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In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives
based on nonlinear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve
natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG)
of a biped robot, an approach we have previously proposed for learning and encoding complex human movements.
Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the fre-
quency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithm based on
phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation
on a physical robot demonstrate the effectiveness of the proposed locomotion controller.

1. Introduction

There has been a growing interest in biped
locomotion with the recent development of ad-
vanced humanoid robots. Many of existing suc-
cessful walking algorithms use the zero moment
point (ZMP) criterion [1] for off-line motion plan-
ning [2,3] and on-line balance compensation [4–6].
These ZMP based methods have been shown to
be effective to achieve biped locomotion in legged
robots with flat feet. However, they require pre-
cise modelling of the robot dynamics and high-
gain trajectory tracking control, and the gen-
erated patterns result in a typical “bent-knee”
posture to avoid singularities of inverse kinemat-
ics. From the viewpoint of energy efficiency, such
walking patterns are not desirable since torque
must be continuously applied to the knee joint
to maintain a bent-knee posture. These previ-
ous ZMP approaches have primarily focused on
the ability of executing planned movements at
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any instance by ensuring surface contact between
the sole and the ground [7] rather than natural
human-like motion which exploits passive dynam-
ics of the body [8].

In contrast to off-line trajectory planning,
biologically-inspired control approaches based on
central pattern generators (CPGs) with neural os-
cillators have been drawing much attention for
rhythmic motion generation. As a CPG, a neu-
ral oscillator proposed by Matsuoka [9] is widely
used, which models the firing rate of two mutu-
ally inhibiting neurons described in a set of dif-
ferential equations. This model is used in robotic
applications to achieve designated tasks involving
rhythmic motion which requires interactions be-
tween the system and the environment. Examples
include biped locomotion [10–13], quadruped lo-
comotion [14], juggling [15], drumming [16], and
playing with a slinky toy [17]. Neural oscillators
have desirable properties such as adaptation to
the environment through entrainment. However,
it is difficult to design interconnection and feed-



2

back pathways of neural oscillators, and to man-
ually tune all open parameters in order to achieve
the desired behavior.

Other approaches include [18] in an effort to
design a simple controller based on physical in-
tuition. The control strategy proposed in [18] is
quite simple and easy to implement. However, it
requires manual tuning of the control parameters
and accurate torque controlled actuators.

In this paper, we suggest an approach to learn-
ing biped locomotion from demonstration and its
adaptation through coupling between the pattern
generator and the mechanical system. Motivated
by human’s capability of learning and imitating
demonstrated movements of a teacher, imitation
learning has been explored as an efficient method
for motor learning in robots to accomplish desired
movements [19–21]. In our previous work, we pro-
posed dynamical movement primitives to encode
complex discrete and rhythmic multi-joint move-
ments through imitation learning [22]. Dynami-
cal movement primitives are formulated as a set of
autonomous nonlinear differential equations with
well-defined attractor dynamics. Demonstrated
trajectories are learned using locally weighted re-
gression, and the output of dynamical movement
primitives serves as kinematic movement plans,
e.g., desired trajectories, for a robot.

This paper presents the idea of using the rhyth-
mic movement primitives based on phase oscil-
lators [22] as a CPG to learn biped locomotion
from demonstration. Compared with neural os-
cillators, one of the appealing properties of phase
oscillators is that the desired phase relationship
among oscillators can be specified in a straightfor-
ward manner. In [23], a comprehensive formula-
tion of phase coordination of coupled phase oscil-
lators is proposed. Applications of coupled phase
oscillators have been explored in the gait control
of multi-legged robots [24,25] and the control of
a biped robot [26]. In addition to using phase os-
cillators, our movement primitive has various de-
sirable properties which are beneficial for biped
locomotion. For example, it can learn a demon-
strated trajectory rapidly, and it is easy to re-
scale the learned rhythmic movement in terms
of amplitude, frequency and offset of the pat-
terns [22]. In the application of rhythmic move-
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Figure 1. Proposed control architecture for biped
locomotion with dynamical movement primitives.

ment primitives to biped locomotion, we intro-
duce coupling terms to the movement primitives
to achieve the desired phase relationship among
limbs following the formulation proposed in [23].
We also propose an adaptation algorithm for the
frequency of walking based on phase resetting [27]
and entrainment between the phase oscillator and
mechanical system using feedback from the envi-
ronment. Frequency adaptation of a CPG is ben-
eficial when the desired frequency of the coupled
system is not exactly known in advance.

