"tractability” is much weaker notion than polynomial time computability.

Following a similar argument, the property of "polynomial time reduci-
bility to a sparse set" also gives the same notion of "tractability”. Let A be
any set which is Sf-reducible to some sparse set B. That is, some polynomial
time algorithm M recognizes A asking questions to an oracle for B. Note that
the length of queries made by M is bounded by some polynomial p(n). Thus

with a table for BSp(n)

, which is still polynomial size, the above algorithm M
can feasibly solve A for all inputs up to length n: this way of solving A is

called a table-lookup algorithm.

Similarity of All S;-Complete Sets

In 1971 Cook defined the idea of NP-completeness and showed that SAT
was NP-complete; this being the first NP-complete set [Co71, Ka72] (in the

following, by " C -complete set" we refer a Si-complete setin). Since

then a huge number of NP-complete sets have been discovered (see [GI79]).
Although they have come from wide variety of problem areas, researchers
began to notice that they are similar in some sense and share some properties.
For example, we expect that all NP-complete sets have similar density.
Indeed, Mahaney [Ma82] proved that no NP-complete sets are sparse if and
only if P # NP.

A similarity between NP-complete sets suggest that NP-computation
(nondeterministic polynomial time bounded computation) is more powerful
than P-computation (deterministic polynomial time bounded way of computa-
tions). Let A and B be an arbitrary pair of NP-complete sets. Then we have
A —Ei B; thus there exist some S;-reductions f from A to B and g from B to
A. Suppose that there is not so much difference in computational power
between P- and NP-computation. Then B can be structurally simple: the
reduction f compensates for the lack of information in B so that we still have
x € A <~ f(x) € B. Indeed, in such an extreme case as P = NP, B can be any
set but the empty set or 3. For example, assuming A € P, we have the fol-

lowing polynomial time computable function f which Si-reduces A to a sin-
gleton {ao}:

a ifx €A,
fx) =

x otherwise,

where a is any string in A.

On the other hand, if NP-computation has a great advantage over P-
computation, then A and B must have a similar structure since no polynomial
time reduction has enough computational power to accomplish drastic change
in the structure of A to that of B and vice versa. Notice that this argument

holds not only for a pair of = Il; -complete sets in NP but also for a pair of sets

in NP which are Ef-equivalent. However, since NP-complete sets are
regarded as the most intractable sets in NP, we expect to sce in the similarity
of NP-complete sets as much difference between P- and NP-computation as

possible; thus, we consider NP-complete sets.

In general we can argue in a similar way for any other complexity class
such that P C . That is, for some kind of similarity we expect that similar-
ity of all C -complete sets characterizes the superiority of -computation to
P-computation. For example "having a similar density” seems to be one of
such similarity. On the other hand, "using the same alphabet” obviously has
nothing to do with the difference between ¢ - and P-computation. It is

interesting to consider what types of similarity are available for this purpose.

Several notions are necessary in order to discuss "similarity". Recall that
all C -complete sets are Ei-equivalent, that is, they all are reducible to each
other by Si-reductions. We state "similarity" in terms of the type of such
Sf;-reductions: for example, the assertion that two sets are Si-reducible each
other by one-to-one reductions states that they have a similar density. So,
some notions concerning the type of functions are necessary here. A function
f is called respectively p-computable and length-increasing if it is polynomial
time computable by some deterministic Turing transducer and [f{x)| > x| for
all x. A one-to-one function f is called p-invertible if f—1 is p-computable.
And a function f is one-way if it is one-to-one, length-increasing, p-
computable but not p-invertible. It is easy to show that if P = NP, no one-
way functions exist. However the existence of one-way functions is widely

believed, especially in the field of cryptography (see [A185, Gs84, KLD85]).

We will use the following equivalence relations in order to express "simi-

larity": for any sets A and B,

A Ef“ B if there exist one-to-one, length-increasing and

p-computable reductions from A to B and B to A;

A E;V B if there exist one-to-one, length-increasing,
p-computable and p-invertible reductions from A to B
and B to A;

A =" B if there exists a one-to-one, onto, p-computable and

180
p-invertible reduction f from A to B.

The last relation, Eio, is called p-isomorphism. Berman and Hartmanis
[BH77] proposed the notion "p-isomorphism" expecting that it appropriately
states the basic similarity between all NP-complete sets. Surprisingly Berman
and Hartmanis showed that indeed a]l of the well-known NP-complete sets
(e.g., NP-complete sets in [GJ79]) are p-isomorphic; they conjectured that all
NP-complete sets are p-isomorphic (this known as the Berman-Hartmanis con-

jecture).

Polynomial Lowness and Polynomial Highness

The concept of “lowness/highness" qualitatively measures the information
content of a given set A: it shows how useful (the information encoded by) a
set A may be. For any set A, we define P(A) to be the class of sets recogniz-
able by some polynomial time algorithms with help of an oracle for A, l.e.,
P(A) = {B : B S,? A} (for any other complexity class €, (A) is defined
similarly). We measure the "usefulness” of a given set by investigating the
type of complexity class we can obtain when we use it as an oracle. For
cxample, if P(A) = P and P(B) = EXP, then B is more useful than A; thus B

is considered to encode more information than A.

There may be many ways to measure the degree of usefulness according
to this approach. Schbning offered one of such approach [Sc83]: he used the

EP

p
1? [St77] (where = X

polynomial time hierarchy Eg,

NP(NP(- - - NP(P) - - -)), see Chapter 6 for the precise definition).

g

k

(Note: It follows from the definition that ES C Ef C - - - ; furthermore it is

conjectured that these inclusions are proper (the non-collapse conjecture).)

It follows from the definition that for every k > 0 and every set A in NP,

P

p P
we have that 2, C 2@ C 2t

So, we define "polynomial
lowness/highness” as follows: for any set A in NP and every k = 0, A is E:-
low if EII: = EII:(A), and A is 2£-high if E]I:H = EZ(A). Define Lif and Hf: to
be the class of E}:-low sets and EII:-high sets respectively. In general E]r:-
lowness (resp., Eﬁ-highness) is called polynomial lowness .(resp., polynomial

highness).

From the definition, the class Lg and Hg is the class P and the class of
Si-complete sets in NP, respectively. And it is easy to show that Lg - Lf

-, and Hg - Hf *+ . Moreover we expect that {LE} and {HE}

kEO_ k=0

construct hierarchies of (in)tractability in NP between P and the class of sg-

complete sets.

* * %

All the structural properties reviewed above and the concepts behind
them have been introduced in the study of the P # NP question. For almost
two decades, we have been unable to develop a more clever algorithm for any
of NP-complete problems than the one based on the exhaustive search. So,
we feel that we have no deterministic algorithm for, say, SAT which is con-
siderably faster than the trivial 20" time algorithm. However we have been
unable to prove that P # NP either; thus we try to investigate how and why
NP differs from P, and this attempt has led us to develop several structural
methods. Hence, as we have reviewed, these structural methods are expected
to show how and why NP-computation is ‘more powerful than P-computation.
Unfortunately there often occur the cases where our conjectures concerning

these structural properties are appear to be much more difficult than the P #

NP question.

For example, consider the problem of similarity between all NP-complete
sets. As discussed above, we have an intuition that some similarity of NP-
complete sets characterizes P G NP. The Berman-Hartmanis conjecture, i.e.,
the conjecture that all NP-complete sets are p-isomorphic, comes from the
intuition that (i) P ¢ NP and (ii) p-isomorphism is an appropriate similarity to
exhibit such a difference. However this conjecture is at least as difficult as
the P # NP question: the Berman-Hartmanis conjecture certainly implies that
P # NP. Is there any way to investigate the soundness of the intuition (ii)
without facing the big question such as P G& NP? One approach is to investi-
gate it not on the class NP but on some complexity class C for which we
know (a) P ¢ C and (b) NP C C. If the intuition (ii) is sound, then we can
also expect the p-isomorphism conjecture for € since € is at least as intract-
able as NP. Furthermore we may have more chance to prove it since we know
that P G C . On the contrary if we disprove p-isomorphism on C, we could
suspect (i), i.e., "p-isomorphism” may be a too strong similarity.

In general this approach offers a way to verify our intuition on structural
properties. For any one of structural properties considered here, a conjec-
ture, say X, from our intuitive understanding implies P GNP (or assumes P G
NP). Thus the conjecture X is at least as difficult as the P # NP question. On
the other hand, for the conjecture X we can usually expect that it holds on any
other complexity class ¢ such that NP C Cif it should hold on NP. Thus if
we prove (resp., disprove) it on a reasonably small class € such that NP cC
, this fact is a good evidence for the soundness (resp., unsoundness) of the
conjecture X. We need not solve the P # NP question for proving the conjec-
ture X. Furthermore, since we know P G C, the proof may be tractable! We

will take this approach in this dissertation. We will (mainly) consider the

10

class EXP (= DTIME(Z””)) and study the above structural properties on
EXP.

The class EXP is the smallest class such that we can prove so far that (a)
it properly includes P and that (b) it contains all the well-known NP-complete
sets. Note that what we can prove so far is not NP € EXP but NP C
EXPOLY (= DT IME(ZPO[y)). However we do not have even the candidate
for EXP — NP or NP — EXP. Also it is casy to show that all the proofs
shown here work for EXPOLY (in general, they work for any deterministic
complexity classes which include EXP). Hence we will consider this small
class EXP. Of course, there is a difference between NP and EXP; thus what
is true on EXP may not on NP: we may use the property that is particular for
EXP. So, in this dissertation we will also investigate the structural properties
on other complexity classes besides the class EXP. The differences between
NP and EXP are the following two points: (i) NP is a nondeterministic com-
plexity class while EXP is a deterministic one and (ii) the time bound for NP
is polynomial while that for EXP is exponential (this difference also causes
the phenomenon that EXP is not closed under Si -reductions but NP is).
Thus, as othér complexity classes, we consider (i) nondeterministic ones and
(ii) complexity classes which have other time bounds than 2™, In the follow-
ing we survey the contents of this dissertation and explain the main observa-
tions and results achieved.

* * *
Chapter 2 provides definitions and propositions used elsewhere in this

dissertation.

In Chapter 3 we discuss the difference between several polynomial time
reducibilities. Especially, we compare each notion of completeness w.r.t.

these reducibilities.

11

There are several notions of "polynomial time reducibility”: S?-
reducibility is the most general one and si-reducibility is the most restrictive
one. Although every polynomial time reducibility notion states relative trac-
tability within polynomial time variance, we think that its meaning differs by
each reducibility and that a restrictive reducibility yields a tighter relation than
the general one. Ladner, Lynch and Selman proved this intuition: they

proved the following.
Theorem. [LLS76]

Let Sf and Sf be any pair of polynomial time reducibilities considered
1 2

in several contexts (see Chapter 2 for their definitions). Then either it is

clear from the definition that Sf implies Sf , or there exist sets A and B in
1 2

EXP such that A Sf B but A $f B. O
1 2

Then consider the meaning of completeness notions induced by polyno-
mial time reducibilities. Here again we conjecture that the meaning of "com-
pleteness” differs by each reducibility. However the above theorem does not
state such differences; and the differences between completeness notions have
been left open in general [KM81, LLS76]. We solve almost all of them on
EXP: we distinguish between completeness notions w.r.t. almost all typical

reducibilities.

In Section 3.1 we compare completeness notions w.r.t. all reducibilities
weaker than Si-reducibility. Here we introduce a structural property ("hav-
ing J -easy subset") which is a generalization of "non-p-immunity”. Using
this notion we can uniformly show the difference between several complete-

ness notions on EXP. We also consider nondeterministic complexity classes.

We obtain the difference between s:;-completeness and sg_c-completeness
(thus sztt-completeness) on NEXP.

12

In Section 3.2 we distinguish Si-complc;teness from S?—completeness on
EXP. From the definition of these reducibilities, we know that all Stpt'
reduction can use only non-adaptive query information whereas some S?-
reduction may use adaptive one. This difference appears in the compressibil-
ity of query strings. Using the concept of "uncompressible string” (i.e.,

“string of high Kolmogorov complexity"), we construct a s?-complete set in

EXP which is not si-complete.

In Chapter 4 we discuss the similarity of EXP-complete sets. First, in
Section 4.1, we investigate the problem of what is an appropriate similarity to
characterize the superiority of -computation to P-computation.

Berman and Hartmanis [BH77] conjectured that all NP-complete sets are
p-isomorphic. We investigate the validity of this conjecture by considering
the same question on EXP: that is, the question of whether all s;-complete
sets in EXP are p-isomorphic. Then we obtain some similarity (Ef’n-
equivalence relation) between all S:l-complete sets in EXP, which almost
solves the above question. However we see, at the same time, that "non-p-
invertibility"” of a S;-reduction is an essential and crucial obstacle in showing

the p-isomorphism result on EXP.

We prove that all sf;-complete sets in EXP are Ef’ﬁ-equivalent. Note
that if no one-way functions exist, Eih is the same as E;v since every one-
to-one and length-increasing S;-reduction is always p-invertible. Also we
have the following technical lemma.

Lemma. [BH77]
For any two sets A and B, if A Ef;v B then A and B are p-isomorphic.

That is, E;v and = ii , define the same equivalence relation. O

Hence if we assume the non-existence of one-way functions, then p-

13

isomorphism is the same as Eili-equivalence relation; and our result also
shows that all S;-complete sets in EXP are p-isomorphic. On the contrary,
assuming the existence of one-way functions, we have a candidate for non-p-
isomorphic pairs. Consider any one-way function f and any standard S;-
complete set U in EXP. It is clear that f(U) is also s;-complete in EXP;
furthermore we have that U Ef,u f(U). However we have been unable to
prove that U _<.§w f(U). In fact, assuming the existence of a one-way function
f, we conjecture that U and f(U) are not p-isomorphic.

The same arguments also hold for any deterministic complexity classes
which include EXP. Also we observe partial Eili-equivalence relation on
nondeterministic complexity classes such as NEXP. As a consequence of

these investigations we propose the following conjecture.
Conjecture.

For each sufficiently difficult complexity class C, we have
(1) all s;-complete sets in C are Ef’li-equivalent; but
(2) not all S;-complete sets in € are p-isomorphic.

(Note: That is, the (extended) Berman-Hartmanis conjecture is false; and
instead of the similarity by "p-isomorphism”, we expect a little weaker simi-
larity, i.e., Efyﬁ-equivalence relation.) O

Since we propose the non-p-isomorphism conjecture, next, in Section 4.2,
we investigate further the structure of the class of s;-complete sets in EXP
under the non-p-isomorphism conjecture. We discuss two topics here.

The first topic concerns the form of Si-complete sets which are non-p-
isomorphic to a standard s;-complete set U. For any one-way function f,

the pair U and f(U) is a candidate for non-p-isomorphic pair. On the other

hand, Joseph and Young showed another type of non-p-isomorphic candidates

14

on NP (k-creative sets [TY86]). One of the problems of interest is whether
we have the former simple type of non-p-isomorphic pair if the non-p-
isomorphism conjecture is true at all. We can partially solve this problem on
NP and EXP, and completely on EXPSPACE.

The second topic is motivated with the observation by Mahaney.

Theorem. [Ma81]

If not all s;-complete sets in NP (EXP, etc.) are p-isomorphic, there are
infinitely many mutually non-p-isomorphic Si-complete sets in NP (EXP,

etc.). O

How can one construct these infinitely many s;-complete sets? We
obtain some function f such that {fi(U)}izo is the class of mutually non-p-
isomorphic Si-complete sets in NP (EXP, etc.) (some assumptions are neces-
sary depending on each complexity class). That is, we cxhibit a uniform and

effective way to generate infinitely many non-p-isomorphic an-complete sets.

In Chapter 5 we discuss polynomial time reducibility to a set of small
density, e.g., a sparse set.

The notion of "polynomial time reducibility to a sparse set" offers a
weaker notion of tractability than "polynomial time computability (or recog-
nizability)". We conjectufe that if P ¢ C, then sufficiently difficult sets in
» €.8., complete sets in C, are not "tractable” in this weak sense. Indeed Ber-

p

man and Hartmanis showed that no Si-complete sets in EXP are = -

reducible to a sparse set: moreover we have the following theorem.
Theorem. [BH77, BS84]

Let A be any set to which some s;-complete set in EXP is Si-reducible

(i.e., A is any S:;-hard set for EXP). Then A has a bi-exponential density. O

15

We extend it in Section 5.1. We prove that all SS- (resp., 55-, sgtt-)

hard sets for EXP are of bi-exponential density. In other words, no S:-

(resp., d - btt -) complete sets in EXP are < - (resp., g , btt -) reducible

to a set of small density: that is, no Sc- (resp., = ._p -) complete sets are

btt
"tractable" even in the weak sense.

Polynomial time reducibility to a sparse set means the existence of a
feasible table-lookup algorithm. For any set A and for every n > 0, a feasi-
ble table-lookup algorithm solves A=" with help of some polynomial size
table which is determined by each n. Thus, a table-lookup algorithm differs
from our usual notion of computation: it is not a uniform algorithm. We call
algorithms of this type as pseudo algorithms. Several authors have introduced
polynomial time pseudo deterministic algorithms: a (1-)APT machine [MP79,
0S86]; a p-close machine [Ye83, Sc86b]; and a polynomial size circuit
[KL80]. Each of these pseudo algorithms is regarded as a special case of
table-lookup algorithms. Also we define several types of table-lookup algo-
rithms depending on the type of polynomial time reductions. In Section 5.2,
we investigate the relation between these pseudo algorithms. As a conse-
quence (and using the results in Section 5.1), we prove that no Sgtt-hard sets

have p-close machines nor (1-)APT machines.

In Chapter 6 we study the concepts of polynomial lowness (and high-
ness). Schdning [Sc83] has introduced these notions expecting that they exhi-
bit the degree of "usefulness” and thus the degree of "difficulty”. More pre-

cisely, we expect that {L} and {Hz}k20 construct hierarchies of

k' k=0

(in)tractability in NP between P and the class of S?-complete sets. However

we do not know whether {Lf:}k20 (resp., {Hg}) does not collapse. For

k=0
example, consider Lg and LI;, and let A, and A, be any sets arbitrary chosen

from Lg and LI; respectively. Then, from the definition, we have P(4,) = P

16

and NP(A|) = NP. That is, any oracle information of A, is P-computable
while that of A, is NP-computable. Hence, we conjecture that some set in Lf
is more difficult than any sets in Lg . However we cannot prove it even
assuming P # NP (this problem is shown to be the same as the P # NP N
co-NP question [Sc83]). We investigate this conjecture on EXP: we consider

the similar problem in the context of EXP-computation.

Recall that we use the polynomial time hierarchy to define the polyno-
mial lowness and highness notions. In order to define lowness and highness
similar to the polynomial ones, we use EXP hierarchy, EO, El, - -+ (where

E, = EXP(EXP(---EXP(P)---))). We define EXP lowness and high-

~

k
ness, i.e., {L;:}},CZO and {H;:}kZO in almost the same way to the polynomial
ones. We have similar properties and conjectures concerning these notions.
We investigate one of these conjectures: consider the conjecture that L; ¢ L;.
From the definition, this essentially asks if EXP(A)= EXP always implies A
€ P. Using the concept of Kolmogorov complexity here again, we prove this

conjecture [BORWS86].

In Chapter 7 we summarize important open problems related to this
research. We also survey some new structural approaches. There are other
kind of properties which we do not consider in this dissertation. Several
interesting notions have been defined quite recently. Especially the notions
of “generalized Kolmogorov complexity” [Ha83, Ko86] and "instance com-
plexity” [KSOWS86] seem to provide new structural methods. We give a short

survey for these two subjects.

17

2. Preliminaries

This chapter provides definitions and propositions used elsewhere in this

dissertation.

Strings and Languages

Let X denote the set {0, 1}, and let 2* denote the set of all words on 3.
By a language we mean a subset of 3 . For a string x, |x| denotes the length
of x, and for a set §, [§| denotes the number of elements in §. For a set A,
letA~", A" and A”" denote {x€A:x|=n},{xcA:|x|=n}and{x €A :
x| > n}.

For any set A, we define the census of A to be the function cens () =
HASn” For any integer valued function d(n), we say that a set 4 is of d(n)-

density if cens, (n) = d(n) for alln > 0.

We assume a polynomial time computable pairing function from S X I

toS . Let Axy.(x, y) be such a function.

Computation Model

Our basic computation model is the standard deterministic / nondeter-
ministic multi-tape Turing machines (the reader will find precise definitions
in, e.g., [HU79]). A Turing machine may or may not be an oracle machine.
All nondeterministic machines are acceptors; but a deterministic machine may

be an acceptor or a transducer.

Remarks on Notations. We use the symbol M and N to denote a Turing
machine acceptor and transducer respectively. We sometimes use notations
such as M, or Np. to denote some specific machines. We use M (x) (resp.,
M (x)) to denote the execution of M on input x (relative to A); and use N (x)
to denote the output of N on input x. For any machine M (and any set of

strings A), define L(M) (resp., L(M, A)) to be the set of strings accepted by

18

M (relative to A).

We consider classes of machines such as a class of all polynomial time
bounded (in some way) Turing machine acceptors, or the class of all Turing
machine transducers, and so on. In each case, we assume some standard way
of enumerating all machines in each class. Furthermore we assume to such an
enumeration the existence of a universal Turing machine which satisfies, for

example, the following proposition [HU79].

