
論文 / 著書情報
Article / Book Information

Title FENECIA: failure endurable nested-transaction based execution of
compositeWeb services with incorporated state analysis

Author Neila Ben Lakhal, Takashi Kobayashi, Haruo Yokota

Journal/Book name The VLDB Journal, Vol. 18, No. 1, pp. 1-56

発行日 / Issue date 2009, 1

URL http://www.springerlink.com/content/g546851225w35404/

権利情報 / Copyright The original publication is available at www.springerlink.com.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.springerlink.com/content/g546851225w35404/
http://t2r2.star.titech.ac.jp/

The VLDB Journal manusript No.(will be inserted by the editor)
Neila BEN LAKHAL � Takashi KOBAYASHI � Haruo YOKOTAFENECIA: Failure Endurable Nested-transation based Exeutionof Composite Web Servies with Inorporated State Analysis
the date of reeipt and aeptane should be inserted laterAbstrat Interest in the Web servies (WS) omposition(WSC) paradigm is inreasing tremendously. A real shiftin distributed omputing history is expeted to our whenthe dream of implementing Servie-Oriented Arhiteture(SOA) is realized. However, there is a long way to go toahieve suh an ambitious goal. In this paper, we support theidea that, when hallenging the WSC issue, the earlier thatthe inevitability of failures is reognized and proper failure-handling mehanisms are de�ned, from the very early stageof the omposite WS (CWS) spei�ation, the greater arethe hanes of ahieving a signi�ant gain in dependability.To formalize this vision, we present the FENECIA (FailureEndurable Nested-transation based Exeution of Compos-ite Web servies with Inorporated state Analysis) frame-work. Our framework approahes the WSC issue from dif-ferent points of view to guarantee a high level of dependabil-ity. In partiular, it aims at being simultaneously a failure-handling-devoted CWS spei�ation, exeution, and qual-ity of servie (QoS) assessment approah. In the �rst se-tion of our framework, we fous on answering the need fora spei�ation model tailored for the WS arhiteture. Tothis end, we introdueWS-SAGAS, a new transation model.WS-SAGAS introdues key onepts that are not part of theWS arhiteture pillars, namely, arbitrary nesting, state, vi-tality degree, and ompensation, to speify failure-endurableCWS as a hierarhy of reursively nested transations. Inaddition, to de�ne the CWS exeution semantis, withoutsuffering from the hindrane of an XML-based notation, wedesribe a textual notation that desribes a WSC in terms ofde�nition rules, omposability rules, and ordering rules, andNeila BEN LAKHALTokyo Institute of Tehnology, Department of Computer Siene2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 JAPANTel.: +81-3-5734-3505, Fax: +81-3-5734-3504E-mail: neila�de.s.titeh.a.jpTakashi KOBAYASHI � Haruo YOKOTAGlobal Sienti� Information and Computing CenterTokyo Institute of Tehnology, Department of Computer Siene2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 JAPANTel.: +81-3-5734-3505, Fax: +81-3-5734-3504E-mail: ftkobaya,yokotag�s.titeh.a.jp

we introdue graphial and formal notations. These rulesprovide the solid foundation needed to formulate the exeu-tion semantis of a CWS in terms of exeution orretnessveri�ation dependenies. To ensure dependable exeutionof the CWS, we present in the seond setion of FENECIAour arhiteture THROWS, in whih the exeution ontrolof the resulting CWS is distributed among engines, disov-ered dynamially, that ommuniate in a peer-to-peer fash-ion. A dependable exeution is guaranteed in THROWS bykeeping trak of the exeution progress of a CWS and byenforing forward and bakward reovery. We onentratein the third setion of our approah on showing how the fail-ure onsideration is trivial in aquiring more aurate CWSQoS estimations. We propose a model that assesses severalQoS properties of CWS, whih are spei�ed as WS-SAGAStransations and exeuted in THROWS.We validate our pro-posal and show its feasibility and broad appliability by de-sribing an implemented prototype and a ase study.Keywords Web servies � omposition � dependability �failure � distributed exeution � transation model � QoS1 IntrodutionWith the urrent proliferation of Web servies (WS), a on-siderable shift is expeted to our in the way distributedomputing systems are integrated. The onventionally in-tegrated systems are foreseen to be gradually replaed inthe near future by distributed and loosely oupled servies-oriented systems. The key features that allow the WS teh-nology to aomplish suh a shift are: a) It builds on a setof universally reognized XML standards, espeiallyWSDL(Web Servie Desription Language) [1℄, SOAP (Simple Ob-jet Aess Protool) [2℄, and UDDI (Uniform DesriptionDisovery and Integration) [3℄ to desribe, disover, and in-voke any type of servies in a networked environment. b) Ithas the potential to glue any systems together, no matter howdifferent they are.) It redues dependeny among ompo-nents to obtain less fragile systems with inreased respon-siveness and ability to be frequently modi�ed.

2 Neila BEN LAKHAL et al.One issue that is gaining notable momentum in the re-searh ommunity is WS omposition (WSC), whih is usedto reate what is alled value-added servies or ompos-ite Web servies (CWS) by taking a set of preexisting ele-mentary WS, typially owned and managed by diverse enti-ties, and weaving them together to build more powerful andfeature-rih business proesses. An example of CWS is anappliation that books a �ight, rents a ar, and makes a hotelreservation to provide a omplete trip reservation proess.There is a myriad of spei�ations available for om-posing WS, exempli�ed by the emerging standards suh asBPEL4WS (Business Proess Exeution Language for WebServies) [4℄ and industrial solutions suh as IBM's Emerg-ing Tehnologies Toolkit ETTK [5℄ and Mirosoft's .Net[6℄. In addition, aademi researhers are making substan-tial researh efforts, working on a whole panoply of WSCstrategies inluding dynami omposition (e.g., eFlow [7,8℄), delarative omposition (e.g., SELF-SERV [9,10℄), andsemanti omposition (e.g., SHOP2 [11℄). A areful investi-gation of the major part of the available solutions for WSCreveals that only a very few ases are geared toward a dis-tributed environment, suh as the SELF-SERV framework.However, all the other approahes, suh as BPEL4WS andeFlow, only support the integration of WS into a entralizedmodel onsisting of dediated entralized engine(s). Theyhave totally ignored the nature of theWS environment whereinteration follows a peer-to-peer model and where eah peerWS owner provides a set of servies that an be used to om-pose a CWS.The WSC tehnology is still regarded as immature: it re-quires onsiderable development before reahing its apogee[12,13℄. In partiular, the WSC tehnology has to overomea major obstale�the widely reognized unreliability of theInternet�beause all the available WS rely heavily on theInternet to be deployed. Adding to the Internet unreliabilityis a whole set of harateristis of the modern omputing en-vironments (e.g., unpreditability, heterogeneity, autonomy,dynamism, omplexity, et.) in whih the WS subsist, mak-ing the most unexpeted failure a normal part of any WS.Furthermore, with the assembly of several elementary WSinto a CWS to reate riher funtionalities, the failure fre-queny is more important than ever.In this paper we advoate that, when hallenging theWSC issue, the earlier we aept the inevitability of failuresand make available proper failure-handling mehanisms�from the very early stage of the CWS design�the greaterare the hanes of ahieving a signi�ant gain in dependabil-ity. To formalize this vision, we propose FENECIA (FailureEndurable Nested-transation based Exeution of Compos-ite web servies with Inorporated state Analysis), in whihwe takle the WSC issue from different viewpoints to guar-antee a higher level of dependability. Our approah aimsat being, simultaneously, a failure-handling-devoted CWSspei�ation, exeution, and QoS assessment approah. Ourframework is depited in (Figure 7.1) and its ontributionsare threefold:

WS-SAGAS: a CWS spei�ation model. The �rst se-tion of our approah takles the WSC issue from a differ-ent viewpoint: instead of trying to avoid failures, we aepttheir inevitability and we propose a new CWS spei�ationmodel that builds primarily on the transation onept�widely reognized by the database ommunity as a strongonept for enhaning reliability and availability [14℄. Speif-ially, we present a new transation model that we nameWS-SAGAS [15�18℄ to apture the underpinning logi of theCWS in transations. Our model is spei�ally tailored to �tthe harateristis of the WS arhiteture, thereby allowingto overome the onstraints imposed by the traditional trans-ation model [14℄. In partiular, WS-SAGAS spei�es theCWS as a hierarhy of arbitrary nested transations and in-trodues key features inluding state apture, vitality degree,and ompensation mehanisms. These mehanisms are rit-ial to inform of and reover from any transient failure. Webuild on these onepts to speify failure-endurable CWSas a hierarhy of reursively nested transations. In addi-tion, to de�ne the CWS exeution semantis without suf-fering from the hindrane of an XML-based notation, wedesribe a WSC in terms of De�nition Rules (DR), Compos-ability Rules (CR), and Ordering Rules (OR), and we intro-due graphial and formal notations. These rules provide thesolid foundation required to formulate the exeution seman-tis of a CWS in terms of exeution orretness veri�ationdependenies.THROWS: a CWS exeution arhiteture. In the seondsetion of FENECIA, we propose a new arhiteture, namedTHROWS (Transation Hierarhy for Route Organization ofWeb Servies), for a highly dependable distributed exeu-tion of CWS. In THROWS [19,20℄, CWS exeution ontrolis hierarhially delegated among distributed engines; theseengines are disovered dynamially throughout the CWS ex-eution progress and they interat in a peer-to-peer fash-ion, thereby avoiding WS exeution dependene on a sin-gle authority, whih an onstitute a potential single point offailure. In THROWS, we ahieve failure apture and reov-ery, and ontrol of long-running and parallel transations byintroduing two key onepts: the Candidate Engines List(CEL) and the Current Exeution Progress (CEP).QoS estimation and analysis model. In the third setionof FENECIA, we fous on another issue related to the qual-itative aspet of CWS: we verify to what extent the failure-handling mehanisms we propose are suf�iently strong toahieve a signi�ant gain in dependability. during exeu-tion. We present a novel model that haraterizes, estimates,and analyzes several QoS properties of dynamially exe-uted CWS [21,17℄. In partiular, we estimate the reliabilityand the exeution time of the CWS. We onentrate on oneimportant issue that has reeived little attention to date, thatis, onsidering the potential failures reperussions on theCWS exeution performane estimates.We advoate that a-ounting for failures and their reperussions on the effetiveperformane of the CWS is partiularly required in the WSarhiteture, in view of the WS inherent tendeny to fail rel-atively easily (ompared to other omputing omponents).

FENECIA 3Contrary to most of the urrent approahes dealing withQoS estimations in the WS ontext, whih rely on the QoSinformation advertised by theWS providers, our model om-putes QoS estimates on the basis of the CWS exeution ob-servation.Approah validation. To hek the feasibility of our ap-proah, we present a prototype that we implemented [18,22℄and that spei�es CWS as a hierarhy of reursively nestedWS-SAGAS transations and simulates their exeution inTHROWS arhiteture. In addition, we report a ase studythat demonstrates the appliability of our proposal [21℄.By bringing together the setions desribed above: i) Webuild on the strength of the WS arhiteture-enabling stan-dards. ii) We ombine a number of arefully seleted fea-tures: the transation-based spei�ation and exeution, thestate-guided exeution failure monitoring, the failure-awareQoS estimation, and the exeution observation-driven QoSanalysis. iii) Finally, we introdue the dediated failure han-dling and reovery strategy, and we provide a solid founda-tion for the FENECIA approah to beome a omprehen-sive methodology for the development of highly dependableCWS .The remainder of this paper is organized as follows. Se-tion 2 desribes the type of failures we onsider in this pa-per. Setion 3 desribes the key requirements that a transa-tion model for the WS ontext must satisfy. Setion 4 is anoverview of the evolution of the transation onept. Se-tion 5 desribes our WS-SAGAS transation model. Se-tion 6 desribes our arhiteture, THROWS. Setion 7 intro-dues our QoS model. Setion 8 desribes our validation andheks the appliability of our proposal. Setion 9 desribesrelated work. Finally, Setion 10 onludes our paper andgives a few tentative suggestions for future work.2 Fault ModelThe fault model and the failure modes we identi�ed wereinspired by a failure taxonomy for the partiular ase of WSarhiteture developed in [23℄, whih in turn is based on theseminal work of [24℄.A fault model is a model of the types of faults that anour in a system while it is running. The widely reognizedspei�ities of the modern IT environment in whih WSsubsist (e.g., heterogeneity, omplexity, and autonomy ofthe partiipating systems and of their underlying platforms,versatile ommuniations protools and dynami manage-ment poliies, unertainties about system boundaries, et.)make the system subjet to all the lasses of faults atego-rized in [24℄. The lasses of faults of interest are physialfaults inluding all fault lasses that affet hardware, inter-ation faults inluding all external faults, and developmentfaults inluding all fault lasses ourring during develop-ment. However, in multitier CWS, whih span multiple in-terating systems, interation faults, whih our during use,have the greatest impat. Examples of faults in this lass arelost/orrupted messages, proess rashes, and faults intro-

dued by updates. The interation faults an be ategorizedas transient faults or permanent faults. We onsider perma-nent faults beyond the sope of this paper.2.1 Failure ModesA omplete understanding of possible failure modes helpsdetermine the mehanisms for fault tolerane. In this paper,we onsider failure modes enountered by the system users,spei�ally timing-related failures where the time of arrival,or the duration of the information delivered, at the serviedeviates from the expeted duration implemented by the sys-tem funtion. These failures are environment-related failuresand are assoiated with WS rashes and timeouts; they areommonly haraterized as silent failures beause the sys-tem servie is no longer available to users. At the omposi-tion level, speial monitoring is required to handle these fail-ures. This lass of failure is handled by performing either aforward reovery or a bakward reovery without requiringany external intervention.The other ategory of failures enountered by systemusers is ontent-related failures, suh as WS exeution ex-eptions,WS programmed exeptions, exeptions propagatedfrom other partiipantWS, and fault messages reeived fromSOAP alls to WS. We onsider ontent-related failures tobe beyond the sope of this paper; dealing with them is om-plex beause WS providers de�ne WS differently.3 A Transation Model for WS Context: KeyRequirementsWe identify the key requirements that a transation modelfor CWSmust satisfy. A number of ontributions have addeda transational support for CWS suh asWS-transation [25℄and WS-CAF [26℄. Although available solutions are mostlyfor statially omposed WS, we target a dynami CWS. Af-ter identifying the different requirements that a transationmodel for dynami CWS must satisfy, we provide a state-of-the art summary of the onept of transations in databasetehnology to identify previously proposed onepts that mayhelp to inrease dependability.REQUIREMENT 1. A generi model that an ombine dif-ferent transational semantis: WS interleaved in a CWStends to be hosted by different providers. It is most likelythat their providers are using nonompliant transation sup-ports (if they provide any). Moreover, it is not possible toompel theWS providers to make the same transationmodelavailable. To this end, a transation model for the WS on-text must be suf�iently generi to aommodate differenttransational semantis in the same model. Furthermore, itmust add the required transational semantis to the WS, ifthey do not exist. BPEL [4℄ is a typial example of a WSCspei�ation that de�nes only one type of transational se-manti for all the WS interleaved in the same CWS.

4 Neila BEN LAKHAL et al.The sagas model [27℄ was used to de�ne the requiredtransational support for stati CWS in BPEL. In BPEL, theonly way to handle a failure is by ompensation; the asewhere it is impossible or unneessary to de�ne a ompen-sator for a partiular saga is not addressed. It is true that fail-ure atomiity is guaranteed beause if any ativity fails theoverall proess is ompensated. However, we argue that thesupport of other transational behaviors in the same modelimproves the hanes of CWS exeution ompleting su-essfully. Other required transational behaviors in this situ-ation are: (i) envisaging alternative mehanisms to ompen-sation if ompensation is not an option; (ii) having reourseto ompensation only as a last resort, when there is no meansof saving some part of the proess progress; (iii) inludingidempotent tasks that need no ompensation.REQUIREMENT 2. A model that an support different inter-ation patterns: The logi underpinning business proessestends to be versatile and semantially varying. Consequently,in the same transation, we may have to orhestrate elemen-tary WS in different ways and in line with different ontrol�ow patterns (e.g., join, split, synhronize, et.). However,a major part of the proposed transation models only sup-ports a onurrent or sequential interation within a trans-ation. To overome this limitation, the Work�ow ommu-nity ontributions are of interest. In partiular, well-knownWork�ow Patterns are those proposed in the seminal work[28℄. This olletion of patterns has been used to evaluate thefuntionality of ommerial produts and standards support-ing the development of proess-oriented appliations (e.g.,the METEOR projet [29℄ and BPEL [4℄). This work servesas a reliable starting point for de�ning the required aggrega-tion patterns.REQUIREMENT 3. A model that an guarantee the best mathbetween WS and CWS omponents: A well-known hara-teristi of theWS realm is its unpreditability; this harater-isti is not part of the equation in either theWork�ow area ortransation models. Both are designed for a omputing en-vironment where modi�ations are very rare. Moreover, thedifferent omponents, for either a transation (subtransa-tions) or tasks for Work�ows, are prede�ned, whih totallyeliminates unpreditability.Returning to the WS ontext, unpreditability introduesa high probability of failure when WS are statially orhes-trated. To overome this limitation, it is required to de�neseveral alternative WS for the same omponent so that ifthe exeution using one fails, it an be reattempted usingothers. Moreover, as WS tends to provide basi funtionali-ties, it is very probable that one transation as a whole an-not be satis�ed by one WS alone. This introdues anotherrequirement for omponent/transation semantis, ompo-sition/deomposition, to failitate and ensure that the bestmath is made. This requirement satisfation is partially ad-dressed in this paper; for a full desription, refer to [18℄.

REQUIREMENT 4. A model that an guarantee orret anddependable exeution: Many spei�ed details of the CWSrelate to the de�ned exeution orretness restrition meth-ods. In partiular, we ite serializability [30℄, widely aeptedas the ornerstone of database orretness, as unsuitable.Our justi�ation is that serializability is very rigid and im-poses restritions that are not required (or feasible) in theWS ontext. For example, the shared resoure ondition isnot satis�ed beause we are no longer dealing with transa-tions to be serializable against only one database; the differ-ent proesses desribed as CWS are far more omplex thansimple write/read operations.Several proposals, suh as quasiserializability for a mul-tidatabase environment [31℄, have proposed solutions that,although they relax the strit serializability ondition, stilltarget onurreny ontrol and database integrity ontrol.Nevertheless, for CWS, orretness means ensuring thatthe semantis of the CWS are orret against the proess-prede�ned semantis (i.e., proess logi and omponents or-ders). Therefore, serializable exeution is not required in thesame way as in a onventional database [32℄. An importantapproah, whih indeed was already used for ensuring or-ret exeution of CWS, is by speifying a set of AeptableTerminal States (ATS) [33,34℄.This approah was initially proposed for transationalWork�ow systems and later extended to CWS. In this ap-proah, designers have a ruial role in determining whihis the orret exeution, in terms of ATS. We argue that ATSis a powerful approah that �ts well for CWS with a entral-ized and stati exeution, as in [34℄. However, for a dynamiand distributed exeution, ATS is insuf�ient as there is noentral entity that is responsible for verifying that the exeu-tion veri�es, or violates, the prede�ned ATS. Moreover, ATSonly veri�es termination dependeny and, even if the differ-ent omponents of a CWS terminate in states inluded intheir ATS, there is no guarantee, or means of proving, theirexeution order orret. We require speial mehanisms toenfore that the exeution order of the omponents of a CWSdoes not deviate from the presribed order.4 Transation Conept: State of the ArtWe highlight features of several transation models that areinteresting for dependability enhanement. We explain foreah feature/model why it an or annot be integrated in atransation model tailored for CWS.4.1 Traditional Transation ModelThis model is undoubtedly the preursor of all the transa-tion models that have been proposed. It refers to a transa-tion endowed with the ACID (Atomiity, Consisteny, Isola-tion, and Durability) properties [35℄. With these properties,eah transation is guaranteed to enfore failure atomiityand serializability as a orretness riterion. Eah transa-tion has a �at struture.