In [26], a similar idea of using coupled phase
oscillators as a pattern generator for biped loco-
motion was proposed. In their method, desired
joint trajectories of the legs are generated from a
nominal trajectory at the tip of each leg defined
by a combination of simple prescribed functions
of phase through inverse kinematics [26]. In com-
parison to [26], we believe that our method has
the advantage of flexibility in encoding complex
movements by imitation learning and the poten-
tial capability of improving learned movements
through reinforcement learning [28]. We demon-
strate the effectiveness of the proposed control
strategy by numerical simulations and experimen-
tal implementation.
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2. Biped Robot

We use a planar 5-link biped robot developed
in [29]. The height of the robot is 0.4 m and the
weight is about 2 kg. The length of each link of
the leg is 0.2 m. The mass of the body is 1.0
kg, the thigh is 0.43 kg and the shank is 0.05 kg.
The motion of the robot is constrained within the
sagittal plane by a tether boom. The hip joints
are directly actuated by direct drive motors, and
the knee joints are driven by direct drive motors
through a wire transmission mechanism with the
reduction ratio of 2.0. These transmission mecha-
nisms with low reduction ratio provide high back
drivability at the joints. Foot contact with the
ground is detected by foot switches. The robot
is an underactuated system having rounded soles
with no ankles. Thus, it is challenging to design
a controller to achieve biped locomotion with this
robot since no actuation can be applied between
the stance leg and the ground compared to many
of the existing biped robots which have flat feet
with ankle joint actuation.

3. Dynamical Movement Primitives

In this section, we outline the rhythmic dynam-
ical movement primitives originally proposed in
[22], which we will use as a CPG for biped loco-
motion in this paper.

3.1. Rhythmic Dynamical Movement
Primitives

Rhythmic dynamical movement primitives en-
code periodic behavioral patterns as an output of
a set of nonlinear dynamical systems composed
of a canonical dynamical system with a phase os-
cillator and a transformation dynamical system
with a nonlinear function approximator.

Consider the following limit cycle oscillator
characterized in terms of an amplitude r and a
phase φ as a canonical dynamical system which
generates basic rhythmic patterns:

τφ̇ = 1 (1)
τ ṙ = −µ(r − r0) (2)

where τ is a temporal scaling factor, r0 deter-
mines the desired (relative) amplitude, and µ is a

positive constant. Note that the phase dynamics
(1) can be written as:

φ̇ = ω (3)

where ω def= 1/τ is the natural frequency. When
there are multiple oscillators, we will introduce
coupling terms among the oscillators (see Sec-
tion 4.1). This rhythmic canonical system is
designed to provide an amplitude signal ṽ =
[r cosφ, r sinφ]T and phase variable mod(φ, 2π)
to the following second order transformation dy-
namical system (z, y), where the output y is used
as the desired trajectory for the robot:

τ ż = αz(βz(ym − y) − z) (4)
τ ẏ = z + f(ṽ, φ) (5)

where α and β are time constants, ym is an offset
of the output trajectory. f is a nonlinear function
approximator using local linear models [30] of the
form:

f(ṽ, φ) =
∑N

k=1 ΨkwT
k ṽ∑N

k=1 Ψk

(6)

where wk is the parameter vector of the k-th lo-
cal model which will be determined by locally
weighted learning [30] from a demonstrated tra-
jectory ydemo (see Section 3.2). Each local model
is weighted by a Gaussian kernel function

Ψk = exp(−hk(mod(φ, 2π) − ck)2) (7)

where ck is the center of the k-th linear model,
and hk characterizes its width. A final predic-
tion is calculated by the weighted average of the
predictions of the individual models. As demon-
strated in [22], the amplitude, frequency and off-
set of the learned rhythmic patterns can be easily
modified by scaling the parameters r0, ω(= 1/τ)
and ym individually.

