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Improving humanoid locomotive performance with learnt approximated
dynamics via Gaussian processes for regression

Jun Morimoto, Christopher G. Atkeson, Gen Endo, and Gordon Cheng

Abstract— We propose to improve the locomotive perfor-
mance of humanoid robots by using approximated biped
stepping and walking dynamics with reinforcement learning
(RL). Although RL is a useful non-linear optimizer, it is usually
difficult to apply RL to real robotic systems - due to the large
number of iterations required to acquire suitable policies. In
this study, we first approximated the dynamics by using data
from a real robot, and then applied the estimated dynamics in
RL in order to improve stepping and walking policies. Gaussian
processes were used to approximate the dynamics. By using
Gaussian processes, we could estimate a probability distribution
of a target function with a given covariance function. Thus,
RL can take the uncertainty of the approximated dynamics
into account throughout the learning process. We show that
we can improve stepping and walking policies by using a RL
method with the approximated models both in simulated and
real environments. Experimental validation on a real humanoid
robot of the proposed learning approach is presented.

I. INTRODUCTION

The dynamics of biped robots include contact and collision
with the ground. Modeling the interaction with the ground
can be very cumbersome. Reinforcement learning (RL),
which does not require a precise environmental model, can
be a useful technique to improve the walking performance
of biped robots. However, one drawback of using RL is
that RL usually requires a large number of iterations to
improve policies. Thus, applications of RL have been limited
to simulation studies or small-sized real robots [1]–[5].

In this study, we directly approximate stepping and walk-
ing dynamics without explicitly identifying rigid body pa-
rameters and without a ground contact model. To approxi-
mate these dynamics, we explore the use of a Gaussian pro-
cess model for regression. A Gaussian process model allows
us to estimate the probability distribution of a target function
with a given covariance function. Since system identification
of a deterministic biped model including ground contact is
difficult, we utilize a stochastic representation. By using a
stochastic model, RL can take uncertainties into account
through the learning process. Gaussian processes show us
the reliability of the approximated function according to
the density of the sampled data. This is beneficial, as it is
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Fig. 1. (Left) Our human sized hydraulic humanoid robot CB developed
by SARCOS. height: 1.59 m, total weight: 95 kg. (Right) Simplified 3D
biped simulation model of our humanoid robot.

Fig. 2. Small humanoid robot used in the experiment

difficult to uniformly collect data from a real robot due to
unknown dynamics. We apply our learning framework to a
biped simulation model (see Fig. 1(Right)) of our humanoid
robot CB (see Fig. 1(Left)) [6] and a small humanoid robot
(see Fig. 2). Figures 3 and 4 provide schematic diagrams of
our learning framework.

In our approach, we first construct a stepping and a
walking controller based on our previous study [7]. The
previous study proposed using the center of pressure to detect
the phase of the inverted pendulum dynamics for stepping
and walking (Fig. 5). We used simple periodic functions
(sinusoids) as desired joint trajectories. We showed that
synchronization of the desired trajectories at each joint with
the inverted pendulum dynamics could generate stepping
and walking movements. In this study, we modulate the
amplitude of the sinusoids according to the current state of
the inverted pendulum to improve locomotive performance.

In Section II, our off-line RL method, which uses approx-
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Fig. 3. Step 2 and 3 in algorithm 1. Apply the current policy with
fixed parameter w to the actual robot dynamics and sample data. Then,
generate a Gaussian process model which represents the stepping and
walking dynamics.

Fig. 4. Step 4 in algorithm 1. Update policy parameters w by applying
a reinforcement learning method to the acquired inverted pendulum model
represented by a Gaussian process.

imated stepping and walking dynamics is introduced. Our
biped controller uses a coupled phase oscillator model to
modulate the phase of sinusoidal patterns. The aim of using
the coupled phase oscillator model is to synchronize periodic
patterns generated by the controller with the dynamics of the
robot. To use the coupled phase oscillator model, detection
of the phase of the robot is needed. We introduce a method
to detect the robot phase in Section III-A. We briefly explain
phase coordination for biped walking in Section III-B. As in
our previous study [7], we use simple sinusoidal patterns as
nominal trajectories for each joint. We describe the design
of the nominal trajectories for stepping movement in Section
III-C, and walking movement in Section III-D. In Section
IV, we explain how we applied a Gaussian process model
to approximate stepping and walking dynamics. In section
V, we describe implementation of a RL method for our off-
line RL approach, that uses the dynamics approximated by
a Gaussian process.

