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Abstract— Recently, there has been a growing interest in
biologically inspired biped locomotion control with Central
Pattern Generator (CPG). However, few experimental at-
tempts on real hardware 3D humanoid robots have yet been
made. Our goal in this paper is to present our achievement
of 3D biped locomotion using a neural oscillator applied
to a humanoid robot, QRIO. We employ reduced number
of neural oscillators as the CPG model, along with a task
space Cartesian coordinate system and utilizing entrainment
property to establish stable walking gait. We verify robustness
against lateral perturbation, through numerical simulation
of stepping motion in place along the lateral plane. We
then implemented it on the QRIO. It could successfully
cope with unknown 3mm bump by autonomously adjusting
its stepping period. Sagittal motion produced by a neural
oscillator is introduced, and then overlapped with the lateral
motion generator in realizing 3D biped locomotion on a QRIO
humanoid robot.

Index Terms— Neural Oscillator; Central Pattern Genera-
tor(CPG); Biped Locomotion; QRIO;

I. INTRODUCTION

This paper presents our experimental studies on a neural
oscillator for biped locomotion with a full-body humanoid
robot. In our previous work [1], we explored neural oscil-
lators as a Central Pattern Generator(CPG) which produces
inherent rhythmic patterns, for a planar biped robot. In [1],
we demonstrated that robust steady walking was achieved
with a physical planar biped robot using the proposed
method.

Our work is motivated by a growing interest in the
studies of biologically inspired locomotion control using
a neural oscillator as a CPG. Taga and his colleague
successfully applied a neural oscillator controller as a
CPG for an 8-link simulated planar biped model [2]. They
demonstrated that stable bipedal locomotion is achieved
with appropriate neural connections and biologically based
sensory feedback pathways—the walking pattern was not
explicitly pre-designed before execution, however it is
self-organized through mutual interaction of the nervous
system, musclo-skeletal system and environment. Kimura’s
quadruped robot demonstrated remarkable terrain adapt-
ability by combining mechanical compliance, state ma-
chine, sensory reflexes and neural oscillators [3]. Their
results suggest that there are possible ways to increase
robustness against unknown perturbations and to generate

Fig. 1. Entertainment Robot QRIO (SDR-4X II)

more natural energy efficient motions exploiting passive
dynamics by using the entrainment property of neural
oscillators.

However, many of previous work on biped locomotion
such as [2][4][5][6] were limited to simulation studies,
and to our knowledge, there has been only few experi-
mental application for a hardware three-dimensional (3D)
humanoid robot [7] largely due to hardware limitations,
difficulty in parameter tuning and large modelling error
between simulations and experiments.

Our goal in this research is to achieve 3D biped loco-
motion using a neural oscillator with a full-body humanoid
robot QRIO (SDR-4X II, see Fig. 1). To simplify the
oscillator connections and feedback pathways, we propose
an idea of allocating neural oscillators in a task space coor-
dinate system. The advantage of the proposed arrangement
is not only to significantly reduce the number of open
parameters in the neural oscillator compared to the case
where oscillators are allocated to each joint, but also to
make it much easier to design effective feedback pathways
to generate stable limit cycle.

This paper is organized as follows: In Section II, basic
properties of neural oscillators and their arrangement for
CPG are discussed. We design sensory feedback pathways
to the neural oscillators to maintain balance of the body
during locomotion motivated by biological observations.

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 598



In Section III, we empirically verify the robustness of
the proposed architecture by numerical simulations and
hardware implementations. We demonstrate steady walking
motion, robustness against lateral perturbation and an aug-
mented example of biped locomotion in arbitrary directions
following an operator’s command. In Section IV, we will
present summary of our results and future work.

II. PROPOSED CONTROL ARCHITECTURE

A. Neural Oscillator Model

We use the neural oscillator model proposed by Mat-
suoka [8], which is widely used as a CPG in robotic
applications [3][9]:

τ1 u̇1 = c − u1 − β v1 − γ[u2]+ −
∑

hj [gj ]+ (1)

τ2 v̇1 = [u1]+ − v1 (2)

τ1 u̇2 = c − u2 − β v2 − γ[u1]+ −
∑

hj [gj ]− (3)

τ2 v̇2 = [u2]+ − v2 (4)
q = [u1]+ − [u2]+ (5)

[x]+ def= max ( 0, x), [x]− def= min ( 0, x) (6)

where u1, u2, v1 and v2 are internal states, β and γ are
constants, gj is an input, and q is an output of the oscillator.
Time constants τ1 and τ2 characterize the output wave
shape and its frequency, and a tonic excitation c modulates
the output amplitude.