3.2. Imitation Learning with Dynamical
Movement Primitives

An important issue is how to learn the parame-
ters wk in the nonlinear function (6) to character-
ize the output of a dynamical movement primitive
for a given demonstrated trajectory ydemo. Given
a sampled data point (ftarget, ṽ) at t where

ftarget = τ ẏdemo − zdemo (8)
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and

τ żdemo = αz(βz(ym − ydemo) − zdemo),

the learning problem is formulated to find the
parameters wk in (6) using incremental locally
weighted regression technique [30] in which wi is
updated by

wt+1
k = wt

k + ΨkPt+1
k ṽek (9)

where

Pt+1
k =

1
λ

(
Pt

k − Pt
kṽṽT Pt

k
λ

Ψk
+ ṽT Pt

kṽ

)

ek = ftarget − wT
k ṽ

and λ ∈ [0, 1] is a forgetting factor. We chose
this locally weighted regression framework as it
can automatically find the correct number of nec-
essary basis function, and can tune the hk pa-
rameters of each Gaussian kernel function (7) to
achieve higher function approximation accuracy.
Moreover, it learns the parameters wk of every
local model k totally independent of all other lo-
cal models, which minimizes interference between
local models and provides a means to robustly
classify a rhythmic pettern with the help of the
parameters wk [22].

4. Rhythmic Dynamical Movement Primi-
tives as a CPG

We use the rhythmic dynamical movement
primitives introduced in Section 3.1 as a CPG for
biped locomotion. Figure 1 illustrates the pro-
posed control architecture in this paper. Each
joint is equipped with a movement primitive
which generates the desired joint trajectory θdes.
We define the index and the corresponding name
of the joint as Left hip (i = 1, L HIP), and Left
knee (i = 2, L KNEE), Right hip (i = 3, R HIP),
and Right knee (i = 4, R KNEE). An additional
oscillator (φref ) is allocated to provide a refer-
ence phase signal to the limb oscillators, which
is adjusted by the ground contact information at
the instance of heel strike. Section 4.1 introduces
coupling to the oscillators of the movement prim-
itives to achieve the desired phase relationship

between the limbs. Section 4.2 proposes a fre-
quency adaptation algorithm of the learned pe-
riodic movements through the interaction among
the coupled oscillators, robot and environment.

4.1. Inter- and Intra-limb Phase Coordina-
tion

We introduce coupling among the oscillators to
regulate the desired phase relationship between
the limbs of the robot. This kind of coupling is
motivated from a biological point of view where
it has been hypothesized that coupling among
neural oscillators plays an important role in co-
ordinating the desired phase relationship of limb
movements in locomotion and gait transition [31].

Consider the following coupling terms for the
oscillator i:

φ̇i = ωi + κ

N∑
i=1

Cij sin(φj − φi) (10)

where κ is a positive constant gain, and Cij is an
element of the n×nmatrix C which characterizes
the coupling with other oscillators. This form of
coupling appears in various studies of coupled os-
cillators and their application, e.g., [23–26,32,33].
In this paper, we employ the formulation in [23]
to specify the desired phase relationship. In [23],
C is defined to be a symmetric matrix where the
diagonal elements are Cii = 0 for all i, and off-
diagonal elements Cij are chosen as follows:

• Cij = 1: oscillators i and j are designed to
be in phase such that φi−φj = 0 (mod 2π).

• Cij = −1: oscillators i and j are designed
to be out of phase such that φi − φj = π
(mod 2π).

As noted in [23], an arbitrary phase difference
other than 0 or π can be specified by introducing
a change of coordinates, or equivalent to having
an offset in the coupling terms.

In this paper, we design the desired phase dif-
ference among the canonical oscillators such that
the links of each leg move in phase (with zero
phase difference), and the left and right legs move
out of phase (with π phase difference) by defin-
ing the phase of the oscillator as φi = 0 at
the instance of heel strike of the corresponding
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leg. More specifically, we require φ1 − φ2 = 0,
φ3−φ4 = 0, φ1−φ3 = π, and φ2−φ4 = π. Thus,
the connection matrix C is chosen to be:

C =




0 1 −1 −1
1 0 −1 −1
−1 −1 0 1
−1 −1 1 0


 (11)

4.2. Frequency Adaptation of Locomotion
Section 4.1 introduced internal coupling of

the oscillators to coordinate the phase difference
among the limbs of the robot. This section con-
siders interaction between the environment and
the CPG to achieve self-tuning of the natural fre-
quency of the oscillators and synchronization of
the CPG with the periodic behavior of the robot.