Proposition 2.1. Let {Ml.}i>0 be a standard enumeration of oracle Turing
machines. Then there exists a universal Turing machine M y such that for
every oracle set A, it satisfies the following:

for every i > 0 and every x ¢ E*

(1) G, x ¢ LM, A) — x ¢ LM, A); and

(2) M (<7 x)) halts within |i]-#, ;(x)log ¢ (x) steps, where , is a time bound for M .
(Note: We often use a more rough time bound, say lil'tx(x) , for a time bound

of M;(Q', x)).) O

Complexity Classes

A complexity class is a class of languages accepted by the class of all Tur-
ing machines of some specific type. For every class of Turing machines, we
can define the corresponding complexity class; and vice versa. That is, each
complexity class C corresponds to some class of Turing machines; by a
-machi;ze we mean one of such machines. € -computation refers to the com-
putation by some C -machine. Note that for any complexity class C , the set
of C -machines must be definable, but it may or may not be recursively enu-
merable. For example, the class P is the class of languages accepted by deter-
ministic machines which halts within some polynomial time: these machines
are called polynomial time deterministic machines. Note that the set of all

polynomial time deterministic machines is not recursively enumerable (Cf. the

19

class of all polynomial time bounded deterministic machines is recursively

enumerable).
We will consider the following complexity classes:

DTIME(t(n)) = {L : L is accepted by some deterministic Turing
machine within #(n) steps};

NTIME(t(n)) = {L : L is accepted by some nondeterministic Turing
machine within #(n) steps};

DSPACE(s(n)) = {L : L is accepted by some deterministic Turing
machine within s(n) space};

P = U{DTIME(p(n)) : p is a polynomial};

NP = U{NTIME(p(n)) : p is a polynomial};

EXP = U{DTIMEQ2"") : ¢ > 0O};

NEXP = U{NTIME(2™) : ¢ > 0};

EXPOLY = U{DTIME(Zp(n)) : p is a polynomial};

PSPACE = U{DSPACE(p(n)) : p is a polynomial};

EXPSPACE = U{DSPACE(2™") : ¢ > 0}; and

FP = {f : f is computable by some deterministic

Turing machine transducer within some polynomial time}

- (i.e., a polynomial time function is a function in FP).

We will use the term super-SUBEXP to refer to any deterministic com-
plexity class that includes the class U{DTIME(ZCHG) : ¢ > 0} for some e,
0 < € < 1; and also use the term super-PSPACE to refer to any deterministic
complexity class that includes the class DSPACE(7(n)) for some super polyno-
mial 7 (a function 7 is super polynomial if for all polynomial p, v(n) =
w(p(n))). Precisely speaking, since we assume that each complexity class has
a standard enumeration of Turing machines which accept only and all
languages in the class, the notions super-SUBEXP and super-PSPACE refer

to only such classes.

20

Remarks on Notations. In computational complexity theory, we often use the
abbreviations such as O(f(n)) to simplify statements. Among several defini-
tions [BC86], we will use the following simple ones (in the following by " "
and by "V n" we mean "for infinitely many n" and "for almost all n" respec-
tively):

(1) Q(f(n)) denotes any function g such that (¢ > 0)(051Q n)[g(n) > c-f(n) ;
(2) o(f(n)) denotes any function g such that (J¢ > 0)(O‘vo' mlgr)>cf(n);

(3) O(f(n)) denotes any function g such that (Ic > 0)(0\;’ n) gln) < cf(n)];

and
(4) o(f(n)) denotes any function g such that (¢ > 0)(0§ mgn) < cfln)]

For any complexity class C, consider any oracle machine that is made by
attaching the oracle-query facility to some C -machine. The computation by
such an oracle machine is called C ()-computation; and the class of languages
accepted by C ()-computation using oracle X is denoted by C (X). For any
complexity class € and 2, we define € (D) to be the class U{ C (A) : 4 ¢
D}

Reducibility, Hardness and Completeness

A polynomial time reducibility between two sets shows a relative tracta-
bility between them. For any two sets A and B, A is polynomial time reducible
to B (A Sf B, where Sf stands for some reduction type) if there exists a
polynomial time reduction from A to B. There are several types of reduc-
tions; they determine the type of reducibility. We first define three basic
types of reductions,

Let A and B be any set of strings.

(1) A polynomial time many-one reduction (S;-reduction) from A to B is a

polynomial time computable function f such that x € A iff f(x) € B;

21

(2) The ordered pair (a - ,a,), o) is a truth-table condition (tt-condition)

18y

of norm k if <“1’ s ,ak> is a k-tuple, k > 0 of strings in E* and o is a k-
ary Boolean function presented in terms of a Boolean formula (we omit
the detailed definition of a "Boolean formula", see [LLS76; Section 3]).
Here the set {al, SR ak} and and the Boolean formula is called the
associated set and evaluator of the tt-condition respectively. A function f
is a truth-table function (tt-function) if f is total and f(x) is a tt-condition
for all x in 2*. Then a polynomial time truth-table reduction (Stpt-
reduction) from A to B is a polynomial time computable tt-function f
such that x € A iff a(Cy(a), -+, Cy(a)) = true, where f(x) =

«al, -++,a),a)and C 3 is the characteristic function of the set B; and

k
(3) A polynomial time Turing reduction (Si—reduction) from A to B is a poly-

nomial time deterministic oracle machine M such that A = L(M, B).

Remarks on Notations. For any oracle Turing machines, any oracle set A
- and every string x, let Q(M, x, A) denote the set of queries made during the
. A . .
computation of M (x). Also for any tt-function f and every string x, let

Ass(f, x) denote the associated set of the tt-condition f(x).
We also classify si-reductions according to the following classification
of truth-table functions (#-functions).
(2-1) For any polynomial p, a p(n)-t&-function is a tt-function whose norm
(i.e., the size of a truth-table) is bounded by p;
(2-2) A btt-function is a tt-function whose norm is bounded by some constant;
and

(2-3) A ctt-function (resp., dtt-function) is a tt-function whose truth-table

evaluator is always conjunctive (resp. disjunctive).

P =P

= - -
Then a Tpn)-tt > 7 btt?

. . P .
S:- and sg-reducnon is a stt-reductlon whose tt-

22

function is a p(m)-tt-function, btt-function, ctt-function and dtt-function
respectively. We sometimes combine these notations to denote combined
reductions: e.g., a Sf_c-reduction is a polynomial time 1-bounded and con-

junctive truth-table reduction.

For any reduction type Sf, we say that A is Sf- reducible to B if A is
polynomial time reducible via some sf-reduction. Notice that among reduci-
bilities defined above, S,I;-reducibility is the most general; that adding restric-

P

tions on the way of oracle queries, we obtain the others; and that = -

reducibility is the most restrictive.

There are another types of reductions which offer more general reduci-
bility than S};-reducibility (e.g., [Lo82, Se82, Se83]). However in our use of
"reducibility”, we need not consider more general one than S?-reducibility.
Also there are another types of reductions which offer more fine (restrictive)
reducibility than si-reducibility (e.g., Siﬁ-reductions). We use them not
for comparing intractability but for exhibiting structural similarity; they will

be defined and studied in Chapter 4.
Let C be any complexity classes. For any reduction type Sf, aset C is

<" hard for Cif every setin C is =-reducible to C; and C is <'-complete in
r y r r P

Cif C is Sf-hard and C ¢ C.

- For typical <P -complete sets, a standard Sp—complete set is often con-
m m
sidered (e.g., [Ha78]). Let C be any complexity class C which has a stan-
dard enumeration {M!.}l.>0 of Turing machines which accept only and all
languages in C . Then we can define a standard S;-complete set for any
complexity class in the following way:

U = {(i, x, pad(i, x)) : M, accepts x},

where pad(i, x) is some polynomial time computable padding function.

23

We will often use a standard complete set for EXP. The following is one
example of standard complete sets for EXP: letting {Mi}l.>0 be a standard

enumeration of deterministic Turing machines, define U by

]

|+ cit:
U={Gx,m, 0|l| |m!> : M, accepts x within 2" steps}.
Then from our assumption concerning standard enumeration, it is easy to

show that U is s;-complete in EXP.

Generalized Kolmogorov Complexity

Hartmanis [Ha83] introduced a generalized Kolmogorov complexity meas-
ure. Informally, it measures how far and how fast a string can be
compressed. More formally, we define the following sets. Consider an
enumeration of all deterministic Turing machine transducers {Ni}l.>0. For
every i > 0 and every string x, let ti(x) denote a running time of N, on x.
Then, for each pair g and ¢ of functions, we define the following sets:

K lg(n), tm)] = {y : @x)[k| = g(B), N,(x) = y, and £,(x) = #(b)] };
K[g(n), t(n)] = K [g(n), t(n)],

where u is the index of a universal Turing transducer.
Then from our assumption on a universal Turing machine, we have the fol-
lowing fact.
Proposition 2.2. [Ha83] Let i be any index and let g and ¢ be time constructi-
ble functions. Then there exists ¢ > 0 and d > 0 such that K [g(n), #(n)] C

K[g(n)+d, ct(n)log t(n)+c]. O

24

3. Comparison of Polynomial Time Reducibilities

In this chapter we investigate the difference between several polynomial
time reducibilities. Especially, we compare each notion of completeness

w.r.t. these reducibilities.

A polynomial time reducibility between two sets shows the relative tracta-
bility between them. Consider two sets A and B such that A is polynomial
time reducible to B (e.g., A sf; B; see Chapter 2). Then the assertion
A S? B states that some deterministic algorithm accepts A within polynomial
time using B as an oracle (such an algorithm is called a Sf;,-reduction from A
to B). That is, the computational complexity of A is at most that of B within
polynomial time variance. Recall that a sg-reduction is the most general one
and that adding restrictions to the method of asking oracle queries and using
oracle answers yields several types of polynomial time reductions; thus we
have several polynomial time reducibilities depending on the type of reduc-
tions. Each reducibility seems to offer different notion of "relative tractabil-

ity". In this chapter we will investigate such differences.

The basic types of reductions considered in this paper are polynomial time
many-one reduction (Si-reduction), polynomial time truth-table reduction
(Si-reduction), and polynomial time Turing reduction (Sf;-reduction). We
also classify Stp[-reductions according to the classification of truth-table func-
tioﬁ-s: they are s::(n)_tt-, _<_§tt-, sf- and Sg- reductions and their possible com-
binations (see Chapter 2 for their definitions). In this chapter we will con-

sider polynomial time reducibilities with respect to the above reduction types.

Let SS and Sf be any two polynomial time reducibilities. We say that
1 2

Sf is stronger than <’ (or <" is weaker than Sf) if for all A and B, we

1 2 ra 1

have that A Sf B implies A Sf B. Thus, among the above, S?-reducibility
1 2

25

is the weakest and Sf;-reducibility is the strongest. Although every polyno-
mial time reducibility notion states relative tractability within polynomial time
variance, we think that its meaning differs by each reducibility and that strong
reducibility offers a tighter relation than a weak one. For example, suppose
that A, = I;_tt B and that A, Si B (note that Sf_tt-reducibility is stronger than
Stpt-reducibility). Then a Sf_tt-reduction from A, to B accepts A, by using
only one oracle query of B for each input whereas every stpt-r'eduction from B
to A, may need polynomially many oracle queries of B; in this case, we view
the amount of information about B per string to be closer to that of A, than
that of A,. We conjecture this situation occurs. That is, we conjecture that
Sf_tt-reducibility offers a tighter relation than sz-reducibility. Ladner, Lynch
and Selman confirmed this intuition: they established the differences between
all the possibly different pair of reducibilities; moreover, the witness they

exhibited are in EXP. Their results are summarized as follows.
Theorem 3.1, [Theorem 3.2 and 3.3 of LLS76]

Let p and g be any polynomials such that p(n) > g(n) = 0 for almost all
n. Then, for each condition below, there exist sets A and B in EXP which

satisfy that condition:

p
p(n)-tt

P
g(n)-tt
p
q(n)-tt

(1) A sz(n)_dB (thus, A = B) but A = B;

(2) A=<" B (thus,A =" _ B)buta <

plm-c p(m)-it B;

(3) A =" Bbuta £ B;
) C

1-tt

P Py,
(4) A=, BbutA £ B;

(5) A=) BbutA %" B; and

(o]

(6) A=) BbutA%

;. B. O

jo v}

From the definitions, we have obvious relations between polynomial time

reducibilities: e.g., Si-reducibility is the same as sf_c-reducibility, e.t.c.

26

Therefore, Theorem 3.1 shows all the differences between any possible pair
of polynomial time reducibilities considered here in EXP: we have the com-
plete results of comparison on all the pair of polynomial time reducibilities in

EXP (Figure 3.1).

What about the meaning of completeness notions induced by polynomial
time reducibilities? For any Sf-reducibility and any complexity class €, a
Sf-complete set C in C is one of the most difficult sets in € with respect to
Sf-reducibility: all sets in C are sf-reducible to C; thus, they are at most as
difficult as C. Here again, following the same argument as the above, we
conjecture that the meaning of "completeness" differs by each reducibility.

Let Sf and Sf be any two reducibilities such that Sf is stronger than <! ,
2

1 1)
and let C be any complexity class such that P G C . Then we have that all

Sf-completc sets in C are Sf-complete. On the other hand, we conjecture
2 1

that there exists a Sf-complete set in € which is not sf-complete: that is,
1 2

Sf offers narrower notion of completeness than sf . We will investigate the
1 2

validity of this intuition.

Here notice that Theorem 3.1 does not show the differences in complete-
ness notions. For example, Theorem 3.1 gives some sets A and B in EXP
such that A s;’, B but A $g B; thus B is not S;-complete in EXP. But for
our purpose, i.e., in order to obtain a set which is sg-complete but not SII;-
complete, B need to be sg-complete in EXP. However it seems difficult to
modify the proof of Theorem 3.1 so that B could be S?—complete. In the fol-

lowing two sections we will prove these differences.

3.1. S;-Completeness and Si-Completeness Notions

First we consider polynomial time many-one reducibility and all kinds of

truth-table reducibilities. That is, we compare completeness notions w.r.t. all

27

"X Ul SORI[IqIonpal [e1949s Jo wosiredwod oYy, ‘1°¢ 2indiyg

(ponTwmo 2q Aew SIAYIO oY} WOIJ pIdNpop Uone[al v)
goysodur g gy puv gg ysondur g o y o1 ‘omes oo gpue o i g =0

pue ‘osejsiosioauocooyiingggysoqdur goy g0
‘gg vAdurjousoopgoy g ¢
‘u (e 1sowpe 10 g < (V)b < (W)d

QIS A
%w . .. +0 v-?&%w -0 @-A:V%IV.. 0 ﬁ-mw «0 U.mw
VS __
= o U= ... WWd= o Wb ..o n . e Wl o Wl
= > d> d> > >

S __

PN oAS%W o o-?umw

Vi

28

reducibilities weaker than stpt-rcducibility. Ko and Moore [KM81] proved the
existence of a stpt-complete set in EXP which is not Si-complete. But their
proof is quite complicated and they did not establish the differences between
the other types of completeness. Here we take an indirect approach. First we
establish for each polynomial time reducibility, some structural properties of
complete sets in EXP with respect to this reducibility. Using these properties
we can construct the desired complete sets based on simple diagonalizations.
For example, in order to obtain a Stpt-complete set which is not si-complete,
we first show some structural property of Si-complete sets (i.e., all s;-
complete sets have FP-easy subsets); and then construct a Sz-complete set
that does not have such a property. This strategy is much easier than to con-
struct Si-complete set which is not Sf;-complete directly (this proof strategy

is one of the good examples of using structural properties!).

As a structural property of complete sets in EXP, we consider a property
of "having an infinite easy subset”. The question of whether a set has an
infinite "easy"” subset has been considered in several contexts [Be76, KM&1,
Ro67]. If a set A has no infinite "easy” subset, every nontrivial part of A is
not “easy": that is, A is almost everywhere complex. Such a set A is called an
immune set. The notion of "easy" differs in each context. For example, con-
sider the "polynomial time" case. Then our problem is whether a set has an
infinite and polynomial time recognizable subset, i.e., an "easy" subset. If a
set A has no infinite subset which is in P, it is called P-immune. In general,

we have the following definition of "immunity".

Definition 3.1. For any complexity class C, a set A is C -immune if A con-

tains no infinite subset in .

Consider the problem of showing that a given set A is not P-immune, that

is, showing the existence of an infinite polynomially recognizable subset of A.

29

One of the ways to exhibit an infinite "easy” subset is to consider a length
increasing function whose range is a subset of A (this idea was used first by
Berman [Be76; Theorem 8]). In the case of non-P-immunity we need a poly-
nomial time computable length increasing function f such that f(E*) C A.
Suppose that such a function f exists. Then the set S = {f(On) :n = 0} is an
infinite subset of A such that § € P. Thus, A has an infinite "easy" (i.e.,
polynomially recognizable) subset, so A is not P-immune. Berman [Be76]
proved that all Sfﬂ—complete sets in EXP have easy subsets like §. We show

a similar property for every polynomial time reducibilities.

We extend the above construction of an "easy” subset in the following
way. Let I be a class of functions. We say that a set A has an 5 -easy sub-
set if there exists a total function f in 3 such that for almost all x, [f(x)| > [x|
and f(x) € A. The name "easy subset" comes from the following observation:
let A have an 7 -easy subset w.r.t. a function f in 3. Then there exists an
integer n, such that the set {f(On) :n > ng} is an infinite subset of A that is
easily recognizable relative to f. For any Sf-reducibility, we will show that
every Sf-complete set in EXP has an 3 -easy subset where the class 3, the -

class of functions, depends on the reduction type r.

We begin by defining several classes of functions. Note that each reduc-
tion is a special case of Turing reductions: i.e., we can make an oracle
machine M which corresponds to each reduction. Consider a function g
which maps every x € s to some query of M on input x (with an oracle A).
We say such a function g is generated by a reduction M (and A). We consider
the following classes of functions generated by reductions of each type:

(1) Fm = {g : g is generated by a polynomial time oracle machine

. P '
which corresponds to some sm-reductlon};

(2) Fbtt = {g : g is generated by a polynomial time oracle machine

30

p .
bt t-rcducnon} ;

(3) Fp-tt = {g : g is generated by a polynomial time oracle machine

which corresponds to some <

which corresponds to some =< -reduction};

P
p(n)-tt
(4) Ftt = {g : g is generated by a polynomial time oracle machine

which corresponds to some Stpt—reduction}; and
(5) FT = {g : g is generated by a polynomial time oracle machine

which corresponds to some S,I;-reduction to some oracle set}.
(Note: Concerning fotal functions, we can use the class FP, i.e., the class of
polynomial time computable functions, instead of using Fm: the class Fm is
the class of total functions in FP. Thus we will use the term "FP-easy subset”
instead of "Fm-easy subset").

We show that for any Sf-reducibility, every Sf-complete set in EXP has
an -easy subset where 5 depends on the reduction type r. These results
are corollaries of the following theorem.

Theorem 3.2. Let A be any set in EXP. Then there is a set L, € NX 3" in
EXP which satisfies the following property: if L N s? A by M, then for
almost all x, there exists y in Q(M, A, (i, x)) N A such that |y| > || (recall that
Q(Ml., A, (i, x)) denotes the set of strings queried by M, during the execution
on input (i, x) relative to A).

Proof. Let {M} _ be an enumeration of polynomial time bounded oracle
machines, and let p, denote a polynomial time bound of M,.

Define the set L , as follows:
(i, x) € L, <=>]z'|~pi(n)2 < 2" and (i, x) ¢ LM, Asn),
where n = {i, x)|.

Recall that for any M, and any oracle X, the standard universal machine
Mf]((i, x)) simulates Mf((x) within [i|-p (i, ®)) steps for all x (see Chapter 2

for "universal Turing machine"). Also since A ¢ EXP, there exists an

31

exponential time machine M, which accepts A. Using the machines M , and

e s cits 0
M, it is easy to check whether (i, x) € L , Within 2 o steps (note that we

o
need to simulate M?SH(G , X)), but not M?((z' ,x)). Thus, L 4 € EXP.

Let M, be a polynomial time bounded oracle machine such that L A=
L(M,, A). Letx be a sufficiently long string so that |z']~pl.(n)2 =< 2", where n =
ki, x)|. Then there exists at least one element y in OM,, A, (i, x)) N A such
that [y| > [x|.

Suppose otherwise. That is, assume that the length of each element of

=n

Q(M, A, G, x)) N A is less than or equal to |x. Then M? @, x) =
M, (G,), s0 (i, x) € L(M,, A~") iff (i, x) € L(M,, A). Thus, G, %) € L, if and

only if (i, x) ¢ L(M,, A). This contradicts the fact that L, = L(M, A). O

Corollary 3.3. For any polynomial time reducibility Sf, let A be any Sf-
complete set in EXP. Then A has an J -easy subset, where 3 stands for the
following classes depending on the reduction type sf respectively: FT for

p p p p p
=, Fttfor =, Fp-tt for = Fbtt for =, FPfor = and =".

p
p(n)-tt?
Proof. First we prove for Si—reducibility; let A be any s?-complete set in

EXP. For this set A we consider the set L 4 which is defined in Theorem 3.2.