Previously, properties of the neural oscillator model
above such as the relationship between the parameters and
the oscillator output has been numerically explored in [9]
mainly addressing the issue of achieving stable oscillation
with external feedback signals. It is demonstrated that
phase difference between the periodic input signal gj and
the output q is tightly locked through entrainment if the
amplitude of gj is large enough and its frequency is close
to the oscillator’s natural frequency.

In addition to the entrainment property mentioned above,
our numerical studies suggest that it is possible to suppress
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Fig. 2. Basic property of a neural oscillator (top: entrainment property,
bottom: suppression of oscillation by a large constant input)

the oscillation when an extremely large input signal is
applied to the oscillator. Fig. 2 (top) illustrates an example
of the entrainment property of the oscillator with a periodic
input, and Fig. 2 (bottom) demonstrates that oscillation
can be stopped with a large constant input signal to the
oscillator. (See appendix for the parameters used in the
neural oscillator model.) In this paper, we will exploit
this additional property to maintain balance for stepping
motion in place by stopping oscillatory movement of the
legs with biologically motivated feedback pathways when
a large external perturbation is applied to the robot.

B. CPG Arrangement

In many of the previous applications of neural oscillators
based locomotion studies, an oscillator is allocated at each
joint and its output is used as a joint torque command to the
robot [2][6]. With this approach, it is demonstrated the de-
sired gait can be generated by coordinating the movement
of multiple oscillators in a self-organizing manner [2][6].
However, it is difficult to adjust the parameters of all the
oscillators and feedback pathways to achieve the desired
behavior with the increase of the number of degrees of
freedom of the robot.

In our initial work [1], we proposed a compass-like biped
arrangement of the CPG which provides an intuitive way
of understanding the motion of the robot. In practice, since
precise joint torque control is quite difficult to perform on
a hardware system, we employed position based control.
We demonstrated that robust steady walking was achieved
with a physical planar biped robot using the proposed CPG
arrangement.

In this paper, we extend our previous approach to a
3D robot model that has an increased number of degrees
of freedom. To simplify the problem, we propose a new
oscillator arrangement with respect to the position of the
tip of the leg in the Cartesian coordinate system, which is
reasonably considered as the task coordinates for walking.
We allocate only a small set of neural oscillators exploiting
symmetry of the walking pattern between the legs. Fig. 3
illustrates the proposed oscillator arrangement. We only
employ the total of two oscillators to control the leg move-
ment. One oscillator is allocated to control the position of
both legs pLz, pRz along the Z (vertical) direction in a

Fig. 3. Proposed control architecture using neural oscillators
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symmetrical manner with π rad phase difference:

pLz = z0 − Az qz (7)
pRz = z0 + Az qz (8)

where qz is the oscillator output for Z direction, z0 is an
offset and Az is the amplitude scaling factor. Similarly,
the other oscillator is allocated to control the position of
both legs pLx, pRx along the X (forward) direction in the
sagittal plane:

pLx = x0 − Ax qx (9)
pRx = x0 + Ax qx (10)

where qx is the oscillator output for X direction, x0 is an
offset and Ax is the amplitude scaling factor. Each joint
position of the leg is computed by using inverse kinematic
calculation.

This arrangement significantly reduces the total number
of open parameters in the neural oscillators and provides
an easy way to find effective feedback pathways to achieve
grobal entrainment because of the task space representa-
tion.

C. Feedback Pathways

In this section, we design sensory feedback pathways
to the neural oscillators to maintain balance of the body
during locomotion motivated by biological observations.

In biological systems, several reflexes were found in
order to generate recovery momentum according to the
inclination of the body by adjusting the leg length. For
example, a decerebrate cat stomps stronger when vertical
perturbation force applied to its plantar during extensor
muscle activation. This reflex is called an Extensor Re-
sponse [10]. It is generally known that vestibular sys-
tem measures body’s inclination and activates contralateral
muscles to keep upper body stabilized. This is one of
the basic posture control in human and called Vestibulo-
spinal Reflex. Effectiveness of these feedback pathways was
experimentally demonstrated with a hardware quadruped
robot [3] to maintain the balance of the body when walking
over unknown terrain. We incorporate these biologically
motivated pathways into the CPG with our hardware hu-
manoid robot to empirically investigate their effectiveness
in biped locomotion. To our knowledge, no previous ap-
plication of these ideas to a hardware biped robot can be
found in the literature. Extensor Response and Vestibulo-
spinal Reflex are formulated as follows:

1) Extensor Response:

gER = (FLz − FRz) / mg (11)

where FLz , FRz are left/right vertical reaction forces and
feedback signal gER is normalized by total body weight
mg.