4.2.1. Synchronization of Coupled Oscilla-
tors with Frequency Adaptation

Before introducing the proposed frequency
adaptation law for the biped robot CPG, let us
consider the behavior of the following dynamics
of two coupled oscillators:

φ̇1 = ω1 +K1(φ2 − φ1) (12)
φ̇2 = ω2 +K2(φ1 − φ2) (13)

where ω1, ω2 > 0 are natural frequencies of the
oscillators, and K1,K2 are positive coupling con-
stants. Then, the oscillators run with the phase
difference ψ∗ = φ2 − φ1 = ω2−ω1

K1+K2
at the cou-

pled frequency ω∗ = K2ω1+K1ω2
K1+K2

when they are
entrained. When ω1 �= ω2, the phase differ-
ence ψ = φ2 − φ1 remains non-zero. However, if
ω1 = ω2, then the phase difference of these oscil-
lators will be zero. Thus, we introduce an update
law of the natural frequency ω1 to achieve syn-
chronization of these oscillators with zero phase
difference:

φ̇1(t) = ω1(t) +K1(φ2(t) − φ1(t)) (14)
ω̇1(t) = K(ω2 − ω1(t)) (15)
φ̇2(t) = ω2 +K2(φ1(t) − φ2(t)) (16)

where K is a positive constant. It is straight-
forward to see that ω1 → ω2 as t → ∞. Thus,
the phase difference will be zero such that ψ =
φ2 − φ1 → 0.

4.2.2. Frequency Update Law and Phase
Resetting of CPG

In this section, we introduce an adaptation al-
gorithm of the CPG in order to adjust the fre-
quency of the learned periodic motions by the
robot through the interaction among the CPG,
robot and environment. As depicted in Figure 1,
the proposed control system can be regarded as
a coupling of the CPG and the mechanical oscil-
lator (robot) which is analogous to the coupled
oscillator system discussed in Section 4.2.1.

For this purpose, we first introduce a reference
oscillator (φref ) which will be synchronized with
the locomotion of the robot through the adapta-
tion mechanism described below. This reference
oscillator can be considered as a phase estima-
tor of locomotion by the discrete heel strike in-
formation detected by foot switches. Then, ad-
ditional coupling is introduced to the limb oscil-
lators with φref to achieve the desired relative
phase φ1 = φ2 = φref and φ3 = φ4 = φref + π.

Motivated by the synchronization mechanism
of the coupled oscillators in Section 4.2.1, we pro-
pose the following phase resetting and frequency
update law. They can be interpreted as a dis-
cretized version of phase coupling (14) and fre-
quency update (15) at the instance of heel strike:

φ̇ref = ω̂n
ref+δ(t−theel strike)(φrobot

heel strike−φref )(17)

ω̂n+1
ref = ω̂n

ref +K(ωn
measured − ω̂n

ref ) (18)

where δ is the Dirac’s delta function, n is the
number of steps, and φrobot

heel strike is the phase of
the mechanical oscillator (robot) at heel strike de-
fined as φrobot

heel strike = 0 at the heel strike of the
left leg, and φrobot

heel strike = π at the heel strike of
the right leg. ωn

measured is the measured frequency
of locomotion defined by

ωn
measured =

π

T n
measured

(19)

where T n
measured is the stepping period of locomo-

tion (half period with respect to the oscillator).
At the same time, natural frequencies of all the
limb oscillators ωi are updated at the instance
of heel contact such that ωi = ω̂n+1

ref . Note that
it is possible to directly introduce phase reset-
ting to the limb oscillators as seen in [26]. How-
ever, introduction of a reference oscillator allows
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Figure 2. Joint trajectories for the left leg and
heel strike timing for four periods (8 steps) of
walking (simulation).

phase estimation depending on multiple events
and multi-modal information. Moreover, continu-
ous phase coupling of the limb oscillators with the
reference oscillator having phase resetting allevi-
ates the problem of discontinuity to the desired
joint trajectories.

The phase resetting algorithm (17) is motivated
from a biological perspective as well as a math-
ematical point of view. Phenomena of phase re-
setting or phase shift are observed in many bio-
logical oscillators resulting from external pertur-
bations, e.g., circadian pacemakers, biochemical
oscillators and human finger tapping neural net-
works [27]. Phase resetting is related to the sta-
bility properties of neural rhythms, which can be
analyzed by examining the phase dependent re-
sponses against perturbations. A recent study
[34] investigated the role of phase resetting in
biped locomotion. Numerical studies in [34] sug-
gest possible contribution of phase resetting dur-
ing walking to gait stability against external per-
turbations.