Since L, ¢ EXP and A is Sff.—hard for EXP, there exists a polynomial
time oracle machine M, such that L, = L(M,, A). We can also assume that
OM,A,z) # & for every z € 3", Then it follows from Theorem 3.2 that

for almost all x there exists y_in Q(M,, A, (i, x)) N A such that |y | > [x.
Define g by

y if y_exists,

X
g(x) =
some fixed elements of Q(M p A {i, x)) otherwise.

32

(Note: In the above definition we do not explicitly state the way of choosing
y from{y :y € 0(M, A, (i, x>) N A and [y| > [x[}. We may use an arbitrary
way even though it is non-recursive.)

Then g is total, and for almost all x, |g(x)] > |x| and g(x) € A. Note also that
g is a function in FT since there is a polynomial time bounded oracle machine
M such that Q(M, A, x) = Q(Ml., A, {i, x)) for all x: that is, g is generated by

M and A. Therefore A has an FT-easy subset w.r.t. this function g.

Next consider the other type of reducibilities. For reducibilities such as

P _P P P “ .
=, sp et Shet and = the proof is similar to the above if we note that
cach type of polynomial time reductions is a special case of S;’,-reductions.

So, the details of the proof are left to the reader. In the following we con-

sider the case of S:-reducibility.

Let A be any S:-complete set in EXP. Then we first show that A has an

Fc-easy subset where the class Fc is defined as follows.
Fc = {g : (3f: conjunctive tt-function in FP)(Vx ¢ 2*)
[(x) = the (lexicographically) largest element of Ass(f, x)] }.

For the set A, consider the set L 4 which is constructed in Theorem 3.2.
Also consider a polynomial time conjunctive tt-reduction f from L 4 10 A. Let
M, be a polynomial time bounded oracle machine which witnesses the reduc-
tion f. Then for almost all x, Q(M,, AT G, D) NA™" # & where n = x].
S‘o‘ {i, x) is not in L(M,, A™") because the reduction £ is conjunctive. Thus it
follows from the definition of L 4 that (i, x) € L 4 Hence, for almost all x,
Q(Ml., A, (, x>) C A since f is conjunctive. Moreover, for almost all x, there
exists some y in Q(M, A, (i, x)) such that [y| > x| Therefore A has an Fc-casy

subset w.r.t. the following function: g(x) = the largest clement of

oM, A, G, x)).

33

Notice here that the class Fc is the same as the class of total functions in
FP. Therefore we conclude that every S:-complete set has an FP-easy sub-

set. O

At this point we have some useful properties of polynomial time com-
plete sets in EXP. For example, all SII; -complete sets for EXP have FP-easy
subsets. So, in order to construct a S:ﬂ-complete set which is not s;-

ptt-complete set which does not have any FP-

complete, we need to obtain a =

casy subset; this can be done by simple diagonalization.
Theorem 3.4.

(1) There exists a 55- y-complete (thus, Ss_tt-complete) set A in EXP which

has no FP-easy subset. Thus, A is not Sp-complete (nor Sp-complete)
m ¢ .
in EXP;
(2) For any polynomial p and ¢ such that p(n) > ¢(n) = 0 for almost all n,

there exists a =’ . -complete (thus, = -complete) set B which has

p
p(n)-d p(n)-tt

p

o(m-cOmplete in EXP; and

no Fgtt-easy subset. Thus, B is not =<

(3) There exists a Sg-complete (thus, Stpt-complete) set C which has no

Fbtt-subset. Thus, C is not Sgtt-complete in EXP.

The proofs for (1), (2) and (3) are similar; so we will show the most dif-
ficult one, i.e., the proof of (3). We will describe the set C by a stage con-
struction (see, e.g., [BS85, Ro67, Wa85]). In a stage construction, a set L is
defined in stages. Let b be a function from N to N. At each stage n = 0, the
value b(n) and an initial segment L = {x € L :b(n — 1) <] = b(n) } of L
are defined in terms of algorithms on 3", The set L is then defined by
U L, Note that if L can be defined by a stage construction in which, at

each stage n = 0, the value b(n) and the set L are defined, and the deter-

ministic running time of an algorithm which computes b(n) and L_ is bounded

34

by T(n), then L € DTIME(T(n)-2"") for some ¢ > 0.
Proof of Theorem 3.4 (3).

We use an enumeration of polynomial time bounded deterministic trans-
ducers; let {Nl.}l.>0 denote it. We assume that for any total function f in FP
there exist some polynomial p and infinitely many indices i > 0 such that N,
is a p(n) time bounded transducer which computes f. Also we use a standard
S;-complete set in EXP; let U C 3" be a standard Si-complete set in EXP.
What follows is an explanation of the idea of how to construct the desired set

C.

For a string x and an integer i, 1 =< i =< [x|, let c(i, x) be 0" bin(i)x where
bin(i) is the binary representation of i and [0"bin(i)x| = 2x. We put at least
one element of U= {c(i,x) :1 =i = [} into C for all and only x in U so

that the set C can be s;’-complete in EXP. On the other hand, for any total
'.fﬁnction g in Fbtt such that [g(z)] > || for almost all z, we need to put g(x)
into C° for infinitely many x so that C can have no Fbtt-easy subset. For this
purpose, we do not put any elements of ¥ = {y ¢ Ass(N , On’) :ly] > n'} into
C, at stage n, where n’ = b(n — 1) (recall that Ass(N, x) denotes the associ-
ated set of tt-condition N(x)). These two requests do not conflict if o | > Il

(or equivalently, if b(n — 1)/2 = |r]). Thus the construction becomes as fol-

lows:
C =U _ C,where
n=0"n

stage n = 0;
b(0) « 0; C, - G;
stage n > 0;
n' « b(n—1);
Y « {y ¢ Ass(N , Onl) > '}

(if this computation needs more than 2" steps, then ¥ « undef)

35

if ¥ # undef and 0 < |[Y| = b(n—1)/2 then
b(n) « the length of longest element of ¥;
C «{c(,x):1=i=}],b(n-1) <2k|=b(n)andx € U} - T;
(we say that N is diagonalized here)

else
b(n) « b(n—1) + 2;
C « {c(0,x) :b(n—1) < 2k = b(n) and x € U}
end-if
end-construction.
It is clear that C € EXP. Suppose that C has an Fbtt-easy subset by means of
a function g in Fbtt. Then there exists an integer k > 0, and a k-tt-function f
in FP such that g(x) € Ass(f, x) for all x. Since |Ass(f, x)|| = k, there exist
infinitely many » such that f = N and that N_is diagonalized in the above
construction. Thus there exist infinitely many »n’' such that ¥ =
{y € Ass(f, OH,) :ly|> n'} has no element in C. So g(On’) is not in C or
[g(On')| =< n' for such n’. Which contradicts the assumption that g(x) € C and

lg(x)| > | for almost all x.

From the construction of the set C, it is easy to show that the following

function f is a sg-reduction from U to C:

for every x, f(x) = {c(1, x), - -, c(m, x)),)
where a(b, +--,b)=5b V --- Vb ,andm = ||

Therefore the set C is S:-complete in EXP, which completes the proof. O

In order to show the differences between polynomial time truth-table
completeness notions including conjunctive type truth-table reductions, we
prove the following lemma.

Lemma 3.5.

p -
p(n)-tt

-) complete in EXP. In particular, if A is sg- (resp., S; (- 47

) complete set in EXP. Then AS is also =’-

P
Let A be a =< - (resp., = i

p
(resp., Sp(n)_“

36

-

i e

complete, then A is Sf— (resp., S;)(n)_c-) complete, and vice versa.

Proof. Let U be a standard S;-complete set in EXP, and f be a polynomial
time _<_tpt-reduction from U to A. Then the following polynomial time comput-
able tt-function g is a reduction from U° to A®:
for every x € X, g(x) = la), -+, a), B
where
(D) <<a1, SR ak>, a) = f(x), and

2) B, ---,b) = ~a(=b,, -, =b)
(by "=R" we mean "not R").

Note that U* is Si-complete in EXP. Thus A° is SZ-complete in EXP. Espe-
cially, g is conjunctive (resp., disjunctive) if f is disjunctive (resp., conjunc-
tive). O

Then the following theorem follows from Theorem 3.4 and Lemma 3.5.
Corollary 3.6. Let p and ¢ be any polynomials such that p(n) > g(n) = 0

for almost all n. Then, for each condition below, there exists a set in EXP

which satisfies that condition:

P P P)
(1) = (m-a-complete (thus, = (m-complete) but not =, (my--Dard;
P P P ,
(2) = (m-c-complete (thus, = (my~COMPplete) but not =, L
3) =< _complete but not <’ -hard; and
2-d P c
4 s;c-complete but not sg-hard.
Remark. Since S;-reducibility is equivalent to sf_c- and Sf_ 4-reducibilities,

<P P

P . .
= -, =, ,-completeness notions are all equivalent. O
m?’> " 1lc?

1d

Hence, among all the possible pairs of reduction types considered here,

only the following comparison remain open: for every k = 1, whether =<' -

k-tt
' . . p P .
completeness implies = ke (resp., = () 4-) completeness (we conjecture not).

That is, we have Figure 3.2 on comparison of polynomial time truth-table

37

‘goysondur g g v pur g g vsondur g o y €971 ‘owes o3 e g pue ©

"dXH Ul suonou ssous)o]dwod [e1949s Jo uosiredwod aq, "7 € 9Indng

o0 / : cg
VI ° Vl

(pontwo oq Aewr SI9YJ0 oY) WOIJ PIONPIP UOHR[AI B)

g =m®

pue ‘osfeysiosioaucooyinqggysondur goy 1 g~ o
‘ggd yAdurjoussop goy : g + o
‘u re 3soure 10) § < ()b < (u)d

O ﬁ-ARv%w PSs) U-ANQMW

n-(u) m = o :-gmw

—

¢

ISUM

o Pis w Ps

o s o Yls

38

completeness notions.
Oth exity Class

All the theorems in the above discussion also holds for any super-
SUBEXP and any super-PSPACE complexity classes which have a standard
s:iv-corhplefe set. And the proof of Theorem 3.1 also works for nondeter-
ministic time complexity classes such as NEXP. However, the proof tech-
niques used in Theorem 3.2 and Corollary 3.3 are not applicable to nondeter-
ministic time complexity classes. In the following we consider similar results

for NEXP.

Note that for Theorem 3.4 the same proof works also for NEXP. Thus,
concerning the differences between completeness notions, we have the follow-

ing proposition as an immediate corollary of Theorem 3.4 (1).

Proposition 3.7. If all Si-complete sets in NEXP have FP-ecasy subsets, then

there exists a s:tt-complete set in NEXP which is not Si-hard for NEXP.

Remark. We have several similar statements concerning the differences

between completeness notions; but they are omitted. O

Unfortunately we have not obtained any proofs of differences from this
proposition so far. Instead, using a similar proof strategy we show the differ-

ence between < ; -completeness and s;t-completeness in NEXP.

According to an argument similar to the proof of Theorem 3.4, we have

the following lemma.

p_c-complete set D in NEXP whose complement

- Lemma 3.8. There exists a =,

does not include a range of any one-to-one and total functions in FP, i.e., for

all one-to-one and total functions f in FP, f(E*) ¢D".

Proof. The proof is similar to the one for Theorem 3.5 (1), so we omit it

here (see also [Theorem 4.2 of Wa85]). O

39

The following lemma is also provable (see Corollary 4.10).

Lemma 3.9. For all sﬁl-complete sets L in NEXP, there exists a one-to-one

function f in FP such that f(Z*) cL’. o

Therefore we show the difference between si-completeness and S;’_c-

completeness (thus, s:tt-completeness) on NEXP.

Theorem 3.10. There exists a Sg_c-complete set in NEXP which is not SII;-

complete. O

3.2. SZ-Completeness and s?-Completeness Notions

. . P

We have compared the completeness notions which are weaker than = -
completeness. The remainder notion which we need to consider here is s?-
A . . P

completeness. From now on, we will investigate the difference between =

P4 . D
and =,_-completeness notions: i.e., we will construct a set A which is =

complete but not Sz-complete in EXP. The outline of our idea is as follows.

Define a sequence {p_} where each p € {0, 1}* and i | = m, hav-
q m m m

m>0’
ing the following property: (*) p € K[n/2, 2"]0. That is, p is not produci-
ble from any short description (i.e., less than m/2 bits) within 2" steps (the
reader may wish to review Chapter 2 for the concept of Kolmogorov com-
plexity).

We will use this sequence to construct the set A. Consider the set V =
{p x:x €U and m = [log lxﬂz}, where U is a standard s;-complete set in
EXP. We know whether x € U by checking V to determine whether p_x ¢
V. But it may be difficult to produce p, from x in general. So we introduce
the set E = {(i, 0") : the ith bit of p is’1’, where m = [log n]z}, and define
A = V U E (here we can assume that V N E =). Then it is easy to con-

struct a polynomial time oracle machine which accepts U relative to A. That

40

is, A is S?—complete in EXP. Next consider sz-hardncss of the set A. Note

2

c(log 1) c(log n)’

that E € DTIME(2) and DTIME(2) GEXP. Thus, it is provable
that E itself cannot be si-hard in EXP. Also from the property (*) of
{”‘m}m>o’ all Sz-reductions cannot query ";me" to V on some type of inputs,
which proves that for such inputs, information from V cannot be used by

sz-type (non additive type) reductions. Therefore A (= V U E) is not Sz-
hard in EXP.

Now we proceed to the precise argument. First, we define the sequence

{ ot o and investigate its computational complexity.

Define J to be K[n/2, 2"]°. Then we have the following facts:
Lemma 3.11.
1) 7N {0, 1}" # & for all m > 0.
(2) Jisin EXP. O
For any integer m > 0, define p, to be the (lexicographically) smallest
element of J N {0, 1}"". Define E C N X = by
(i,0") € E <=> the ith bit of p is ', where m = [log n]2.
And define V by
V={p x:x € Uandm = [log lxﬂz}.
Here we can assume, without loss of generality, that each element of E has
even length, and that each element of V has odd length (for example, by put-
ting a padding bit at the end). That is, we can assume that VN E = &.
Finally, defineA = VU E.

Then it is easy to show the following facts.
Lemma 3.12.

(1) {w :m > 0}isin EXP.

41

2

1
(2) Eisin DTIME(ZC(°g ™) forsomec > 0. O

Therefore we have the following lemma:
Lemma 3.13. The setA is Sg-completc in EXP.

Proof. It follows from Lemma 3.13 that A € EXP. The si-hardness of A is

straight forward and omitted here. O

In the following we show that A is not Sz-hard for EXP. Let {Ni}i>0
denote an enumeration of polynomial time bounded transducers. Then for
every Si-reduction, there exists some N, which achieves it. The following

lemma states that such an N, cannot query " ;me" on some type of inputs.
Lemma 3.14. For all sz-reduction N, we have the following property:

(V n)(Ya € Ass(V,, G, 0))

[a is not of the form p_w for some m = [log n — 1]2 andw €3 1-

Proof. Suppose that there exists a Sz-reduction N, that does not satisfy the
4]

above property: that is, for such an N, and for infinitely many n,
0

(Ja € Ass(N,, G, 0] a = p_w for some m = [log n — 1]2 andw €3]-
Consider the following procedure:
procedure printp(n, j, k: integer);
(a ya), o) « N (G, 0");
1]
p « the first k£ bits of a;

output()
end-procedure.

1

Let p(n) be a polynomial time bound for N, . Then for infinitely many
0

n, printp(n, j, k) outputs some p_, where m = [log n — 1]2, within O(p (n))
. steps for some j, 1 < j =< p(n), and some k, [logn — 1]2 =< k = p(n). For

such integers j, k, n and m, we have

(1) Il + 1 + K = |l + 2p(n)] = O(log n) = O(m™); and

42

@ p(m) = p@") = 22,

Let N, be some deterministic transducer which achieves the computation
of printpw. Then there exists some ¢, and ¢

1 1 2

CHh
we have p € Ku[cln%, 2]- Hence it follows from Proposition 2.2 that for

such that for infinitely many m,

infinitely many m, we have p, € K[n/2, 2”]. This contradicts our definition

of the sequence {”‘m}m>o‘ |

Theorem 3.2 plays an important role in the comparison of several truth-
table completeness notions. Here we use a similar lemma. The following
result is stronger than the one we need; however, it illustrates the underlying

ideas more clearly.

Lemma 3.15. Consider an enumeration {Nl.}l.>0 of polynomial time bounded
transducers. Let £ and , be time constructible functions, and let X and Y be
sets in DTIME(t,) and DTIME(tZ) respectively. Also let 7 be a super polyno-
mial running time. Then there exists a set L, which satisfies the following

conditions:
(a) Ly, € DTIME(t), where t(n) = v(n)-(1 + t,(n) + t,01(n)); and
(b) for all polynomial time Sz-reduction N, and for almost all n, we have the
following (**) for all x, [x| = n.
(**) G, x) €Ly, <~ a(b, - ,b) = false,
where

(1) Ni(<i, x)) = <<a1, s ar>, a), and §

(2) foreveryj,1=j=r, bj = true iff a; € x"ur "
Remark. The statement (**) means that {i, x) is a witness to the falsify of

P =n >n

Ly, =<, (X "UY ")byN.

Proof. First define VL’ vy © NXE* as follows:

i,x0 €L, <=> a(b, - ,b) = false,

Y

43

where
(1) Nl.(<i, x) = <(a1, SO ar>, a), and
(2) foreveryj,1=j=<r, bj = true iff a; ex"uy "

Then it is clear that L', satisfies the condition (b). Consider an acceptor for
the set L', . Let M, (resp., M,) be 1 (n) (resp., iz(n)) time bounded
machine which accepts X (resp., ¥). Recall that the universal transducer N U

simulates every transducer N.. Hence, using M,, M, and N, , we can con-

U’
struct a machine M’ which accepts L', and whose running time on (i, x) is
bounded by [i:p,(1i,)7 + p,(ke, 2)-(e,() + £y, (fis %) steps, where n =
[¢| and p, is a polynomial time bound for N,. Note that M’ is not #(n) time

bounded.

Next consider the following set Ly,

<i,x> €L

vy <=> M’ halts within t(fi, x)]) steps and (i, x) € L'y,.

Then L, satisfies the condition (2). Also it is easy to show that for all poly-
nomial time tt-function N, and for almost all x, (i, x) € L’ 4y if and only if G, x)
€ L,,. Thus, L still satisfies the condition (b). Therefore L, is the
desired set. O

2
Corollary 3.16. Let X be a set in EXP and Y be a set in DTIME(ZC(IOg ").

Then there exists a set L, in EXP which satisfies the following: for all stpt-
reduction N, and for almost all », we have

(6,0 € Ly w~a(b, -+, b) = false,

where

D) N0 ={a,, -+, a),a),and
(2) foreveryj,1=j=r, bj = true iff a; exur "

= >
That is, (, 0") is a witness that L is not Si-reducible toX TUY " by the

reduction N -

44

2
e clog n) log)
Proof. Let 7,(n) = 2 " t,(n) = 2 ’ , and 7(n) = 20°8™ Lemma

3.15. Then we obtain the desired set LO in EXP. O
Lemma 3.17. The set A is not Si-hard for EXP.

Proof. Consider Corollary 3.16 where X is the set A and Y is the set E. Then
we o.btainkthe set L, in EXP. Suppose by the way of contradiction that A is

stpt-hard for EXP. Then there exists a Si-reduction Nl. from LO toA.
0

Corollary 3.12 shows that for almost all n, (z’o, 0") is a witness that L,is

not Stpt-reducible toA~"UE " by N, . Note that every element of v " is of
1]

the form p x and |p | > n; thus m = [logn — 1]2 for sufficiently large n.

- But it follows from Lemma 3.14 that for almost all n, Ass(Nl. , <i0, On>) does
4]

not have any element of the form p x where m = [logn — 1]2. So,

n

ASS(NiO’ (io, 0") n v = . Hence, for sufficiently large n, we have

G,00 €L < a(b, ---,b) = false,
0 0 1 r
where _
(D) N, (G, 0" =a;, -+, a),a); and
0
2) foreveryj,1=j=<r,b. = trueiffa, € A U E"
y J J
—— (X.(b'l, Tty blr) = false,
where
(1) N, (i, 0) = a;, -+ -, a), o) and
0

(2) foreveryj,l=j=<r, b’j = true iff a; caA"UETTUVT

n n

Thus, (io, 0") is a witness that L, is not Stpt-reducible to A" U E uv_ by

Nl. . Note thatASn U E>’z U V>n = Asn U A>n = A so that we have a con-
0

tradiction. O

Now we obtain the following theorem as an immediate consequence of

Lemma 3.13 and 3.17.

Theorem 3.18. There exists a sg-complete set in EXP which is not = tpt -hard

45

n

for EXP. O

We have considered the differences between several completeness
notions. Here we review these results from a different point of view.