2) Vestibulo-spinal Reflex:

gV SR = θroll (12)

A feedback pathway gV SR is introduced to extend leg
length according to the body roll inclination θroll.

These reflexes are incorporated into the neural oscillator
controlling the vertical leg movement.

Furthermore, we introduce a feedback pathway to the
oscillator controlling the horizontal leg movement, qx, in
the sagittal plane to achieve walking motion with the
desired phase difference against qz . As illustrated in Fig. 4,
when the robot is walking forward, the leg trajectory with
respect to the body coordinates in the sagittal plane can
be roughly approximated by the shape of an ellipsoid.
Suppose the output trajectories of the oscillators can be
approximated as pLx = Ax cos(ωt + αx) and pLz =
Az cos(ωt+αz), respectively. Then, to form the ellipsoidal
trajectory on the X-Z plane, pLx and pLz need to satisfy
the relationship pLx = Ax cosφ and pLz = Az sin φ, where
φ is the angle defined in Fig. 4. Thus, the desired phase
difference between qx and qz should be αx − αz = π/2.

Empirically, we found that qz and pelvis rolling angle
θroll are almost in phase. Roughly speaking, differentiation
of θroll has π/2 phase difference with respect to θroll

because differentiation of the sine wave is a cosine wave.
From this observation, we can derive a signal in phase with
qx using the pelvis rolling velocity signal θ̇roll, which can
be obtained from internal sensors of the robot.

3) Sagittal motion feedback:

gx = − θ̇roll (13)

III. EMPIRICAL VERIFICATION

In this section, we empirically verify the proposed ar-
chitecture using a dynamics simulator as well as a QRIO
humanoid robot.

A. Straight Walking

Figures 5–7 show the the simulation results of straight
walking. In Fig. 5, the time courses of qx, qz and their
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Fig. 6. Snapshots of straight steady walking (Ax = 0.030 m, Az = 0.005 m, V elocity = 0.12 m/s. Photos were captured every 0.1 sec. Yellow
markers indicate every 0.1 m distance.)
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feedback pathways are plotted. This result illustrates that
entrainment of the neural oscillator with the feedback
signals and the desired phase difference of π/2 between
qx and qz are achieved. Fig. 4 depicts the target leg
trajectory on the XZ plane for 3.0 sec starting from the
initial standing posture suggesting a quick convergence
to a periodic trajectory. Fig.7 shows the time course
of walking velocity. With the proposed method, on-line
modulation of average walking velocity is possible by
gradually changing c to vary the step length. We achieved
walking with different velocities in the range of 0.0-0.33
m/s in forward locomotion (see Fig. 7). We also achieved
backward walking by simply changing the sign of Ax.

We also implemented this steady walking control al-
gorithm on QRIO, and achieved successful walking (see
Fig. 6). We could modulate the walking velocity in the
range of 0.0-0.2 m/s with the step length variation.

B. Stepping Motion in place

In this section, we investigate robustness of a stepping
motion in place against lateral perturbation by setting
Ax=0. To obtain fundamental qualitative property, first we
numerically confirm that natural robustness of sinusoidal
stepping motion without feedback pathways according to
the stepping period as a baseline. Secondly, we present
the effectiveness of the proposed feedback pathways to
the neural oscillator. Finally, we demonstrate autonomous
adjustment of the stepping period using a hardware robot
walking over bumped surfaces.

1) Natural Robustness: Here we drive the vertical leg
movements by sinusoidal wave instead of a neural os-
cillator to investigate intrinsic stepping robustness. When
the stepping motion converged on a stable limit cycle,
constant perturbation force in the lateral positive direction
was applied at the center of pelvis for 0.1 sec. We mea-
sured maximum allowable force without falling over. We

regarded the perturbation force allowable when the robot
kept stepping for 15 sec after perturbation.

Fig. 8 illustrates the relationship between perturbation
phase and force normalized by the stepping period and
body weight respectively in numerical simulations. We
define phase zero when the left leg touches the ground.
Since stepping motion produces oscillatory change of an-
gular momentum around the body roll axis, maximum
perturbation force decreases when perturbation is applied
in the direction of angular momentum increase. Similar
tendency is observed in the case of T =0.5-0.6. However
as point (P) indicates, robustness rapidly decreases as the
period becomes longer. We observed that the robot fell
over very easily even with a small perturbation when the
frequency of the stepping pattern is near the (roughly
estimated) resonant frequency of the system. Presumably,
this is because oscillation of the body is quickly amplified
by resonance.