II. LEARNING FRAMEWORK

In this study, we consider approximate stepping and
walking dynamics to improve task performance through
model-based reinforcement learning [8]. A number of biped

COP

0

COM

y

COP

0

COM

y

COP

COMroll
pitch

(A) (B) (C)
z

y

z

y

z

x

Fig. 5. Inverted pendulum model represented by the center of pressure
(COP) and the center of mass (COM). ψroll denotes roll angle of the
pendulum. ψpitch denotes pitch angle of the pendulum.

Algorithm 1
1. Initialize policy parameters.
2. Apply the current policy to the actual robot dynamics and
sample data at the defined Poincaré section (see Fig. 3).
3. Generate a Gaussian process model which represents
the stepping and walking dynamics in (1).
4. Update policy parameters by applying a reinforcement
learning method to the acquired Gaussian process (see Fig. 4).
5. If the policy is not improved, terminate the iteration.
Otherwise, go back to step 2.

walking studies have emphasized that humanoid robots have
inverted pendulum dynamics (see Fig. 5), with the top of the
pendulum at the center of mass and the base at the center of
pressure. Control strategies to stabilize those dynamics have
been proposed [9]–[12]. In this study, we propose using the
state of the inverted pendulum dynamics as the input state
for the learning system.

We assume that nominal stepping and walking controllers
are provided, and our learning system improves the per-
formance of these controllers. Since the nominal controller
can generate periodic movements, we only consider the
pendulum state at a Poincaré section.

For example, we consider the dynamics ξ̇ = g(ξ) of a
state vector ξ ∈ Rn. The Poincaré map is a mapping from
an n − 1 dimensional surface S defined in the state space
to itself [13]. If ξ(k) ∈ S is the k-th intersection, then the
Poincaré map h is defined by ξ(k + 1) = h(ξ(k)). In our
study, we defined the section which satisfies the roll angle
of the pendulum dynamics equals zero ψ̇roll = 0 (see Fig.
5).

The policy of the learning system is updated and outputs
the next action only at this section. We also assume that we
can represent the Poincaré map by a stochastic model. If
x(k) is the k-th intersection, the model is defined by:

x(k + 1) = f(x(k),u(k)) + n(k), (1)

where x = (ψroll) for stepping and x =
(ψroll, ψpitch, ψ̇pitch) for walking (see Fig.5). n(k) is
the noise input. f(x(k),u(k)) represents the deterministic
part of Poincaré map. We selected amplitudes of the
sinusoids as the control input u(k) to the pendulum
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dynamics (see section IV). Note that we flip the sign of the
roll angle ψroll in the state vector x when the sign of COP
in the lateral (y) direction (see Fig. 5(A)) changes so that
we can use the same policy for the left stance phase and
the right stance phase.

To improve task performance, we stochastically modulate
the amplitude of the sinusoidal patterns according to the
current policy πw:

πw(x(k),u(k)) = p(u(k)|x(k);w), (2)

where w is the parameter vector of the policy πw. In
following sections, we explain how we approximate the
stochastic dynamics (1), and how we acquire the control
policy πw.

In our learning framework, we improve the approximated
stochastic model and the policy iteratively (see Algorithm 1).
We first sample data from a simulated, or a real robot model
by using the current policy for a Gaussian process regression
(see Fig. 3), then improve the policy by using the dynamics
approximated by the Gaussian process (see Fig. 4).