As we have investigated, a notion of "polynomial time reducibility”
offers a way of comparing intractability between given two sets; and each
notion of reducibility offers different type of comparison (Theorem 3.1).
Then consider the equivalence relations induced by these reducibilities. For
example, consider any polynomial time reducibility sf and any two sets A
and B such that A -=—f B (recall that A Ef B means both A Sf B and B Sf A).
Then the assertion A Ef B states that A and B has a similar (degree of) intrac-
tability in some sense. Theorem 3.1 lets us conjecture that eaéh type of redu-
cibility offers different "similarity”": e.g., Ei-equivalence is closer relation

than E};-equivalence. We investigate it in EXP.

In order to investigate the above problem, we introduce a new notion,
polynomial time degree.

Definition 3.2.

(1) For any Sf-reducibility, a class of all Ef-equivalent sets is Ef—a’egreé.
That is, one Ef-degree is a class of sets which has the same degree of dif-
ficulty w.r.t. = f—reducibility.

(2) For any two Ef-degrees D and D, D is higher than D if all sets
in 2, is Sf-reducible to some sets in D .
(Note: For any complexity class €, the class of Sf-complete sets in C is
the highest s;-degree in C.)

Remark. Following [Ro67, MY85] we will use the term "Ef-type" instead of

"Ef-degree" for any SS-reducibility which is stronger than S;-reducibility

(such an Sf-reducibility will be used in the next chapter).

46

In general the problem of interest is how polynomial time degrees divide
the class EXP. And the problem we proposed above is whether each polyno-
mial time reducibility offers a different way of dividing EXP; especially
whether a stronger polynomial time reducibility gives smaller equivalence
classes (i.e., polynomial time degrees). Note here that the class P consists of
one Ef-degtee for all Sf-reducibilities; thus, the lowest polynomial time
degrees are the same. On the other hand, since the class of SS—complete sets
in EXP is the highest Ef-degree in EXP, our comparisons on completeness
notions show that the highest polynomial time degree differs depending on
reduction types. For example, we have the following picture concerning the

structure of EXP.

EXP

—F \>the highest

/
the highest
E,};-degree

the highest

_p
= -degree

2 N7 \

one Em-degree

Figure 3.3. The structure of EXP w.r.t. polynomial time degrees.

47

4. P-Isomorphism of Sfﬁ-Complete Sets

In the early 1970°s [Co71, Ka72], Cook found SAT, the first NP-
complete set (i.e., si-complete set in NP). Since then, a huge number of
NP-complete sets have been discovered (e.g., see [GI79]). They have come
from wide variety of problem areas: some concern theorem proving; some
concern a property on graphs. Also the difficulty in proving NP-
completeness varies: for some problems, NP-completeness is clear; but for
others, the proof is quite difficult. In spite of these differences, it became
apparent that these complete sets have some similarity: they are complicated
enough to encode each other; they have simple encoding functions called
"(weak) padding functions”. For many complete sets, we can easily see such

encoding functions once we have obtained the NP-completeness proof.

A similarity between NP-complete sets suggests that NP-computation is
more powerful than P-computation. Let A be an arbitrary Si-complete set in
NP. Then SAT SII; A by some polynomial time reduction f. Suppose that
there is not so much difference in computational power between P- and NP-
computation. Then A can be structurally simple: the reduction f compensates
for the lack of information in A so that we still have x € SAT « f(x) € A.
Indeed, in such an extreme case as P = NP, A can be any set but the empty
setor T . On the other hand, if NP-computation has a great advantage over
P-computation, A must have a similar structure as SAT since no polynomial
time reduction have enough computational power to accomplish drastic

changes in the structure when mapping between SAT and A.

The same arguments also hold for any other complexity class €, C D
P, and polynomial time reducibility Sf. That is, for some kind of structural

property, we can expect that

48

(*) the similarity of this property over all Sf-complete sets in € character-

izes the superiority of C -computation to P-computation.

For example, consider the cardinality of sgtt-complete sets. Then it is easy to
show that P G C if and only if all Sstt-complete sets in C are infinite.
(Note: more detailed arguments about cardinality will be made in the next

chapter.)

We consider "complete” sets since they are regarded as the most "intract-
able” sets in C . In particular, Si-reducibility offers the strongest sense of
intractability; thus, it will be considered. Note that (*) is not true for any
type of properties: for example, such a similarity as "using the same alphabet"
obviously has nothing to do with the difference between P and C . It is
interesting to consider what types of similarity are available to exhibit the

difference between P- and C -computations.

Berman and Hartmanis [BH77] introduced "p-isomorphism” in order to
investigate a structural similarity between Si-complete sets in NP. They also
developed tools to show that indeed all of the well-known s;-complete sets
(e.g-, NP-complete sets in [GJ79]) are p-isomorphic. Hence, they conjectured
that all =< ; -complete sets in NP are p-isomorphic (the Berman-Hartmanis con-
jecture [BH77]). However we are not sure about the conjecture from the fol-
lowing two points: (i) we do not know whether NP-computation has an advan-
tage over P-computation (thus P # NP); and (ii) we do not know whether p-
isomorphism is appropriate to characterize the superiority of NP-computation
to P-computation. We will study the second point by investigating the struc-

ture of EXP.

In the Berman-Hartmanis conjecture, we are expecting that (a) NP-
computation is much stronger than P-computation; and (b) the assertion (i)

implies the p-isomorphism of all s:;-complete sets for NP. Then it is

49

reasonable to expect the p-isomorphism of all S;-complete sets for any other
complexity class that is more intractable than NP. That is, the Berman-
Hartmanis conjecture leads to the following conjecture: for any complexity
class C,if C is sufficiently intractable, then all si—complete sets in C are
p-isomorphic (the extended Berman-Hartmanis conjecture). For example, we
can expect that all an-complete sets in EXP are p-isomorphic since it is prov-
able that P # EXP and EXP contains several NP-complete sets (e.g., SAT).
Hence, we can estimate the validity of the (extended) Berman-Hartmanis con-

jecture by studying the structure of EXP.

Several notions are necessary in order to discuss "similarity”. In Chapter

3, we considered polynomial time reducibilities which are weaker than sI};-

reducibility: S;-reducibility offers the finest relation among them. In this
chapter, since we are interested in the structure of the class of Si-completa
sets, we need yet finer relation than s;-reducibility. Recall that all S;-
complete sets in C are Ei-equivalent, that is, they are all reducible to each
other by S;-reductions. Hence, we state “similarity” in terms of the type of
such si-reductions. So, notions concerning the type of s;-reductions (i.e.,

functions) are needed here. We define the following classes of functions:

FP = {f : f is a polynomial time computable partial function};

LIFP = {f € FP : f is length increasing function};

1-LIFP = {f € FP : f is one-to-one and length increasing function}; and
INVFP = {f € 1-LIFP : f—1 is in FP (i.e., f is polynomial time invertible)}.

Define finer relations than E; as follows.

p P

Definition 4.1. For any sets A and B, A is Sf-, = .-, =

- and =’ -reducible
L inv

1,14

to B if it is Si-reducible to B by a reduction f where f is one-to-one, f is in

LIFP, f is in 1-LIFP, and f is in INVFP respectively. Also A and B are E:{’

P _pP _p _p . . <P P _P _P
=i =1y and =_ -equivalent if they are =0 S S =y and

=1-’

50

S;v—reducible to each other.

In section 4.1, we will investigate how far we can prove the similarity of
all s;-complete sets in EXP and in other complexity classes. From the
results and observations in this section, we will finally propose the following

conjecture on the structural similarity of < i-complete sets.
Conjecture. For all complexity class C that is sufficiently difficult, we have

(1) all <" .complete sets in € are =" -¢ uivalent; but
m P i q

1

(2) notall S;-complete sets in C are p-isomorphic.

(Note: That is, the extended Berman-Hartmanis conjecture is false; and
instead of similarity by "p-isomorphism”, we expect a little weaker similarity,

ie., =" -equivalence relation.) O
i

1
Since we propose the non-p-isomorphism conjecture in section 4.1, we

will investigate further the structure of the class of Si-complete sets in EXP

under the non-p-isomorphism conjecture in section 4.2.

4.1. One-to-One Length-Increasing Equivalence Relation

In the following we will investigate the similarity of all S;-complete sets
~in EXP. To begin we review the approach taken by Berman and Hartmanis
[BH77] for showing that all known (at that time) Sfﬂ-complete sets in NP are
p-isomorphic. In order to show p-isomorphism between given two sets, Ber-
man and Hartmanis introduced one important notion and proved two key

lemmas. First lemma is the following.

p

Lemma 4.1. [BH77] Let A and B be any sets such that A =, B. Then

A=’

18

B. O
[o]
Hence, in order to show A Eipso B for given two sets A and B, it suffices to

show that A =" B.
mv

51

Next they pointed out some structural property which can be seen in
maﬁy sg-complete sets in NP. This property is called polynomial time padda-
bility.

Definition 4.2. [BH77] A set A is p-paddable (resp. weakly p-paddable) if
AXZ S;LVA (resp., A X 3 Sf,li A).
Remark. In [BH77] only the notion of "paddability” was introduced. The

notion of "weak paddability” has been considered in several contexts later
(e.g., [JY85, OS86, Wa85]).

The (weak) p-paddability is a structural property which plays an impor-
tant role in showing Eiiv- (resp., Ef,li-) equivalence relation. The next

lemma states it.

Lemma 4.2. [BH77] Let C be any complexity class which includes P and

contains a standard < ; -complete set U. Then we have,
(1) U is p-paddable and A Siliw U for all set A in C; and

(2) for any an -complete set A in C, A is (weakly) p-paddable iff U S;v A
P
(resp., U =i A).
Hence, if all =< f; -complete sets in C are (weakly) p-paddable, then they are all
Eﬁw-equivalent (resp., Eiﬁ-equivalent).
Remark. We can extend the lemma in [BH77] in order to state the fact about

weak paddability and to consider other complexity classes than NP. However

this extension is straight forward; so its proof is omitted here. O

By showing p-paddability of all known (at that time) s:ﬂ-complete sets in
NP, Berman and Hartmanis proved that they are all p-isomorphic. This
approach is also important here. Indeed using Lemma 4.2 we prove the fol-

lowing similarity between all Sfﬂ-cornplete sets in EXP.

52

Theorem 4.3. All S:-complete sets in EXP are Efﬁ-equivalent.

Proof. From the above discussions it suffices to prove the following lemma.
(Note: The same result was independently shown by Berman in his Ph.D

Thesis [Be77]. We will state a simpler proof here.) O

Lemma 4.4. Let A be any Si-complete set in EXP. Then A is weakly p-
paddable.

Proof. Berman and Hartmanis [BH77] constructed a set in EXP whose reduc-
tion to any other set must be one-to-one almost everywhere. Here we extend
this idea to obtain a one-to-one and length-increasing Sg-reduction from A X
3" to A. First we define a set L CNX s x3 by giving a description of a
machine M which accepts L 4+ Let {N}_, be an enumeration of polynomial
time bounded transducers, and let p, denote a polynomial time bound for N..
On input z, z = (i, x, y), M operates as follows (let n denote lz| in the follow-
ing):
begin
if]i[-pi(n)2 > 2" then reject;
(2)if |u|=n then accept iff u € A;
@) if @&, y) <&, y)[u =N/ x,y))] then
(x',y') « the smallest one among such pairs;
nr - Kl: xl’ yr>l
accept iff Jilp (n')’>2" Vx' €4
(i.e., M rejects (i, x', y'))
end-if
(4) otherwise accept iff x € A

end.
. cete s 2
Recall that the universal transducer simulates N (z) within |z|~pl.(n) steps;

1. A0
thus statement (1) can be done within 2 ™ steps. Also note that the number

53

of different (x',y’) which is less than (x,y) (by lexicographic order) is
bounded by 20(n); so, statement (3) can be done within 290" steps. Since A is

. . cotls 0
in EXP, some machine M, accepts A within 2 ™

steps; thus using M, state-
ments (2) and (4) can be executed within 200" steps. Hence M on z halts
within 270 steps, which proves that L, is in EXP.

Since L, € EXP and A is S;-complete in EXP, there exists a Si-

reduction from L 4 to A. Let Nl. achieve this reduction. We show that Nl. is
43 0

one-to-one and length-increasing almost everywhere on {io} x3 x3.
Consider any input z, = (i, x, y) which is sufficiently long such that

lilp, (n)2 =< 2", where n = lz,l- The length-increasing property comes from
0

statement (2). That is, N, (z,) is longer than z . Suppose otherwise; then if-
. .

o
condition at statement (2) holds; thus z, € L, if and only if N, (z)) (= u) € A,
i)

which contradicts that Ni is a Si-reduetion from L 4 1o A. Next the one-to-
[1}

one property comes from statement (4). That is, for all z' | = (io, x",y') such
that &' ,y') < (&, y), N, (z',) # N, (z,). Suppose otherwise, and let (', y') be
0 0

the smallest pair of strings such that N, (z') = u (= N, (z,)). Then we have
1] 0

z € L, <« M rejects z’

A 0
«— z' &L,
« N.(z') ¢ A (since N, is a reduction from L, to A)
0 0
- Nl.o(zo) g A (since Nio(zo) = Nio(z'o))
> zy € L, (since Nl.0 is a reduction from L, to A)

This is a contradiction. Therefore if (x, y) is sufficiently long, then function

N, is one-to-one and length-increasing on (io, X, y).
0 _

Finally define f by

for every x and y in E*, fle,) = Ni0(<io’ x, y0™),

54

where m is a sufficiently large constant.
Then the above argument proves thét f is a one-to-one and length-increasing
function in FP. Also it is clear that the execution of M always proceeds to
statement (4) on input <i0, x, y0m> for all x and y; so for every x and y we
have
X €A < (i, x,50") €L o N, (g, , y0™) € A = f(&x,y) € A.

That is, f is a Epﬁ-reduction fromA X ¥ toA. O

1

Here consider how far we have proved the similarity of all < II; -complete

sets in EXP by Theorem 4.3. What we proved in Theorem 4.3 is Ef“—

equivalence relation of all s;-complete sets in EXP. In order to prove the
(extended) Berman-Hartmanis conjecture on EXP, what else we need to

show? Note that p-isomorphism is the same as E;V-equivalence relation

(Lemma 4.1); thus the difference between :fn and Eio is the same as the

P P p P
one between =_ .. and =_ . So compare =, . and =,
1,1 inv 1,1 inv

l

P P\,
(or =, and =);
we will see that the difference between these two notions is only the p-

invertibility of reductions.

Let us investigate this difference more precisely. Let A and B be any

sets. Then A = B if there exists a <’
1,14

Hi-reduction f from A to B: namely, f

is a one-to-one, length-increasing and p-computable reduction. On the other
hand, A siw B if A sfﬁ B and some an-reduction from A to B is p-
invertible. Hence the p-invertibility of one-to-one and length-increasing

reductions in FP is important here; in general, this is the problem of whether

all one-to-one and length-increasing functions in FP are p-invertible.

Recently several authors have discussed the problem of p-invertibility of
functions in FP (see [Al85]). Among them the p-invertibility of one-to-one
and length-increasing functions in FP has been often studied [GS84, Ko8§5,

Va76]. For a given one-to-one and length-increasing function f in FP, the

55

. -1, . . .

function f = is definable and moreover exponential time computable. How-
e -1, . -1,

ever it is not known whether f = is p-computable in general. If f is not p-

computable, we call it a one-way function.

Definition 4.3. A one-way function is a one-to-one, length-increasing and
polynomial time computable function whose inverse cannot be computed
within polynomial time. That is, a one-way function is a function in INVFP

— 1-LIFP.

Remark. In some contexts one-way functions are not necessarily one-to-one

t

and length-increasing (e.g., [Al85]); those "one-way" functions are different
from the above. In other contexts (e.g., [JY85]) one-way functions are
defined using the notion of "polynomially honest” instead of "length-
increasing”; but they are essentially equivalent to the above in our discus-
sions.

Note again the difference between =° . and = is the p-invertibility of
g 1 mv p y

1,1
one-to-one and length-increasing reductions. Thus, the existence of one-way
functions relates deeply to the question of how far we could prove the simi-
larity of S:ﬁ-complete sets in EXP by Theorem 4.3. Indeed, we have the fol-

lowing immediate corollary of Theorem 4.3.

Corollary 4.5. If no one-way functions exist, all Si-complete sets in EXP
are p-isomorphic. O

However the assumption of this corollary (i.e., non existence of one-way
functions) seems too strong. Although we do not know whether there exist
one-way functions, one-way functions have been conjectured in several con-
texts [Ko85, Va76, Wa86b]: especially many results in recent research in
cryptography assume the existence of some type of one-way functions (e.g.,
[GS84, Ya82]). That is, the hypothesis of Corollary 4.5 contradicts the fol-

lowing conjecture which is widely believed.

56

Conjecture 4.1. (One-Way Function Conjecture)
There exist one-way functions. O

Assume the existence of one-way functions. Then we have a candidate
for non-p-isomorphic pairs. Consider any one-way function f. It is clear that
f(SAT) and f(U) are respectively s:ﬁ-complete in NP and in EXP; further-
more we have that SAT Ef,li f(SAT) and U Ef,li f(U). However we have
been unable to prove that SAT S;v f(SAT) nor that U Siv f(U); and it
seems difficult to prove these relationships. That is, assuming the existence
of a one-way function f, we conjecture that SAT and f(SAT) (resp., U and
f(U)) are not p-isomorphic. Hence we propose the following conjecture in

opposition to the Berman-Hartmanis conjecture.
Conjecture 4.2. (Non-P-Isomorphism Conjecture [JY8S, Wa85])

(NP) Notall Si-complete sets in NP are p-isomorphic; and
(i.e., the Berman-Hartmanis conjecture is false)

(EXP) Not all Si-complete sets in EXP are p-isomorphic.

(i.e., the extended Berman-Hartmanis conjecture is false on EXP)

Remark. Note that this conjecture consists of two conjectures: (i) there exist
one-way functions; and (ii) if one-way functions exist, then not all S;-
complete sets are p-isomorphic. O

By consecutive works [KLD85, KMRS86] initiated by Long, we have

obtained several results concerning this conjecture.

The class of S;-complete sets in EXP is that of the most "intractable”
sets in EXP in the sense of S;-reducibility: it is the highest E;-degree in
EXP. That is, we are considering the structure of the highest Ef;-degree.
Although we have not obtained the answer to the above conjecture on the

highest Ei-degree in EXP, we have the answer on other Ei—degrees which

57

are relatively high in EXP.

There are weaker types of reducibility each of which also defines com-
plete sets (see Chapter 3). Here we consider sg_tt-reducibility. Obviously
the highest E;tt-dcgree contains the highest “———'i-degree. Moreover, we saw
in Chapter 3 that the highest Eg_tt-degree consists of more than one E;-

degrees (Corollary 3.6).

EXP
f—F “the highest
the highest =P _degree ,
Ei-degree tt the highest

_pD
= -degree

AN

one Em-degree
Figure 4.1. The structure of the highest Es_tt-dcgree in EXP.

Conjecture 4.2 concerns the problem of how similar sets of the highest
E;-degree are. Consider the same problem to E;-degrees in the highest
Eg_t;degree: i.e., relatively high E;-degrees in EXP. Then the following

p_tt-degree: (1) a

theorem gives us three kinds of =P -degrees in the highest =
m 2

E;-degrec such that all sets in it are p-isomorphic (i.e., the extended
Berman-Hartmanis conjecture is true); (2) a Ei-degree such that all sets in it
are Eili-equivalent but not all sets are p-isomorphic (i.e., the non-p-
isomorphic conjecture is true); and (3) a Enpl-degree such that not all sets in it

are Ef[i-equivalent (i.e., even Theorem 4.3 does not hold).

58

Theorem 4.6.

(1) [KMR86] There exists a Ef;-degree in the class of s;_tt-complete sets

that consists of a single Eio-type;

(2) [KLD86] Assume that one-way functions exist. Then there exists a E;-
degree in the class of Sg_“-complete sets that consists of a single Ef“-
=p .
type but more than one =, -type; and

(3) [Wa85] There exists a E;—degree in the class of s;_tt-complete sets that

consists of more than one —=-11’ i-type.

Remark. At (2), we need to assume the one-way function conjecture: recall

p

that for any A and B, A Efl‘ B implies A =. B (thus, A = B) unless one-
Ji inv iso

way functions exist. O

Other Complexity Classes

Theorem 4.3 also holds for any other deterministic complexity class that
includes EXP: more precisely, we have the same result for all super-SUBEXP
classes and all super-PSPACE classes that have s;-complete sets. This sug-
gests the following conjecture: if a complexity class C is a sufficiently intract-
able complexity class, then all Si-complete sets in C are Ei]i-equivalent.

P

That is, the = .-equivalent similarity between all Si-complete sets in C

characterizes the superiority of € -computation to P-computation. Note that

p

we have not proved this conjecture since we have not obtained any =, .-

equivalence results for nondeterministic time complexity classes.

For an example of a typical nondeterministic complexity class, we will
consider the class NEXP. Let A and B be arbitrary s;-complete sets in
NEXP; thus, they are Ef;-equivalent. Although the following development is
not sufficient to prove that they are Ef’u-equivalent, it does give some evi-

| dence for this.

59

To simplify our discussions, assume that both A and B are in NTIME (2”):
let M, and M p be respectively a nondeterministic acceptor which accepts A
and B within 2" steps. Since A S; B, there exists a Sf;-reduction f from A to
B. The reduction f may not be in 1-LIFP, and the following cases may occur:
(@) &)l < lr,l for some x; and (ii) f(x)) = f(x,) for some x, <x, In
these two cases, it is sometimes possible to reduce the computational difficulty

of A to a large extent.