FENECIA 5Although the effetiveness of the traditional transationmodel in onventional database appliations, where transa-tions are generally simple and of short duration, is irrefutable,the unsuitability of its strit ACID properties for the WSontext is lear. Maintaining strit isolation and serializabil-ity auses a lak of funtionality, �exibility, and performane.This preludes the possibility of intertransation ooperationand long-running transations.4.2 Advaned Transation ModelsSeveral advaned transation models have been proposedin response to the in�exibility of the traditional transationmodel (refer to [14℄ for a omprehensive desription of someof these). We investigated the appliability of some of thesemodels that inherently allow transation omposition (stru-turing) �an essential feature for a model for CWS�and en-ompass onepts with reognized ontributions in enhan-ing dependability but not yet part of the WS arhiteture.The nested-transationmodel [36℄, whih uses a serializ-able orretness riterion, made a signi�ant ontribution tothe database ommunity by: (i) extending the �at transationstruture to a multilevel struture; (ii) introduing the on-ept of ontingent and nonvital subtransations; and (iii) al-lowing a higher degree of intratransation parallelism. All ofthese onepts are of onsiderable relevane to WS arhite-ture beause, �rst, the onurrent exeution of transation isan essential feature. Seond, ontingent subtransations areeasily realizable beause WS that share the same funtion-alities are numerous; onsiderable researh effort is diretedtoward ahieving this issue. Third, de�nition of nonvital sub-transations is essential to inrease availability.To deal with the problem of long-lived transation faults,the onept of ompensation was �rst introdued in the sagasmodel [27℄. A saga onsists of a set of ACID subtransa-tions with a prede�ned order of exeution and a set of om-pensating subtransations. If a long-lived transation fails,it an be aborted and rolled bak, and then retried. How-ever, if a saga as a whole beomes irreoverable and has toabort, appropriate ompensations are run to ompensate forthe ompleted parts of the transation (bakward reovery),that is, semantially undoing the effets of the failed parts.The other possibility in reovery is a forward reovery, thatis, the system needs to retry the same failed transation parts.The ompensation ingredient here is of partiular interestbeause it an realize a �exible fault-handling approah�ahighly desirable harateristi in the WS ontext, in view ofits high failure tendeny. However, the restrition imposedby sagas that eah subtransation must be suessfully om-pensatable annot always be ful�lled. Therefore, alternativemehanisms for nonompensatable tasks are required.The nested-sagas transation model has been proposedas an extension to the sagas model [37℄. It treats ommu-niation between transation steps as an essential feature in

the WS ontext. Eah saga spei�es input and output ports,bound at run time to mailboxes (i.e., queue of messages).Communiation is ahieved using three different lasses ofprede�ned ommands: Bind, Send, and Reeive.The Flex transation model was designed to allow more�exibility in transation proessing [33,38℄. A �exible trans-ation is spei�ed by de�ning a set of subtransations, a setof intratransation exeution dependenies, and a set of a-eptable terminal states (ATS) de�ning the onditions forthe suess of the �exible transation. The Flex transationmodel goals are very similar to our goals beause it tar-gets a multidatabase system, whih an be assimilated toa speial ase of the WS environment where the partii-pating systems are prede�ned and annot dynamially dis-appear without prior notie. In partiular, the way a �ex-ible transation is de�ned makes it the best andidate forCWS, as it allows the designer to speify a set of funtion-ally equivalent subtransations, eah of whih, when om-pleted, aomplishes the task. Moreover, the ontribution ofthe state and the intratransation exeution dependenies as-soiated with eah transation an overome the statelessWS and provide �exible atomiity and isolation, espeiallyif the subtransations support some form of ompensation.It is also suitable for ontrolling and traking the exeutionprogress in a distributed environment.While these advaned models differ in various forms,they all share the same line of thinking: the strit ACIDproperties support is no longer a viable solution for a non-traditional database environment. In this sense, they exploitappliation-spei� semantis to de�ne nonserializable or-retness riteria to speify and onstrain the behavior of thetransation omponents and their interations. As well asthese transation models, many others were also proposedfor databases (e.g., ooperative SEE transations [14℄, DOMtransations [14℄, et.) or by the Work�ow researh ommu-nity. We limited our study to these models beause they areat the base of many others that were proposed later.5 WS-SAGAS Transation ModelWe propose to adopt features of interest from the transa-tion models desribed above and to build on them to makeour transation model suf�iently rih to support any CWSunderpinning logi and to provide it with the required meh-anisms to guarantee a dependable spei�ation of dynamiCWS exeuted in a peer-to-peer environment.Spei�ally, we inherit the arbitrary nesting of transa-tions, the forward reovery with exeution retrial, the bak-ward reovery ensured with ompensation mehanism, thevitality degree, the state, theWork�ow-like aggregation pat-terns, and the intratransation exeution dependenies toensure orret exeution.

6 Neila BEN LAKHAL et al.
out in out in

in out

out in out in out in out in in out

out in out in out out in out in in

out in out in out out in out in in ...

.

] , [i i i m n P Process

 Elements) n SAGAS - WS i i 1 , (

a i E . 1 . i E
1 i n i E

, .

 Elements) n SAGAS - WS i a i 2 , . (

2 , i n . a . i E 1 a i E . .

 Elements) n SAGAS - WS p i b a i , . * . . (

1 . . * . . b a i E
p i n b a i E

. . . * . .

...

.

) (Level

 Nesting

1

) (Level

 Nesting

2

1 . i state a i state . 1 , . i n i state

1 a i state . . 2 , i n . a . i state

p , i n . b . * . a . i state

1 . . '
i n i E

1 a i E . . ' 2 , i n . a . i ' E

1 . . * . . ' b a i E
p i n b a i E

, . * . . . '

(description) (description) (description)

(description) (description)

(description) (description)

1 . . * . . b a i state

1 . ' i E

) p (Level

 Nesting

. . .

out in out out in in ...

.
 Elements) n SAGAS - WS

i m i c b a i , . * . . * . . (

1 . . * . . * . . c b a i E
i m i n c b a i E

, . . * . . * . .

.

) m (Level

 Nesting

i

i m , i n . c . * . b . * . a . i state

1 . . * . . * . . ' c b a i E
i m i n c b a i E

, . . * . . * . . ' (description) (description)

1 . . * . . * . . c b a i state

. . .

out

in

out

in

Legend

compensating
element

atomic
element

composite
element

input parameters

output parameters

control flow

Fig. 4.1 WS-SAGAS transation model: graphial notation Gi of a proess Pi desribed as a hierarhy of reursively nested WS-SAGAS5.1 General AssumptionsASSUMPTION 1. We assume we are dealing with businessproesses that may need to ombine various transationalbehaviors. That is, a proess puts together different ativi-ties: several are idempotent and need not be undone (e.g.,displaying order information), several an be easily undoneor ompensated for (e.g., adding produts to an order), andseveral others annot be (automatially) undone beause theymark a deision, ommonly alled nonompensatable (e.g.,heking out and ordering).ASSUMPTION 2. We assume that there is no dependenybetween suessive invoations of the seleted WS, if thedynami WS disovery and seletion leads to seleting thesame WS,

ASSUMPTION 3. We assume the proess of andidateWS disovery, seletion, and mapping, and that veri�ationthat a ertain andidate WS and a ertain omponent froma CWS are semantially equivalent an be performed auto-matially. A very ative area of researh is measuring thesemanti and syntati similarity between WS to ensure thebest math an be done. We onsider this issue beyond thesope of this paper, as we an apply any of the available pro-posals.ASSUMPTION 4. We assume the system designers havea omprehensive desription of the business rules buried inthe proess-underpinning logi and they an use these ruleswithout ambiguity to disern the different transational be-haviors and their sope (i.e., a CWS, a omponent from aCWS, an aggregation of omponents, et.).

FENECIA 75.2 Desription of WS-SAGAS Model Salient FeaturesOur model introdues the following features to speify theunderpinning logi of a proess (e.g., virtual travel ageny),as a fault-tolerant and dynamially exeuted CWS against apeer-to-peer environment:5.2.1 Proess, Transation, and ElementTo allow a dynami proess omposition, instead of spei-fying the underpinning logi of a proess using a set of pre-existing WS woven together into a stati CWS, we intro-due the onept of an Element�represented by a retanglein (Figure 4.1)�and use it as a unit in the omposition ofa proess as a hierarhy of reursively nested WS-SAGAStransations.The same element an be simultaneously a omponentfrom a WS-SAGAS and a parent of other elements in an-other WS-SAGAS. Therefore, it is alled a omposite ele-ment and we represent it as a blue retangle. Alternatively,an atomi element is only embedded in a WS-SAGAS andis represented as a white retangle.On exeuting a proess, WS are dynamially disovered,and andidates are seleted and mapped either to the differ-ent elements or to WS-SAGAS, onsidering the WS avail-ability. In this paper we limit the WS seletion and mappingto the atomi elements. However, our approah supports themapping to entireWS-SAGAS. This issue is detailed in [18℄.The ontrol �ow between the different elements spei�es theordering relation between the different elements and is rep-resented by direted edges. Finally, the data �ow spei�eshow the data produed by an element are transferred to an-other element and are represented by the mapping betweenthe different input and output boxes; we do not onsider thisissue in this paper and we will address it in our future work.More preisely, we adopt the following notation of a pro-ess, illustrated also by (Figure 4.1):Pi[ni;mi℄ :WS-SAGASi (ni;1 elements) (nesting level 1)`WS-SAGASi:a (ni;2 elements) (nesting level 2)` :::`WS-SAGASi:a:�:b (ni;p elements) (nesting level p)` :::`WS-SAGASi:a:�:b:�: (ni;mi elements)(nesting levelmi)(5.1)A proess (denoted Pi) is assumed to have a unique identi-�er i as a subsript, where i ranges over the set of naturalnumbers � to designate different proesses. Eah proess isassumed to have ni elements distributed over mi nesting lev-els. In the hierarhy of WS-SAGAS forming the proess, wedenote the uppermost WS-SAGAS WS-SAGASi. Note thatwe keep the same subsript for the orresponding proess.Note also that WS-SAGASi is the only WS-SAGAS in thehierarhy that has no parent.

In (WS-SAGASi `WS-SAGASi:a), the symbol �`� indi-ates thatWS-SAGASi is de�ned at the top of the subtrans-ationWS-SAGASi:a. That is, the parent element of the sub-transationWS-SAGASi:a must be Ei:a, one of the elementsaggregated inWS-SAGASi.A hierarhy of WS-SAGAS forming a proess ontainsa parentWS-SAGAS, plus zero or more hildren; the hildrenan be atomi elements or omposite elements, parents ofother WS-SAGAS.We guarantee the uniqueness of an element identi�er bykeeping the identi�er of the subtransation it appertains toand onatenating it to a unique identi�er for the element.More formally, let Ei:a be one of the elements from the up-permost transationWS-SAGASi and �i:a� its identi�er; �i�is the index of its parent WS-SAGAS.We emphasize that thenumber of �:00 in the identi�er indiates the nesting level, andthe last digit (i.e., a for Ei:a) indiates the order. We assumethat �a� is de�ned in [1::jWS-SAGASij℄ where jWS-SAGASijis the ardinality (i.e., the number of assembled elements)of the subtransationWS-SAGASi and is equal to ni;1. Sim-ilarly, it is equal to ni;2 for WS-SAGASi:a forming the se-ond nesting level, and equal to ni;mi for the nesting levelmi ontainingWS-SAGASi:a:�:b:�: . To generalize, we use inWS-SAGASi:a:�:b the symbol ��� to indiate that there existsa subtransation that has as a parent the element Ei:a:�:b andthat omes in one of the nesting levels after nesting level 1,whih ontains the element Ei:a. In �i:a:� :b� the symbol ���is replaed to de�ne the WS-SAGAS atual identi�er. WeassumeWS-SAGASi:a:�:b is the nesting level p where p<miand mi orresponds to the last nesting level in Pi. We denotethe last subtransation in the hierarhy, whih orrespondsto the nesting level mi by WS-SAGASi:a:�:b:�: ; its �rst ele-ment is denoted Ei:a:�:b:�::1 and its last element is denotedEi:a:�:b:�::ni;mi .5.2.2 Vitality DegreeTo add �exibility to the way failures asade through a pro-ess, depited as a hierarhy of WS-SAGAS transations,we distinguish vital from nonvital elements. The vital-ity degree of an element is denoted by a supersript set to�v� for vital and to �v̄� for nonvital. The vitality degreeobeys these assumptions:� A vital element (denoted Evi:k) must be exeuted su-essfully (i.e., it has to ommit) for its parent transationto ommit.� A nonvital element (denoted E v̄i:k) may abort withoutpreventing its parent transation from ommitting.� Aborting a vital elementEvi:k indues aborting the wholetransation it appertains to if there is no alternative WSto retry it.� Aborting a nonvital elementE v̄i:k does not re�et on theexeution of the transation it appertains to; the proessould omplete suessfully although not all its ompo-nent elements were ommitted. Doing so is expeted toinrease availability and to derease the probability ofoverall proess failure ourring.

8 Neila BEN LAKHAL et al.We desribe below the de�nition of the vitality degree of aproess Pi depited as a hierarhy of reursively nested WS-SAGAS transations. In the remainder of this paper, an ele-ment's supersript is omitted and the notation (Ei:k) withoutspeifying the vitality degree is used for an element whennot relevant or interesting. The distintion between a vitalelement (Evi:k) and a nonvital element (E v̄i:k) is only givenwhen a speial onsideration is required.5.2.3 Transational BehaviorEvery atomi element Ei:k has a transational behavior. Thetransational behavior of an element is losely related to thenature of its funtional semantis and is determined prini-pally by the designers to desribe how the element failurean be handled. The transational behavior of an elementan be one of the transational behaviors desribed below:� Compensatable: The funtional semantis of the ele-ment an be undone.� Nonompensatable: The funtional semantis of theelement annot be undone (automatially) one done.Two other transational behaviors are impliitly supportedby our model: retriable and idempotent elements. Weassume all the vital elements are retriable with differ-ent semantially equivalent WS and that the nonvital ele-ments are not retriable beause their ful�llment is optional.An idempotent element is one that has no effet (e.g., readoperation); we treat this as a ompensatable element thatis undone by running an empty ompensator.The hoie of potential andidate WS for a partiular el-ement must onsider the required transational behavior forthat element. When an atomi element is ompensatable,we represent its ompensating element just below it with around-ornered retangle (see Figure 4.1). Assume that theelement Ei:1 is ompensatable: we denote its ompensat-ing element E 0i:1. Similarly, a omposite element is om-pensated by the different elements aggregated in its orre-sponding WS-SAGAS: in (Equation 5.1), Ei:a is a ompositeelement represented by the subtransationWS-SAGASi:a andit an be ompensated by ompensating WS-SAGASi:a. Wedesribe this in detail below.5.2.4 StateWe attah to eah atomi element from aWS-SAGAS trans-ation a state for the following reasons.(i) To deide how to advane a proess exeution, (i.e., todeide whether to delegate the exeution ontrol to otherelement(s) or to resume it), it is essential to know theexeution progress of eah element separately.(ii) At a ertain point of the exeution of a proess, the pre-spei�ed objetives may be ahieved. In this ase, theproess is onsidered to be suessfully ompleted andan be ommitted. Beause we onsider a distributedmodel, where there is no entral monitor that has allthe required information about the exeution progress,

we annot make a deision unless we attah a state toeah element. We an then derive the urrent state of thewhole proess. More importantly, we an dedue whetherthe exeution progress is orret against the proess pre-spei�ed semantis and ordering.At any time, the state of every elementEi:k�denoted statei:k(in Figure 4.1)�keeps the same identi�er as the element it isattahed to. The state of an element is assumed to be exlu-sively in one of the six states de�ned below, if the elementis ompensatable (see Figure 5.1 (a) and (b)):1. Waiting: Ei:k is not yet submitted for exeution and isstill waiting for the exeution progress to reah its level.2. Exeuting: Ei:k is effetively being exeuted.3. Failed: Ei:k has enountered a failure.4. Aborted: Ei:k has reeived a request to abort itself andhas obeyed it.5. Committed: Ei:k has suessfully terminated and wasommitted.6. Compensated: Ei:k has been ompensated for.If an element isnonompensatable, the set of states thatmodel the element's internal behavior is redued to �ve statesby eliminating the ompensated state (see Figure 5.1 ()and (d)). A vital element is assumed to be retriable,and there is therefore a direted edge between the failedand exeuting states in Figure 5.1, (a) and ().For an element to transfer from one state to another, atransition ondition has to be evaluated. When it is veri�ed,several ations may be triggered. Of the different ations,one ation makes the state of the element hange from onestate to another.For a ompensatable element Ei:k, to transit from thestate waiting to the state exeuting, we assume the veri-�ability of the ondition that indiates that at least one WSbearing the same semanti funtionalities as the element mustbe seleted. Only when the seletedWS is mapped to the el-ement does the element's state beomes exeuting.Depending on the alloated WS exeution progress andthe progress of other elements in the same WS-SAGAS, theexeuting state an transit to aborted, if the WS exeu-tion must be aneled, or it an transit to either the ommittedor the failed states; this depends on whether the seletedWS ahieved the element's objetives or not.Assume that the state of a ompensatable element wasset to failed. Subsequently, depending on the element's vi-tality degree, the proessing differs:a) When the element is vital, another andidate WSthat bears the same semanti funtionalities is seleted andthe exeution is retried with this new andidate by hangingthe element state bak to exeuting; suess of exeutionof the new WS means suess of the element and its state isset to ommitted. However, if an element is retried a num-ber of times with different WS and all the attempts are un-suessful and it is no longer possible to retry the exeution,for any prede�ned reason, then the element's state remainsfailed, and a bakward reovery is triggered.