5. Numerical Simulations

As a demonstrated trajectory, we use the mo-
tion capture data of human walking in [35] (29-
year-old male, 173cm, 83.5kg, right hip and knee).
We identified the period and frequency of this
pattern by the power spectrum estimation with
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Figure 3. Torque command to the left hip and
knee joints for four periods (8 steps) of walking
(simulation).

FFT and autocorrelation as T = 1.17 sec and
f = 1/T = 0.855 Hz respectively. The dynam-
ics of the robot are derived using SD/FAST2 and
integrated using the Runge-Kutta algorithm at
1ms step size. The ground contact force is cal-
culated using a linear spring-damper model. A
low-gain PD controller is used at each joint to
track the desired trajectory which is the output
of the movement primitive.

A walking pattern from the demonstrated tra-
jectory is learned with the dynamical primitives.
We manually designed the desired trajectory for
the initial step of locomotion from a standing po-
sition at rest, and the proposed CPG controller
is activated at heel contact of the first step. The
amplitude parameter of the dynamical primitives
is set to r0 = 0.7, and the offset ym = 0.375 is
introduced to the knee joints. For the scaling of
the natural frequency of the oscillator, the adap-
tation law proposed in Section 4.2.2 is used with
the initial frequency of ω = 4.83 rad/s (period
of oscillation is 1.3 sec). These parameters are
determined empirically from trial and error.

Figure 2 illustrates the desired and actual joint
trajectories for the left leg, and the timing of heel
strike after a stable pattern was learned by the
phase resetting algorithm. Figure 3 shows the
torque command for the left leg, which indicates

2http://www.sdfast.com
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Figure 4. Snapshots of walking simulation for one step at 15 frames/sec (1 frame ≈ 66 msec)
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Figure 5. Frequency adaptation of walking via en-
trainment (simulation). Left: adaptation of pe-
riod. Right: learning curve of the frequency of
the CPG.

that the knee joint swings passively since it re-
quires almost no torque (see t = 15.1 ∼ 15.3 sec).
Figure 4 depicts one step of walking. Figure 5
(left) shows the adaptation of the period of loco-
motion and Figure 5 (right) shows the learning
curve of the frequency of the CPG with differ-
ent coupling constants K = 0.2, 0.5 and 0.8 in
(18). The stepping period approached 0.387 sec,
and the resultant CPG frequency was ω = 8.12
rad/s, which roughly corresponds to the natural
frequency of the swing leg modelled as a simplified
linear pendulum, using the proposed adaptation
law.

Robustness against external perturbations is
evaluated by pushing the robot forward and back-
ward with external forces. Forces are applied for a
duration of 0.1 sec at different timing during a sin-
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Figure 6. Joint trajectories for the left leg and
heel strike timing for four periods (8 steps) of
walking (experiment).

gle step (at an interval of 0.1 rad from 0 to 2π of
the phase of the reference oscillator). When a for-
ward perturbing force is applied, the robot could
cope with up to 9.3 N (max) at φ = 0.5, 0.7 ∼ 0.9
rad, and 1.2 N (min) at φ = 2.8 rad of the
perturbing forces. When a backward perturb-
ing force is applied, the robot could cope with
up to −3.2 N (max) at φ = 4.9 rad and −0.8 N
(min) at φ = 0.3 rad of the perturbing forces. In
contrast, without phase resetting, the robot only
could cope with much smaller disturbances, for
example, the robot only tolerated up to 2.6 N of
the forward perturbing force applied at φ = 0.5.

The simulation results demonstrate self-
adaptation of the frequency of locomotion and
robustness of walking against disturbance by the
proposed algorithm.
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Figure 7. Torque command to the left hip and
knee joints for four periods (8 steps) of walking
(experiment).

6. Experimental Implementation

We implemented the proposed control frame-
work on our biped robot. In the experimental
implementation, our initial attempt to achieve
biped locomotion using the human demonstrated
trajectory was not successful largely due to me-
chanical limitation of the experimental system
and discrepancy in the ground contact condition
between simulations and experiments. Thus, we
used another target trajectory which was exper-
imentally obtained from an actual trajectory of
successful robot locomotion using a state machine
controller. The state machine controller is de-
signed to coordinate the leg movements with the
physical state of the legged system based on the
idea presented in [36].