Consider the case (i). Also assume that M, on x, needs 2" steps. Then

0
we can decide "x, € A?" by executing M, on f(xo) which is exponentially fas-
ter than M, on x, providing that x is sufficiently long. That is, the reduction
f exponentially decreases the difficulty of deciding "x, € A?". Next consider
the case (ii). Then the problem of "x, € A?" is indirectly reduced to that of
"x, € A?7": we can determine whether x, € A by computing x, = f_lof(xz) and

executing M, on x . Here again f can largely decrease the difficulty of A if

1

the problem "x, € A?" is much easier than "x, € A?".

On the other hand, from our intuition that P-computation is much weaker
than NEXP-computation, it should hardly be the case that f largely reduces
the difficulty of A. Thus, the above two cases may not occur so often. The
following two theorems prove this idea.

(Note: The following two theorems have been proved by several authors and

appeared (in different ways) in several contexts [Al83, HLY86, JY85].)

Theorem 4.7. Let A and B be any Si-complete sets in NEXP. Then there

exists a s;-reduction f from A to B such that
(1) for infinitely many x in A, [f(x)| > |x|; and
(2) for infinitely many x in A°, [f(x)| > |x].

Remark. We also have the similar S:ﬂ-reduction from B to A: that is,

60

A EE B for infinitely many x.

Proof. By way of showing contradiction, suppose the otherwise. That is,
there exists some sg-reduction f from A to B such that at least one of the
above conditions does not hold. Here we assume that the condition (i) does
not hold for f (we can prove in almost the same way for the case that the con-
dition (ii) does not hold): i.e., [f(x)| = || for all x, || = n,, where n is some

constant. Then it is easy to show that the following procedure accepts A

within polynomial time.

begin
input(x);
u « f(x);
while [u| < [f(x)| do u « f(u);
if Ju|> n, then reject
else acceptiff u € B
end.

Hence we have A € P. A contradiction. O

Theorem 4.8. Let A and B be any s;-complete sets in NEXP. Then there
exists a S;-reduction f from A to B such that f is one-to-one on A l.e., for
all x in A°, there is no x' such that f(x) = f(x'). Moreover, if A EE B then f

is made so that it also satisfies the length-increasing property.

P

. B

Remark. We also have a similar Si-reduction from B to A: that is, A =
on A° and B'.

Proof. The proof is similar to the one for Theorem 4.3 and Lemma 4.4. It
suffices to show that for any Si-complete set A in NEXP, there exists a S;-
reduction f from A X 5" to A such that f is one-to-one on ASx 3

Define the set L, C N X 3" x 3" in the following way (let{N } _ be an

enumeration of polynomial time bounded deterministic transducers and let p,

61

be a polynomial time bound for N,):
(i, x,y) € L,
<=>]i|‘pl.(n)2 =< 2" and
(@&, y) <, y))[Ni(<i, x',y)) = Nl.(<i, x,y)]Vxea),

where n = [i, x, y)|.
Following a similar argument in the proof of Lemma 4.4, we can easily prove

that L 4 € EXP C NEXP. Thus, there exists some reduction N. from L 4L 0A
i .

since A is Sf;-hard for NEXP. Then it is also easy to show that N, is one-to-
0

one almost everywhere on {io} X A" X E*: namely that, for almost all x, x’ €
W
A and y,y €Z,N, ((io, x',y)) # N, ((z'o, x,y)). The rest of the proof is
0 0
similar to Lemma 4.4 and is left to the reader. O

Although the above theorems are not sufficient to show A Efli B, they
are good evidence for it. These arguments lead us to the following conjec-

ture.
Conjecture 4.3. (Conjecture on the Similarity of Sﬁl-Complete Sets)

For any complexity class C , if C is sufficiently difficult then all SII; -

complete sets in C are =" j-€quivalent. O

1
If this conjecture is true, then the next important questions are (i) how diffi-
cult should C be when we say "sufficiently difficult”; and (ii) whether the
class NP posses this difficulty. On the other hand, there seems no reason that
all s;-complete sets in NEXP are E;V-equivalent, i.e., p-isomorphic: the
invertibility of S;-reduction seems nothing to do with the superiority of
NEXP-computation to P-computation. Moreover, according to the arguments
on EXP, we also have a candidate for non-p-isomorphic pairs of S;-complete
sets in NEXP: for any one-way function f and any S;-complete set C, we

have that f(C) is S;-complete in NEXP and that C Efu f(C), but we have

62

not been able to prove C Eil;v f(C). This leads us the extended non-p-
isomorphic conjecture (the extension of Conjecture 4.2 for any complexity
classes). That is, we conjecture that for any complexity class , not all _<.f;-
complete sets in C are p-isomorphic.

-It is worth mentioning that Theorem 4.7 and 4.8 also give some struc-
tural properties of S;-complete sets in nondeterministic complexity classes

though they are not main issue of this chapter. That is, we have the following

corollary from each theorem.

Corollary 4.9. [HLY86] Let C be any sli-complete set in NEXP. Then nei-

ther C nor Cc is NP-immune. O

Corollary 4.10. For any Si-complete set C in NEXP, there exists a one-to-

one function f in FP such that f(Z*) cc’. o

Especially, Corollary 4.10 was used in the previous chapter to show the
difference between s;-completeness and siﬁ-completeness in NEXP

(Theorem 3.10 of section 3.1).

4.2 The Structure of the Class of s;-Complete Sets

In the previous section, we conjectured that not all Si-cdmplete sets in
EXP are p-isomorphic (the non-p-isomorphic conjecture; Conjecture 4.2).
That is, the highest Ei-degree of EXP does not consist of a single Eio-type.
Here, assuming the non-p-isomorphism conjecture, we investigate further the

structure of the highest Ef;-degree.

Let U denote a standard S;-complete set in EXP. If the non-p-
isomorphic conjecture is true, there exists a s;-complete set in EXP which is
not p-isomorphic to U. As a first topic of this section, we investigate the type

of Si-complete sets which is not p-isomorphic to U.

63

Recall that for any one-way function f, the pair U and f(U) is a candidate
for non-p-isomorphic pairs of Si-complete sets. One of the problems of
interest is whether we have this type of non-p-isomorphic pair if the non-p-
isomorphic conjecture is true at all. Let X be an arbitrary si-complete set in
EXP which is not p-isomorphic to U. Recall that all Si-complete sets in
EXP are Eili-equivalent (Theorem 4.3); thus, U siliX. Also recall that

every SII) reduction f from U to X must be a one-way function (Lemma 4.2

1
and the related discussions). Hence the pair U and f(U) seems to be a non-p-
isomorphic pair of S;-complete sets. Which suggests that if the non-p-
isomorphic conjecture holds, then U iio f(U) for some one-way function f.

We can confirm this intuition in higher deterministic complexity classes.

Theorem 4.11. Let U be a standard =’ -complete set in EXPSPACE (i.c.,
DSPACE(ZPOZy)). Then if not all Si-complete sets in EXPSPACE are p-

isomorphic, there exists a one-way function f such that U 5-‘=ipso).

Proof. If not all Snpl-complete sets in EXPSPACE are p-isomorphic, then
there exists a set X such that U iiio X;so, U $§w X from Lemma 4.2. On
the other hand, we have U Ef,li X from Theorem 4.3; thus, U Sf’li X by some
function f in 1-LIFP. Furthermore, f is not p-invertible: i.e., f is a one-way

function. We will show that U $io f(U).

Suppose by the way of contradiction that U Eipso f(U); then U = ip F).

nv

Consider the following set L . C NX3 (let {N} _, be an enumeration of
polynomial time bounded deterministic transducers and let p, be a polynomial

time bound for N):

{i,x) €L, <=> |i[~pi(Ki,x>D2 =< 2" and [N, x) ¢ fEY VxeUl

f
~ Then it is easy to show that L £ € EXPSPACE. Thus, it follows from Lemma
4.2 we have L, = U;so, L, = f(U). Let N, € INVFP be a reduction
f inv f inv ig

64

. . p
which witnesses L + =inv f(U).

. 2 .
Let n, be an integer such that li0l~pi (n) = 2" foralln = n,. Consider
0

any input z, = (i , x) such that [| = n_. Then we have N, (z,) € f(Z*). Sup-
0

v 0°

pose otherwise; then z, € L 1 (from the definition of L f) and Nl.o(zo) £ f(U)

%
(since f(U) C f(Z)); which contradicts that N, is a Si-reduction from L s to
0

f(U).b Thus, it follows from the definition of Lf that (io, x) € Lf iff x € U.

. . . B e
Hence, letting g, = M'Nio«lo’ x)), we have (i) U =__ f(U) by g, and (ii)
g,(x) € f(3) for all x, | = n,.

Recall that there exists a function pad which witnesses U X s <! U
since U is paddable. So, letting g, =)\x.glopad((x, 0n0>), we have (i) U si\ y
f(U) by g, and (ii) g,(x) € f(E*) for all x. Thus, for every x € E*, we have

x€U
x¢U

}

gz(x) € f(U) C X; and |

8,() £ f(U) and g,(x) € fE) *

6,0 €FE ~U) (ince fS) — FV) = £ - U))
g,(x) € x° (since f(Z* -U)C XC).

i

i

¢

Therefore, we have that x € U iff g (x) € X: thatis, g, is a _<_ipnv-reduction

from U to X. A contradiction. O

Concerning the class EXP, we have only the following partial result.
Theorem 4.12. Consider a standard S;-complete set U in EXP. Let X be
any s;-complete set in EXP such that
(1) X #,_ U; and
2y U Sin X by some function f such that f(Z*) € P.
Then we have U s—eio f(U). That is, f produces from U a S;-complete set
which is not p-isomorphic to U.

Remark. Note that every s;-complete set in EXP is Efli-equivalent to U;

65

thus we have U Sfﬁ X by some reduction f. The condition (2) requires that

f(£) € P for such reductions.
Proof. The proof is similar to the one for Theorem 4.11; so, it is omitted. O

Next, consider the problem of how the highest s;_degree of EXP is
divided by Efm-types, i.e., p-isomorphism classes. We conjecture that the
highest Ei-degree of EXP does not consist of a single Eipso-type (the non-p-
isomorphic conjecture; Conjecture 4.2). Then consider the question of how
many Eio-types in such s;-degree. Mahaney [Ma81] answered this ques-

tion.

Theorem 4.13. [Ma81] If the highest Ei-degree in NP does not consist of a
single Eipso-type, it contains infinitely many = 1ps o types.
Remark. This theorem also holds for any other complexity class which con-
tains P. O

Mahaney [Ma81] also considered the order relations of these Eipso-types
where the order of two Eio-types is defined by sillv-reducibility: for any two
—=—ipso-types D and D,, we say that D, < D , if any setin 2D is sﬁw-

reducible to some set in 5.2')2. Recently, Mahaney and Young [MY85] consid-
erably extended the Mahaney’s work in this direction.

Theorem 4.14. [MY85] Any Efﬂ-degree which does not consist of a single
Eipso-type contains infinitely many Eio-types densely ordered under the <-
ordering. Also it contains infinitely many Eio-types which are incomparable
under the <-ordering. Thus, any E;-degree which fails to consist of a single
Eipso-type contains every possible countable linear ordering under the <-
ordering.

Remark. Note that the above theorem extends Theorem 4.13 also in the

sense that it states the structure of all :—:i-degrees besides the highest one. O

66

Here we consider another extension of Theorem 4.13. In the first topic,
we investigate the problem of whether we have a non-p-isomorphic pair such
as U and f(U) if non-p-isomorphic pairs indeed exist (where U is a standard
Si-complete set). That is, we considered whether some one-way function f
produce a s;-complete set from U which is non-p-isomorphic to U. Next, let
us consider a similar problem for Theorem 4.13. Namely, the following
problem: assuming the non-p-isomorphic conjecture, is there any one-way
function g that generates infinitely many Sf;-complete sets from U which are

not p-isomorphic to each other? We have the following partial answer to this

problem in EXP.

Theorem 4.15. Let U be a standard Si-complete set in EXP. If there exists
a one-way function f such that U iipso f(U), then there exists a one-way func-
tion g such that gi(U) iipso gj(U) foralli > j = 0.

Remark. Note that gi(U) is Sf;-complete in EXP. That is, g produces from

U infinitely many Eio-types in the highest Ei-degree of EXP. O

We prove this theorem following the idea that is used to prove Theorem
4.11: we use a delayed diagonalization technique [La75] to construct infinite
pairwise non-p-isomorphic sets. Since the construction in this proof is rather

complicated, we start by explaining a simple example.

To make our statement simple, we introduce several notations. Recall
that INVFP is a class of one-to-one, length-increasing, p-computable and p-
invertible functions, and that A S;V B means that A is s;-reducible to B by a
reduction in INVFP. Here we will consider a weaker relation: for any sets A
and B, we say that A s;inv B if A is s;-reducible to B by a one-to-one, p-

computable and p-invertible reduction (i.e., the length-increasing property is

p
in

not necessary). Note that if A is p-paddable, then A =, B if and only if A

67

<P B. Also we use an abbreviation =’ : for any two sets A and B,
winv winv (a.e.)

p . . =n P >p
=", B if there exists n = 0 such thatA =<', .
winv {a.e.) winv

p
winv {(a.e.)

Suppose that there exists two sets A and B such that A % B, and

consider the problem of constructing infinitely many sets A, A, - such

P
winv (a.e.)

that A, A for all k > h > 0. To accomplish this we consider the

following stronger conditions and define sets which satisfy them:

P

winv (a.e.

(Cl) forallk = 0,4, + , B; and

(C2) forallk > h = 0,4, %, A

winv (a.e.) “k
(A, is used to denote the set A).

We define the desired sets inductively from A . Let k > 0 be arbitrarily
fixed, and consider the construction of the set Ak. Here we assume, as an
induction hypothesis, that we have already had the sets A, A, LA
Then the set A is constructed by a delayed diagonalization. What follows is
an explanation of the outline of the construction. Let {Nl.}i>0 be a standard

enumeration of polynomial time transducers (we assume that every polyno-

mial time function appears infinitely many times in this enumeration). We

define A, to be A, _, and to be B in turn so that it satisfies (1) 4, %P
- winv (a.e.)
B;and (2) forallk > h = 0,4, £ A,. That is, at some stages of the
winv (a.e.) "k

construction where we want to make A , falsify A, vainv BbyN, A, is defined

p

until a witness for the falsity of A =

to be 4, , B by N, is found (such a

1

witness will be eventually found since A, _ £° B); and at some stages

1 7 winv (a.e.)

P LA DY N, itis defined to be B until a

where A, is expected to falsify A, =_.

witness for this fact is found (such a witness will be eventually found since A,

P

, B). The former and the latter witness is respectively called a wit-
winv (a.e.)

ness of type (1) and type (2).

68

Let us state this construction more precisely. The above two types of

witnesses are defined formally as follows:

p
., BbyN)

(type 1: a witness for the falsity of A =
. for every (i, j), 0 < i, j, a string x is a witness of type (1) (w.r.t. (i, /) if
one of the following conditions holds:
O @y <)[NO)=N®],
(ii) N, o N (x) # x, or
(iii) (x € A, AN(x) € B)V(x £ A AN (x) € B).

s . p
(type 2: a witness for the falsity of A = A by Ni)
for every (i, j, h), 0 < i, j and 0 < h < k, a string x is a witness of type

(2) (w.r.t. (i, j, k) if one of the following conditions holds:
i) Ay <x[NO) =N]
(i) Nj o N (x) # x, or
(i) (x € A, AN,(x) €A)V (x € 4, AN (x) € 4).
Then A, is defined by the following stage construction (recall that L

denotes the set of elements of L of length n):

stage n = 0;
A, ~ I
(i, 7) « (1, D; status - 1;
stage n > 0;
if status = 1 then (i.e., a state waiting for a witness of type (1))
Ay« AL UA
(*) search for a witness of type (1) for all x, [x| < loglog n;

=n

if a witness of type (1) is found then
h « 0; status « 2
end-if

else (i.e., a state waiting for a witness of type (2))
=n
Ak ~-A UB

69

(*) search for a witness of type (2) for all x, |x| < loglog n;
if a witness of type (2) is found then
if h = k — 1 then
(i,) « next((i, j); C(i.e., (i, j) becomes the next pair)

status « 1
else
h « h + 1; status « 2
end-if
end-if
-end-if

end-construction.
(Note: The function "loglog n" used at step (*) is not essential: it can be any
function I(n) which satisfies (i) /(n) is nondecreasing and increases infinitely
many times; and (ii) the time needed for step (*) is bounded by some polyno-

mial in n.)

Consider any integers i, j and & such that 0 < i, j and 0 = 2 < k. Note
p
winv (a.e.

that we assumed that A, *) B for all 2, 0 = h < k; thus, a witness of

type (1) w.r.t. i and j (resp., type (2) w.r.t. i, j and &) is eventually found in

this construction. Such a witness ensures the falsity of A, S\I:Vin

, B by N,
(resp., A4, vainv A, by N). We also assumed that every polynomial time
function appears infinitely many times in the enumeration {Nl.}l.> - Hence, we

p

p
i winv (a.e.

winv (a.e.)

have both A # Band A #* ; A : namely that, A, satisfies the
conditions (C1) and (C2).

Now consider the proof of Theorem 4.15. Here we assume that U iio
f(U); thus, U $§W f(U) since f(U) Siiv U (see Lemma 4.1). Hence, we have

U=’

winv

f(U) since U is p-paddable. Besides this relation, we need, in the fol-

lowing proof, a rather technical assumption on f. This assumption is stated

precisely as "f(Z*)c has an WINVFP-casy subset”, where WINVFP denotes

the class of one-to-one, p-computable and p-invertible functions (see Chapter

70

R N TP TSR

3.1 for the definition of "easy subset"); but we will use a simpler (but

stronger) assumption. The following lemma shows that we can assume it on

EXP.

Lemma 4.16. Let f be a one-way function such that U $§inv f(U), where U
denotes a standard Si-complete set in EXP. Then there exists a one-way
function f’ such that U $zinv f(U) and f' (E*) - 03’ (so, f' (E*)C contains
1z ; thus it has an WINVFP-casy subset).

Proof. We show that f/ = Ax.0f(x) satisfies the theorem. The outline of the

proof is similar to the one for Theorem 4.11.

Suppos'e' by the way of contradiction that U Siinv . Define the set
L,CNXZX by

G, x) €L, <=> |ilp/(f,) = 2" and [N, x) € 03 VxeU]

Since we assumed that U sp.nv f'(U), there exists a reduction N, in WINVFP
0

Wl

from U to f/(U). Then following the same argument as Theorem 4.11, we
obtain, from Nio’ a reduction g’ such that (i) U Si .y Of(U) by g’ and (ii)
g’(E*) - 0. So, define g by

for every x € E*, g(x) = y, where g’ (x) = Oy.
Then we have U Sf;inv f(U) by g. A contradiction. O
Hence, we can assume without loss of generality that f(U) C 03"

Letting A = U and B = f(U), the above construction yields infinitely
many sets which satisfy the conditions (C1) and (C2). However we need to
consider further requirements so that each A, can be generated by some one-
to-one polynomial time function g (i.e., A, = gk(U)). That is, the following
two additional conditions are necessary (we use a, b, ¢ and d to denote a

string 00, 01, 10 and 11 respectively):

71

(C3) forallk = 0,4, C a'bS U a'cS’

(i.e., each A, must be constructed in the different domain); and

(C4) for all £ = 0 and x € U, A contains only and at least one of a"bx and
akcf(x).

Letting A = bU and B = f(U), we define sets {Ak} which satisfy the

k>0
conditions (C1) — (C4). We construct them inductively from 4.

(Note: We need to assume bU %, f(U) as an induction base for (C1),
winv (a.e.)
which immediately follows from the fact that U vainv bU and the assumption
P
that U % _. f(U).) |
For arbitrarily fixed k > 0, consider the construction of A,. The set A is

defined as follows:

stage n = 0O;
A~ O
i, /) « A, D; status « 1;
stage n > 0;
if status = 1 then (i.e., a state waiting for a witness of type (1))
A - AU afd" 'bx ¢ A,_,)] = n}
U a{ak_lcy €A, - b| = n};
(i.e., A, becomes almost gA _ if status = 1 forever)
(*) search for a witness of type (1) for all x, x| < loglog n;
if a witness of type (1) is found then
h « 0; status « 2
end-if
else (i.e., a state waiting for a witness of type (2))
A, - A UdcB™"
(i-e., A, becomes almost a*cB if status = 2 forever)
(*) search for a witness of type (2) for all x, x| = loglog n;
if a witness of type (2) is found then |
if » = k£ — 1 then

72

e P ke o P

e i gy -

e
v

{i,7) « next((i, j); (i.e., (i, j) becomes the next pair)

status « 1
else
h « h + 1; status « 2
end-if
end-if
- end-if

~ end-construction.
Then it follows from the construction that A , satisfies the conditions (C3) and

(C4). From the induction hypothesis and Claim 1 (see below), we have that

p P
k—1 winv (a.e.) winv (a.e.)

aA B and that A, % a“cB for all , 0 < h < k. Thus,

for every i, j and 2, 0 < i, j and 0 = h < k, a witness of type (1) (resp.,
type (2)) will be eventually found during the construction; hence, A , satisfies
the conditions (C1) and (C2) (see the discussion for the previous example).