III. BASIC WALKING AND STEPPING CONTROLLERS

A. Phase detection of the robot dynamics

As in our previous study [7], we use the center of pressure
ycop and the velocity of the center of pressure ẏcop to detect
the phase of the robot dynamics:

φ(ycop) = − arctan
(
ẏcop

ycop

)
, (3)

where ycop = (ycop, ẏcop)1 (see Fig. 5).

B. Phase coordination

In this study, we use four oscillators with phases φi
c,

where i = 1, 2, 3, 4. We introduce coupling between the
oscillators and the phase of the robot dynamics φ(ycop) in
(3) to regulate the desired phase relationship between the
oscillators:

φ̇i
c = ωc +Kc sin(φ(ycop) − φi

c + αi), (4)

where αi is the desired phase difference, Kc is a coupling
constant, and ωc is natural angular frequency of oscillators.

We use four different phase differences, α =
{α1, α2, α3, α4} = {− 1

2π, 0.0,
1
2π, π}, to make symmetric

patterns for a stepping movement with the left and right limbs
(see section III-C.2), and also to make symmetric patterns for
a forward movement with the left and right limbs (see section
III-D).

C. Stepping controller for lateral movement

1) Side-to-side controller for lateral movement: First, we
introduce a controller to generate side-to-side movement. We
control the hip joints θh roll and the ankle joints θa roll (Fig.

1We use a simplified COP detection method introduced in [7].
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Fig. 6. Stepping controller: (A) Controller for side-to-side movement. (B)
Controller for foot clearance.

6(A)) for this movement. Desired joint angles for each joint
are:

θd
h roll(φc) = Ah roll sin(φc), (5)

θd
a roll(φc) = −Aa roll sin(φc), (6)

where Ah roll and Aa roll are the amplitudes of a sinusoidal
function for side-to-side movements at the hip and the ankle
joints, and we use an oscillator with the phase φc = φ1

c .
2) Vertical foot movement to make clearance: To achieve

foot clearance, we generate vertical movement of the feet
(Fig. 6(B)) by using simple sinusoidal trajectories:

θd
h pitch(φc) = (Apitch +Astep) sin(φc) + θres

h pitch,

θd
k pitch(φc) = −2(Apitch +Astep) sin(φc) + θres

k pitch,

θd
a pitch(φc) = −(Apitch + Astep) sin(φc) + θres

a pitch, (7)

where Apitch is the amplitude of a sinusoidal function to
achieve foot clearance, θres

h pitch, θres
k pitch, θres

a pitch represent
the rest posture of the hip, knee, and ankle joints respectively.
We use the oscillator with phase φc = φ1

c for right limb
movement and use the oscillator with phase φc = φ3

c , which
has phase difference φ3

c = φ1
c + π, for left limb movement.

We modulate the amplitude of the sinusoidal patterns by
changing Astep according to the current pendulum state for
the stepping task.

D. Biped walking controller

To walk forward, we use an additional sinusoidal trajec-
tory. Thus, the desired nominal trajectories for right hip and
ankle pitch joints become:

θd
h pitch = Apitch sin(φ1

c) +Awalk sin(φ2
c) + θres

h pitch,

θd
a pitch = −Apitch sin(φ1

c) −Awalk sin(φ2
c) + θres

a pitch. (8)

We use the phase φc = φ2
c , which has 1

2π phase difference
with φ1

c for right limb. We use the phase φc = φ4
c , which

has π phase difference with φ2
c . We use φ3

c and φ4
c for left

limb instead of φ1
c and φ2

c . We then modulate the amplitude
of the sinusoidal patterns by changing Awalk according to
the current pendulum state of the biped walking task.
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IV. GAUSSIAN PROCESS REGRESSION FOR STEPPING AND

WALKING DYNAMICS

We use a Gaussian process [14] to approximate the dy-
namics in (1). Gaussian processes provide us a stochastic
representation of an approximated function. With Gaussian
processes for regression, the output values are sampled from
a zero-mean Gaussian whose covariance matrix is a function
of the input vectors:

(y1, . . . , yN |z1, . . . , zN ) ∼ N (0,K), (9)

where Kij = κ(zi, zj) is a covariance matrix of input
vectors. Here, we used the following covariance matrix
model:

κ(zi, zj) = v0 exp

(
−

Nd∑
d=1

αd
1
2
||zi − zj ||2

)
+ v1δij , (10)

where δij is Kronecker delta. v0, v1, and αd are parameters
for the covariance matrix. Nd denotes the number of input
dimensions. These parameters can be optimized by using a
type-II maximum likelihood method [14]. Bayesian predic-
tion of an output yN+1 corresponding to a new input zN+1

is given as:

(yN+1|z1, . . . , zN , zN+1, y1, . . . , yN) ∼ N (µ, σ2), (11)

where

µ = κ(zN+1)T K−1y, (12)

σ2 = κ(zN+1, zN+1) − κ(zN+1)T K−1κ(zN+1), (13)

y = (y1, . . . , yN ), and κ(zN+1) =
[κ(z1, zN+1), . . . , κ(zN , zN+1)]T .

The input vector z for the Gaussian process is composed
of the current state and control input: z = (x(k)T ,u(k)T )T .
The output value y is a component of the state vector at
the next intersection x(k + 1), and the control input is
the additional amplitude of the sinusoidal patterns u(k) =
Astep(k) in (7) for stepping, and u(k) = Awalk(k) in (8)
for biped walking. We can then estimate probabilistic model
of the stepping and walking dynamics.

V. POLICY IMPROVEMENT BY USING A REINFORCEMENT

LEARNING METHOD

Here, we explain how we applied reinforcement learning
to our biped stepping and walking tasks. We use a policy
gradient method proposed by [15] to implement the RL
framework.

The basic goal is to find a policy πw(x,u) = P (u|x;w)
that maximizes the expectation of the discounted accumu-
lated reward:

E{V (k)|πw} = E

{ ∞∑
i=k

γi−kr(i)

∣∣∣∣∣πw

}
, (14)

where r denotes reward, V (k) is the actual return, w is the
parameter vector of the policy πw, and γ, 0 ≤ γ < 1, is the
discount factor.

In the policy gradient methods, we calculate the gradient
direction of the expectation of the actual return with respect

to parameters of a policy w. [15] suggested that we can
estimate the expectation of the gradient direction as:

∂

∂w
E{V (0)|πw} ≈ E

{ ∞∑
k=0

(V (k) − V̂ (x))
∂ lnπw

∂w

∣∣∣∣∣πw

}
,

(15)
where V̂ (x) is an approximation of the value function for a
policy πw: V πw(x) = E{V (k)|x(k) = x, πw}.

A. Value function approximation

The value function is approximated using a normalized
Gaussian network [16]:

V̂ (x) =
N∑

i=1

vibi(x), (16)

where vi is a i-th parameter of the approximated value
function, and N is the number of basis functions bi(x). An
approximation error of the value function is represented by
the temporal difference (TD) error [17]:

δ(k) = r(k + 1) + γV̂ (x(k + 1)) − V̂ (x(k)), (17)

We update the parameters of the value function approximator
using the TD(0) method [17]:

vi(k + 1) = vi(k) + αδ(k)bi(x(k)), (18)

where α is the learning rate.

B. Policy parameter update

We update the parameters of a policy w by using the
estimated gradient direction in (15). [15] showed that we
can estimate the gradient direction by using TD error:

E

{ ∞∑
k=0

(V (k) − V̂ (x(k)))
∂ lnπw

∂w

∣∣∣∣∣πw

}

= E

{ ∞∑
k=0

δ(k)e(k)

∣∣∣∣∣πw

}
, (19)

where e is the eligibility trace of the parameter w. Then, we
can update the parameter w as:

w(k + 1) = w(k) + βδ(k)e(k), (20)

where the eligibility trace is updated as:

e(k + 1) = ηe(k) +
∂ lnπw(x(k),u(k))

∂w

∣∣∣∣
w=w(k)

, (21)

where η is the decay factor for the eligibility trace. Equation
(19) can be derived if the condition η = γ is satisfied.