To initiate locomotion in the experiments, we
first suspended the robot with the legs swing-
ing in the air, and then placed the robot on the
ground manually. Thus, the initial condition of
each run was not consistent, and occasinally the
robot could not start walking or fell over after a
couple of steps when the timing was not appro-
priate. Figure 6 illustrates the desired and actual
joint trajectories for the left leg, and the timing of
heel strike. Figure 7 shows the torque command
for the left leg. Some oscillation in the torque
command for the hip joint can be seen. This is
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Figure 8. Frequency adaptation of walking via
entrainment (experiment). Left: adaptation of
period. Right: learning curve of the frequency of
the CPG.

due to noisy joint velocity signals obtained from
numerically differentiated joint angles measured
by optical encoders. We are currently planning
to use gyros to obtain smoother joint velocities
to improve the performance of the tracking con-
troller. Note that a limit on the torque command
is imposed at ±1.5 Nm. Figure 8 (left) shows the
period adaptation and Figure 8 (right) shows the
learning curve of the frequency of the CPG. Step-
ping period for a typical walking experiment was
around 0.37 sec. In this experiment, the initial
frequency of the oscillator was set to ω = 5.71
rad/s (period of oscillation is 1.1 sec), and the
adaptation gain in (18) was decreased accord-
ing to an annealing procedure K = K0

n , where
K0 = 0.05 and n is the number of steps, as is
needed in most gradient descent procedure. We
introduced an offset α for phase resetting

φ̇ref = ω̂n+δ(t−theel strike)(φrobot
heel strike−φref+α)(20)

to adjust the timing of foot contact, where α is
chosen to be α = 0.8 rad. These parameters are
determined empirically. Note that phase reset-
ting with an offset effectively changes the period
of oscillation.

Robustness of the proposed algorithm is evalu-
ated by testing walking over surfaces with differ-
ent friction properties such as carpet, cork sheet
(3 mm thick) and a seesaw-like metal plate (2
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Figure 9. Walking over surfaces with different friction properties and a seesaw-like metal sheet with a
slight change in the slope.

mm thick). The metal plate was placed so that
the inclination of the slope slightly changes like a
seesaw when the robot walks over it (the height
of the center is 7 mm). The robot could deal
with the change in the environment as depicted
in Figure 9.

Note that even if we use the learned trajectory
from the actual robot walking pattern, the robot
could not walk by just replaying it as a desired
trajectory. Phase resetting using foot contact in-
formation was necessary. This implies that appro-
priate on-line adjustment of the phase of the CPG
by sensory feedback from the environment is es-
sential to achieve successful locomotion. In addi-
tion, empirically we found that the proposed con-
troller achieved much more robust walking com-
pared to the state machine based controller which
we originally designed.

7. Conclusion

In this paper, we proposed a method for learn-
ing biped locomotion from demonstration and its
frequency adaptation using dynamical movement
primitives. In the dynamical movement primi-
tives, kinematic movement plans are described in
a set of nonlinear differential equations with well-
defined attractor dynamics, and demonstrated
trajectories are learned using locally weighted re-
gression. Specifically, we use rhythmic dynami-
cal movement primitives based on coupled phase
oscillators as a CPG, and introduced a frequency
adaptation algorithm through interactions among
the CPG, mechanical system and the environ-

ment motivated by the synchronization of cou-
pled oscllators. Numerical simulations and ex-
perimental result demonstrate the effectiveness of
the proposed control algorithm to achieve steady
state walking roughly at the natural frequency of
the coupled system. We also evaluated robustness
against disturbance in numerical simulations and
experiments.

Future work will address initiation and termi-
nation of walking, and on-line balance compen-
sation. We will also consider collection of hu-
man’s walking data under various behavioral con-
ditions. In our current study, we used a simple
phase resetting mechanism in which the phase
of the CPG is forced to be reset to a specific
value at the instance of heel strike regardless of
the current phase of the CPG. In the future, we
are interested in the generalization of the idea
of phase resetting to determine phase dependent
reaction against external perturbations such as
recovery from stumbling by designing an appro-
priate phase resetting curve [27]. Formal math-
ematical analysis will be required to understand
the principle of periodic stability of a limit cycle
solution to the dynamics of a combined oscilla-
tor and mechanical system. In the long run, we
are hopeful that our approach may provide in-
sight into a theoretically sound design principle
of biped locomotion control to achieve human-like
natural walking.
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1. M. Vukobratović, B. Borovac, D. Surla,
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