Therefore, sets {4 }, _ - satisfy the conditions (C1) — (C4).

k>0

Claim 1. Suppose that A $§inv (ae) B. Then for all u, v € 2*, we have uAd
, ,
winv (a.e.) vB.

Remark. The assumption discussed in Lemma 4.16 is needed only to prove

this claim.
Proof. Suppose by the way of contradiction that uA Siinv vB by g. Define
g' by

y if g(ux) = vy for some y € 02*, and

g'(x) =
1x otherwise.

Then it is easy to show that g’ is a one-to-one, p-computable and p-invertible

function.

Let x be any string such that g(ux) ¢ y03". Recall that we assumed B (=

() 02*; so, g(ux) ¢ v03" (i.e., g(ux) € vB) implies that x € A since

73

g(ux) € vB iff ux € uA. Hence, we have both x € A and g'(x) (= Ix) ¢ B.
On the other hand, it is clear that x € A iff g'(x) € B for any string x such
that g(ux) € VOE*. Therefore, g’ is a reduction from A to B ; namely, A

=? B. A contradiction. O

~ winv
The following claim shows that each A, is generated by some one-to-one,
length-increasing and polynomial time function.

Claim 2. There exists a one-to-one, length-increasing and polynomial time

function g such that for every & > 0, A = glf(AO).

Proof. For every k and n > 0, define up(k, n) to be false (resp., true) if
status = 1 (resp., = 2) at stage n during the construction of A, (we define
up(k, 0) and up (0, n) to be true for all k and n). Then it is easy to show that
up is polynomial time computable with respect to k and n. The desired func-

tion g, is defined as follows:
for every k> O andx € 3 (let n and m denote [x| and [f(n)]),
gl(x) = x if x £ a*{b, c, d}E*;

k

a bx ifup(k — 1, m) V ~up(k, m),
k—1
gla bx) =
a"cf(x) if ~up(k — 1, m) A up(k, m);
P if up(k — 1, n) V =up(k, n),
k—1
g,(a cx) =
a*d0x if ~up(k — 1, n) Aup(k, n); and

- k
gl(ak 1d)c) = a dlx.
Then it is easy to show that g, is a one-to-one, length-increasing and polyno-
mial time function. Also we have A = gl(Ak~1) for every k > 0; thus, A =

k . . .
g,(A,). Since these proofs are tedious but easy, we left them to the interested

74

readers. O

As a consequence of the above discussions, we have the following

lemma.

Lemma 4.17. Suppose that there exists a one-way function f such that U iipso
f(U), where U is a standard si-complete set in EXP. Then there exist
strings a and b, and a one-to-one, length-increasing and polynomial time
function g, such that

(1) g,(bU) C a3’ for all i > 0; and

2) &1 (bU) %! "(bU) for all i > j = 0. O

winv (a.e.) &

- Proof of Theorem 4.15.

Let g, be the function defined in the above. Note that A vainv Bif A
p

J P i . : .
=, B; thus, we have that g (bU) #, gll(bU) for alli > j > 0. Also it fol-
lows from U EiI;o bU that U ii’;o g;(bU) for all i > 0. Hence, it suffice to
prove that there exists a one-to-one, length-increasing and polynomial time
function g such that gk(U) = gllc(bU) for all £ > 0. We can assume without
loss of generality that U N a3’ = . Furthermore we have gi(bU) - as
for all i > 0. Therefore, the following function satisfies our purpose:
for every x € 2*,
g,(x) ifx e aE*,

g(x) =
g (bx) otherwise.

Recall that we have Theorem 4.11 for higher complexity classes. Thus,
we can completely solve this problem for higher complexity classes such as

EXPSPACE.

Theorem 4.18. If the non-p-isomorphic conjecture is true on EXPSPACE,

75

then there exists a one-way function g such that gi(U) ii . ¢’ (U) for all

i > j = 0, where U is a standard =" -complete set in EXPSPACE. O

Other Complexity Classes

Theorem 4.12 and 4.15 (resp., Theorem 4.11 and 4.18) hold for all com-
plexity classes that contain EXP (resp., EXPSPACE).

The proof of Theorem 4.12 is not applicable to complexity classes such as

NP. However, a different proof gives us a similar result.
Theorem 4.19. [Wa86¢c] Consider any p-paddable sfﬂ-complete set, say
SAT. Let X be any Si-complete set in NP such that
(1) X iizo SAT; and
(2) SAT Siu X for some function f such that f(E*) € P.
Then we have
(3) both f(SAT) and f(SAT) are S;-complete in NP; and
(4) either SAT % _f(SAT) or SAT # b OfSATY. o
In order to prove Theorem 4.15 for the class NP, we need to assume the

technical assumption that was proved on EXP in Lemma 4.16. So, the

corresponding theorem for NP becomes as follows:

Theorem 4.20. Let U be a standard Si -complete set in EXP. If there exists
a one-way function f such that (i) U*io f(U), and (ii) f(Z*)C has a
WINVFP-easy subset, then there exists a one-way function g such that

g'(U) ="

1s0

gj(U) foralli>j=0. O

76

S. Polynomial Time Reducibility to a Set of Small Density

In order to analyze a complexity class C, we have investigated properties
of sets in €. For example, we have observed several properties of complete
sets in EXP in order to show how EXP is difficult than P: note that a com-
plete set in C is a hard set which is in C . Here we will investigate a pro-
perty (i.e., density) of sets to which sets in EXP are polynomial time reduci-
ble; those sets are not necessarily in EXP. This approach yields another type
of "tractability/intractability” notions. We show the intractability of EXP

from this different point of view.

Let A be any set. Recall that cens, (n) denotes the census function of A.
We say that A is sparse if cens,(n) = O(p(n)) for some polynomial p. We
say that A is exponentially dense if cens ,(n) = w(2") for some constant e,
0 < e€; and A is bi-exponentially dense if both A and A° are exponentially

dense.

Consider any set A ¢ P. Then A is intractable in the sense that the time
complexity of any machine that accepts A is more than polynomial: here, time
complexity is used for measuring tractability. On the other hand, density of
sets to which A is polynomial time reducible is another measure of tractabil-
ity. For example, suppose that A is Sf—reducible to some sparse set X, where
Sf is any polynomial time reducibility. Then we have the following polyno-
mial time table-lookup algorithm for A [Ma86].

Let M be an oracle machine which achieve SS-reduction from A to X. Note
that M solves A up to size n if the information of XSp(n) is given, where p is
some polynomial; and that a polynomial size table is enough to express this
information since X is sparse. Alth;mgh the computation of the table may
need huge amount of time, the table itself is not so large. Hence, having
the table after the precomputation, we can solve A within polynomial time

for all instances up to size n: the computation of M and searching the table

77

can be accomplished within polynomial time.
So A has a feasible algorithm in a weak sense even though it is not in P. Note
that the density of X determines the size of the table; hence it determines the
feasibility of table-lookup algorithms. In this chapter we use the density of

such sets as X for measuring tractability of A.

For any Sf-reducibility and any complexity class €, a Sf-hard set for C
is a set to which all sets in C are Sf-reducible. Hence, analyzing density of
Sf -hard sets for C, we can investigate the tractability of all sets in €. In

section 5.1, we will study density of sf-hard sets for EXP.

In section 5.2, we will discuss polynomial time pseudo algorithms: i.e.,
approximation algorithms and polynomial size circuits. Several authors have
introduced several types of pseudo algorithms and considered the notion of
"having polynomial time pseudo algorithms": e.g., APT [MP79], 1-APT
[OS86], p-closeness to P [Ye83, Sc86b] and P/poly [KL80]. They considered
these notions in order to define weaker notions of tractability than the poly-
nomial time computability. Each of these pseudo algorithms is regarded as a
special case of table-lookup algorithms considered above. We show that the
existence of polynomial time pseudo algorithms relates deeply to polynomial

time reducibilities to sparse sets.

5.1. Density of Hard Sets

We first consider the most general case: that is, consider hard sets with
respect to sg-reductions. We have the following partial result on the density

of S,l;-hard sets.

Theorem S.1. Let #(n) be any nondecreasing function which is exponential

time computable. And let A be any s;-hard set for EXP such that

t(n)

A € DTIME(2""). Then cens,(n) = (pot)"(n) + ¢ for some polynomial p

78

and constant ¢, where for any function f, we define f~ to be the function that
maps every integer n > 0 to the largest k such that fof - - - f(1) < n.

k

Proof. We use essentially the same technique used in the proof of Theorem
3.2 where we showed the length-increasing property of s?-reduction from

the setLA to A.

Consider an enumeration {Ml.}l.>0 of polynomial time bounded deter-
ministic oracle machines and let p; be a polynomial time bound for M.
Define LA C N X 2* as follows:

2 =
@0 €L, <=> |lp,(n)" =2" and G, x) ¢ L(M,A™"),

where n = [i, x)| and m = t—l(n).

p-

Then L 4 is in EXP. Thus, there exists some =,

reduction from L 4, to A since

A is EXP-hard set. Let Mi be an oracle machine which achieves this reduc-
0

tion. Following an argument similar to the proof of Theorem 3.2, we can

prove some sort of length-increasing property for M, . That is, for almost all
0
%
x €2, M, on <i0, x) queries some y in A whose length is larger than
0

tﬁl(Kio, x))) (the proof of this fact is almost the same as that of Theorem 3.2,

and is omitted here). Thus, letting p be a polynomial time bound for M, , we
. 0

have
(°§ x € E*)[M, queries somey in A such that t_l(Kio, x) = bl =pi,, 2 1.
So,
@e)(Vn > c)@y € A+ (n) = b= p(w)]
Hence,
He)(Vn>c)@y €A)n=p|=pot(n)]
That is, A contains at least one element of length between ¢, and pot(c,), and

one of length between pot(c,) and (pof)o(por)(c), and so on. Hence, ="

79

. . k
= k for almost all n, where k is the largest Integer such that (pof) (c) = n.
Since ¢, is a constant, there exists some constant ¢ such that cens ,(n) =

(pot)"(n) + c for all n. O

As an immediate consequence of this theorem, we can prove that all S,I;-
complete sets for EXP have w(loglog n)-density. Also a little stronger result
is provable according to the same line.

Corollary 5.2. Let A be any s:,-hard set for EXP that is in EXPOLY (i.e.,
DTIME(ZpOIy)). Then cens L, (n) = o(loglog n). O

Although we have only the above partial result concerning the most gen-
cral reducibility, i.e., S.i-reducibility, we can prove much stronger results for
more restricted type of reducibilities. Berman and Hartmanis [BH77] showed
that all Si-hard sets for EXP have high density; and Balcazar and Schbning
[BS84] showed that they are all bi-exponentially dense. Here we will obtain
more general ones.

First consider hard sets for EXP with respect to Sf- and = -
reducibilities.

Theorem 5.3.

(1) For all S:-hard sets A for EXP, there exists some constant €, 0 < e,
cens,(n) = m(2n£); and

(2) For all S;-hard sets A for EXP, there exists some constant €, 0 < e,
cens,(n) = w(ZnE).

Thus, every Sf- (resp., _<_§-) hard set for EXP .is bi-expohentially dense.

Proof. (1) Let {Nz.}l.> o be an enumeration of polynomial time bounded deter-

ministic transducers. We will define the set C to be U, , C,, where for all

i > 0, the set C, c{i} x " will be described by a variation of the stage con-

struction method (see, the proof of Theorem 3.5 for the "stage

80

construction").

Let i be any integer and fixed. Then the set C, is defined in the follow-
ing way:

global var X; Cl.;
R :s_'tage x =\ (we use N to denote null string)
X - @
C, « &; (ie., M £ C, is determined)
stage x € E+;
compute Nl.(<i , x)) and let {al, I ak} be the associated set of Nl.(<i , X));
(if either the computation of Nl.(<i, x)) needs more than 2" steps or N (G, x))

is not a tt-condition, then go to the next stage)

if {al, cee ak} X then

(Case 1)
C, - C,U{i,n} (e, x¢ C, is determined)
X «XU{al, '~~,ak}

else

(Case 2)
C, « C, (ie,{i,x ¢ C, is determined)

end-if

end-construction.
In the above stage construction, C, is defined by the lexicographic order from
stage A: at each stage x € E*, global variables are altered and (i, x) is deter-
mined whether it is in C,; they are achieved by some deterministic algorithm
within exponential time. Finally define the desired set C to be U €

Then it is easy to show that C € EXP.

Let A be any S:-hard set for EXP. Then there exists a Sf-reduction

from C to A. Let N, achieves this reduction; and consider the stage construc-
1]

tion of C,. Then {a,, - -, a,} C A if (Case 1) is chosen during the stages.
]

Also note that X is the set of all strings appeared as elements of associated

81

sets in the previous stages. Thus, if (Case 1) occurs, all elements of
{al, s ak} are in A and at least one a; did not appear in the previous

stages.

Next consider how often (Case 1) occurs in the stage construction of C, .
0

Note that X C A (we can prove this fact by induction on stage x). Thus,
{a, -+, a,} €X for every stage x such that x is sufficiently long. Suppose
otherwise: that is, {al, R ak} C X at some stage x. Then (Case 2) is

chosen; thus, <i0, x) is not in C,, so nor in C. Hence, {al, R ak} NAS +
0

O since N, is a s:-reduction from C to A. Note that {al, -, ak} CcX
[

from the assumption; hence, X N A # & , which contradicts the fact that X C
A. Therefore if x is sufficiently long, (Case 2) never occurs at stage x: that
is, (Case 1) occurs at almost all stages. Define r (n) to be the number of
stages x, x| < n, such that (Case 1) is chosen. Then there exists some con-

stant ¢ > 0 such that r (n) = 27 for all n > 0.

It follows from the above discussions that at lcast 2" different @ € A
appears during the all stages x, x| = n. Here note that for every such a and
the corresponding stage x, we have la| = p(KiO,x>l), where p is a polynomial
time bound for N, . Hence, for some constant ¢’, we have that Ja? (ne)” =

0
27 for all n. This proves that A is of exponential density.

(2) Although we will define the set D in the way similar to the above,
the arguments are a little more complicated. For each i > 0, define D, as fol-
lows:

global var W; Y; Di;
stage x = \;
W « G, Y « &;
D, ~ &; (ie., \ ¢ D, is determined)
+
stage x € X ;

82

compute Nl.((z', x)) and let {a,, -+, a} be the associated set of N (i, x));
(if either the computation of N ({i, x)) needs more than 2" steps or N, (i, x)
is not a tt-condition, then go to the next stage)
if {a, L a N W= then
(Case 1)
D, - D,U{i,n} (e, x € D, is determined)
W « WU{al, “‘,ak}
else
(Case 2)
D, - D; (ie, (i, x) € D, is determined)

1

W - W—{al, ---,ak}; Y - YU{al, “',ak}
end-if

end-construction.

DefineD tobe U._ _D..
i>0 i

Let A be any Sg-hard set for EXP. Since D € EXP, there exists a Sg-

reduction, say N, from D to A. So, consider the stage construction of D, .
0 0

Then almost in the same way as (1), we can prove that if (Case 1) occurs,
then there exists some a, infa, ---, a } which did not appear in the previ-
ous stages (here we use the fact that W U Y is the set of all strings that

appeared before and that ¥ C Ac).

Then the next problem is how often (Case 1) occurs. Let n be suffi-
ciently large integer and fixed. Define r (n) (resp., r,(n)) to be the number

of stages x, x| = n, in the construction of D, such that (Case 1) (resp., (Case
0

2)) occurs. Also define w(x) and w’(x) to be the number of elements added
to W and removed from W at stage x respectively. According to the argu-
ment similar to (1), we can prove that W is not empty for almost all stages.
Thus, we have EleSn w(x) = EMS” w(x). So, r,(n) = EMS” w (x) =

2 <, W(x) = r (n)p(n), where p is a polynomial time bound for N, . Note

b= 0

83

that 7,(n) + r,(n), the number of the all stages x, [x| = n, is more than 2"
(since [£| = 2). Hence, we have r(n) = 2" /(1 + p(n)). Therefore there
exists some constant ¢ > 0 such that r(n) > 2 for some constant all n > 0.

The rest of the proof is the same as (1). O

Corollary 5.4. [BH77, BS84] All S:]-hard sets for EXP are bi-exponentially

dense. O

Next we consider another extension of Corollary 5.4: consider the density

p
of = -hard sets
Theorem 5.5. All S;t-hard sets for EXP are bi-exponentially dense.

Proof. We will define the set E in the same style as the above proofs: that is,
the set E is defined to be U.so E; and, for every i > 0, define the set E C

{i} X = by a variation of the stage construction method.

Here we use several notations. Let {Nl.}l.>0 denote an enumeration of
polynomial time bounded transducers. For a set A, recall C, denote the
characteristic function for A: i.e., for every x, C,(x) = true iff x € A. To
simplify our notations, we use 0 and 1 to denote false and true respectively.

A vector of length n is the ordered sequence of n elements. We use

, -~

1 c

. cu> to denote the vector of length u whose elements are Cps ", C .

A 0-1 vector is a vector whose elements are 0 or 1, and a characteristic vector
of {a -+ -a)is the 0-1 vector (¢, -+ +¢) such that ¢, = C,(a) for all i,

1=i = u. Then, for every i > 0, the set Ei is defined as follows.

oy B

(Sta, ... oyand Bla, + - - a) are defined for all # = 0 and all vector @ - a
1 ay

global var TOUCHED ; LOOKING; S<a E;
1

- ap

stage x = \;
TOUCHED « J; LOOKING « O
E « O (ie,\¢ E_ is determined)
stage x € E+;

84

0

(1) compute N ((, x)) and let {e;, -+, e} be the associated set of N (G, x));
(if either the computation of Nl.(<i ,) needs more than 2" steps or N, x)
is not a tt-condition, then go to the next stage)

(2) {al, I au} - {el, SR ek} N TOUCHED;
{b, ~--,b} « {e,, -+, e} N TOUCHED",
(we assume that a, < --+ <a by lexicographic order; and let o’ be a
Boolean function such thata'(a, - - -, a, b, b)) =ale, -, e,))
if @, -+ a) € LOOKING then

LOOKING ~ LOOKING U {(a, - - - a)}

S y « the set of all 0-1 vector of length u;

{ay: -+ a
B<“1"‘“u> -
end-if;
(3) B(al. . .au> “ B(al' . .au> U {bla Tt bv};

0 u
Sp = SN lle re)ial(ey, v, 0, 00, 0) = 1k

1 <a1"' u

if [, = |s,| then (Case 1)
S

4) § ‘-S<a1__.a>ﬂ{<cl~~'cu>:a’(cl, cee,c,0, -, 0)=0}

<al...au) b SO;
E < E (e, (i, x) ¢ E, is determined)
else (Case 2)

¢-S'

@ ray <50
E, « E U i, x (e, i, x ¢ E, is determined)
end-if;
(5) if (*) S<a1_ ey & (this includes the case that u = 0) then

TOUCHED « TOUCHED U B

<f11 v au>;
LOOKING - LOOKING - {(a, - - - a)}
end-if
end-construction.

p

bn-reduction from E to A since E € EXP; so, let Nl.0

Then there exists a <

ptt-reduction, the norm of the truth-

achieve this reduction. Since Ni is a =
0

table N, (x) is always bounded by some constant; let m denote this constant.
0 -

85

Consider the stage construction of El. - In the following, we will prove
0

that if the condition (*) of step (5) holds at some stage, then we can ensure

that some b € B, ... ,,belongs to A. Thus, we call the situation that the
1 u

condition (*) holds as an ensuring state and a stage where ensuring state
occurs as an ensuring stage. Moreover we will show that such a string b has
never been ensured in the previous stages: that is, at each ensuring stage, we

obtain a new element of A.

First we state the meaning of global variables. Let x be arbitrary any

stage and fixed, and let 7, S, and B be respectively the content of TOUCH,

S<a1_ Ca) and B<a1. e just before step (5) at stage x. Then we claim as fol-
lows.
Claim 1.

(1) No strings in T° have appeared in B y in the previous ensuring

"+ a
stage;

(2) BCT; and

(3) Either (i) some <cl SO cu> € § represents the characteristic vector of

(a

L au>, or (ii) there exists some b € B which is in A.

Proof. (1) and (2) are easily proved by induction; thus we omit their proofs.
(3) We also prove it by induction. Suppose that either (i) or (ii) holds at all

the stages before x. Thus, just before step (3), we have either (i’) some
{c

(ii’) there exists some b € B, ...,y whichis in A. Suppose that (Case 1) is
1 u

el € St ... o) Tepresents the characteristic vector of (@, - -a), or
1 u

chosen at step (4). Note that <i0, x) £ E, ; thus the characteristic vector of
0

--,c¢,0, '--,0>ofany<c1~~-cu>

(a “sa, b, c -, b)is not <c1, . .

b
in S, since a’(cl, "rr,c,0, -+, 0) = 1 for all <c1 “ e cu> in §,. There-

86

fore, either (i) the characteristic vector for (al < au> is {c

¢ - -

1

1~~~c>forsome
u

. cu> in S, (= §), or (ii) some bj € B belongs to A. The similar argu-

ment holds for (Case 2). This completes the proof. O

Then it follows from Claim 1 (3) that if the condition (*) holds at step
(5), i.e.,§ = &, thensome b € {b,, - --, b} (C B, ...,y = B) belongs to
’ 1 u
A. Also it follows from Claim 1 (1) and (2) that such a string b has never

been considered in the previous ensuring states.