FENECIA 9
waiting

executing

committedfailedaborted

start

end

Initiate()

Start()

Commit()Abort()

Fail()

waiting

executing

committed

failed

aborted

start

end

Initiate()

Start()

Commit()Abort()

Fail() Retry()

waiting

executing

committedfailed

compensated

aborted

start

end

Initiate()

Start()

Commit()

Compensate()

Abort()

Fail()

waiting

executing

committedfailed

compensated

aborted

start

end

Initiate()

Start()

Commit()

Compensate()

Abort()

Fail() Retry()

waiting

executing

committedfailed

compensated

aborted

start

end

Initiate()

Start()

Commit()

Compensate()

Abort()

Fail()

waiting

executing

committedfailed

compensated

aborted

start

end

Initiate()

Start()

Commit()

Compensate()

Abort()

Fail() Retry()

(d) State transition diagram of a

non-vital non-compensatable element

(c) State transition diagram of a

vital non-compensatable element
(b) State transition diagram of a

non-vital compensatable element

(a) State transition diagram of a

vital compensatable elementFig. 5.1 State transition diagram for elementsb) The other possible ase is when we have a nonvitalelement. If the �rst andidate WS exeution failed, the el-ement's state is set to Failed, no exeution retrial is at-tempted, and the exeution of the whole WS-SAGAS is re-sumed, as if the element was suessful.The main differene in proessing a ompensatableand a nonompensatable element beomes lear when anelement is in the ommitted state and the exeution of an-other vital element from the same WS-SAGAS annot beretried so a bakward reovery is neessary. In suh a ase,all the ompensatable elements in the ommitted state areompensated and their state then beomes ompensated.The ase of nonompensatable elements inluded ina WS-SAGAS requires speial onsideration beause the is-sue of mixing ompensatable and nonompensatable om-ponents in the same transation is a dif�ult problem.In [38℄, the authors introdued a ommit protool to en-sure the ompensatable omponents are ommitted beforethe ommitment of the nonompensatable omponents.The global ommit/abort deision is determined by the out-ome of the nonompensatable omponents. If they abort,all of the ompensatable omponents are ompensated. Inour model, we extend this protool and we use mainly thestate onept to allow the exeution of a hierarhy of reur-sively nested WS-SAGAS more �exibly. A detailed disus-sion of this issue is in the following setion.5.2.5 Failure ReoveryThe WS-SAGAS de�nes a ompensating element for eahelement, when possible. There are two hoies when an el-ement fails to ommit (e.g., alloated WS failure): the �rstis to attempt the element exeution retrial, whih is a vari-ant of the sagas forward reovery. However, the differene isthat the same element is reattempted but with another WS.If the �rst hoie is not possible, then the seond hoie isbakward reovery, in whih the WS-SAGAS offers eitherto ompensate or to abort the elements to bring the overallCWS bak to a onsistent state. We elaborate on this pointin greater detail later in this setion.

5.2.6 WS-SAGAS NotationsAn investigation of most of the urrent CWS spei�ationlanguages and approahes showed that there are three mainategories of notations adopted to depit a CWS: (a) The�rst ategory uses an XML-based notation; BPEL [4℄ andWebTransat [39,40℄ are typial examples. (b) The seondategory opts for a graphial notation for more expressive-ness and to overome the omplexity of an XML-based no-tation; they typially use a standardizedmodeling notation todesribe CWS. Examples are state harts and UMLmodels�a typial example is SELF-SERV [41℄�or they de�ne aproprietary notation, if the standard notations are not suf-�iently rih to aommodate all the desired semantis oftheir approahes, e.g., eFlow [8℄. () The third ategory prefersformal notations suh as p-alulus or other proess alge-bras beause of their oniseness and power to analyze thesemantis and orretness of the model [42℄.In WS-SAGAS, we advoate the use of three notationsbeause we are strongly onvined that one notation alone isinadequate to express all the semantis of an approah andmay not be suitable for different users. First, instead of anXML-based notation, we propose a textual notation that anbe used to generate automatially an XML-based notationof the CWS, when later implementing the system. Our tex-tual notation is muh less error prone, less omplex, morehuman readable, and more easily modi�able. The most im-portant feature of our notation is that we exploit it to speifyand onstrain the behavior of the different elements in a pro-ess and the interations between them. In addition, to om-plement our textual notation and to de�ne a ommon solidfoundation for omparison with other formal approahes,we propose a formal notation. We also de�ne a proprietarygraphial notation and we use this to illustrate a runningexample, beause the standardized notations, suh as UMLdiagrams, do not enompass all the semantis we requiredfor our model. Finally, to have a omprehensive notation ofa CWS, our three notations an be ombined or used sepa-rately.

10 Neila BEN LAKHAL et al.
E out Ein

State State

... ...E i.k
E i.k+1

State i.k State i.k+1

... ...

(a) Sequence pattern

Ei.k

out

E i.k+1
in

out

E i.k+j
in

State i.k

State i.k+1

State i.k+j

...

...

...

...

(b) Parallel pattern

E
i.k

Ei.k+1in

out

E i.k+jin

State i.k

State i.k+1

State i.k+j

.

.

.Selection

(c) Selection pattern

...

E
i.k

E
i.k+1in

out

E
i.k+j

in

State i.k

State j.k+1

Statei.k+j

.

.

.Switch...

.

.

.

(d) Switch pattern

... E i.l
in

Ei.k
out

Ei.k+j
out

State
i.l

State i.k

State
i.k+j

Rendezvous

... ...

(e) RendezVous pattern

...

...

... ...

...

...

E
i.l

in

E out

E
i.k+j

out

State i.l

State i.k

Statei.k+j

.

.

.
merge

λ=

λ

(f) Exclusive merge pattern

i.k

.

.

. Exclusive

λ

times

i.l
in

i.k
out

i.k+j
out

i.l

i.k

i.k+j

.

.

. Selective
E

E

E

State

State

State
merge

S(Eλ =

λtimes

.

.

.

λ

1

(g) Selective merge pattern

E i.k out

Ei.k+1in out

State i.k

State i.k+1

λ Times

(h) Iterative pattern

......

Iterate

| i.l)pre
||) |Fig. 5.2 WS-SAGAS aggregation patterns5.2.7 WS-SAGAS Aggregation PatternsTo de�ne the aggregation patterns, we propose building onexisting work on Work�ow patterns and on an analysis ofexistingWork�ow languages reported in [28℄. The followingmotivated our hoie: a) Control �ow dependenies enoun-tered in Work�ow modeling omply with the WS ontext,beause the situations they apture are also relevant in thisdomain. b) Existing languages for WSC, suh as BPEL andBPML, were built on the basis of languages for Work�owmodeling [43℄; therefore, we have a ommon basis for om-paring our work with these approahes.) It is possible forour model to inorporate different aggregation patterns intothe same struture, whih was not allowed with advanedtransation models proposed previously. By inorporatingthe transation onept with the different aggregation pat-terns we enable a �exible and dependable WSC [18℄.The analysis of existing Work�ow languages allowed usto identify the relevant patterns neessary to model the logiof any proess, no matter what it is. We identi�ed eightpatterns: sequene, parallel, seletion, swith, rendezvous,

seletive merge, exlusive merge, and iterative (see Figure5.2) [17,18℄. In [28℄, the authors introdued 20 patterns,but we limited our study to eight of these and we delib-erately exluded the others (suh as the anellation pat-terns or the state-based patterns) beause those eight pat-terns, when ombined with the ompensation, the state, andthe vitality degree, are suf�ient to express any proess thatour approah an support. ExistingWork�ow languages pro-vided either a graphial notation or an XML-like notation ofthese patterns and, to the best of our knowledge, there is nostandard notation for suh aggregation patterns. We have al-ready identi�ed the limitations of XML-like notation and de-sribed why we prefer to de�ne our textual notation.We on-tinue with the same line of thinking and propose a proessalgebrai approah to formalize the desription of our aggre-gation patterns. Instead of an informal notation, we proposeusing proess algebras (PAs) beause we are dealing withaggregation patterns that have semantis and the orretnessof their semantis needs to be veri�ed. PA ontributions inthis diretion make them an interesting andidate.

FENECIA 115.3 WS-SAGAS NotationThe underpinning logi of a proess Pi, depited as a hier-arhy of reursively nested WS-SAGAS, is denoted by a 3-tuple hTi;Gi;Fii formed by a textual notation (Ti), a graph-ial notation (Gi), and a formal notation (Fi).5.3.1 Desription of Textual Notation (Ti)A textual notation of a proess Pi (denoted Ti) is formedwith three different sets of Rules identi�ed by the systemdesigners using the proess logi desription: the set of Def-inition Rules (DR), the set of Composability Rules (CR), andthe set Ordering Rules (OR).The DR,CR, and OR share the same tuple-like notationbut their semantis differ beause: (i) EahDR gives relevantinformation of an entity that either relates to the CWS spe-i�ation (e.g., a proess, an element, a omponent, et.) orintervenes in the CWS exeution (e.g., a WS, a oordinator,et.). (ii) Eah CR spei�es the relation between the differ-ent entities de�ned by the different DR (i.e., how the entitiesare ombined, how the entities interat with eah other, et.).(iii) Eah OR de�nes the ondition that the relation betweenthe different entities de�ned by the CR must verify (i.e., un-der whih ondition entities are ombined, under whih on-dition entities interat with eah other).We propose the following tuple-like generi notations tode�ne a DR, a CR, and an OR:DR(Entityu) :hAttribute1�; :::iDR(Entityv) :hAttribute2�; :::iDR(Entityw) :hAttribute3�;(Attribute4;Attribute5); :::iCR(Entityw)! hEntityu;EntityviOR(Entityw)! hEntityu op Entityvi ;where:� Attribute is the relevant information about an Entity.We de�ne the multipliity of eah attribute to indiatethe Attribute ourrene number, that is, the number oftimes we may �nd the attribute; we de�ne four formsof an attribute's multipliity: i) The notation Attribute1�indiates that Entityu may de�ne zero or several valuesof Attribute1. ii) The notation Attribute2� indiates thatthe Entityv must de�ne at least one value of Attribute2.iii) The notation Attribute3� indiates that this attributeis optional and at most one value an be provided. iv) Anattribute name with nothing next to it similarly to the at-tribute Attribute4 indiates that one value only is to beprovided. v) Finally, Attribute4 and Attribute5 are asso-iated and this is indiated by the parentheses.� CR(Entityw) indiates that Entityw de�nes a ompos-ability relation between Entityu and Entityv.� op is the ondition that the omposability relation be-tween Entityu and Entityv must de�ne.Spei�ally, we de�ne DR to provide relevant informationabout three different entities: a proess, a WS-SAGAS, and

an element. The set of CR identi�es the relation of om-posability between the different elements and WS-SAGAS(e.g., whih WS-SAGAS is omposed of/omposing whihWS-SAGAS/elements). Finally, the set of OR identi�es theordering ondition that every relation of omposability be-tween the elements and proess must verify.De�nition 5.1 (De�nition Rule of an Element)Let Ei:k be an Atomi element from WS-SAGASi. DR(Ei:k)is an ordered tuple that provides relevant information of anEi:k, namely its name, desription, state, vitality degree, trans-ational behavior, operation with its orresponding inputand output parameters, and itsQoS attributes.We added onlythose attributes we onsidered to be fundamental in ompos-ing WS; extending theDR expression with other attributes ispossible. We use the following notation of a DR of an ele-ment, whih is a speialization of the generi DR notationfor an entity desribed above:DR(Ei:k) :hname;desription;behavior;state;type;vitality;(operation� (in�;out�));qos�i ;where:- name is the name of the element.- desription is a onise desription of the element'smain semanti funtionality.- behavior is the transational behavior of the element.This attribute veri�es the ondition:DR(Ei:k):behavior 2 fompensatable;non-ompensatableg :- state desribes the exeution progress of the element.- vitality is the vitality degree of the element. This at-tribute veri�es the ondition:DR(Ei:k):vitality2 fvital;nonvitalg :- type is the element granularity: an element that has nohildren is atomi. Otherwise the element is a parent ofa WS-SAGAS and its type is omposite.- operation� indiates that an element may de�ne sev-eral values of operation, but at least one.- in� and out� are the different input and output parame-ters of the element.- The different input and output parameters are assoiatedwith their orresponding operation by using parenthe-ses; we may de�ne at least one operation, but input andoutput parameters are optional. For example, we mayhave (operation1(in1; in2;out1));(operation2()), for anelement with two operations, one of whih is a void fun-tion that takes no argument.- qos� are the different QoS attributes of the element,whih are estimated when the element is exeuted. Wedenote this by qos tuples of attributes; for example, wemay have qos�=< qos1;qos2;qos3 > to desribe an ele-ment where we are interested in three partiular QoS at-tributes: the exeution time, the reliability, and the ost.

12 Neila BEN LAKHAL et al.For eah atomi ompensatable element Ei:k verifying(DR(Ei:k):behavior= Compensatable and DR(Ei:k):type=Atomi), we de�ne a ompensating element (denoted E 0i:k).This element is invoked if a failure later in the exeution ofEi:k makes it neessary.The ourrene of element E 0i:k after element Ei:k restoresthe system to a state that is an aeptable approximation ofits state before the start of the exeution. For every ompen-sating element, we may de�ne the de�nition rule of a om-pensating element (exatly DR(E 0i:k)), in the same way wede�ned it for an element.De�nition 5.2 (De�nition Rule of a WS-SAGAS)Let WS-SAGASi:a be a subtransation formed by ni;2 ele-ments and having as a parent the omposite element Ei:afromWS-SAGASi (see Equation 5.1).DR(WS-SAGASi:a) is an ordered tuple that provides relevantinformation on WS-SAGASi, spei�ally its name, desrip-tion, state, vitality degree, transational behavior, and QoSattributes. The values of several attributes are dedued fromthe attributes in the omposing elements of the WS-SAGAS.DR(WS-SAGASi:a) :hname;desription;behavior�;state�;vitality;qos�i ;where:- name is the name identi�er of the WS-SAGAS.- desription� is a onise desription of theWS-SAGAS;it ombines the desription of the different elements thatappertain to this WS-SAGAS and veri�es:DR(WS-SAGASi:a): desription�ni;2[̀=1(DR(Ei:a:`):desription) :- state� desribes the exeution progress of the subtrans-ationWS-SAGASi:a It is an ni;2-tuple formed by the statesof the elements omposingWS-SAGASi:a:DR(WS-SAGASi:a):state�� ni;2[̀=1(DR(Ei:a:`):state) :We assume that only the state of the vital elements af-fets the overall WS-SAGAS ommitment's deision. Inaddition, all the ompensatable elements must wait forthe nonompensatable elements from the same sub-transation (i.e., nesting level) to be able to ommit theirwork. By putting together these two assumptions, we anredue the state of a WS-SAGAS to the set of states ofthe elements that verify the onditions:DR(WS-SAGASi:a):state�� ni;2[̀=1(DR(Ei:a:`):state) with:DR(Ei:a:`):vitality= Vital andDR(Ei:a:`):behavior = Nonompensatable :

- vitality is a redution of a tuple formed by ni;2 vitalitydegrees, one for every atomi element aggregated inWS-SAGASi:a. We redue this ni;2-tuple to a one-valuetuple. If there is at least one vital element in a WS-SAGAS, the overall WS-SAGAS is vital. However, aWS-SAGAS is nonvital if all of its omposing ele-ments are nonvital. These requirements are formulatedbelow:� DR(WS-SAGASi:a):vitality= nonvital ifff8Ei:a:` 2WS-SAGASi:aj` 2 [1::ni;2℄g we have:(DR(Ei:a:`):vitality= nonvital).� DR(WS-SAGASi:a):vitality= vital ifff9Ei:a:` 2WS-SAGASi:aj` 2 [1::ni;2℄g that veri�es:(jDR(Ei:a:`):vitality= vital).- behavior� is a ni;2 tuple formed by the transational be-haviors of the atomi elements inWS-SAGASi:a. Its ex-pression is:DR(WS-SAGASi:a):behavior�� ni;2[̀=1(DR(Ei:a:`):behavior) :- Finally, qos� are the different QoS attributes we on-sider; we derive these on the basis of the qos attributesof the elements that appertain to the WS-SAGAS. Wedesribe how below.De�nition 5.3 (Set of De�nition Rule of a Proess)The set ofDR that de�nes a proess Pi is derived below basedon the expression of a proess in (Equation 5.1):DR(Pi)[ni;mi℄ �i:a:�:b:�:[̀=i DR(WS-SAGAS`)i:a:�:b:�::ni;mi[¶=i:1 DR(E¶)� �DR(WS-SAGASi) i:ni;1[¶=i:1DR(E¶))S (DR(WS-SAGASi:a) i:a:ni;2[¶=i:a:1DR(E¶)) � � �S (DR(WS-SAGASi:a:�:b)i:a:�:b:ni;p[¶=i:a:�:b:1DR(E¶)) � � �S (DR(WS-SAGASi:a:�:b:�:)i:a:�:b:�::ni;mi[¶=i:a:�:b:�::1DR(E¶)� :De�nition 5.4 (Composability Rule of a WS-SAGAS)The next step in our modeling approah is de�ning the Com-posability Rules (CR), essential in de�ning the nesting andomposition dependeny between the differentWS-SAGAS.A typial CR of a WS-SAGAS is the speialization of theentity CR desribed above. Below we desribe the CR ofWS-SAGASi:a, the seond nesting level omposed of ni;2 el-ements:CR(WS-SAGASi:a)! hEi:a:1; � � � ;Ei:a:ni;2 i :