Fig. 8 suggests that shorter stepping period is desirable
when we only consider inherent robustness of stepping
motion. However, it draws heavier load for a hardware
especially in touch down phase and requires larger energy
consumption. Moreover, it is difficult to keep higher leg
clearance due to the joint velocity limitation. If we can
increase robustness near resonant frequency by using en-
trainment property of a neural oscillator, we can acquire
more robust and energy efficient stepping motion.

2) Robustness with proposed feedback pathways: We
compare the case where feedback pathways are introduced
and not introduced to a neural oscillator for stepping
motion in numerical simulations. Fig. 9 depicts a typical
examples of the time course of pelvis roll angle θroll where
perturbation is applied at the time of zero. While the robot
falls over without sensory feedback to the neural oscillator,
θroll with gER feedback (gray line) converges for a certain
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distant time. However, we cannot observe significant dif-
ference during the time 0.0-2.0 between the case where
gER is fed back and not fed back. Noticeably, at point
(Q) indicated in Fig. 9, qz decreases supporting leg length.
This motion decreases potential barrier preventing falling
from occurring. Therefore, we introduce significantly large
feedback gain for gV SR to suppress oscillation where θroll

is large. When oscillation is stopped, passive dynamics
play a role of recovery momentum generation. Fig. 9 (bold
line) shows the faster entrainment of (gER + gV SR) than
gER only. Fig. 10 shows stepping period modulation with
(gER + gV SR) feedback according to the body inclination.
We can see the period modulation due to the feedback.
Generally, it is difficult to entrain such a long period input
using fixed time constants τ1, τ2. Thus some approaches
adjust these parameters like phase lock loop manner to
enlarge a basin of attraction [11]. In this paper, we utilize
suppression of oscillation not to increase additional open
parameters.

We investigated robustness against perturbation as well
as the sinusoidal case. Entrainment property remarkably
improved robustness compared with the case without feed-
back (Fig. 11). Even if stepping frequency was close to
the resonant frequency, sensory feedback pathways still
maintained as much robust as shorter period stepping of
sinusoidal wave. This result suggests that a neural oscillator
with appropriate sensory feedback can generate robust and
energy efficient stepping motion.

Finally, we examined more realistic perturbation by per-
forming the stepping motion on uneven surfaces. When the
left leg was in swing phase, the ground height was altered
for the next step (Fig. 12). In the case of T =0.8 without
feedback, maximum allowable height were less than 2 mm
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Fig. 12. Robustness against bump disturbance (top: T =0.8 sec, Az=0.005
m. bottom: T =0.5 sec, Az=0.011 m).

in the all situation(a)-(d), showing quite fragile limit cycle.
On the contrary, (gER +gV SR) successfully increased it as
well as T = 0.5 sec condition, demonstrating effectiveness
of extensor response and vestibulo-spinal reflex.

3) Hardware Evaluation: We investigated the effective-
ness of feedback pathways to a neural oscillator at T =
0.8 sec using QRIO. Stepping motion without feedback
was compared with the case where the proposed feedback
pathways were introduced.

The robot could not continue a stepping motion on carpet
floor without feedback. An amplitude of pelvis oscillation
gradually increased and finally the robot fell over within
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Fig. 13. Lateral walking experiment on bumped surfaces
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about 20 steps.
In contrast, (gER + gV SR) feedback pathways demon-

strated a highly stable stepping motion which could cope
with 3 mm of (a), 7 mm of (c) height deviations, respec-
tively (see Fig. 12 in the middle row for the situations). Al-
though, these values were less than simulated values due to
sensing delay caused by integration of angular rate sensor
to obtain the body rolling angle θroll, (gER + gV SR) feed-
back pathways considerably improved robustness against
perturbation.

We also performed a walking experiment over unknown
terrain in the lateral direction with state-machine controller
(we will mention in the following section). The condition
of walking surface changed as it walked due to seesawing
or slipping because the sheets were not rigidly connected.
Nevertheless, a neural oscillator autonomously adjusted its
period in the wide range and successfully made the robot
walk (Fig. 13).