Next consider how often an ensuring state occurs during the stage con-

struction of E, . Here notice that ensuring state occurs at least once since
0

TOUCHED is initially empty and # = 0 when TOUCHED = (. First investi-
gate how many times the same vector appears after one ensuring stage until

the next one. Then we have the following claim.

Claim 2. Let {a, - - - a) be any vector. Then (a - - -a) does not appear

more than z + 1 stages between two consecutive ensuring stages.

Proof. We investigate the number of elements in Sia .. gy lets denote

10

HS<a1 . a)”' Initially s is 2: if the vector (@, - - - a) appears for the first time

is the

-a)

1.- u

affer one ensuring stage (i.e., (@, - - - @) ¢ LOOKING), then S, | o)
1 u
set of all 0-1 vectors of length u. Note that every time when (a

appears, s decreases at least half of it at step (4). Thus, (@ - - - au> cannot

1

appear more than # + 1 times before the next ensuring stage. O

For every j > 0, let t be the number of elements in TOUCHED just after

the jth ensuring stage.
Claim 3. Forallj > 0, tj = j~m2.

Proof. Let j > 0 be any fixed integer, and consider the jth ensuring stage.

We show that [B, . = m* just before step (5) of this stage. Note that
1 u

87

B increases its elements at only the stage where {(a. - - - a) appears,

{a; -+ a) 1
and that it increases at most v < m — y elements at one stage. Also note that

B , becomes empty at step (2) when (a1 - au> appears for the first

<al Ay

time after j — 1th ensuring stage, and that (al cee au> appears at most u + 1

stages between j — 1th and jth ensuring stages (see Claim 2). Hence,
2

Bi, .= @+ D —) = .

Since TOUCHED increases its elements only at step (5) of an ensuring

stage, we have =t + ”B<a . >" Note that TOUCHED is set empty ini-
1 u

. 2

tially. Therefore 1, = Jm . O

Next investigate the number of stages between the consecutive two ensur-
ing stages. For any j > 0, let 7; be the number of stages between the j — 1th
ensuring stage and the jth one. Then r, = ¢, for some constant ¢, Note that
the same {a, - - - a) appears at most u + 1 times and that there are Ct;_y5 u)
different vectors of length u (we use C(p; n) to denote pth coefficient of
(1+ x)n). Also note that « is bounded by m. Thus, we have

r= 1~C(tj_l;0) + o+ (m+ 1)-C(tj_ ;
Hence, we claim as follows.

Claim 4. For all j > 1, 7= tj‘_l. m)
Now we can estimate the number of ensuring stages among all the stages

x, [x]| = n, during the construction of E . Let n be any integer and fixed.
0

And define X and J, to be respectively =" and the number of ensuring
stages among all the stages in X. Note that there are at least 2”+1 ~ 1 ele-
ments in X. Thus it follows from the méaning of r; that
n+1
(ro+1)+(r1+1)+---+(rj0+1+1)>2 - 1.
From Claim 3 and 4, we have

(ot D+ ()" + D+ -+ (G, + D))" + 1) = 2",

88

Thus,
¢y ¥ Jg (GG, + Hm)" = 2"

Note that m is a constant. Therefore, we have Jo = 2 for some constant
¢ > 0: that is, the number of ensuring stages x, |x| = n, is more than 2",
Recall that we obtain some new element b in A at each ensuring stage (see
Claim 1). Thus, according to the same arguments as the proof of Theorem
5.3, we conclude that A haé an exponential density. Notice here that the com-
plement of s;t-hard set is also S;t-hard. Thus, following the same proof,
we can also show that A° is of exponential density. Therefore A is of bi-

exponential density.
Remark. Corollary 5.4 is also the corollary of this theorem. O

Note that Theorem 5.3, 5.4 and 5.5 are optimal: the following proposi-

tion shows this fact.

Proposition 5.6. For every ¢, 0 < € < 1, there exists a si-hard set A for

EXP such that cens, (n) = o(2").

Proof. Let U be the standard Si-complete set in EXP defined in Chapter 2.
For every k > 0, consider the following set:

o

U, = {x0" :x € U}

Then the desired set A is'Uk for some k& > 0.

Other Complexity Classes

The results in this section also holds for any super-SUBEXP classes and
any super-PSPACE classes. Also consider any compleXity class C such that
C contains some super-SUBEXP or super-PSPACE complexity class , for

or =

p SP SP _p).
T? ¢’ d btt

which Sf-hard sets exist (where = f is respectively =
Then it is clear that we have the above Theorems since all Sf-hard sets for C

are also Sf-hard for C o Hence, we have the above results also for non-

89

deterministic time complexity classes such as NEXP.

Although we considered the density of "hard" sets, we can also discuss
similar topics even for complexity classes which have no "hard” sets. That is,
we can rewrite the above theorems to equivalent ones which do not use the

concept of "hard set". Here we introduce some new notations.

Let Sf be any polynomial time reducibility and d(n) be any integer
valued function. We consider the class of languages that are < f -reducible to
sets of O(d(n))-density, which is denoted as Sf-d (n) and defined as follows:

Sf'd(”) = { L : there exists A such that
() L=]A and (i) cens,(n) = O(d(n)) }.
Also we use Sf-poly to denote the class U {Sf-p (n) : p is a polynomial}, i.e.,

the class of languages which are < f-reducible to some sparse set.

Then we have the following statements that have the same meaning as the

above corresponding theorems.

Theorem 5.7. Let d(n) be any integer valued function such that d(n) =

o(2") foralle, 0 < e.

p-
T

that cens, (n) = w(loglog n) and A € EXPOLY;

(1) There exists a set in EXP which is not <_-reducible to any set A such
(2) There exists a set in EXP which is not in sg-d (n) (resp., Sg-d (n)).
(3) There exists a set in EXP which is not Sgtt-d (n). O

According to the same argument as above, it is clear that we have the
same results for all complexity class € which includes some super-SUBEXP
or super-PSPACE complexity class.

How about complexity classes which have polynomial time bounds: for
example, the classes NP, BPP, UP, etc. We have the following results for

these classes.

90

Theorem 5.8.

(1) [Ma82] If P # NP, then there exists a set in NP which is not sfa-
reducible to any sparse set in NP; and

(2) [Fo79] If P # NP, then there exists a set in co-NP which is not in an-

| .poly. w]

Theorem 5.9. [Ad78, Sc86a] BPP C S?-poly. o

Theorem 5.10. [Wa86b] If P # UP, then there exists a set in UP which is

not in Si -poly. O

5.2. Non-Existence of Polynomial Time Pseudo Algorithms

One of the applications of our observations in section 5.1 is to show

(non) existence of feasible pseudo algorithms.

Even a set which has no polynomial time deterministic algorithms may
have an another type of feasible algorithm. We consider the following poly-

nomial time pseudo algorithms:
Let A be any recursive subset of {0, 1} .

(1) [MP79] APT machine (almost polynomial time machine):

A deterministic machine M is APT machine for A if it satisfies

(i) M is polynomial time bounded, and for every x, M(x) always outputs

i "

“"accept”, "reject” or "?";
(i) {x : M(x) = "accept”} C A and {x : M(x) = "reject” } C A°; and
(iii) {x : M(x) = "?" } is a sparse set.
(2) [OS86] 1-APT machin;::
A deterministic machine M is 1;APT machine for A if it satisfies

(i) M is polynomial time bounded, and for every x, M(x) always outputs

"accept”, "reject” or "?";

91

(ii) {x :M(x) = "accept" } C A and{x : M (x) = "reject" } C A°; and
(iii) {x : M(x) = "?"} N A is a sparse set.

(3) [Ye83, Sc86b] p-close machine:
A polynomial time bounded deterministic machine M is p-close machine
for A if L(M) A A is sparse, where X A ¥ denotes the symmetric differ-
ence between X and Y.

(4) [KL80] polynomial size circuit:
A set of logical circuits {Cn}n>0 is a polynomial size circuit for A if it

satisfies

(i) for every n > 0, C, is a n-input and I-output Boolean circuit whose
size is polynomially bounded (see, e.g., [Sc86a] for a precise defini-

tion of a Boolean circuit and its size); and
(i) foralln > 0and every x € {0, 1} ,x €4 -~ C (x) = L.
(Note: (1-)APT machines are defined in slightly different ways in the original

definitions [MP79, OS86]. However the above gives the same definition pro-

vided we consider recursive sets.)

In the following we define the class of languages having the above

pseudo algorithms.

Definition 5.1.
(1) APT = {L : there exists an APT machine for L};
(2) 1-APT = {L : there exists a 1-APT machine for L}; and

(3) p-close-P = {L : there exists an p-close machine for L}.

Remark. Yesha [Ye83] originally defined the notion "closeness” in more
general way than the one in the definition of "p-close-P". In general, "close-
ness” is defined as follows: let C and d(n) be any complexity class and any

function respectively; for any set A, A is d(n)-close to C if there exists a set

92

B in C such that A A B has less than d(n)-density. Here we also use this gen-
eral concept and define the class d(n)-close-P to be the class of languages that

are O(d(n))-close to P. O

Karp and Lipton [KL80] introduced some type of non uniform complex-
ity classes. Among them, the class P/poly characterizes the sets having poly-

nomial size circuits.

Definition 5.2. The class P/poly is the class of languages A for which there
exists. a set B € P and a polynomial p such that

(Vr)@yhl=p@)[A ={xe=":&,y)€¢B}]
The following characterization is due to Pippenger.

Proposition 5.11. [Pi79] For any set A C {0, 1}*, A has a polynomial size cir-
cuit if and only if A is in P/poly.

Remark. Recall that our finite alphabet = is the set {0, 1} (Chapter 2): that
is, all sets considered here are subsets of {0, 1}*. Hence, we regard P/poly as

the class of languages having polynomial size circuits. O

It is easy to show the following relations between the properties of "hav-
ing polynomial time pseudo algorithms" and the polynomial time reducibili-

ties to sparse sets.

Proposition 5.12.

(1) APT ¢ 1-APT; and

(2) [MP79, 0S86] 1-APT C =’ -poly. O

Proposition 5.13. [Sc86b]. Let d(n) be any integer valued function such that
d(n) = 0(2”6) for some constant €, 0 < € < 1. Then Si-d(n) ¢ d(n)-
close-P ¢ sf_tt—d(n). Thus, we have that S;-poly G p-close-P ¢ sf_“-

poly. O

93

Theorem 5.14.

(1) [BKB86] For all integer valued function d(n), we have

p)4 P
Sl-tt'd(n) - Sz_tt—d(n) c - Stt-d(n) .
Especially we have
P . p P
= l-tt-pOIY g Sz_tt-p()ly (7;:' tee Stt-p()ly .

(2) [BK86] Sg-poly = sg-poly; and
(3) [Sc84] s?-poly = P/poly. O

Therefore we have the following relations.

APT ¢ 1-APT p-close-P P/poly
£ k 1
<P _pol <? _pol <P poly = =P.pol
=mnPOY =114POY (7‘: =uPOY =r1POYy

Figure 5.1. The comparison of several feasible pseudo algorithms.

From the results in section 5.1 and the above observations, we can show

non existence results of pseudo polynomial time algorithms.

Theorem 5.15. Let d(n) be any function such that d(n) = o(2n) for all e,

0 < €. Then no S:tt-hard sets for EXP are in d(n)-close-P. Thus no Sgtt-

hard sets have p-close machines, nor (1-)APT machines. O
Theorem 5.16.
(1) If P # NP then no Si-hard sets for NP (nor co-NP) are (1-)APT; and

(2) If P # UP then there exists a set in UP which is not Si-reducible to any

(1-)APT set. O

94

6. Polynomial Lowness and EXP Lowness

How does one measure the complexity of a given set? We have con-
sidered (i) computational complexity for accepting it; (ii) similarity to some
well-known difficult set such as SAT; and (iii) reducibility to a set of small
density. In this chapter, we consider another method: the method of estimat-

- ing how useful a given set is when it is used in some computations.

The concept "usefulness” seems to offer new measure of the amount of
information in a set. For example, consider P()-computation (recall that
P()-computation is polynomial time deterministic oracle computation; and
P(X) denotes the class of languages accepted by some P()-computation using
oracle X). If P(A) = P but P(B) = EXP, then B is more useful in P()-

computation than A; thus B is considered to encode more information than A.

Among many ways in using a set in a computation, we consider a specific
one: we investigate usefulness of a set as an oracle. That is, we consider how
helpful a given set is in € ()-computation for some complexity class €. The
concept "lowness/highness” states this type of usefulness. Sch®ning [Sc83]
first introduced "lowness/highness” into the context of NP-computation: they
are called polynomial lowness and polynomial highness. Schbning and his co-
authors have extensively studied these notions [BBS86, KS85, Sc86a, Sc87];
and it seems that the notions of polynomial lowness/highness yield some
hierarchies showing the degree of intractability in NP. Although we have
some evidence for our intuition in recursive function theory, we can not
prove it so far. We consider a similar problem in the context of EXP-
computation. Through this investigation, we obtain additional evidence for

our intuition.

We first introduce the concepts of polynomial lowness and highness, and

review the previous researches and conjectures.

95

The polynomial lowness and highness are defined in terms of polynomial

time hierarchy, which is defined as follows.
Definition 6.1. [St77]

(1) For every integer &k = 0, we define 22 as follows:

P P P
2, =Pand 2 = NP(Z).

0 k+1
That is, =, = NP(NP(- - - NP(P) - - -)).
k

(2) The polynomial time hierarchy is the structure {EII:}kZO. Let PH denote
the class U{EII: 1 k = 0}.

(3) For any set A, we define the polynomial time hierarchy relative to A,

{E:(A)}k?_o, in the same way as we do the relativized class P(A) from P.

Remark. Here we use alternating Turing machine computation model in
order to define, e.g., E:(A) in the same way as P(A): E:-computation is one
type of alternating computation. Precisely speaking, the usual definition of
the relativized polynomial time hierarchy is slightly different from ours [St77,

Wr77]. However we can easily show that they give the same definition.

It is easy. to show that the class {2:} forms a hierarchy: that is, E,l:)

k=0
Ef for all £ > j = 0. Furthermore, we conjecture that they consist a real

hierarchy (i.e., the non-collapse conjecture on the polynomial time hierarchy):
. p P .
Conjecture 6.1. EO ;El e (;PH. O

The concepts of polynomial lowness and polynomial highness are defined
as follows.
Definition 6.2. [Sc83]
- . P e oP _ P
(1) For any set A in NP and every k = 0, A is 2, -low if £ = %, (4), and A

B e
isZ -highif2 =2 (A).

96

(2) For every k=0, LII: (resp., H]I:) is the class of Ei-low sets (resp., E:-
high sets). The polynomial low hierarchy (resp., polynomial high hierar-

chy) refers the structure {L]I:}k20 (resp., {Hll:}kzo)'

The above notions of lowness (resp., highness) are called in general polyno-
mial lowness (resp., polynomial highness). It is easy to see in the definition
that the lowness/highness degrees somehow state the amount of information
in a given set: i.e., they measure the usefulness of a set as an oracle in some
alternating polynomial time computation. So, we discuss the amount of infor-

mation in a set in terms of lowness/highness.

p

Consider any sets A and B in L: and in L, ‘1

respectively. Then it fol-
lows from the definition that any oracle information of A (used in 2:()-
computation) is Ei-computable whereas that of B (used in EE 10
computation) may not. Thus, it seems that some sets in L}I: 4, contains more

oracle information than any set in L:: that is, LII: +1 18 more difficult than Lf:.

Hence, it is natural to conjecture that the class {L}:}kao (resp., {HII:}) forms

k=0
a hierarchy of difficulty in NP.

Let us consider this conjecture a little more and look at the structure of
NP from this point of view. First, it is not difficult to show that the class

{L}:}DO (resp., {H]I:}k>0) forms a hierarchy: i.ce., L]I: D Lf forallk > j = 0.
Proposition 6.1. [Sc83]
p p
(1) P=L,CL C ---; and
P . . p L
(2) {ST-complete sets in NP} = H, C H C . O

Thus, the class {L}:}k20 and {'Hﬁ}kzo respectively form hierarchies between P

and the class of Si-complete sets. Also assuming that the polynomial time
hierarchy does not collapse, we can prove that these two hierarchies are dis-

joint.

97

Proposition 6.2. [Sc83] For every k = 0, Lll: N H}: # & if and only if the

polynomial time hierarchy collapses to 2}:, i.e., Ef: = 25 .= "+ =PH. O

Thus, we conjecture the following structure in NP.

the class of

NP.
=ZR-complete sets { \ H,
[N\ _Hy
\ I
X 7
Lo

Figure 6.1. The high/low hierarchy in NP.

Namely, the polynomial time low and high hierarchies seem to offer another

measure for analyzing complexity below =

,f,-complete sets, for which we have

not investigated yet.

Here we should mention that most of our intuitions about the polynomial
low and ‘high hierarchies have not been proved yet. Especially, we do not
know whether the polynomial low and high hierarchies are real hierarchies:
i.e., they do not collapse. It is clear that if the polynomial time hierarchy col-
lapses to EII: then the polynomial low (resp., high) hierarchy also collapse to
L,I: (resp., H]I:) what follows is its brief proof. Assume that Ef: = 2: +q and

consider any set L in LP (we will show that L is in Li). Then it follows

k+1

.o P . P P
from the definition of L, , that all sets in 2 (L) are %, -computable,
where Ez = 2: from the assumption; thus, they are also Ef:-computable.

then LE = L (and the same argument holds for the

e P _ <P
Hence, if Ek =2 1

k+1

98

high hierarchy). Note that we cannot prove the converse so far; so, we do
not know whether the non-collapse conjecture on the polynomial time hierar-
chy implies the non-collapsing low/high hierarchies.

In the following, we consider the first step of such non-collapsing conjec-
ture: that is, investigate whether Lg G Lf. Then we have the following

results.

Theorem 6.3.

(1) [Sc83] L; = NP N co-NP; thus L] # L if and only if P # NP N co-NP;
and

(2) [KS85] If EXP # NEXP, then Lg # Lf O

Here we extend polynomial lowness and highness to the exponential case
and consider low and high hierarchies in EXP. There are several ways to
extend polynomial lowness (highness) to the exponential case. The "exponen-
tial lowness” considered in [BORWS86] is one such approach. Although
“exponential lowness" gives another characterization of the polynomial low
hierarchy, it is not a counterpart of the polynomial low hierarchy in EXP.
Thus, we take another approach: we replace NP by EXP and define low and

high hierarchies in a similar way.

In order to define low and high hierarchies, we need to introduce a
hierarchy like the polynomial time hierarchy. Note that EXP ¢ EXP(EXP) o
-+ ; so, this property of EXP yields us the real hierarchy (Cf. the exponen-
tial time hierarchy [He84, BORWS86]). We defined the EXP hierarchy as fol-
lows:

Definition 6.3.

(1) For every k = 0, we define E, as follows:

E,=P and E,_ , = EXP(E,).

99

That is, E, = EXP(EXP(- - - EXP(P) - - -)).
k

(2) The EXP hierarchy is the structure {E} .o

Then "lowness/highness” in EXP is defined as follows:

Definition 6.4.

(1) For any set A in EXP and every k = 0, A is E,-low if E, = E,(A), and A
is E,-high if E, | = E, (A).

(2) For every k = 0, L: (resp., HZ) is the class of E, -low sets (resp., E, -high
sets). The EXP low hierarchy (resp., EXP high hierarchy) refers the
structure {Lz}k?_ 0 (resp., {Hi}kzo)'

We call these lowness (resp., highness) notions as EXP lowness (resp., EXP

highness) in general.

Now we investigate the same problems in the context of EXP-
computation. Then we have the following facts which correspond Proposition

6.1 and 6.2.

Proposition 6.4.

1) P=L CLC---;

(2) {si-complete sets in EXP} = H; - H: C ---; and

(3) for every k = 0, L: N H; = (J (note that it is provable that the EXP-
hierarchy does not collapse: Cf. Proposition 6.2). O

Now consider the problem of whether the low hierarchy does not collapse
in EXP. In particular, we focus on the problem of whether Lg ;LT Then
we have the following separation result, which gives some evidence for our

intuition concerning the structure of the polynomial low hierarchy.

e e
Theorem 6.5. L0 C7;L1.

100

Recall that Lg = P and that L: is the class of sets X in EXP such that
EXP(X) = EXP (In the following a set X such that EXP(X) = EXP is called

EXP-low). Thus the goal of our proof is to construct a set A such that A is
EXP-low and is in EXP — P.

We define the set A as a set of complex (noncompressible) strings: that
is, we consider a set of high Kolmogorov complexity strings (the reader may

wish to review Chapter 2 for notation on Kolmogorov complexity). Let € >

0 be arbitrarily fixed, and consider the set K[n/2, e

(1+e)n

]. For brevity, we let
K denote K[n/2, 2] and K denote the complement of K. A simple count-
ing argument is enough to show that for every n > 0, there exists at least one
string in K of length n; there are not enough strings in E* of length n/2 to

map onto all the strings of length »n.