FENECIA 13De�nition 5.5 (Set of Composability Rules for a Proess)We de�ne the set ofCR for the proess shown in (Figure 4.1)and (Equation 5.1):CR(Pi)[ni;mi℄ � i:a:�:b:�:[̀=i (CR(WS-SAGAS`))� CR(WS-SAGASi)S CR(WS-SAGASi:a) � � �S CR(WS-SAGASi:a:�:b) � � �S CR(WS-SAGASi:a:�:b:�:) ;where:CR(WS-SAGASi)CR(WS-SAGASi:a):::CR(WS-SAGASi:a:�:b):::CR(WS-SAGASi:a:�:b:�:)
! hEi:1; � � � ;Ei:a; � � � ;Ei:ni;1 i! hEi:a:1; � � � ;Ei:a:ni;2 i:::! hEi:a:�:b:1; � � � ;Ei:a:�:b:ni;p i:::! hEi:a:�:b:�::1 ; � � � ;Ei:a:�:b:�::ni;mi i :De�nition 5.6 (Ordering Rule of a WS-SAGAS)The step that omes after identifying the different CR is theOrdering Rules (OR) de�nition. The most important featureof this step is that eah rule builds on the proess's prede-�ned semantis to de�ne and restrit the exeution depen-denies between the different elements/WS-SAGAS form-ing a proess (i.e., the orret exeution orders). For a WS-SAGAS, if no OR is expliitly de�ned, then the order of thedifferent elements order is interhangeable. Below we de-sribe the OR ofWS-SAGASi:a representing the seond nest-ing level and omposed of ni;2 elements:OR(WS-SAGASi:a)! hEi:a:1 op � � �op Ei:a:ni;2 i :De�nition 5.7 (Set of Ordering Rules of a Proess)We de�ne the different OR of the WS-SAGAS subtrans-ations nested in the proess depited in (Figure 4.1) and(Equation 5.1):OR(Pi)[ni;mi℄ � i:a:�:b:�:[̀=i (OR(WS-SAGAS`))� OR(WS-SAGASi)S OR(WS-SAGASi:a) � � �S OR(WS-SAGASi:a:�:b) � � �S OR(WS-SAGASi:a:�:b:�:) ;where:OR(WS-SAGASi)OR(WS-SAGASi:a):::OR(WS-SAGASi:a:�:b):::OR(WS-SAGASi:a:�:b:�:)
!hEi:1 op � � �op Ei:ni;1 i!hEi:a:1 op � � �op Ei:a:ni;2 i:::!hEi:a:�:b:1 op � � �op Ei:a:�:b:ni;p i:::!hEi:a:�:b:�::1op � � �opEi:a:�:b:�::ni;mi i :

In the different OR, op stands for �operator� and it de-pends on the ontrol �ow that desribes the proess in termsof elements and their exeution ordering through differentonstrutors (e.g., sequene, hoie, parallelism, and syn-hronization).Considering how business proess logi tends often toinvolve omplex behaviors and apabilities, whih are stru-tured in different ways, we need to enrih WS-SAGAS witha set of onstrutors that broadens its potential sope andmake it suf�iently rih to sustain any business proess, nomatter how omplex; this remains an ongoing problem in thearea of transation models. The different �operators� are theeight different aggregation patterns we de�ned on the basisof the seminal work in [28℄. To �ll the gap aused by the ab-sene of a standard textual notation of the different patterns,we build on the formal notations and PAs.5.3.2 Desription of Formal Notation (Fi)PAs [44℄ are formal desription tehniques to speify soft-ware systems, partiularly those formed from onurrent andommuniating omponents. Numerous PAs have been pro-posed; well-known PAs are Milner's Calulus for Commu-niating Systems (CCS) [45℄, Hoare's Communiating Se-quential Proesses (CSP) [46℄, and all their extensions, suhas the p-alulus and LOTOS [44℄. These PAs de�ne typ-ially simple onstrutions to desribe dynami behavior,ompositional modeling, operational semantis, behavioralreasoning by model heking, and proess equivalene.PAs omply with the WSC issue beause they allow de-sription of formally dynami proesses. In addition, theirprede�ned onstruts are adequate to speify CWS, due totheir inherent omposability property [42℄.There are a large number of existing PAs; the most ad-equate formalism an be determined based on the desiredexpressiveness orientation. The enoding proposed in any ofthe PAs an be smoothly translated into any other standardPA.We hose to build on the Compensating CSP [47℄, a vari-ant of the CSP PA, beause it already supports ompensa-tion and reasoning for long-running transations. The atomievents of CSP are used to model the elements of a WS-SAGAS; several atomi elements an be ombined using theoperators provided by the CSP language to support sequen-ing, hoie, and parallel omposition. In addition, to sup-port failed transations, ompensation operators are inher-ited from the Compensating CSP. Finally, to allow more ad-vaned ombinations to support other aggregation patternsthat WS-SAGAS requires to formalize the eight aggregationpatterns it de�ned but that CSP does not de�ne, we introduea set of advaned aggregation operators.In formalizing WS-SAGAS, we desribe a syntax in thespirit of CSP de�ned by the following grammar in BNF-likenotation:

14 Neila BEN LAKHAL et al.
PiFWS-SAGASi `WS-SAGASi:�WS-SAGASiF [Ei:k℄; [Ei:k+1℄j [Ei:k℄ jj [Ei:k+1℄j [Ei:k℄? [Ei:k+1℄j [Ei:k℄� ([Ei:k+1℄ jj [Ei:k+2℄)j [Ei:k℄ C ([Ei:k+1℄ jj [Ei:k+1℄)j ([Ei:k℄ jj [Ei:k+1℄)^[Ei:k+2℄j ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄j ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄j l [Ei:k℄[Ei:k℄F Evi:k�E 0vi:k j E v̄i:k�E 0i:kv̄

(nesting)(sequene)(parallel)(arbitrary ordering)(seletion)(fork/hoie)(join)(seletive merge)(exlusive merge)(iteration)(ompensating pair) :where:� Pi designates a proess and we represent it as a hierar-hy of reursively nested WS-SAGAS by adopting thenotation (WS-SAGASi `WS-SAGASi:�);� WS-SAGASi:� is the lowermost nested subtransation and�i:�� is to be replaed by the subtransation identi�er;� [Ei:k℄, [Ei:k+1℄, and [Ei:k+2℄ are elements fromWS-SAGASiwhere an element enlosed between �[� and �℄� an be aompensating pair of a vital or a nonvital element,if the element is de�ned as ompensatable;� [Ei:k℄and[Ei:k+1℄ represent the sequential onstrution thatombines two elements: [Ei:k℄ is exeuted �rst, and onlywhen [Ei:k℄ terminates suessfully an [Ei:k℄ be exeuted;� [Ei:k℄ jj [Ei:k+1℄ is a parallel omposition of two elements;� [Ei:k℄ ? [Ei:k+1℄ represents the operator for onstrutingthe exeution of elements where the exeution order isarbitrary; it an be in parallel, sequentially, or a ombi-nation of these two;� [Ei:k℄�([Ei:k+1℄ jj [Ei:k+2℄) represents the seletive hoieof [Ei:k℄, whih selets whihever of [Ei:k+1℄ and/or [Ei:k+2℄is to be enabled;� [Ei:k℄C ([Ei:k+1℄ jj [Ei:k+2℄) represents a partiular ase ofthe seletive hoie operator beause only one of [Ei:k+1℄and [Ei:k+1℄ is to be enabled;� ([Ei:k℄ jj [Ei:k+1℄)^[Ei:k+2℄ represents where the elements[Ei:k℄ and [Ei:k+1℄ are synhronized at a partiular ren-dezvous point and must wait for eah other to exeutethe element that omes diretly after them;� ([Ei:k℄ ? [Ei:k+1℄)� [Ei:k+2℄ represents where [Ei:k℄ and[Ei:k+1℄ onverge but without synhronization at a par-tiular rendezvous point; the element that omes diretlyafter them (i.e., [Ei:k+2℄) is ativated every time either ofthese two elements reahes the rendezvous point;� ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄ is a speial ase of (([Ei:k℄?[Ei:k+1℄)� [Ei:k+2℄); the differene is that the �rst ele-ment that terminates its exeution ativates the exeutionof [Ei:k+2℄;� l [Ei:k℄ is l iteration of [Ei:k℄.

5.3.3 Desription of Graphial Notation (Gi)Our proposed graphial notation of WS-SAGAS is shown in(Figure 5.2).5.4 WS-SAGAS Transation Model: Exeution Semantisand CorretnessTo eliminate ambiguities, to allow analysis and further rea-soning regarding our transation model, and to failitate itsomparison with other models, it is neessary to de�ne ourmodel operational semantis and orret exeution. Beausewe are onsidering a peer-to-peer exeution model, the useof strit serializability poses severe limitations that are un-aeptable. The desription of a proess in terms of DR,CR,and in partiular OR, partly ontributes to avoiding inon-sistenies beause the different OR allow de�nition of theorret ontrol �ow in a proess.To ensure the semantis of eah element are respeted,when eah element exeuted, in partiular its nesting, trans-ational behavior, and vitality degree, we build on the stateonept and de�ne several types of dependenies that musthold between the different elements ombined in the samepattern; we term these intrapattern dependenies. These de-pendenies formulate the required onditions for a pattern toommit and desribe how failure reovery is performed. Be-ause every WS-SAGAS ombines elements following dif-ferent patterned operational semantis, to de�ne a orretWS-SAGAS on the basis of the different intrapattern depen-denies, we desribe another form of dependenies, alledintra-WS-SAGAS dependenies, that formulate the requiredonditions for a WS-SAGAS to ommit and desribe howfailure reovery is performed.Finally, we formulate the onditions for orret exeu-tion of a proess in terms of intraproess dependenies bytaking as a basis the intra-WS-SAGAS dependenies formu-lated for eah WS-SAGAS appertaining to the hierarhy ofWS-SAGAS in the proess.5.4.1 WS-SAGAS Pattern Exeution SemantisLetWS-SAGASi:a be a subtransation from a hierarhy form-ing a proess Pi (Equation 5.1). WS-SAGASi:a ombines aolletion of elements de�ned in CR(WS-SAGASi:a). Thisolletion of elements is equal to Si:a:ni;2`=i:a:1E`.We de�neWS-pattern as the set of possible patterns de-�ned by ombining the CSP-like notation and the Work�owpatterns:WS-pattern : fsequene(;); parallel(jj);arbitrary(?);seletion(�);swith(C); iterative(l);rendezvous(^);seletivemerge(�);exlusivemerge(�)g :The different patterns, with their de�ned operators, are usedto write the set of OR, as desribed above in this setion.

FENECIA 15Depending on the pattern's semantis, the operator of apattern an be pre�xed (�, C, l), post�xed (^,�, and�),or in�xed (;, jj, and ?). We de�ne for eah pattern a sopethat delimits the elements within the reah of that patternand that should verify its semantis.We assume in what follows that the sope of eah pat-tern inludes only atomi elements between Ei:a:k and Ei:a:l ,where the subsripts of these two elements verify k < l <ni;2. The end of one sope and the start of another is deidedwhen a post�xed or a pre�xed operator is enountered in anOR. Overlapping of elements between onseutive sopesis allowed. The ase of omposite elements is onsideredbelow in the desription of the nesting semantis.We assume there is an entity that ontains the differentDR,CR, and OR of the entire proess. On every exeution ofevery element of a proess, the element's state in this entityis updated.The entity that ontains all this information is transferredbetween elements (i.e., an engine or an authority responsiblefor the exeution of the element) as the exeution proessadvanes. We also assume that eah element keeps a opyof this entity until the end of the proess instane exeution.Therefore, any element an know the set of elements thatome after and before it.To desribe the patterns' semantis, we de�ne for eahpattern several types of dependenies that formulate the on-ditions that the elements in the pattern must satisfy to a-tivate, ommit, interrupt, ompensate, or abort the patternexeution. The onept of dependenies is strongly relatedto the onept of state. We de�ne �ve types of dependeny.Eah dependeny is denoted by intrasupersript(pattern), wherethe supersript is replaed with an abbreviation of the typeof dependeny and the pattern is de�ned inWS-pattern:� intraa(pattern) is an intrapattern exeution ativationdependeny and desribes the ondition(s) that must beveri�ed for the elements ombined in the pattern to startexeution.� intra(pattern) is an intrapattern exeution ommitmentdependeny that desribes the ondition(s) required forthe pattern to be suessfully terminated.� intrai(pattern) is an intrapattern exeution interruptiondependeny that desribes the ondition(s) where, if ver-i�ed, the exeution of the whole pattern is in a situationwhere forward reovery is insuf�ient to suppress a fail-ure and a bakward reovery is required.When intrai(pattern) is valid, depending on the patternexeution progress and from its omposing elements, anintrapattern exeution ompensation dependeny and/orintrapattern exeution aborting dependeny is/are trig-gered.� intrap(pattern) is an intrapattern exeution ompensa-tion dependeny that formulates the ondition(s) that, ifveri�ed, ensure the onsisteny of the exeution by trig-gering a ompensation mehanism.� intraa(pattern) is an intrapattern exeution aborting de-pendeny that formulates the ondition(s) where, if veri-�ed, the onsisteny of the exeution is ensured by abort-

ing the elements that have to be aborted inluded in thepattern.SEQUENCE PATTERN ([Ei:a:k℄; :::; [Ei:a:k+ j℄)By Si:a:k+ j`=i:a:k E` (Figure 5.2 (a)) we denote a set of elementsaggregated in a sequene pattern. To ensure the orret ex-eution of a sequene, we assume that among Si:k+ j`=i:a:k E`,there must exist only one vital nonompensatable ele-ment. Where more than one vital nonompensatable el-ement is inluded in the sequene, splitting the sequene intoseveral sequenes is envisaged. Assuming that the vitalnonompensatable element in question is Evi:a:¶ , it mustverify the following onditions:�DR(Ei:a:¶):behavior = non-ompensatable andDR(Ei:a:¶):vitality= vital :The ativation of the exeution of eah element requiresthe termination of eah diret predeessor. More formally,letE` be an element verifying f`2 [i:a:k :: i:a:k+ j℄g; the ex-eution of E` requires the suessful termination of its diretpredeessor, if it is vital (i.e.,DR(E v̀�1):state= Committed),and the termination of its predeessor, even with a failure(i.e., DR(E v̀̄�1):state= Failed), if it is nonvital.The ommitment of the sequene of elements dependson Evi:a:¶ ; more formally, the intraommitment dependenyof this pattern is spei�ed as:� intra(sequene) veri�ation requires that (CONDITIONS1) and (CONDITION S2) are valid:(CONDITION S1.) The sequene an attempt to ommitiff DR(Ei:a:¶):state= Committed.(CONDITION S2.) If the previous ondition is valid, thenthe sequene an be ommitted iff�8E`j` 2 [i:a:k :: i:a:k+ j℄ verifying: DR(E`):vitality=vital; we have: DR(E`):state = Committed:If the set of elements ombined in the sequene does not en-ompass any vital nonompensatable element, then theintraommitment dependeny veri�ation requires satisfa-tion only of (CONDITION S2).If (CONDITION S2) is not veri�ed, that is:�9E`j` 2 [i:a:k :: i:a:k+ j℄ that veri�es: DR(E`):state=Failed and DR(E`):vitality= vital:then the two onditions we de�ne below, (CONDITION S3)and (CONDITION S4), are evaluated. Subsequently, a bak-ward reovery is triggered in the same way whether a se-quene inludes a vital nonompensatable element ornot.An extreme situation is when the set of elements om-bined in the sequene are ompensatable and nonvital;in suh a ase, even if all the elements fail, the pattern intra-interruption dependeny is dedued and it has no effet onthe overall WS-SAGAS, beause a nonvital WS-SAGASsuess is not ritial for the overall proess ommitment.

16 Neila BEN LAKHAL et al.Assume that the element Evi:a:¶ was attempted a numberof times with different WS but none of those attempts wassuessful; this mehanism is atually a forward reoverywhere an element is reattempted with different WS. In thisase, the element is assumed to have failed and a bakwardreovery is triggered, whih implies the veri�ation of theintrainterruption dependeny of this sequene pattern; moreformally:� intrai(sequene) veri�ation requires that (CONDITIONS3) is valid:(CONDITION S3.) The exeution of the sequene pat-tern is interrupted iff DR(Ei:a:¶):state = Failed isveri�ed.Depending on the exeution progress of all the other ele-ments in the sequene (i.e., Si:k+ j`=i:a:k E`�Ei:a:¶), the veri�a-tion of intrai(sequene)may trigger an intrapattern ompen-sation dependeny, an intrapattern aborting dependeny, orboth. More formally:� intraa(sequene) denotes an intrapattern aborting depen-deny in a pattern; it requires that intrai(sequene) wasveri�ed and that (CONDITION S4) is valid:(CONDITION S4.) The intrapattern aborting dependenyholds and there are elements in the sequene that ver-ify:�9E`j` 2 [i:a:k :: i:k+ j℄we have :DR(E`):state=Exeuting and DR(E`):vitality= vital:The veri�ation of (CONDITION S4) implies that the valid-ity of intraa(sequene) and that all the elements that veri�ed(CONDITION S4) are aborted.� intrap(sequene) denotes an intraompensation depen-deny in a pattern; it requires that intrai(sequene) wasveri�ed and that (CONDITION S5) is valid:(CONDITION S5.) The intrapattern ompensation depen-deny is satis�ed and there are elements in the se-quene that verify:�E` 2 j` 2 [i:a:k :: i:k+ j℄; we have: DR(E`):state=Committed and DR(E`):vitality= vital:The veri�ation of (CONDITION S5) implies that the valid-ity of intrap(sequene) is veri�ed and that all the elementsthat veri�ed (CONDITION S5) are ompensated for.To explain ompensation performane, assume that wehave the following sequene from WS-SAGASi:a; we notethat an element plaed between �[℄� is atually a ompensatableelement:sequene : [Evi:a:k℄; [Evi:a:k+1℄; :::;Evi:a:¶ ; :::; [Evi:a:k+ j℄The exeution of the different elements veri�es:�8Ei:a:`jk� ` < ¶ ;DR(E`):state= Committed and8Ei:a:`j¶ < `� k+ j;DR(E`):state= Exeuting

When intrap(sequene) is veri�ed, the sequene exeutionis: [Evi:a:k;Evi:a:k+1; :::;Evi:a:¶ ; :::;Evi:a:k+ j; ::::;E 0vi:a:k+1;E 0vi:a:k℄We assume that the exeution of every ompensating ele-ment, suh as E 0vi:a:k+1, is suessful and does not fail. Its ex-eution is performed by exeuting a previously mapped WSthat an reverse the effets of the WS that was mapped toEvi:a:k+1. The failure of ompensation is onsidered beyondthe sope of this paper beause it remains an unresolvedomplex issue.PARALLEL PATTERN ([Ei:a:k℄;([Ei:a:k+1℄jj:::jj[Ei:a:k+ j℄)) isthe notation of this pattern. LetQ(Ei:a:k)su be the set of allthe elements that are diretly ordered after Ei:a:k and that arepresumed to be exeuted onurrently, and S (Ei:k)su be asubset that only ontains the subset of elements that is exe-uted effetively. The ontent of S (Ei:k)su depends on theaggregation pattern semantis (Figure 5.2(b)). For a paral-lel pattern, all the elements inQ(Ei:a:k)su must be ativatedafter Ei:a:k. This means that:S (Ei:a:k)su =Q(Ei:a:k)su.The ativation of the exeution of the elements in the setS (Ei:a:k)su requires that Ei:a:k suessfully terminates itsexeution (i.e., DR(Evi:a:k):state =Committed), where it isvital. Otherwise, it may terminate in any other state, with-out affeting the exeution progress.Assume that the set S (Ei:a:k)su ontains one or sev-eral vital nonompensatable elements. For this patternto ommit, a speial synhronization mehanism needs to beadded to inform the different elements of the progress of theother vital nonompensatable elements in the same pat-tern. The synhronization mehanism must guarantee thateither all or none of the vital nonompensatable ele-ments are ommitted.The ommitment of this pattern depends on the vitalnonompensatable elements' exeution progress.More formally, the intrapattern ommitment dependenyintra(parallel) is spei�ed as:� intra(parallel) veri�ation requires that (CONDITIONP1) and (CONDITION P2) are valid:(CONDITION P1.) The set of elements an attempt toommit iff8><>: f8Ei:a:¶ 2S (Ei:a:k)sug verifying:DR(Ei:a:¶):behavior = non-ompensatable andDR(Ei:a:`):vitality= vital; we have:DR(Ei:a:¶):state= Committed:(CONDITION P2.) If the previous ondition is valid, thenthe parallel pattern an be ommitted iff�8Ei:a:` 2S (Ei:a:k)su and DR(Ei:a:`):vitality= vital;we have: DR(Ei:a:`):state= Committed:

FENECIA 17If the set of elements S (Ei:a:k)su does not enompass anyvital nonompensatable element, then the intrapatternommitment dependeny veri�ation requires only the sat-isfation of (CONDITION P2).If (CONDITION P2) is not veri�ed, that is:�9Ei:a:` 2S (Ei:a:k)su verifying:DR(Evi:a:`):state= Failed;then the onditions, (CONDITION P3) and (CONDITIONP4), have to be evaluated, and subsequently, a bakward re-overy is triggered orresponding to the de�nition below fora parallel pattern that ombines vital nonompensatableelements.An extreme situation is when all the elements in the setS (Ei:a:k)su are nonvital.Even if all the elements fail, the intrapattern ommitmentdependeny is dedued and the failure of this WS-SAGAShas no effet on the overall proess, as a nonvital WS-SAGAS suess is not ruial for the overall proess om-mitment.Assume that one or more elements from the set of vitalnonompensatable elements were attempted a number oftimes with different WS but none of those attempts was su-essful. Similar to the sequene pattern, these elements areassumed to be failed and a bakward reovery is triggered,whih implies the veri�ation of the intrapattern interruptiondependeny of this parallel pattern; formally:� intrai(parallel) veri�ation requires that (CONDITIONP3) is valid:(CONDITION P3.) The exeution of the parallel patternis interrupted iff8<:9Evi:a:¶ 2S (Ei:a:k)su that veri�es:DR(Ei:a:¶):behavior = non-ompensatable;we have: DR(Ei:a:¶):state= Failed:Depending on the exeution progress of all the other onur-rent elements ombined in the same pattern, the veri�ationof intrai(parallel)may trigger an intrapattern ompensationdependeny, an intrapattern aborting dependeny, or both.Formally:� intraa(parallel) denotes an intrapattern aborting depen-deny; it requires that intrai(parallel) was veri�ed andthat (CONDITION P4) is valid:(CONDITION P4.) The intrapattern aborting dependenyholds and there are elements inS (Ei:a:k)su that ver-ify:�9Ei:a:`j 2S (Ei:a:k)su we have: DR(Ei:a:`):state=Exeuting and DR(E`):vitality= vital:The veri�ation of (CONDITION P4) implies the validity ofintraa(parallel). It entails that all the elements that veri�ed(CONDITION P4) are aborted.

� intrap(parallel) denotes an intrapattern ompensationdependeny; it requires that intrai(parallel)was veri�edand that (CONDITION P5) is valid:(Condition P5.) The intrapattern ompensation dependenyholds and we have:8><>:9Ei:a:` 2S (Ei:a:k)su that verify:DR(Ei:a:`):behavior = ompensatable;DR(Ei:a:`):state= Committed, andDR(Ei:a:`):vitality= vital:The veri�ation of (CONDITION P5) implies that the valid-ity of intrap(parallel) is veri�ed and that all the elementsthat veri�ed (CONDITION P5) are ompensated for. We de-sribe below how ompensation is performed: Assume thatthe only vital nonompensatable element is Evi:a:¶ and ithas failed. Assume also that:�8Ei:a:` 2S (Ei:a:k)su�Ei:a:¶ , we have: DR(Ei:a:`):vitality= vital and DR(Ei:a:`):behavior = ompensatable:If the exeution progress of these elements veri�es:�8Ei:a:` 2S (Ei:a:k)su�Ei:a:¶ , we have:DR(Ei:a:`):state= Committed:then, when intrap(parallel) is veri�ed, the ompensationorder is:[Evi:a:k;((Evi:a:k+1jj:::Evi:a:¶ :::jjEvi:a:k+ j);(E 0vi:a:k+ j jj:::jjE 0vi:a:k+1))We assumed that Evi:a:k is vital and ompensatable. Weemphasize that this element an be nonvital; however, itmust be ompensatable. Otherwise, a bakward reoverywould not be possible, beause a nonompensatable element'seffets, one ommitted, annot be undone. If the underpin-ning proess logi requires a parallel pattern with Ei:a:k non-ompensatable, a plausible solution is to insert an idempo-tent between Ei:a:k and the set of elements to be exeutedonurrently.SELECTION PATTERN ([Ei:a:k℄� ([Ei:a:k+1℄jj:::jj[Ei:a:k+ j℄)).This pattern is a speial ase of the parallel pattern, whereat least one and at most all the elements from Q(Ei:a:k)suould be seleted. After exeuting the element Ei:a:k, a sele-tion ondition is evaluated to hoose from the set of its diretsuessorsQ(Ei:a:k)su. Building on the assumption of equalprobabilities for the different hoies, Ei:a:k an hoose fromP(Q(Ei:a:k)su), the power set of Q(Ei:a:k)su, whih is theset of all subsets ofQ(Ei:a:k)su (Figure 5.2()).The exeution ommitment, interruption, aborting, andompensation obey the same dependenies de�ned for theparallel pattern. The only differene is that the hosen set ofelements fromP(Q(Ei:a:k)su) must verify the onditions:�S (Ei:a:k)su �Q(Ei:a:k)su and S (Ei:a:k)su , /0 :

18 Neila BEN LAKHAL et al.SWITCH PATTERN ([Ei:a:k℄ C ([Ei:a:k+1℄jj : : :jj[Ei:a:k+ j℄)).Similarly, this pattern is a speialization of the Seletion pat-tern (see Figure 5.2(d)). It differs in that only one elementan be hosen from Q(Ei:a:k)su, the set of elements thatomes diretly afterEi:a:k . Similarly, by de�ningS (Ei:a:k)suas the subset hosen fromP(Q(Ei:k)su), it must verify thefollowing onditions:�S (Ei:a:k)su �Q(Ei:a:k)su; S (Ei:a:k)su , /0 andjS (Ei:a:k)suj= 1 :The exeution ommitment, interruption, abortion, andompensation obey the same dependenies de�ned for theparallel pattern.RENDEZVOUS PATTERN (([Ei:a:k℄jj : : : jj[Ei:a:k+ j℄)^[Ei:a:l ℄).Assume thatQ(Ei:a:l)pre is the set of elements that are the di-ret predeessors of the element Ei:a:l . This pattern restritsthe ommitment of a set of elements exeuted in parallelas follows: all the vital elements in Q(Ei:a:l)pre must beommitted for Ei:a:l to start exeution. Therefore, the ele-ment Ei:a:l ativation requires that the intra(parallel) de-pendeny of the elements in Q(Ei:a:l)pre is veri�ed. Whenintra(parallel) is veri�ed, Ei:a:l exeution starts.The ommitment of this pattern depends on Ei:a:l progress;the intrapattern ommitment dependeny is formulated asfollows:� intra(rendezvous) veri�ation requires that (CONDITIONR1) is valid:(CONDITION R1.) The exeution ommitment an bededued iff :�DR(Evi:a:l):state= ommitted orDR(Ei:a:l)v̄:state= failed;Assume that Ei:a:l is ompensatable and vital, and a fail-ure that ould not be resolved by a forward reovery o-urred. In suh a ase, a bakward reovery must be trig-gered. A bakward reovery mehanism requires undoingthe effets of all the elements in Q(Ei:a:l)pre. However, thismay not be possible in the ase where we have Q(Ei:a:l)preverifying the following ondition:�9E¶ 2Q(Ei:a:l)pre verifying:DR(E¶):behavior = non-ompensatableIn this paper, we assume that in this pattern, Q(Ei:a:l)pre in-ludes only ompensatable elements.SELECTIVE MERGE PATTERN (([Ei:a:k℄?:::?[Ei:a:k+ j℄)�[Ei:a:l ℄). Consider the ase where two or more elements ometogether but without synhronization. Assume no elementsare ever exeuted in parallel (Figure 5.2(g)).LetQ(Ei:a:l)pre = fEi:a:k; :::;Ei:a:k+ jg be the set of all theelements that are the diret predeessors of the elementEi:a:l .The exeution of Ei:a:l annot be ativated unless either ofthe elements appertaining toQ(Ei:a:l)pre has terminated.

On every element termination, Ei:a:l is ativated again.Let S (Ei::a:l)pre be the subset hosen from P(Q(Ei:a:l)pre)and let l = jS (Ei:a:l)prej. In this ase, l represents the up-per bound of the interval of time the element Ei:a:l an beativated.As S (Ei:a:l)pre an ombine vital and nonvital ele-ments, the ondition for the ativation of the exeution ofEi:a:l varies beause a suessful termination for a vitalelement is equivalent to a ommitment; nevertheless, for anonvital element it an be any other state. More formally:Assume that at least one of the elements inS (Ei:a:l)pre isvital, that is, the following ondition is veri�ed:f9E¶ 2S (Ei:a:l)prejDR(E¶):vitality= vitalgIf the above ondition is veri�ed, the ativation onditionfor Ei:a:l is veri�ed and its exeution is started every time thefollowing ondition is valid:�E¶ 2S (Ei:a:l)prejDR(E¶):vitality= vitalwe have: DR(E¶):state= ommitted :To ensure onsistent exeution, Ei:a:l needs to know the ar-dinality l ofS (Ei:a:l)pre. This an be dedued by referring toOR's ontent. An inremental ounter needs to be inreasedon every ativation of Ei:a:l . When this ounter reahes l ,the pattern ommitment is veri�ed. The intrapattern om-mitment dependeny is formulated as follows:� intra(seletive merge) veri�ation requires (CONDITIONSM1) to be valid:(CONDITION SM1.) The pattern ommitment an be de-dued iff :8<:DR(Evi:a:l):state= ommitted orDR(Ei:a:l)v̄:state= failed (i.e., beause Ei:a:l an be vitalor not); and the ounter reahed l :If (CONDITION SM1) is veri�ed, a bakward reovery istriggered. The bakward reovery inludes all the elementsin S (Ei:a:l)pre. Depending on their vitality degree and ex-eution progress, an intrapattern ompensation dependenyand/or abortion dependeny may be triggered, the same asthat de�ned for the previous parallel pattern. However, aritial situation may our when Ei:a:l is ativated l timesand some of these ativations fail and require a bakwardreovery. In suh a situation, inonsistenies our, espe-ially if Ei:a:l is nonompensatable. To deal with this situa-tion, we assume that Ei:a:l and all the elements inS (Ei:a:l)preare nonompensatable and in the �rst failure of Ei:a:l , thewhole pattern failure is dedued and a bakward reoveryis performed. Ei:a:l is ompensated �rst, then the differentelements in S (Ei:a:l)pre are either ompensated or aborted,in view of their exeution progress. This is performed underthe same onditions as formulated for the parallel pattern.

FENECIA 19EXCLUSIVEMERGE PATTERN (([Ei:a:k℄?:::?[Ei:a:k+ j℄)�[Ei:a:l ℄)) is a point in a WS-SAGAS where the exeution oftwo or more elements onverge but without synhroniza-tion (see Figure 5.2(f)). In ontrast to the seletive mergepattern, this pattern assumes that only one element is exe-uted and its exeution suess triggers the diret suessorEi:a:l only one.Q(Ei:a:l)pre ontains the elements within thesope of this pattern and is where any of them may triggerthe exeution of Ei:a:l ; we assume that all the elements fromQ(Ei:a:l)pre have the same probability of triggering the exe-ution of Ei:a:l .Ativation of the exeution of Ei:a:l requires the veri�a-tion of either of the two following onditions:� Assume thatQ(Ei:a:l)pre ontains only vital elements:(CONDITION EM1.) The ativation of the exeution ofEi:a:l requires that only one vital element has beenommitted and it is the �rst to be ommitted; moreformally:8<:9DR(Evi:a:`):state= ommitted and8Evi:a:¶ 2Q(Ei:a:l)pre�fEvi:a:`g, we have:DR(Evi:a:`):state , ommitted:� Assume thatQ(Ei:a:l)pre ontains only nonvital elements:(CONDITION EM2.) The ativation of the exeution ofEi:a:l requires that only one nonvital element hasterminated and it is the �rst to do so; more formally:8<:9DR(E v̄i:a:`):state2 fommitted,failed,aborted,ompensatedg and 8E v̄i:a:¶ 2Q(Ei:a:l)pre�fE v̄i:a:`g;we have: DR(E v̄i:a:¶):state2 fexeuting;waitingg:Upon satisfation of either of the above onditions, the exe-ution of Ei:a:l an be started. The ommitment of this pat-tern depends on Ei:a:l progress.� intra(exlusive merge) veri�ation requires that the fol-lowing ondition, (CONDITION EM1), is valid:(CONDITION EM1) The pattern ommitment an be de-dued iff :�DR(Evi:a:l):state= ommitted orDR(Ei:a:l)v̄:state= failed;If Ei:a:l is ompensatable and vital and a failure that an-not be handled using forward reovery ours, the same as-sumption made for the rendezvous pattern applies for failurehandling.ITERATIVE PATTERN ([Ei:a:k℄;l [Ei:a:k+1℄) is a point in aWS-SAGAS exeution where the exeution of a partiularelement Ei:k+1 must be repeated l times (Figure 5.2(h)).The number of iterations depends on the proess semantis.This pattern is a speial ase of the seletive merge pattern;the only differene is when S (Ei:a:l)pre is a set that ontainsonly one element. It follows that the proessing is the sameas for the seletive merge pattern, if we replae Ei:a:k byS (Ei:a:l)pre and Ei:a:k+1 by Ei:a:l .

5.4.2 WS-SAGAS Patterns Corret StruturingWe de�ne a set of aggregation patterns that ombines a ol-letion of elements in different ways. A WS-SAGAS is de-�ned by onneting a number of patterns in order to satisfya partiular business rule logi. Putting together differentpatterns permits the de�nition of a wide range of proess-underpinning semantis. However, some of these pattern om-binations may lead to inonsistenies in the ontrol �ow. Toavoid this, we need to differentiate the permissible patternombinations from the pattern ombinations that may auseinonsistenies. Moreover, we need to de�ne the orret or-der of ombination. To this end, beause the proess logiis enompassed in the different OR it de�nes, we need tode�ne the permissible ombinations that we use to say if anOR is orret or if it has onsisteny on�its.Let pattern1 and pattern2 be two patterns to be de�nedin WSpattern and that have overlapping sopes (i.e., theyome one after the other and have overlapping sope of el-ements); to obtain a orretly strutured WS-SAGAS, thedesigner must observe several restritions:� If pattern1 = parallel, then pattern2 an be either arendezvous pattern or a seletive merge pattern.� If pattern1 = swith, then pattern2 an be only an ex-lusive merge pattern.� If pattern1 = seletion, then pattern2 an be either aseletive merge pattern or an exlusive merge pattern.5.4.3 WS-SAGAS Subtransations Exeution SemantisEvery WS-SAGAS forms a olletion of elements assem-bled following different aggregation patterns. Therefore, theexeution of the WS-SAGAS depends on the exeution ofthe different patterns it omposes. We formulate the exe-ution semantis of a WS-SAGAS in terms of intra-WS-SAGAS dependenies and we de�ne four types of dependen-ies. LetWS-SAGASi:a be a subtransation and patterni:a itsordered set of patterns desribed by OR(WS-SAGASi:a). Letpatterni:a1 be the �rst pattern in patterni:a, and patterni:atthe last pattern.intraa(WS SAGASi:a) is an intra-WS-SAGAS ativationdependeny. It plaes onditions on the different intrapat-tern dependenies formulated for the different patterns inpatterni:a. Let patterni:a1 and patterni:a2 be two onseu-tive patterns from WS-SAGASi:a. For patterni:a2 exeutionto be ativated, patterni:a1 must have terminated its exeu-tion. We do not restrit the termination to a suessful om-mitment beause a pattern an be a olletion of nonvitalelements.intra(WS-SAGASi:a) is an intra-WS-SAGAS ommitmentdependeny. It plaes onditions on the different intrapat-tern dependenies formulated for the different patterns inpatterni:a. A WS-SAGAS an ommit if all the patterns thatontain at least one vital element are ommitted.More for-mally, intra(WS-SAGASi:a) is valid iff :�8patterni:a` 2 patterni:a where 9Evi:a:¶ 2 patterni:a`;we have: intra(patterni:a`) is veri�ed.

20 Neila BEN LAKHAL et al.If any of the patterns in WS-SAGASi:a that ontain at leastone vital element were interrupted by a failure and a bak-ward reovery was triggered, then the WS-SAGAS failure isdedued. More formally, intrai(WS-SAGASi:a) is valid iff�9patterni:a` 2 patterni:a where 9Evi:a:¶ 2 patterni:a` ;we have: intrai(patterni:a`) is veri�ed:Assume that patterni:a1 and patterni:a2 are two onseutivepatterns fromWS-SAGASi:a, and patterni:a2 is verifying theabove ondition. Therefore, intrai(WS SAGASi:a) is veri�edand it requires that all the patterns in patterni:a have to re-over.Every pattern ativates impliitly the intrapattern inter-ruption dependeny of its predeessor when its own intra-pattern interruption dependeny is veri�ed and terminated.This is ensured by every suessive pattern having overlap-ping sopes.5.4.4 WS-SAGAS Nesting SemantisIn the desription of all the patterns semantis, we assumedthat all the elements were atomi. However, we have de-�ned our proess with multinesting levels where an elementan be at the same time part of one WS-SAGAS and par-ent of another WS-SAGAS. The element Ei:a is inluded inWS-SAGASi and therefore it is regarded as atomi elementsin the same nesting level, that is, f8E` 2CR(WS-SAGASi)�fEi:agg, E` does not know that Ei:a is omposite. That is, ifthe exeution progress of the elements inWS-SAGASi reahesthe omposite element Ei:a the exeution ofWS-SAGASi:ais triggered. However, for the other elements inWS-SAGASi,we assume that the exeution delegation is totally transpar-ent in the sense that the other elements in WS-SAGASi areonly waiting for the exeution of the element Ei:a.On the other hand, Ei:a is the parent of the subtransa-tionWS-SAGASi:a. Consequently, the ommitment of Ei:a inWS-SAGASi is equivalent to the intra(WS-SAGASi:a). There-fore, in the intraommitment dependeny of every patternthat has Ei:a in its sope, we have to replae the ondition:�DR(Ei:a):state= ommitted� by�intra(WS-SAGASi:a) is veri�ed�. Similarly, all the intra-interruption, intraompensation, and intra-abortion depen-denies for eah pattern, inluding a omposite elementwithin its sope, should be revised likewise.In the same way, another form of exeution dependenyis required to guarantee that the nesting relation betweenthe WS-SAGAS forming a proess is respeted. We intro-due another form of dependeny, inter-WS-SAGAS nestingdependeny to ensure that ommitment of WS-SAGASi de-pends on WS-SAGASi:a and that failures of WS-SAGASi:ashould also be asaded toWS-SAGASi. More formally:Let WS-SAGAS` and WS-SAGAS¶ be two subtransa-tions in Pi (i.e., ` and ¶ are de�ned in [i::i:a: � :b: � :℄).There is an inter-WS-SAGAS nesting dependeny betweenWS-SAGAS` andWS-SAGAS¶ , we note:intern(WS-SAGAS`;WS-SAGAS¶) iff:f9E¶ 2CR(WS-SAGAS`)j DR(E¶):type= ompositeg.