C. Walking under user command

We show an augmented example of above mentioned
framework to demonstrate enough capability to extend a
state-machine controller. We can design explicit trajectory
in the horizontal XY direction because the stepping motion
is generated by the vertical oscillatory movement. Since
basic stepping movement in the lateral plane is already
realized, walking motion will be possible if the legs are
moved with the appropriate timing. Here, we assume quasi-
static movements and only consider kinematic constraints
of the body and the stance leg. State-machine controllers
in the X direction are defined as follows:

Fig. 15. Manuvoring experiment using combination of CPG and state-
machine controller

• Stance Phase

p′Lx = ptd
Lx − (t − ttd) / (T/2) · xstride (14)

pLx = max ( p′Lx, − xstride/2) (15)

• Swing Phase

p′Lx = plo
Lx + (t − tlo) / (T/2) · xstride (16)

pLx = min ( p′Lx, xstride/2) (17)

where t, T, xstride represent time, period and commanded
walking stride, respectively. ptd

Lx, ttd, plo
Lx, tlo denote left

leg touch down position and its time, lift off position and
its time, respectively. We implemented the same controller
for the right leg control. Although there is no explicit
feedback which stabilizes movement in the sagittal plane, a
limit cycle is consequently established due to foot contact
trigger for state transitions. Walking velocity is controlled
by adjusting a step stride xstride as well as the case of
neural oscillator based controller. We can apply the same
controller in the Y direction to achieve a side walk. In this
case, a sideway stepping causes disturbance in the lateral
direction. However, entrainment property can handles it in
a certain amount of range (Fig. 13).

A circular walking is attained by combining the above-
mentioned X-Y direction stepping along with a particular
circular arc, modulating the left/right step length according
to the circular radius. The leg yaw rotation is also con-
trolled by the function of X-Y position.

In addition, gait initiation and termination are achieved
by altering neural oscillator amplitude modified by a tonic
parameter c in Eq. (1). If c gradually decreases, then a
stepping motion is terminated.

The above framework was implemented on the hardware
and a manuevouring experiment was demonstrated. The
robot could interactively follow directive given by an
operator (Fig. 15).

This result indicates entrainment property with appropri-
ate feedback pathways has enough capability for interactive
locomotion.
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IV. CONCLUSION

In this paper, we proposed a basic framework for biped
locomotion control of a 3D hardware biped robot using
a neural oscillator. A new CPG arrangement and biologi-
cally inspired feedback pathways to the neural oscillators
were introduced. We implemented the proposed method
in numerical simulations and the humanoid robot QRIO.
First, we demonstrated that straight walking with different
velocities was achieved by changing the tonic input to the
neural oscillators. Then, we investigated the robustness of
stepping motion in the lateral plane. The simulation and
experimental results suggest that the proposed feedback
pathways play contribute to robustness against external
perturbations and environmental changes. Finally, we pre-
sented an example of augmentation of the proposed frame-
work with a state-machine controller to achieve walking
under user command. We were able to maneuver QRIO
by changing the walking direction and velocity through
teleoperation.

As the results in this paper suggests, various walking
behavior can be generated with this simple approach. We
believe that this paper is the first to experimentally imple-
ment neural oscillators on a 3D hardware humanoid robot
achieving biped locomotion in the physical environment.

In this paper, we manually tuned the neural oscillator
parameters and used constant feedback coefficients empiri-
cally obtained through numerical simulations and hardware
implementation. We would like to address the issues of
optimizing these open parameters with a learning frame-
work. Our recent work address foot placement learning
[12] using reinforcement learning, energy efficient robust
walking using differential dynamic programming [13], and
learning an appropriate feedback controller to the CPG
with a policy gradient [14] for a simplified planar biped
robot. In the future, we are interested in extending these
approaches to high dimensional systems and experimental
implementation to a 3D hardware biped robot.
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APPENDIX

Common parameters for all neural oscillators. Initial
internal variables are set to encourage faster convergence.
They are captured at ( q = 0, q̇ > 0 ) where a stable
oscillation is established.

Description Symbol Value
Time constant τ1 0.1122 ·T
Time constant ratio τ1 / τ2 0.8
Mutual inhibition γ 2.0
Adaptation constant β 2.5
Tonic excitation c 2.43
Initial internal variable uinitial

1 0.488488
Initial internal variable vinitial

1 0.203274
Initial internal variable uinitial

2 0.389224
Initial internal variable vinitial

2 0.674099

Feedback coefficients:

Description Symbol Value
Extensor Response hEF 0.2
Vestibulo-spinal Reflex hV SR 4.0
Sagittal motion feedback hx 0.2

These symbols are abbreviated in figures to indicate
feedback signals.
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