Intuitively, Kisa good candidate for a EXP-low set in EXP — P. What
follows is an intuitive explanation of our idea. Consider an exponential time
oracle computation which uses K as an oracle. Note that K ¢ EXP. Thus, if
the lengths of queries made by an oracle machine M are small, e.g., linearly
bounded with respect to the length of input, then it can be simulated deter-
ministically by an exponential time machine that makes no oracle queries. On
the other hand, if M makes a long query with respect to the length of the
input, then this query vmay be computable from a short description in
exponential time and may be in K (i.e., not in E). Thus, the answer to this
query may be "no" (i.e., we do not need the oracle here). The next lemma

establishes this type of property for the set K.

Lemma 6.6. Let {Ni}l.> obea standard enumeration of deterministic transduc-
ers and let /i denote the function computed by N.. Consider any exponential
time transducer N,. Then there exists a d, such that for almost all x, [f,(x)] >

d-jx| implies that £ (x) € K.

101

Proof. Let ¢ be a constant such that Nl. runs in time 2°". Let d > 1 be arbi-

trary. For any x such that [fl(x)l > dlx|, we have fix) € K [n/d, Zc(n/d)].

From Proposition 2.2° we see that K|[n/d, ZC(n/d)] C K[n/d+d',
¢’ (n/d)-ZC(n/d)], where d' and ¢’ are constants determined by N,.
c(n/d) n

Choose a constant 4, such that n/d, + d’ =< n/2 and ¢’ (n/d)-2 <2

for almost all n. Then we have, for almost all n,
K[n/d+d', ¢' (n/d)2°" "] c K[n2,2"] c K[n2, 28797

Therefore, for almost all x such that |f(x)] > d:-k|, we have f,(x) ¢
K2, 289", o

However, we cannot prove the EXP-lowness of X in this way. The
machine M may use some information obtained by answers to the previous
stages. So the query may not result from a short description in exponential
time even if it is long. But if the oracle is very sparse, we can compress the

information about previous queries.

Thus define the desired set A to be any infinite subset of K in EXP with
the property that for each n > 0, A contains at most one element of length

between n and 2. For example, we can define A by

A = { x : x is the smallest element (in lexicographic order)
2

of K of length 2° b , for some m > 0 }.
Then it is easy to show that this choice for A is in EXP. Moreover the fol-

lowing lemmas show that A is not in P.

Lemma 6.7. Let ¢t be any time-constructible function. Let L be any infinite
set accepted by a deterministic machine that runs in time ¢#. Then there exists

a deterministic transducer N, such that L N K, [[log =], 2"-¢(n)] is infinite.
0 0

Proof. Let M be any deterministic machine that runs in time ¢ and recognizes

L. Then consider a transducer N, which computes the function f, defined as
0 0

102

[the smallest (in lexicographic order) y € L such that |y| = »n

if such a y exists,

7, (bin(a)) = {

| 0 if no such y exists,

where bin(n) denotes the binary representation of n on s
It is easy to implement Nl.0 so that it runs in time 2n't(n). Thus, we have
range(fio) = Kl.o[[log ni, 2n~t(n)] C L. Since L is infinite, it is clear that
range(fio) is infinite. O
Lemma 6.8. If L is any infinite subset of K , then L is not in P. Hence, the
set A defined above is not in P.

Proof. Assume to the contrary that there is an infinite L € P so that L C K.
By Lemma 6.7, for some polynomial p there exists a deterministic transducer

Nl.0 such that L N Kfo[[log nRCEIL, 2" -p (n)] is infinite. But from Proposition
2.2 we have

Kio[[log n],2"p (n)] € Kllog n+d, (cn2n-p (n)logp(n))+c] C K
for almost all n. Therefore, KNK# &, a contradiction. O

Now we show that A is EXP-low.
Lemma 6.9. If L is in EXP(A), then L is in EXP. Hence, EXP(4) = EXP.

Proof. Let M be a deterministic exponential time oracle machine that
witnesses L € EXP(A), that is, L = L(M, A). We must prove that L is in
' EXP.

Claim. There exists a constant d > 0 such that for almost all x, if y is a
query made by M during its computation on x, then ly| > dfx| implies y is not
inA.

Proof. Let the running time of M be 2", Suppose that in M’s computation on

x relative to A, the oracle is queried about string y. Let n = [x| and let

103

g, g (m= 2™) be the strings previously queried during this computa-
tion. We first show that with input x and some additional information, all of
which requires less than n + 2(2r + 2c¢n) bits to encode, this computation

can be simulated up to this point without making any oracle calls.

Let {al, I ak} be the set of strings in A of length at most n. Notice
that by the definition of A, |a,| + --- + |a,| = 2n. Hence, by using 2n bits
of additional information, we can simulate an oracle call to A if the length of

the string is at most n.

Note that |qil <2%foralli,1=i=<m. Furthermore, there is at most
one element in A with length greater than n but no greater than 2", Since 27
< 22" for almost all n, there exist at most two different q; is in A and have
lengths that are greater than n. Thus, if some g, is in A but Iqjl, then we can
indicate that fact by knowing its index j which costs at most cn bits of addi-
tional information for each q;- This means that we can simulaté the oracle

calls to A even if the length of the string is greater than n, just so long as we

have 2c¢n bits of additional information.

We can conclude that it is possible to simulate M’s computation on x rela-
tive to A by making no oracle calls if we have enough additional information:
at most (2n + 2c¢n) bits of such information are required. This information
can be added to the input string x by duplicating each bit; hence, at most n +
2(2n + 2¢n) bits are needed. Therefore, one can construct a deterministic

exponential time transducer N, which produces each query y from some z
0

where z has less than (5 + 4c)n bits. Now it follows from Lemma 6.6 that

there exists d, such that for almost all y, by| > d, -lz] implies y € K so thaty is
0

0

not in A. Letting d be d, (5 + 4c), we have ly| > dix| = dio(S + 4¢)-| = dl.o-[z[
0

implies y is not in A, for almost all y. This concludes the proof of the Claim.

104

(Note: The technique used in this proof is similar to one used by Goldberg

and Sipser [GS85].) O

To continue with the proof of the lemma, let M, be a deterministic
exponential time acceptor which recognizes A. Then there is a deterministic
exponential time acceptor M, which recognizes L without making any oracle

queries that operates as follows:

begin
input x;
simulate M on x where
if M queries the oracle about a string y and |y| > d-jx| then
answer "NO" to the query; _
if M queries the oracle about a string y and |y| < d-[x| then
begin
simulate M, on y to determine whethery € A;
if y € A then answer "YES" else "NO"
end

end.
It is clear that M, recognizes L and operates in exponential time. Thus, L is

in EXP. O

Then our goal, i.e., the proof of Theorem 6.5, is obtained from Lemma

6.8 and 6.9.

105

7. Concluding Remarks

We have studied the meaning of several structural properties. For each
basic structural properties, we have investigated how it expresses the diffi-
culty of a problem (or a class of problems) which is known to be intractable.
In this process, we gained a fair amount of insight into the nature of these
properties. In this concluding section, we discuss the remaining open prob-
lems in our approach. Also we propose two new structural properties which
seem to open up new research area in structural complexity theory.

* * *

Through our investigation of structural properties on provably intractable
complexity classes (mainly on EXP), we could make their meaning more clear
and obtain many witnesses to our intuition concerning these properties. Since
the original motivation of introducing these structural properties is to show
how (and why) difficult the class NP is, the results of our study are expected
to use for this original purpose. We should nbtice, however, that the class
EXP certainly differs from NP though EXP and NP seem to contain almost
the same sets (i.e., NP # EXP is provable!). Hence, our results on EXP may
not hold on NP, or at least the different proofs are necessary. Then, what is
to be considered in order to prove similar results on NP? Here we consider

this problem a little more.

The differences between NP and EXP are the following two points: (i)
NP is a nondeterministic complexity class while EXP is a deterministic one -
and (ii) the time bound for NP is polynomial while that for EXP is super-
polynomial. These are essential differences to apply our results to NP since
in our proofs for EXP, we often used the "deterministic" or "super-
polynomial” features of EXP. Regarding the difference (i), we sometimes

investigated nondeterministic complexity classes such as NEXP and obtained

106

results similar to the ones for EXP. In general, however, the proof for non-
deterministic complexity classes is technically much more difficult than that
for deterministic ones. This is because a diagonalization which can be used
on nondeterministic classes (i.e., "translational diagonalization” [SFM78]) is
weaker than an ordinary one. Thus, we can obtain only partial answers in
many cases. The difference (ii) is more serious. Almost all of our proofs
shown in this dissertation use the "super-polynomial” feature. And for the
theorem whose proof essentially needs the super-polynomialness, we have, so
far, no ways to prove it on NP. We need a new proof technique to solve this

type of problems.

In this dissertation, we studied basic structural properties. There are
several other properties which express important concepts. Among them we
review two new structural properties which may open up new research area in

computational complexity theory.

The first is the randomness of successful guessing sequences in nondeter-
ministic computation. We conjecture that P # NP. One intuitive reasoning is
as follows: consider some s;-completc set, say SAT, and any nondeterminis-
tic acceptor M for SAT; then SAT ¢ P because and only because right guess-
ing sequences of M on each input are so random that we need to search
exhaustively to find an accepting path. That is, the "randomness” of accept-
ing paths characterizes the difficulty of NP-computation. In order to estimate
"randomness”, we can use the concept of generalized Kolmogorov complexity
[Ha83, Ko86]. This type of investigation is interesting in the sense that it
directly indicates the advantage of nondeterministic computation to deter-
ministic one. In other words, we cannot discuss this property on any deter-

ministic complexity classes however intractable they are.

107

The next structural property concerns the difficulty of an instance.
Schoning and Orponen [Or86] introduced a new framework, instance com-
plexity, in order to measure the difficulty of a particular instance with respect
to a given decision problem. In computational complexity theory the diffi-
culty of an instance is usually ignored since for any instance and any pro-
gram, obvious modification of the program yields a program which runs fast
on this particular instance. Namely, we cannot measure the difficulty of a
given instance in a usual way. Instance complexity considers the size of a
program addition to its running time. Intuitively, an instance x is considered
to be hard for a problem A if the size of every program that solves A and
runs "fast” on x is more than that of x itself (which means that every such
program needs to look up (a description of) x in a table in order to run "fast"
on x). In the recent study [KOSW86] we show that all problems not in P

have infinitely many polynomially hard instances.

108

References

[Ad78] L. Adleman, Two theorems on random polynomial-time, in "Proc.
19th Ann. Symposium on Foundations of Computer Science”,
Institute of Electrical and Electronics Engineers, New York (1978)
75-83.

[A184] E. Allender, personal communication (1984).

[AI85] Eric Allender, "Invertible Functions”, Ph.D. Dissertation, Georgia

Institute of Technology (1985).

[BBS86] J. Balcazar, R. Book and U. Schdning, Sparse sets, lowness and
highness, SIAM J. Computing 15 (1986) 739-747.

[BC86] J. Balcizar and J. Cabbarb, Some comments about notations of

orders of magnitude, Bulletin of the EATCS 30 (1986) 34-42.

[BS85] J. Balcdzar and U. Schbning, Bi-immune sets for complexity
classes, Math. Systems Theory 18 (1985) 1-10.

[Be76] L. Berman, On the structure of complete sets, in "Proc. 17th Ann.
Symposium on Foundations of Computer Science”, Institute of

Electrical and Electronics Engineers, New York (1976) 76-80.

[Be77] L. Bermén, "Polynomial Reducibilities and Complete Sets”, Ph.D.
Dissertation, Cornell University (1977).

[BH77] L. Berman and J. Hartmanis, On isomorphisms and density of NP
and other complete sets, SIAM J. Computing 1 (1977) 305-322.

[BK86]‘ R. Book and K. Ko, On sets reducible to sparse sets, manuscript
(1986)

[BORWS86]R. Book, D. Russo, P. Orponen and O. Watanabe, On exponen-
tial lowness, in "Proc. 13th International Colloquium on Automata,

Languages and Programming"”, Lecture Notes in Computer Science

109

[Co71]

[Fo79]

[GIT9]

[GS84]

[Ha78]

[Ha83]

[HLYS86]

[He84]

226, Springer-Verlag, Berlin (1986) 40-49.
S. Cook, The complexity of theorem-proving procedures, in "Proc.

3rd Ann. ACM Symp. on Theory of Computing”, Association for
Computing Machinery, New York (1971) 151-158.

S. Fortune, A note on sparse complete sets, SIAM J. on Comput-
ing 8 (1979) 431-433.
M. Garey and D. Johnson, "Computers and Intractability, A Guide

to the Theory of NP-Completeness”, Freeman, San Francisco

(1979).

J. Grollmann and A. Selman, Complexity measures for public-key
cryptosystems, in "Proc. 25th Ann. Symposium on Foundations of
Computer Science”, Institute of Electrical and Electronics

Engineers, New York (1984) 495-503.

J. Hartmanis, "Feasible Computations and Provable Complexity

Properties”, SIAM, Philadelphia (1978).

J. Hartmanis, Generalized Kolmogorov complexity and the struc-
ture of feasible computations, in "Proc. 24th Ann. Symposium on
Foundations of Computer Science", Institute of Electrical and Elec-

tronics Engineers, New York (1984) 439-445.

J. Hartmanis, M. Li and Y. Yesha, Containment, separation, com-
plete sets, and immunity of complexity classes, in "Proc. 13th
International Colloquium on Automata, Languages and Program-
ming", Lecture Notes in Computer Science 226, Springer-Verlag,

Berlin (1986) 136-145.

H. Heller, On relativized polynomial and exponential computa-

tions, SIAM J. Computing 13 (1984) 717-725.

110

[HU79]

[1Y86]

[Ka72]

[KL80]

[Ko85]

[Ko86]

[Kob84]

[KLDS5]

[KM81]

J. Hopcroft and J. Ullman, "Introduction to Automata Theory,

Language, and Computation”, Addison-Wesley, Reading (1979).

D. Joseph and P. Young, Some remarks on witness functions for
nonpolynomial and noncomplete sets in NP, Theoretical Computer

Science 39 (1985) 225-237.

R. Karp, Reducibility among combinatorial problems, in R. Miller
and J. Thatcher (eds.), "Complexity of Computer Computations",
Plenum Press, New York (1972) 85-103.

R. Karp and R. Lipton, Some connections between non-uniform
and uniform complexity classes, in "Proc. 12th Ann. ACM Symp.
on Theory of Computing”, Association for Computing Machinery,

New York (1980) 302-309.

K. Ko, On some natural complete operators, Theoretical Computer

Science 37 (1985) 1-30.

K. Ko, On the notion of infinite pseudorandom sequence, to

appear in Theoretical Computer Science.

K. Kobayashi, "Keisan Kanousei Nyuumon" (in Japanese),
Kindai-Kagaku-Sha, Tokyo (1984).

K. Ko, T. Long and D. Du, A note on one-way functions and
polynomial time isomorphisms, in "Proc. 18th Ann. ACM Symp.

on Theory of Computing”, Association for Compﬁting Machinery,

New York (1986) 295-303.

K. Ko and D. Moore, Completeness, approximation and density,

SIAM J. Computing 10 (1981) 787-796.

[KOSW86]K. Ko, P. Orponen, U. Schdning and O. Watanabe, What is a

hard instance of a computational problem?, in "Proc. 1st Structure

111

[KS85]

in Complexity Theory Conference”, Lecture Notes in Computer

Science 223, Springer-Verlag, Berlin (1986) 197-217.

K. Ko and U. Schbning, On circuit-size complexity and the low

hierarchy in NP, SIAM J. Computing 14 (1985) 41-51.

[KSOWS6]K. Ko, U. Schbning, P. Orponen and O. Watanabe, What is a

[KT83]

[KMRS6]

[La75]

[LLS76]

[Lo82]

[Ma81]

[Ma82]

hard instance of a computational problem?, in "Proc. 1st Structure
in Complexity Theory Conference”, Lecture Notes in Computer

Science 223, Springer-Verlag, Berlin (1986) 197-217.

K. Kobayashi and M. Takahashi, "Ohtomaton no Riron" (in
Japanese), Kyoritsu-Shuppan, Tokyo (1983).

S. Kurtz, S. Mahaney and J. Royer, Collapsing degrees, in "Proc.
26th Ann. Symposium on Foundations of Computer Science",

Institute of Electrical and Electronics Engineers, New York (1986)
380-389.

R. Ladner, On the structure of polynomial time reducibility, J.

Association for Computing Machinery 22 (1975) 155-171.

R. Ladner, N. Lynch and A. Selman, A comparison of polynomial

time reducibilities, Theoretical Computer Science 1 (1975) 103-123.

T. Long, Strong nondeterministic polynomial-time reducibilities,

Theoretical Computer Science 21 (1982) 1-25.

S. Mahaney, On the number of p-isomorphism classes of NP-
complete sets, in "Proc. 22nd Ann. Symposium on Foundations of
Computer Science”, Institute of Electrical and Electronics

Engineers, New York (1981) 130-143.

S. Mahaney, Sparse complete sets for NP: solution of a conjecture

of Berman and Hartmanis, J. Computer and System Sciences 25

112

[Ma86]

[MP79]

[Or86]

[0S86]

[Pi79]

[Ro67]
[Sc83]
[Sc84]
[Sc86a]
[Sc86b]

[Sc87]

(1982) 130-143.
S. Mahaney, Sparse and reducibility, in R. Book ed., "Studies in ‘
Complexity Theory", Pitman, London (1986) 63-118.

A.R. Meyer and M.S. Paterson, With what frequency are
apparently intractable problems difficult?, Technical Report, Mas-
sachusetts Institute of Technology, Cambridge TM-126 (1979).

P. Orponen, "The Structure of Polynomial Complexity Cores",

Ph.D. Dissertation, University of Helsinki (1986).

P. Orponen and U. Schbning, The density of polynomial complex-

ity cores for intractable sets, Information and Control 70 (1986)

54-68.

N. Pippenger, On simultaneous resource bounds, in "Proc. 19th
Ann. Symposium on Foundations of Computer Science", Institute

of Electrical and Electronics Engineers, New York (1979) 307-311.

H. Rogers, Jr., "Theory of Recursive Functions and Effective

Computability”, McGraw-Hill, New York (1967).

U. Schéning, A low and high hierarchy within NP, J. Computer
and System Sciences 27 (1983) 14-28.

U. Sch8ning, On small generators, Theoretical Computer Science

34 (1984) 337-341.

U. Schbning, "Complexity and Structure”, Lecture Notes in Com-

puter Science 211, Springer-Verlag, Berlin (1985).

U. Schdning, Complete sets and closeness to complexity classes,

Math. Systems Theory 19 (1986) 29-41.

U. Schbning, Graph isomorphism in the low hierarchy, in "Proc.

4th Symp. on Theoretical Aspects of Computer Science", Lecture

113

[SFM78]

[Se82]

[Se83]

[St77]

[Va76]

[WaB5a]

[Wa85b]

[WaB6a]

[Wa86b]

[Wa86c]

Notes in Computer Science, Springer-Verlag, Berlin (1987) to

appear.

J. Seiferas, M. Fisher and A. Meyer, Separating nondeterministic

time complexity classes, J. Association of Computing Machinery

25 (1978) 146-167.

A. Selman, Reductions on NP and p-selective sets, Theoretical

Computer Science 19 (1982) 287-304.

A. Selman, More than you ever wanted to know about polynomial
time reducibilities, in "Proc. Conference on Computational Com-

plexity Theory at Univ. of California, Santa Barbara (1983)".

L. Stockmeyer, The polynomial time hierarchy, Theoretical Com-
puter Science 3 (1977) 1-22.

L. Valiant, Relative complexity of checking and evaluating, Infor-

mation Processing Letters 5 (1) (1976) 20-23.

O. Watanabe, On one-one polynomial time equivalence relations,

Theoretical Computer Science 38 (1985) 157-165.

0. Watanabe,/ Some properties of polynomial time truth-table com-
plete sets, Research Report of Dept. of Information Sciences,

Tokyo Institute of Technology, Tokyo C-66 (1985).

O. Watanabe, A comparison of polynomial time completeness

notions, Theoretical Computer Science, to appear.

O. Watanabe, On hard one-way functions, Research Report of
Dept. of Information Sciences, Tokyo Institute of Technology,

Tokyo C-70 (1985); revised in 1986.

O. Watanabe, Some observations of k-creative sets, Research

Report of Dept. of Information Sciences, Tokyo Institute of

114

[Wr77]

[Ya82]

[Ye83]

Technology, Tokyo C-79 (1986);
C. Wrathall, Complete sets and the polynomial-time hierarchy,

Theoretical Computer Science (1976) 23-33.

A. Yao, Theory and applications of trapdoor functions, in "Proc.
23rd Ann. Symposium on Foundations of Computer Science",
Institute of Electrical and Electronics Engineers, New York (1982)
80-91.

Y. Yesha, On- certain polynomial-time truth-table reductions to

sparse sets, SIAM J. Computing 12 (1983) 580-587.

115