C. Biped stepping and walking policy

We construct the biped stepping and walking policies
based on a normal distribution:

πw(x,u) = N (µ(x;wµ),Σ(x;wσ)) (22)

where u is the output vector and Σ is the covariance matrix
of the policy πw. In this study, we defined the covariance
matrix as a diagonal matrix, where j-th diagonal element
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is represented as σj . j-th element of the mean output µ is
modeled by the normalized Gaussian network:

µj(x) =
N∑

i=1

w
µj

i bi(x). (23)

Here, wµj

i denotes the i-th parameter for j-th output of the
policy πw, and N is the number of basis functions. We
represent the diagonal element of the covariance matrix Σ
using a sigmoid function [15]:

σj(x) =
σ0

1 + exp(−σw
j (x))

, where σw
j (x) =

N∑
i=1

w
σj

i bi(x),

(24)
and σ0 denotes the scaling parameter. wσj

i denotes the i-th
parameter for the j-th diagonal element of the covariance
matrix. We update the parameters by applying the update
rules in (20) and (21).

VI. SIMULATION

We applied our proposed method to a simplified simulation
model of our humanoid robot CB [6] (Fig. 1(Right)).

A. Improvement of biped stepping performance

We applied our proposed method to improve stepping in
place. We used the amplitudes Ah roll = 4.0◦ and Aa roll =
4.0◦ for side-to-side movement, and Apitch = 6.0◦ to attain
foot clearance. We used the coupling constant Kc = 10.0.
We set the natural frequency of the controller to ωc = 3.5
rad/sec. We defined the target of the stepping task to keep
the state at ψroll = 2.0◦. We use a reward function:

r = −0.1(ψroll − 2.0)2 (25)

for this stepping task.
Figure 7 shows learning performance of the stepping task

by using a simple implementation of the policy gradient
method [15] and the proposed off-line learning approach.
Thus, this demonstrate that a full dynamic model is not
necessary in order to achieve sufficient results. Even for
extensive simulation studies, we can save computation time2

and still be able acquire better performance, so that we
can easily generate different policies for different objective
functions without running a full dynamic simulation.

Figure 8 shows policies acquired by using a simple imple-
mentation of the policy gradient method and the proposed
off-line learning approach. Similar policies were acquired
in which the pendulum angle ranged from ψroll = 0.0◦ to
ψroll = 4.0◦.

An acquired stepping movement is shown in Fig. 9. This
result suggests that the approximated dynamics can be used
to improve performance of the stepping task.

2in this case, a stepping task.
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Fig. 7. Comparison of learning performance. Horizontal axis represents
actual calculation time. The solid line represents the learning performance
of the proposed learning method which used the acquired Gaussian process
model. The dotted line represents the learning performance of the standard
reinforcement learning method, which used the full dynamics simulation.
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Fig. 8. Acquired stepping policy. The solid line represents an acquired
policy using the proposed learning method. The dotted line represents an
acquired policy using the standard reinforcement learning method. Similar
policies were acquired in the range from ψroll = 0.0◦ to ψroll = 4.0◦ .

B. Improvement of biped walking performance

We also applied our proposed method to improve walking
performance. We used the amplitudes Ah roll = 3.5◦ and
Aa roll = 3.5◦ for the side-to-side movement, and Apitch =
7.0◦ to get foot clearance. We used the coupling constant
Kc = 10.0. We set the natural frequency of the controller
to ωc = 3.5 rad/sec. We only modulate the amplitude Awalk

in (8) to generate forward movement for the biped walking
task (we set Astep = 0.0◦ in (7)). The target of walking task
is to increase the angular velocity of the pendulum ψ̇pitch at
the Poincaré section. We use a reward function:

r = 0.1(ψ̇pitch) (26)

for this biped walking task.
Figure 10 shows initial performance of the biped walking

policy. Figure 11 shows walking performance after one
iteration of the proposed method. This result suggests that
approximated dynamics can be used to improve biped walk-
ing performance.