5.4.5 Proess Exeution SemantisWe assume a peer-to-peer exeution model of a proess Pidepited as a hierarhy of reursively nested WS-SAGAS,whih in turn are olletions of aggregated elements. We de-note a proess exeution instane by Pxi where x is ranging in[1::a℄ and a designates the number of invoations of the pro-ess. The exeution of a proess instane assumes a dynamiWS disovery and andidate seletion. For eah proess ex-eution instane, we have a set of DR, a set of OR, and a setof CR : DR(Pxi)[ni;mi℄, CR(Pxi)[ni;mi℄, and CR(Pxi)[ni;mi℄.A suessful termination of a proess exeution instaneis reahed when all the vital WS-SAGAS forming the hi-erarhy are suessfully ommitted and that the invoationorder of the olletion of elements forming the hierarhy ofWS-SAGAS is orret against the presribed order. Moreformally, the following onditions are satis�ed:� inter(Pxi) is veri�ed and� OR(Pxi)[ni;mi℄ respeted the same presribed order de-�ned in OR(Pi)[ni;mi℄.intra(Pxi) is an intraproess ommitment dependeny. It putsonditions on the different intra-WS-SAGAS dependeniesformulated for the differentWS-SAGAS in Pi. A proess anommit if all the vital WS-SAGAS are ommitted. Moreformally, intra(Pxi) is valid iff:�8WS-SAGAS` 2 Pi verifying DR(WS-SAGAS`):vitality=vital; we have: intra(WS-SAGAS`) is veri�ed:If any of the vital WS-SAGAS in Pi were interrupted bya failure and a bakward reovery was triggered, then thewhole WS-SAGAS failure is dedued. A failure is asadedup and down the hierarhy. More formally, intrai(Pi) is validiff:�9WS-SAGAS` 2 Pi verifying DR(WS-SAGAS`):vitality=vital; we have: intra(WS-SAGAS`):5.5 Illustrative ExampleWe speify the trip reservation proess P1 using our de�nedtextual, graphial, and formal notations. The travel itineraryreservation proess P1[n1;m1℄ is desribed as a hierarhy ofWS-SAGAS omposed of n1 = 6 elements distributed overm2 = 2 nesting levels. The �rst level is WS-SAGAS1 thatombines n1;1 elements: a trip information registration (Ev1:1),a �ight-booking element (Ev1:2), a hotel reservation element(Ev1:3), and a ar rental element (E v̄1:4). The seond nestinglevel isWS-SAGAS1:3 that has as a parent Ev1:3 that ombinesn1;2 elements: a reserve room element (Ev1:3:1) and a reserverestaurant element (E v̄1:3:2). To eah atomi element, a om-pensating element is de�ned: Ev01:1 is the ompensating ele-ment of Ev1:1, Ev01:2 is the ompensating element of Ev1:2, Ev01:3:1is the ompensating element of Ev1:3:1, E v̄01:3:2 is the ompen-sating element of E v̄1:3:2, and E v̄01:4 is the ompensating ele-ment of E v̄1:4.

FENECIA 21
E1.1in

1.2in out

E1.4
out

out
inin

E1.3
in out

1in out

Travel reservation process (P1)

v

v
v

State1.1

v

State1.2

1.3

State1.4

Rendezvous out

(travel information)

(reserve hotel)

(rent car)

Start

End

in

out

State state

E element

flow

input data

output dataLegend

out

v vitality degree

outin E1.3.1in out E1.3.2in out
vv

1.3.1 1.3.2

v

(text) description

(travel reservation)

E1.1

v�

E1.2

v�

E1.3.1

v'
E1.3.2

v�

E1.4

v�

Atomic element Composite element Compensating element

in

E1.2in out

out
out

inin

E1.3
in out

P [2,6]
1

in out

1)

1.1

v

State1.3

out

(book flight)

Start

End

in

out

State state

E element

flow

input data

output dataLegend

out

v vitality degree

E1.3.1 1.3.2

v

State1.3.1 State1.3.2

(reserve room) (reserve restaurant)

v

(text) description

E1.1

v�

E1.1

v

E1.2

v�

E1.2

v

E1.3.1

v�

E1.3.1

v
E1.3.2

v�

E1.3.2

v

E1.4

v�

E1.4

v

Atomic element Composite element Compensating element

''

'

'

'

WS-SAGAS1

WS-SAGAS1.3

Fig. 5.3 WS-SAGAS graphial notation: example of a trip reservationproessWe assume that a potential user of the proess has to pro-vide his desired destination, his desired departure and returndates, and his name. As QoS attributes, we assume that weare only interested in knowing the exeution time and thereliability.5.5.1 Textual Notation: T1The textual notation of P1 is formed by the triplet ombiningthe list of DR, the list of CR, and the list of OR, as desribedbelow.De�nition Rules:DR(P1)[n1;m1℄ � 1:3[̀=1DR(WS-SAGAS`) 1:3:2[¶=1:1DR(E¶)� �DR(WS-SAGAS1) 1:4[¶=1:1DR(E¶)�[�DR(WS-SAGAS1:3) 1:3:2[¶=1:3:1DR(E¶)� :

DR(WS-SAGAS1) :hname = WS-SAGAS1;desription= 1:4[¶=1:1DR(E¶ :desription);state= 1:4[¶=1:1DR(E¶ :state);vitality = vital;behavior = 1:4[¶=1:1DR(E¶ :behavior)i :DR(Ev1:1) :hname= E1:1;desription= travelinformation;type= atomi;state= Waiting;vitality= vital;operation1((in1 = destination;in2 = depart; in3 = return; in4 = name);(out1 = destination;out2 = depart;out3 = return;out4 = name));qos1 = reliability;qos2 = exeutionTimei :Composability Rules:CR(P1)[n1;m1℄ �CR(WS-SAGAS1)[CR(WS-SAGAS1:3) :CR(WS-SAGAS1)! hEv1:1;Ev1:2;Ev1:3;E v̄1:4iCR(WS-SAGAS1:3)! hEv1:3:1;E v̄1:3:2i :Ordering Rules:OR(P1)[n1;m1℄ �OR(WS-SAGAS1)[OR(WS-SAGAS1:3) :OR(WS-SAGAS1)! hEv1:1;(Ev1:2jjEv1:3)^E v̄1:4iOR(WS-SAGAS1:3)! hEv1:3:1;E v̄1:3:2i :5.5.2 Graphial Notation: G1(Figure 5.3) is an illustrative example of how a trip reserva-tion proess P1 is spei�ed using the WS-SAGAS transa-tion model graphial notation.5.5.3 Formal Notation:F1The formal notation of the proess P1 is desribed belowusing the syntax, in the spirit of CPS, that we de�ned:P1 =WS-SAGAS1 `WS-SAGAS1:3WS-SAGAS1 = [Ev1:1℄;([Ev1:2℄jj[Ev1:3℄^[E v̄1:4℄)= (Ev1:1�Ev01:1);(((Ev1:2�Ev01:2)jjEv1:3)^(E v̄1:4�E v̄01:4))WS-SAGAS1:3 = [Ev1:3:1℄; [E v̄1:3:2℄= (Ev1:3:1�Ev01:3:1);(E v̄1:3:2�E v̄01:3:2) :

22 Neila BEN LAKHAL et al.6 THROWS Arhiteture6.1 MotivationsThe FENECIA approah de�ned the WS-SAGAS model todesribe how a business proess is spei�ed. However, theWS-SAGAS remains only a spei�ation beause it dealtonly with modeling and did not onsider the evident need ofa CWS enatment model to have a omprehensivemethodol-ogy that takles the WSC issue from all its different aspets.To this end, in the FENECIA approah, we investigated theissue of CWS exeution.Typially, a CWS an be organized in either a entral-ized or a distributed fashion. We refer to the exeution modeas entralized when a single oordinator or engine, suh asthe BPWS4J engine, exeutes a CWS developed, for exam-ple using BPEL4WS [4℄. In ontrast to a distributed modelwhere data are transferred diretly between two points, in aentralized model all data must go through the oordinator.The oordinator may thereby beome a performane bottle-nek and onstitute a single point of failure. In addition, al-lowing a large amount of irrelevant data to traverse the oor-dinator may overload the network and ause poor salabilityand signi�ant performane degradation.To ope with the revealed inadequay of the exeution ofCWS with a entralized ontrol in FENECIA, we opted fora distributed model and we present THROWS arhiteture,whih is an aronym for a Transation Hierarhy for RouteOrganization of Web Servies, where the omposition exe-ution ontrol is distributed [19℄ over multiple engines, eahalloated to an element from a proess depited as a hierar-hy of reursively nested WS-SAGAS transations. Ratherthan ommuniating through a entral authority, the enginesommuniate diretly with eah other to transfer data anddelegate exeution ontrol when required.6.2 General Assumptions and Desription of THROWSArhitetureIn THROWS arhiteture, the exeution ontrol of a proessPi depited as hierarhy of reursively nestedWS-SAGAS isalloated to dynamially disovered engines. To ensure highavailability of distributed exeution of the CWS, we makeavailable on eah engine side the following information: theCEL (Candidate Engines List) and the CEP (Current Exeu-tion Progress).In THROWS, for eah atomi element Ei:k from a sub-transationWS-SAGASi, a CEL is generated by searhing forWS that have apabilities satisfying the element Ei:k fun-tionalities. To eah disovered WS, an engine is alloated,and together, they are stored as a ouple, engine-ws, in theCEL of the elementEi:k, denoted asCEL(Ei:k). That is,CEL(Ei:k)is an ordered set of engine-ws ouples, and every time anelement is to be exeuted, CEL(Ei:k) is generated and anengine-ws ouple is alloated. When alloated to exeute apartiular element Ei:k, the engine exeutes the WS it on-

trols and that provides the required funtionalities from theelement Ei:k. Therefore, the engine is responsible of the in-voation, exeution and ompletion, failure information, andreovery of Ei:k.An engine alloated to an element Ei:k is denoted as epi:kand it ontrols a WS denoted as wspi:k, where the subsript�i:k� is kept the same as the element to whih it is alloatedand the supersript �p� is a unique identi�er ranging over[1::jCEL(Ei:k)j℄, with jCEL(Ei:k)j the ardinality of CEL.We assume that there are two types of engines. The �rsttype of engine is alloated to atomi elements and is re-sponsible for the invoation, exeution and ompletion, fail-ure information, and reovery; we all this type engine ex-eutor and we denote it as eepi:k. The seond type of enginesis responsible for omposite elements. An engine alloatedto a omposite element ontrols an overall WS-SAGAS;we all this the engine oordinator and we denote it as epi:a.Assume that for a partiular value q of p in eepi:k, the en-gine eeqi:k ommitted suessfully the element Ei:k. Then, insuh a senario, the engine eeqi:k is responsible for generatingthe CEL of the diret suessors of the element it ontrols;this is how the exeution progresses in THROWS. However,if the engine fails, then a forward reovery an be attemptedif there are other engines in theCEL; otherwise, a bakwardreovery is triggered.TheCEP, using the state onept de�ned inWS-SAGASand with every element being updated with every state hange,allows for information about failures to be olleted and thebakward reovery mehanism to be realized, as desribedin WS-SAGAS. On the other hand, the CEL allows an in-rease in the hanes for the exeution of a CWS ommitby realizing the forward reovery mehanism, desribed inWS-SAGAS. In the future, both the CEL and CEP, beauseof their ontents, an serve as a solid base for investigatingand analyzing the reasons for failures that have ourred ifthey are stored in a history that ollets the exeution logs ofdifferent CWS.To return to the engine oordinator, assume that Ei:a is aomposite element from the proess desribed by (Equa-tion 5.1). When the exeution progress reahes Ei:a, an en-gine epi:a is alloated to Ei:a. Beause Ei:a is the parent of thesubtransationWS-SAGASi:a, the engine epi:a has to initiatethe exeution ofWS-SAGASi:a.The partiularity of epi:a�as engine oordinator�is thatit has no unique WS under its ontrol; therefore, it does notinvoke any WS. Instead, it has to generate the CEL of the�rst element in WS-SAGASi:a, that is, CEL of Ei:a:1. Then,an engine eepi:a:1 is seleted and the exeution proeeds untilit reahes the last element inWS-SAGASi:a; we assume thiselement is Ei:a:ni;2 and it is alloated to an engine eei:a:ni;2 .This engine, when it terminates the exeution of the element,returns exeution ontrol to the engine parent of the entiresubtransation WS-SAGASi:a, that is, to the engine oordi-nator epi:a. The engine oordinator epi:a resumes exeutiontermination of element Ei:a by updating the state of Ei:a inline with the overall state ofWS-SAGASi:a.

FENECIA 23We desribe the oordination between engine oordina-tor and engine exeutor below in this setion.In desribing our exeution arhiteture, we only on-sider the ase where all the elements in a proess Pi areompensatable. The ase of a proess that inludes oneor more nonompensatable elements is addressed in ourfuture work.In searhing for WS that math an element's funtion-alities, we assume only simple mathing based on the ele-ment's prede�ned operations in its DR and the WS desrip-tion inluded in its WSDL.We onsider only simpli�ed on-ditions that an be developed in a future work. We assumethat we an determine easily and automatially whether aWS and an element are semantially equivalent. To date, as-sessing the similarity of WS to ahieve the best math is anative area of researh. We an apply one of the availableproposals ranging from keyword-based methods to ontolo-gies and reasoning algorithm-enrihed methods. We on-sider the applied WS disovery and seletion methods be-yond the sope of this paper.De�nition 6.1 (Engine Exeutor (eepi:k)) An engine exeu-tor eepi:k is alloated to ontrol the exeution of a WSWSpi:kthat provides apabilities satisfying the funtionalities of apartiular atomi element Ei:k from aWS-SAGASi.Beause an engine is an entity that relates to the CWSexeution, we de�ne it using the following speialization ofthe generi DR introdued in the preeding setion:DR(eepi:k) = hname;desription;wsdlLink;epi ;(operation� (in�;out�))�i ;where:- name is neessary to identify the engine exeutor;- desription is a onise desription of the apabilitiesof the WS ontrolled by the engine eepi:k;- wsdlLink is the loation of the WSDL of the WS on-trolled by the engine eepi:k;- (operation�(in�;out�)) are the different operations thata partiularWSWSpi:k an provide with their orrespond-ing input and output parameters;- every �rst and last engine exeutor ontrolling the �rstand last element in a subtransation, respetively, mustknow the engine oordinator that ontrols the subtrans-ation they relate to.This is required beause theWS-SAGAS exeution startsby reeiving the ontrol from the engine oordinator, andwhen the exeution of the last element terminates, thiselement has to inform the oordinator of its terminationand of its exeution results. However, beause a WS-SAGAS exeution may be subjet to failure and inter-rupted before reahing the last element, ideally we mustmake this information available in all the elements. Morepreisely, in (Equation 5.1), assume that epi is the engineoordinator that initiated the exeution of the subtrans-ation and that was alloatedWS-SAGASi; then, in everyengine exeutor ontrolling an element fromWS-SAGASi,we have the information epi made available.

De�nition 6.2 (Engine Coordinator (epi:a)) An engine o-ordinator (denoted epi:a) is alloated to ontrol the exeutionprogress of a omposite element Ei:a aggregated in a sub-transationWS-SAGASi and the parent of another subtrans-ationWS-SAGASi:a. Beause an engine is an entity that re-lates to the CWS exeution, we de�ne it using the followingspeialization of the generi DR introdued in the preedingsetion:DR(epi:a) = hname;desription;CR(WS-SAGASi:a)i ;where:- name is neessary to identify the engine oordinator;- desription is a onise desription of the funtionali-ties of the engine epi:a. It veri�es:DR(epi:a):desription�DR(WS-SAGASi:a):desription- CR(WS-SAGASi:a) has the same ontent asCR spei�edin the preeding setions. This ontent is required for theengine oordinator to know the elements it is responsiblefor invoking. In partiular, as desribed above, epi:a hasto generate theCEL of the �rst element inWS-SAGASi:a;therefore, it requires full knowledge ofCR(WS-SAGASi:a).De�nition 6.3 (The Candidate Engine List of an AtomiElement (CEL(Ei:k))) For eah atomi element Ei:k fromWS-SAGASi we de�ne CEL as the list of andidate enginespotentially enabled to exeute Ei:k (i.e., they ontrol the ex-eution of WS providing the same semantis as Ei:k). Gen-erating CEL is the responsibility of the diret predeessorof the element, that is, when the exeution of Ei:k by a er-tain engine eeqi:k is ommitted. Then, the engine exeutoreeqi:k must alloate the exeution ontrol to another engine toprogress the proess exeution by generating the CEL of itsdiret suessor; we assume it generates CEL(Ei:k+1), andthen it selets an engine eepi:k+1 and delegates the exeutionontrol to that engine.Depending on the element it ontrols (i.e., order in theWS-SAGAS's OR), an engine may have to generate onlyone CEL, many CELs, or it may not have to generate any.In addition, generating the CEL of a partiular elementmight be the responsibility of only one engine, or it mightbe the responsibility of several engines. We show in whatfollows that distinguishing one ase from another dependson the ontent of OR(WS-SAGASi):1. (Ei:k op (Ei:k+1 op Ei:k+2 op : : : op Ei:k+ j)) where everypre�xed operator veri�es op 2 fjj;�;Cg: In this ase, theengine responsible for exeuting the element Ei:k on �n-ishing suessfully Ei:k has to generate the CELs of allthe elements in S (Ei:k)su (the subset of elements ho-sen for exeution from all the diret suessors of Ei:k).If we assume that eeqi:k is the engine that was alloated toEi:k and has ommitted it, then the generatedCELs of allthe elements in S (Ei:k)su is denoted CEL(S (Ei:k)su),and the set of the seleted engines (eah for eah elementfrom S (Ei:k)su is denotedS (eqi:k)su;

24 Neila BEN LAKHAL et al.2. ((Ei:kopEi:k+1 op Ei:k+2 op : : :op Ei:k+ j) op Ei:l) whereevery post�xed operator veri�es op 2 f^;�;�g : Inthis ase,CEL(Ei:l) is generated by the engine(s) respon-sible for exeuting the element(s) in S (Ei:l)pre (the sub-set of elements being exeuted from all the diret prede-essors of Ei:l); if we assume eepi:l to be the engine se-leted to exeute Ei:l , then this set of engines is denotedS (eepi:l)pre;3. As de�ned in (Equation 5.1), Ei:ni;1 is the last element inthis WS-SAGAS and does not have to generate anyCEL.We use the following notation for CEL(Ei:k):CEL(Ei:k) = �DR(ee1i:k);DR(ee2i:k); :::;DR(eeqi:k); :::� ;(6.1)where:� the number of disovered engines in CEL(Ei:k) is vari-able and depends on WS availability.� DR(eeqi:k) is assumed to be theDR of the engine exeutorthat was alloated to Ei:k and was suessful in its exe-ution. Every time the exeution of an element Ei:k fails,it is alloated a new engine from the CEL(Ei:k), de�nedwith DR(eepi:k) and p 2 [1::jCEL(Ei:k)j℄.Beause eah nonvital element has to be attemptedonly one, the ardinality of the different CELs of all thenonvital elements fromWS-SAGASi must verify the on-dition:f8E v̄i:kjE v̄i:k 2WS-SAGASi : jCEL(E v̄i:k)j= 1gHowever, beause the suessful ommitment of all the vitalelements is essential, the probability of their suess must beinreased by generatingCELs verifying the ondition:f8Evi:kjEvi:k 2WS-SAGASi : jCEL(Evi:k)j> 1gIt is possible that throughout the exeution of the differentinstanes of the same element, an engine generates a CELthat ontains multiple andidate engines and that in almostall exeution instanes, the element exeution was ommit-ted by the �rst alloated engine.Consequently, the time spent in generating theCEL on-stitutes an overhead. It is required to determine for eahelement the most suitable value of the ardinality of CEL,whih allows the element to be suessfully terminated, butin addition, avoids the risk of having to trigger a reoveryonly beause there is no available andidate engine. This anbe possible by onsidering and analyzing the exeution his-tory of the different elements.De�nition 6.4 (The Replia Engines List of a CompositeElement (REL(Ei:a))) The REL of a omposite element isde�ned in the same way as an atomi element. However,it does not require any WS disovery or seletion. The maindifferene is that an REL ontains the replias from the sameengine oordinator. That is, assume a omposite elementEi:a is the parent of a WS-SAGASi:a in Pi. When the exe-ution ontrol reahes Ei:a, instead of generating aCEL, be-ause this element is omposite it makes its predeessor(s)

generate REL(Ei:a), whih is a list of replia engines. Thisavoids failure, beause if one of the engines in REL(Ei:a)fails, another engine takes harge of the exeution instead ofthe failed engine. The information in the different engines isontinuously updated to avoid having any obsolete informa-tion. Moreover, any update/information that reahes any ofthe replia engine oordinators in REL(Ei:a) is transparentlybroadast to all the others. We use the following notation forREL(Ei:a):REL(Ei:a) = �DR(e1i:a);DR(e2i:a); :::;DR(eqi:a); :::� (6.2)where:� the number of replia engines in REL(Ei:a) is variableand depends on the designer's judgment;� DR(eqi:a) is assumed to be the DR of the replia en-gine oordinator that was alloated to Ei:a, whih wasnot subjet to a failure, and whih ontains the last up-dated information onerning the exeution progress ofWS-SAGASi:a.De�nition 6.5 (The Current Exeution Progress (CEP))We de�ne the onept ofCEP to keep trak of the exeutionprogress of a proess, depited as a hierarhy of reursivelynested WS-SAGAS. When an engine exeutor eepi:k exeutesan atomi element Ei:k, every hange in that element's statehas to be re�eted on the opy of the CEP, stored loallyon the engine exeutor eepi:k side. The CEP ontent is madeavailable on eah engine (exeutor and oordinator).On every engine exeutor, only one type of CEP opy isavailable. Consider the proess depited in (Equation 5.1),where a opy ofCEP ofWS-SAGASi, whih is stored on theengine exeutor eepi:k, is formulated as:CEP(WS-SAGASi;eepi:k) :��!DR(Ei:1) op � � �op �!DR(Ei:k) op� � �op �!DR(Ei:a) op � � �op �!DR(Ei:ni;1)� ;where:� �!DR(Ei:k) is de�ned as the Ative DR of the element Ei:k:it is equal to the DR of the element Ei:k to whih an at-tribute engine is added, indiating the name of the ur-rently alloated engine to the element; this notation isused to indiate that the element Ei:k is alloated to en-gine eepi:k. The last value of the attribute engine is thevalue of the engine that either ommitted the element orfailed to ommit it.� initially, the attribute �!DR(Ei:k):engine is set to null inall the elements' ative DR in CEP.� Ei:1 and Ei:ni;1 are, respetively, the �rst and the last ele-ment of the subtransationWS-SAGASi.� op is the operator that onnets the different elementwith op 2 fjj; ; ;?;C;^;�;�;�g . Depending on theonsidered operator, it an be pre�xed (e.g., l , C, and �),post�xed (e.g.,^,�, and�), or in�xed (e.g.,jj and ;).

FENECIA 25
outin outin

in out

outin outin outin outinin out......

outin outin outoutin outin

1aiE ..'

in

outin outin outoutin outinin ...

......

],[iii mnP Process

SAGAS-WS i

aiE .1.iE
1iniE

,.

SAGAS-WS ai.

2.. naiE1aiE ..

SAGAS-WS bai .*..

1..*.. baiE
pinbaiE

...*..

...

...
...

1.istate aistate . 1,. inistate

1aistate .. 2naistate ..

pinbaistate
...*..

1..'
iniE

2naiE ..'

1..*..' baiE
pi

nbaiE
,

.*...'

(description) (description) (description)

(description) (description)

(description) (description)

1..*.. baistate

1.'iE

outin outoutinin ...

......
SAGAS-WS

cbai .*..*..

1..*..*.. cbaiE
i

mincbaiE
,..*..*..

...
...

i
mincbaistate

...*..*..

1..*..*..' cbaiE
i

mincbaiE
,..*..*..'(description) (description)

1..*..*.. cbaistate

out

in

out

in

Legend

compensating
element

atomic
element

composite
element

input
parameters
output
parameters

control flow

p
iec

),(
p
ii ecSAGAS-WSCEP

)(1.iECEL

p
iee 1.

),(1.
p
ii eeSAGAS-WSCEP

)(2.iECEL

),(
p
ii ecSAGAS-WSCEP

),(.
p
aii ecSAGAS-WSCEP

)(1. +aiECEL

),(
1,.

p

nii
i

eeSAGAS-WSCEP

p
iec

),(..
p
aiai ecSAGAS-WSCEP

)(1..aiECEL

p
aiec .

),(1.
p
ii eeSAGAS-WSCEP

p
aiee 1..

)(2..aiECEL

),(...
p

uaiai ecSAGAS-WSCEP

)(1.. +uaiECEL

),(
2,..

p

niai
i

eeSAGAS-WSCEP

),(....
p

uaiuai ecSAGAS-WSCEP

)(1... uaiECEL

p
uaiec ..

),(1...
p
aiai eeSAGAS-WSCEP

... ...

),(..
p
aiai ecSAGAS-WSCEP

),(.
p
aii ecSAGAS-WSCEP

p
ni i

ee
1,.

...

),(
1,.

p

nii
i

eeSAGAS-WSCEP

...

p

nai
i

ee
2,

..

p
aiec .

),(...
p

uaiai ecSAGAS-WSCEP

),(
2,..

p

niai
i

eeSAGAS-WSCEP

),(....
p

uaiuai ecSAGAS-WSCEP

...

...

...

p
cbaiee 1..*..*..

),(1..*..*...*..*..
p

cbaicbai eeSAGAS-WSCEP

)(2..*..*.. cbaiECEL

...

p

ncbai
imi

ee
,

..*..*..

...

...

),(1..*..*...*..*..
p

cbaicbai eeSAGAS-WSCEP),(
,

..*..*...*..*..
p

ncbaicbai
imi

eeSAGAS-WSCEP

),(
,

..*..*...*..*..
p

ncbaicbai
imi

eeSAGAS-WSCEP

...

p
aiec .

p
iec

),(1...
p
aiai eeSAGAS-WSCEP

engine
executor

engine
coordinator

CEP/CEL

Fig. 6.1 WS-SAGAS transation model exeution in THROWS arhiteture: ontrol delegation and CEP exhange between engine oordinatorand engine exeutorBeause we onsider a hierarhy of nested WS-SAGAS, wehave different CEP expressions, one for every nesting level.More preisely, onsider the proess in (Equation 5.1). Pi isformed with mi nesting levels. Therefore we have mi differ-ent CEP, one for eah WS-SAGAS.Beause we onsider a peer-to-peer exeution model, theonly onnetion point between two subtransations in twoonseutive nesting levels, suh as WS-SAGASi in nestinglevel 1 and WS-SAGASi:a in level 2, is the engine oordi-nator responsible for the omposite element Ei:a, parent ofWS-SAGASi:a and part of WS-SAGASi. The important roleof an engine oordinator beomes apparent here beause ev-ery engine exeutor is the onnetion point level and onsti-tutes, similar to the bridge that delegates the exeution on-trol from one level to another.Assume that the engine oordinator epi:a was alloatedto the omposite element Ei:a from WS-SAGASi. On beingalloated to exeute the element Ei:a, this engine reeivesa opy of CEP(WS-SAGASi;eepi:a�1) from its diret prede-essor (i.e., assume it is an engine eepi:a�1 alloated to anelement Ei:a�1).Beause Ei:a is omposite, the engine oordinator epi:ahas to initiate the exeution of WS-SAGASi:a; therefore, ithas to generate a CEL of Ei:a:1 and must provide it with theopy of CEP(WS-SAGASi:a;epi:a). Therefore, on epi:a, wehave two CEPs: the �rst is CEP(WS-SAGASi;eepi:a�1) andthe seond is CEP(WS-SAGASi:a;epi:a). In this way we anstart the exeution of another nested level. The ontent ofCEP(WS-SAGASi:a;epi:a) is desribed in the same way asCEP(WS-SAGASi;eepi:a�1).

When the exeution of WS-SAGASi:a terminates, epi:ahas to resume exeution ontrol. On reeiving a opy ofCEP(WS-SAGASi:a;eepi:a:ni;2), it dedues its own state on thebasis of the exeution progress of the whole WS-SAGASand has to generate aCEL for Ei:a+1�its diret suessor inWS-SAGASi�selet an engine, and alloate exeution on-trol to it; assume the alloated engine is eei:a+1, if Ei:a+1 isatomi. In this ase, engine epi:a sends to eei:a+1 a opy ofCEP(WS-SAGASi;epi:a) (see Figure 6.1).6.3 Collaboration between Peer Engines and Web ServiesTo exeute a WS-SAGAS, the engines in THROWS arhi-teture ommuniate by the different messages that we de-�ne. All the messages are sent in a peer-to-peer fashion, thatis, from the soure to the destination without going throughany entral entity, as they would for entralized exeution.Consequently, performane bottleneks should derease.In what follows, the distintion between an engine ex-eutor or oordinator is only made when the proessing dif-fers.6.3.1 Conversation between Peer Engines:Messages exhanged between peer engines ontain:(i) The urrent exeution progress (CEP): After an engineis hosen to be in harge of a partiular element, it has tobe informed of the CEP ontent (last-updated version).

26 Neila BEN LAKHAL et al.To guarantee that the neessary information for any po-tential reovery is still available, we assume that theCEPontent is preserved in the side of every engine until theend of all the WS-SAGAS exeutions.Therefore, even if a message sent between two engines isdisarded or does not reah its destination for any reason(e.g., network broken, time out), it is possible to submit itagain. We note that CEP ontains the exeution ontext(e.g., input/output variables, servies invoation results)neessary for eah WS invoation.(ii) The exeution start signal, abortion request, and om-pensation request: Thesemessages enable a synhronizedtransational exeution of CWS. However, they are notsuf�ient. We also need speial synhronization mes-sages to ontrol delegation of the exeution ontrol be-tween engines to prevent rae onditions ourring, andimproper ontrol �ow signals may be triggered, leadingto possible inonsistenies.Considering that in our arhiteture, we are onstrained by adistributed and loosely oupled environment, the distributedtwo-phase ommit protool (2PC) annot apply, beause theAtomiity property and the loking mehanisms on whih itis founded are not required and a entral monitor's existeneis undesirable.There are a number of proposed protools for distributedand loosely oupled environments, inluding BTP [48℄, WS-transation [25℄ with WS-oordination [49℄, and WS-CAF[26℄. Not all the available WS support the same protool,so instead of using any of these protools, for �exibilityin THROWS arhiteture we introdued the predelegationphase, the synhronization phase, the peer-engines waitingperiod, and the engine-ws waiting period:� The predelegation phase: During this phase, a �rst entity(one or more engines) agrees that it will release exeu-tion ontrol while a seond entity (one or more engines)agrees that it is ready to aept delegation of the on-trol. This phase is neessary at the beginning of eah el-ement exeution. Introduing suh a phase redues thepotential for anellations (e.g., engine not ready) andimproves the probability of suessfully ompleting theomposite WS exeution. The �rst entity sends a ontroldelegation request and it is assumed to reeive a ontroldelegation agreement from the seond entity.� The synhronization phase: This phase follows diretlyafter the predelegation phase where one or more ele-ments has to be exeuted in parallel. To ensure this, dif-ferent engines, on reeiving a start signal propagated bytheir diret ommon predeessor, start the exeution si-multaneously.� Peer engines waiting period: This is the estimated periodof time, after whih the engine does not reeive any on-�rmation or agreement, so the message for ontrol del-egation ignores that engine and hooses another enginefrom the CEL as a new andidate for ontrol delegation;then, the predelegation phase is repeated.� Engine-web servie waiting period: It is most likely thatan engine exeutor ontrolling a WS, for an unknown

Waiting

Executing

Committed

Failed

Compensated

Aborted

start

end

Generate (CEL(Ei.k))

[CEL (Ei.k) not Empty]

Engine:=e1
i.k

Statei.k:=Executing

Update(CEP)

[start_signal received]

Execute(Ei.k, e
1
i.k)

error()

[failure detected]

Statei.k:= Failed

Update (CEP)

Propagate (failure)

[vital]

Allocate()

[CEL(Ei.k) not empty]

Engine:=e2
i.k

Statei.k:=Executing

Update(CEP)

Execute(Ei.k,e
2

i.k)
[vital]

Allocate()

[CEL(Ei.k) Empty]

Back_Recovery()

Finish()

[non-vital]

Resume(Successors)

Finish(Ei.k)

Commit()

[Finish_Signal received]

State:=Committed

Update(CEP)

Finish()

Abort()

[abort_request received]

Statei.k :=Aborted

Update(CEP)

Compensate()

[compensate_request received]

Statei.k:=Compensated

Update(CEP)
Finish()

Generate(CEL(successors))
Finish()

Finish()

Waiting

Executing

Committed

Failed

Compensated

Aborted

start

end

Generate (CEL(Ei.k))

[CEL (Ei.k) not Empty]

Engine:=e1
i.k

Statei.k:=Executing

Update(CEP)

[start_signal received]

Execute(Ei.k, e
1
i.k)

error()

[failure detected]

Statei.k:= Failed

Update (CEP)

Propagate (failure)

[vital]

Allocate()

[CEL(Ei.k) not empty]

Engine:=e2
i.k

Statei.k:=Executing

Update(CEP)

Execute(Ei.k,e
2

i.k)
[vital]

Allocate()

[CEL(Ei.k) Empty]

Back_Recovery()

Finish()

[non-vital]

Resume(Successors)

Finish(Ei.k)

Commit()

[Finish_Signal received]

State:=Committed

Update(CEP)

Finish()

Abort()

[abort_request received]

Statei.k :=Aborted

Update(CEP)

Compensate()

[compensate_request received]

Statei.k:=Compensated

Update(CEP)
Finish()

Generate(CEL(successors))
Finish()

Finish()Fig. 6.2 State transition diagram of an atomi ompensatable ele-ment exeuted in THROWS arhiteturereason (e.g., failure) does not reeive a response messagefrom the WS for a time; in some ases, the waiting time,as an answer time may even tend to be in�nite, whihis unaeptable. To avoid this, a similar situation to theabove ours. We de�ne this as the engine-ws waitingperiod. It avoids the engine exeutor waiting eternallyfor an answer that may never ome: if the WS fails to re-spond after the engine-ws waiting period has elapsed andno information was reeived of the exeution progressof the WS, then the engine exeutor must onsider itselffailed and a reovery must be triggered.6.3.2 Conversation between an Engine Exeutor and a WS:The different messages that are used to ommuniate be-tween an engine exeutor and a WS are de�ned aordingto the WS exeution progress and they are hie�y of twoforms:� The engine exeutor sends a noti�ation of exeutionstart to ask the WS it ontrols to start exeuting. At thesame time it provides the WS with the neessary inputdata for its exeution.� When a WS �nishes exeuting, it noti�es the engine ex-eutor of its own exeution results. In this ase also, theengine-ws waiting period, whih has to be estimated, isessential to avoid the engine exeutor �nding itself eter-nally waiting for an answer that may not arrive. There-fore, after the engine-ws waiting period has elapsed, theengine exeutor has to be informed of the WS exeu-tion's progress. If no answer is reeived, it implies thatthe WS has failed.