VII. EXPERIMENTAL RESULT

We applied our proposed method to a small size humanoid
robot (see Fig. 2). We use the roll angle ψroll defined by
the pendulum model (see Fig. 5) as the state, and modulate
Aa roll in (6) as the action of the learning system. We use
a reward function r = −0.1(ψroll)2 for this stepping task.
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(a) t=0.0 sec (b) t=6.0 sec (c) t=9.0 sec (d) t=12.0 sec (e) t=15.5 sec

Fig. 10. Initial walking pattern. The red line represents the starting position. Initially, the simulated robot explore around the starting position. Time
proceeds from left to right.

(a) t=0.0 sec (b) t=5.0 sec (c) t=8.3 sec (d) t=11.3 sec (e) t=14.0 sec

Fig. 11. Improved walking pattern after one iteration of the proposed learning process. Walking speed is 0.14 m/sec. The red line represents the starting
position. Time proceeds from left to right.

Fig. 9. Acquired stepping movement. The red thin line represents desired
angle. After one iteration of the proposed learning process, the pendulum
state represented by the light blue line behind the red line came close to
the desired state at the Poincaré section. The light blue sphere represents
the center of mass.

Figure 12 shows approximated stepping dynamics of the
small size humanoid robot by a Gaussian process. Here we
define the input vector as z = (ψroll(k), Aa roll(k)) and
the output as y = (ψroll(k + 1)) (see (12)). We apply the
reinforcement learning algorithm to this acquired stepping
dynamics to improve stepping performance.

Figure 13 shows the roll angle ψroll at the Poincaré section
ψ̇roll = 0. This result suggests that a stepping policy was
acquired by using our proposed method, and it can keep the
roll state ψroll around the desired angle (0.0◦). An average
angle from 10 to 40 steps were 0.12◦.

Figure 14 shows the acquired stepping movement of the
real robot after one iteration of the proposed learning process,
applied to the real environment. We will soon apply our
proposed method to the biped walking task in the real
environment.
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Fig. 12. Approximated stepping dynamics of the small size humanoid
robot by a Gaussian process. The input vector is defined as z =
(ψroll(k), Aa roll(k)), and the output is define as y = (ψroll(k + 1))
(see (12)).

VIII. DISCUSSION

We proposed using approximated biped stepping and walk-
ing dynamics for Reinforcement Learning (RL) to improve
task performance. In this study, we first approximated the
stepping and walking dynamics by using collected data from
a simulated model or a real robot, then use the approximated
dynamics for RL to improve stepping and walking policies.
We explored using a Gaussian process to approximate the
dynamics. By using a Gaussian process, we can estimate a
probability distribution of a target dynamics with a given
covariance function. We showed that we could improve
stepping and walking policies by using a RL method with
approximated models both in simulated and real environ-
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Fig. 13. The roll angle ψroll at the Poincaré section ψ̇roll = 0 (solid
line). The dotted line represents the desired angle for this stepping task. We
used a policy acquired by the proposed learning method.

Fig. 14. Acquired stepping movement of the real robot after one iteration
of the proposed learning process.

ments. We applied the proposed control approach to a small
humanoid robot.

We took a similar approach to improve the model and
controller, proposed by [18]–[20] – a method that improves
policy parameters by using inaccurate models. Nevertheless,
we proposed the use of a stochastic model to represent the
stepping and walking tasks – since an acquisition of deter-
ministic models that include ground contact being difficult.

In this study, we used a reinforcement learning
method [15] to improve policy parameters. In future work,
we will consider using a dynamic programming approach
to efficiently update policy parameters using the Gaussian
process model [21] since an analytical update using dynamic
programming may reduce the number of iterations to achieve
better task performance. We will also work on the application
of the proposed method to our newly developed human-sized
humanoid robot CB in Fig. 1(Left) [6].
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