FENECIA 276.4 Desription of THROWS Arhiteture FuntionalityThe WS-SAGAS transation model supports the spei�a-tion of a proess in different ways following different de-�ned aggregation patterns. For these different patterns, weneed to desribe how they are to be exeuted. In the fol-lowing, we show how the state and vitality degree oneptsplay a ruial role in determining how the exeution is toprogress, and espeially, in distinguishing suessful fromfaulty situations, in informing of failures, and in reoveringfrom failures. In desribing the funtioning of THROWS ar-hiteture, we mostly desribe sequential and parallel WS-SAGAS. Other patterns an be dedued in the same way, be-ause we have de�ned the exeution semantis of eah pat-tern in detail in the previous setion. (Figure 6.2) shows thedifferent transition rules that THROWS de�nes to make anatomi ompensatable element's state hange from onestate to another. The diagram is for vital and nonvitalelements.6.4.1 Initiating the Exeution of a Proess PiThe entire proess Pi exeution is initiated by an engine o-ordinator epi . To ensure that it does not onstitute a singlepoint of failure, we assume that we have REL(Pi), a repliaengine oordinator list that ontains several replias of epi .A proess running on a server side is responsible for tak-ing a user request for a partiular proess and for reatingREL(Pi), and starting the exeution with one of the repliaengine oordinators; we assume here that it is epi . More pre-isely, below is the ontent of REL(Pi):REL(Pi) = �DR(e1i); � � � ;DR(epi); � � � ;DR(eqi); � � �� :(6.3)Every replia in REL(Pi) ontains the CEP of the over-all proess and the CEP of the WS-SAGAS for whih theengine oordinator is responsible. That is, in epi we haveboth, CEP(Pi;epi) and CEP(WS-SAGASi;epi); CEP(Pi) isformed as follows:CEP(Pi;epi) :CEP(WS-SAGASi;eepi:1)[CEP(WS-SAGASi:a;eepi:a:1):::[CEP(WS-SAGASi:a:�:b;eepi:a:�:b:1):::[CEP(WS-SAGASi:a:�:b:�: ;eepi:a:�:b:�::1) :CEP(Pi;epi) means that the CEP opy is stored on engineepi . Similarly, CEP(WS-SAGASi:a;eepi:a:1) is stored on en-gine eepi:a:1,CEP(WS-SAGASi:a:�:b;eepi:a:�:b:1) is stored on en-gine eepi:a:�:b:1 , et (see Figure 6.1).The engine oordinator initiates the proess exeution bystarting the exeution of the WS-SAGAS at the �rst nesting

level, that is, WS-SAGASi. The �rst step is to generate theCEL of the element appearing �rst in the �rst pattern; in thease ofWS-SAGASi, CEL(Ei:l) is generated, an engine is al-loated, the predelegation phase is performed, and a opy ofCEP(WS-SAGASi;epi) is passed to eepi:1 and the exeutionof the WS-SAGAS starts.We desribe below the internal funtioning of a WS-SAGAS: the exeution of patterns that only ontain atomielements. Then, we desribe how the exeution is delegatedbetween different nesting levels.6.4.2 Sequene Pattern Exeution ([Ei:k℄; [Ei:k+1℄)We desribe the general exeution model of a sequene pat-tern aggregating only ompensatable atomi elements.We assume that an engine exeutor eepi:k has been alloatedto the element Ei:k. Depending on the exeution progress,different senarios may our:1. Element Ei:k ommitment: In this senario we assumethat the exeution of wspi:k ontrolled by eepi:k was su-essful. The suessful exeution must be re�eted onthe CEP ontent (to omply with our proposed notationof an engine that uses p to designate any engine and qto designate an engine that was suessful, we use eeqi:kinstead of eepi:k). Therefore, the engine eeqi:k has to updatethe loally stored opy of CEP; spei�ally, the state ofthe element is to be modi�ed as follows:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state := Committed :The exeution results are used to update the output pa-rameters of the element:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):operation:out :=DR(eeqi:k):operation:out :Afterwards, the engine exeutor has to delegate exeu-tion ontrol. To this end, it generates CEL(Ei:k+1) andhooses an engine exeutor to whih it must delegate theexeution ontrol; we assume here that the engine eepi:k+1was alloated to exeute Ei:k+1. We note that the exeu-tion of Ei:k+1 by eepi:k+1 is the exeution of a WS wspi:k+1ontrolled by eepi:k+1. The WS wspi:k+1 to be mapped toEi:k+1 must satisfy the following three onditions:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):desription=CEL(Ei:k+1):DR(eepi:k+1):desription :(the funtionalities of the element meet the WS apabilities)CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):operation:in=CEL(Ei:k+1):DR(eepi:k+1):operation:in :(the input parameters of the element and of the WS are ompliant)CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):operation:out =CEL(Ei:k+1):DR(eepi:k+1):operation:out :(the output parameters of the element and of the WS are ompliant)

28 Neila BEN LAKHAL et al.One these onditions are satis�ed, the two engines starta predelegation phase in whih one engine agrees to del-egating ontrol while the other agrees to having ontroldelegated to it. When eeqi:k reeives the agreement noti�-ation from eepi:k+1, it �nalizes the delegation by updat-ing and sending theCEP ontent to the alloated engine:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):engine := eepi:k+1 :We emphasize that whether or not Ei:k was vital doesnot affet the funtioning of the engine for a suessfulexeution.2. Vital Element Evi:k+1 Failure: We assume that exeptionalbehavior (e.g., unavailable, timed out, error message) ofthe WS wspi:k+1 preluded the engine eepi:k+1 from su-essfully ommitting the element Evi:k+1. Consequently,the elementEvi:k+1 exeution attempt by the engine eepi:k+1is onsidered to have failed and the following steps mustbe performed to reover to a onsistent state, beause theelement's suess is ruial for the overall subtransationsuess. First, the engine eepi:k+1 has to update its loallystored opy of CEP with the latest progress in exeutionas follows:CEP(WS-SAGASi;eepi:k+1):�!DR(Evi:k+1):state := Failed :Seond, a opy of the loally storedCEP is sent as a fail-ure noti�ationmessage to the engine responsible for theexeution of the predeessor of Evi:k+1, that is, to engineeeqi:k, so that it takes harge of the failure reovery pro-ess. Depending on the ardinality ofCEL(Evi:k+1) eithera forward reovery (i.e., trying to advane the exeutionproess with an attempt at an exeution retrial) or a bak-ward reovery (i.e., to reover the CWS to a onsistentstate) is to be performed by eeqi:k.3. Vital Element Evi:k+1 Forward Reovery: After being no-ti�ed of Evi:k+1 exeution failure by eepi:k+1 (i.e., reeiv-ing a opy of CEP in whih the element Evi:k+1 state wasset to Failed), the engine eeqi:k heks the ardinalityof CEL(Evi:k+1) to determine whether trying a forwardreovery, by alloating another engine in order to reat-tempt the exeution of Evi:k+1, is feasible or not.When (jCEL(Evi:k+1)j , 0) is veri�ed, it means that otherWS satisfying the element Evi:k+1 required funtionalitiesare available. Therefore, exeution retrial is possible: theengine eeqi:k searhes for the engine ranked next to eepi:k+1in CEL(Evi:k+1); here we assume it is the engine eep+1i:k+1.This engine is alloated to reattempt the exeution of theelement Evi:k+1; the loally stored ontent of CEP in eeqi:kis updated as follows:CEP(Pi;eeqi:k):�!DR(Ei:k+1):engine := eep+1i:k+1 :Subsequently, a predelegation has again been performedwith the new engine eep+1i:k+1, the CEP ontent, with therequired ontext data for effetively starting the exeu-tion, is ommuniated.

4. Vital Element Evi:k+1 Bakward Reovery: If it happensthat (jCEL(Evi:k+1)j = 0), the exeution retrial is impos-sible and a bakward reovery is neessary. To this end,all the other elements from the same WS-SAGAS thatare ordered before Evi:k+1 and have already ommitted areompensated for, that is, all the vital and nonvital el-ements that verify the following onditions:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:`j`2[1::k℄):state=Committed ;are ompensated for by exeuting for eah element itsompensating element. We emphasize that a ompensa-tion mehanism is triggered by a ompensation requestpropagated for all the engines of the elements that verifythe above ondition. In addition, we note that the om-pensation request propagation is handled as desribedbelow.5. Element Ei:k Compensation: On reeiving a ompensa-tion request, an engine �rst heks if it has any predees-sor to whih it must, similarly, propagate a ompensationrequest. Seond, it has to ompensate the exeution ofthe element for whih it is responsible.That is, if we onsider the ase of the engine eeqi:k, re-sponsible for the element Ei:k (appliable to the ase ofvital and nonvital), the engine eeqi:k searhes for aWS that satis�es the funtionalities of E 0i:k, the ompen-sating element of Ei:k.Here, we assume that a WS wsq0i:k was disovered. Theengine eeqi:k exeutes the WS wsq0i:k. On ompleting wsq0i:kexeution, eeqi:k updates CEP and propagates it with theompensation request to the engines onerned:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state:=Compensated :The engine that �nds that it has no predeessor engine ispresumably the engine responsible for the �rst elementEi:1. This engine exeutor has only to ompensate the el-ement Ei:1. Finally, the overall WS-SAGAS of this levelfailure is alulated. The engine exeutor eeqi:p, responsi-ble for the element Ei:1, after ompensating the elementEi:1 must propagate the failure information up the hierar-hy to perform a bakward reovery in other terminatedWS-SAGAS. To this end, it sends its last updated opy ofCEP(WS-SAGASi;eeqi:1) to the engine oordinator on-trolling the element parent of the WS-SAGASi. In thisase, it propagates the opy to eqi . We desribe belowin this setion how an engine oordinator handles thisfailure information.6. Nonvital Element E v̄i:k+1 Failure: Assume that the diretsuessor of E v̄i:k is the nonvital element E v̄i:k+1. In thisase, even if the engine eepi:k+1 alloated to E v̄i:k fails, it isnot neessary to attempt a reovery beause its suess isoptional. However, the engine eepi:k+1 ontinues the exe-ution as if the element was ommitted by updating theCEP and performing the ontrol predelegation phase asusual.

FENECIA 296.4.3 Parallel Pattern Exeution (Ei:k;(Ei:k+1jj:::jjEi:k+ j))Themain differene with the exeution of a sequene ofWS-SAGAS is that the engine alloated to the element Ei:k�weassume here it is engine eeqi:k�on �nishing exeuting Ei:khas to generate the CEL of the set of elements to be exe-uted in parallel, that is, the elements from Ei:k+1 to Ei:k+ j ,as noted aboveS (Ei:k)su. Similarly, eeqi:k generatesCEL forall the elements in S (Ei:k)su. If we assume that the CELgeneration and the engine alloation steps were done, wehave the CEP updated as follows:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):engine := eepi:k+1CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+2):engine := eepi:k+2:::CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+ j):engine := eepi:k+ j :Beause starting the exeution of the elements pertainingtoS (Ei:k)su must be synhronized, a synhronization phasehas to be introdued.The synhronization phase omes diretly after the pre-delegation phase �nishes. It aims at ensuring that the en-gine eeqi:k, after reeiving the delegation agreements from theother, different engines, simultaneously propagates a startsignal. In addition, beause a signi�ant delay in reeivingthe delegation agreement messages an seriously ompro-mise the CWS exeution, we use the peer-engine waitingperiod, as already spei�ed. After it has elapsed without re-eiving the aknowledgment message from one of the en-gines, eeqi:k must selet another andidate engine. When theelements in S (Ei:k)su are being exeuted, three situationsare most likely to our:1. Simultaneous Commitment of all the Vital Elements: Allthe vital elements inS (Ei:k)su have been suessfullyommitted, that is, they verify the following ondition:�8Evi:` j Evi:` 2S (Ei:k)su and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;ee1i:`):�!DR(Ei:`):state= Committed :If the above ondition is veri�ed, �rst, all the enginesontrolling the elements verifying the above onditionhave to exhange opies of their loally storedCEP on-tents. At the end of this update, all the engines ontrol-ling vital elements in S (Ei:k)su have the same opyof CEP.Seond, depending on the pattern used to make the dif-ferent elements in S (Ei:k)su onverge to a single point,a set of elements from S (Ei:k)su has to generate theCEL(s) for the element(s) that omes diretly after them.If we assume that Ei:l is the ommon suessor, then theelements in S (Ei:k)su have to ooperate in generatingtheCEL(Ei:l) by taking the union of the differentCEL(s)generated by eah of their engines.Finally, we note that only the results of the exeution ofthe vital elements were onsidered beause the othernonvital elements' suess or failure does not affetthe others' progress.

2. Failure of one or more vital elements: One or morevital elements in S (Ei:k)su verify the following on-dition:�9Evi:` j Evi:` 2S (Ei:k)su and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eepi:`):�!DR(Ei:`):state= Failed :If a similar situation ours, then the failed engine(s) hasto inform its diret predeessor, here eeqi:k, of the fail-ure(s). As desribed above, eeqi:k tries to perform a fail-ure reovery. The main differenes reside in that, �rst,the failed engine(s) also have to inform the onurrentengines ontrolling the other elements to avoid ompro-mising the subtransation exeution by making the oth-ers wait forever.Seond, if a bakward reovery is neessary, it is mostlikely that the exeution of one or several elements fromS (Ei:k)su is still in progress. As a result, the ompensa-tion mehanism desribed above is not appliable.It is essential to abort all the elements that verify the fol-lowing ondition by stopping their exeution:�9Evi:` j Evi:` 2S (Ei:k)su and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;ee1i:`):�!DR(Ei:`):state= Exeuting :To abort all the elements that verify the above ondition,eeqi:k has to propagate an abort request to all their allo-ated engines. Eah engine that reeives an abort requestresponds by immediately stopping its exeution and up-dating its loally stored CEP opy, then sends it to eeqi:k.After all the different engines have properly handled thereeived abort request, the CEP ontent stored on eeqi:kside is:�9Evi:` j Evi:` 2S (Ei:k)su and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:`):state= Aborted :3. One or more vital elements are still exeuting whilethe others have already ommitted: At least one vitalelement inS (Ei:k)su veri�es the following ondition:�8Evi:` j Evi:` 2S (Ei:k)su and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eeqi:`):�!DR(Ei:`):state= Exeuting :In this ase, two senarios are possible:� Senario 1: The engine(s) responsible for the om-mitted element(s) informs, as desribed above, theonurrent engine(s) of their ommitment(s) and gen-erates theCEL of the suessor(s), if they exist. How-ever, they wait for the termination of the element(s)that is/are still being exeuted to agree on the CELand to hoose the engine to alloate to the sues-sor(s), so that a predelegation phase is performed toeffetively start exeuting the suessor(s).� Senario 2: The ommitted elements' engines informthe onurrent engines of their ommitment and en-ter a latent state while waiting for the remaining un-�nished elements' ommitment.

30 Neila BEN LAKHAL et al.A omparison of the two senarios shows that in (Se-nario 1) the time spent by the onurrent engines in gen-erating the CEL(s) of the suessor(s) et an be mean-ingless if one of the still exeuting engines fails. On theother hand, if all the remaining elements were ommit-ted, then the time spent in a latent state by the differentengines in (Senario 1) is an overhead.6.4.4 Exeution Control Delegation between an EngineExeutor and an Engine CoordinatorAssume that Ei:a is a omposite element fromWS-SAGASi.If the exeution progress ofWS-SAGASi reahes the elementEi:a, that is, the element Ei:a�1 terminates its exeution then,eeqi:a�1 has to delegate the exeution ontrol as desribedabove.The partiularity here is that when eeqi:a�1 heks for apredeessor, the CEP ontent reveals that the next elementto be exeuted is Ei:a and it is omposite. Consequently,the engine exeutor eeqi:a�1 generates an REL not a CEL,the generated REL being REL(Ei:a). Then, an engine oor-dinator is seleted; let this engine be epi:a. The exeutionofWS-SAGASi is suspended waiting for the element Ei:a tobe exeuted by epi:a. As desribed at the beginning of thissetion, epi:a starts exeution ofWS-SAGASi:a in exatly thesame way as the engine oordinator epi starts the exeutionofWS-SAGASi.6.4.5 Exeution Termination of a WS-SAGAS TransationAssume that the exeution ofWS-SAGASi:a was terminatedand the exeution reahed the last element Ei:a:ni;2 , whihwas exeuted by the engine exeutor eeqi:a:ni;2 . eeqi:a:ni;2 heksthe loally storedCEP,CEP(WS-SAGASi:a;eeqi:a:ni:2), for el-ements not yet exeuted. The result is that all the elementsinWS-SAGASi:a have �nished already.Therefore, it has to inform the engine oordinator re-sponsible for the parent element of WS-SAGASi:a that theexeution was terminated. To this end, it sends a opy ofCEP(WS-SAGASi:a;eeqi:a:ni:2) to the engine epi:a.The engine epi:a dedues the elementEi:a's state from thereeived CEP(WS-SAGASi:a;eeqi:a:ni:2). More preisely, as-sume we dedued from CEP(WS-SAGASi:a;eeqi:a:ni:2):statethat:DR(WS-SAGASi:a):state = ommitted, then epi:a updatesthe state of the element Ei:a in CEP(WS-SAGASi;epi:a) asfollows:CEP(WS-SAGASi;epi:a):DR(Ei:a):state := ommittedThen, the exeution is ontinued as desribed above.6.4.6 Exeution Termination of a ProessOn every termination of a WS-SAGAS, the last engine re-sponsible for the last element in the subtransation �nal-

izes the exeution in the way desribed above. Every WS-SAGAS termination is asaded up in the hierarhy until theuppermost level ontrolled by the engine oordinator epi isreahed. Then, this engine �nalizes the overall proess ex-eution by requesting from every other engine oordinatorthe last updated opy of the CEP of the subtransation forwhih it was responsible.When all the opies have been olleted, the loally storedopy of the overall proess CEP is updated and proess ter-mination is dedued.6.4.7 Interruption of the Exeution of a WS-SAGAS with aFailureAssume that the exeution ofWS-SAGASi:a was interruptedby a failure of one of its onstituent vital elements andthat the forward reovery mehanism was unable to over-ome the failure. As a last resort, a bakward reovery is per-formed as desribed in the exeution of a sequene/parallelpattern.When the failuremessage (i.e.,CEP(WS-SAGASi:a), withthe state of one element set to failed), reahes the engineresponsible for the �rst element in WS-SAGASi:a�in thisase this engine is eeqi:a:1�this element performs a bak-ward reovery for the element it ontrols and propagates thefailure information up in the hierarhy. All it has to do isto send the updated opy of CEP(WS-SAGASi:a;eeqi:a:1) tothe parent of the engine oordinator ontrolling the parentof WS-SAGASi:a. In this ase, a opy reahes epi:a and, be-ause it heks the CEP ontent, a failure is dedued. Sub-sequently, a bakward reovery is triggered: epi:a initiates abakward reovery inWS-SAGASi by hanging the state ofthe element Ei:a as follows:CEP(WS-SAGASi;epi:a):DR(Ei:a):state := failed:The failure of Ei:a is handled in the same way as desribedabove by ompensating all the ommitted elements in thetransationWS-SAGASi and aborting the other elements stillexeuting. When the failure message reahes the uppermostlevel, that is, the engine epi , this engine propagates the fail-ure down the hierarhy to all the WS-SAGAS that were ter-minated before the WS-SAGASi:a failure (i.e., all the WS-SAGAS lower in the hierarhy must also be reovered).7 Composite Web Servies QoS Modeling and AnalysisWe desribe the third part of the FENECIA approah: as-sessing the QoS of CWS depited as WS-SAGAS and ex-euted following THROWS arhiteture. Our hief aims inde�ning a QoS model are that, �rst, it allows veri�ationof the desribed CWS as WS-SAGAS are reliably servingtheir purpose, when exeuted, by ahieving a high level ofdependability. Seond, it allows greater improvement of thequality of exeution in the future by favoring the more re-liable WS and disarding the WS that are most likely to bethe stage failures.

FENECIA 31Moreover, we aim to use the QoS estimation and anal-ysis as a basis for improving the WS-SAGAS struture. Tothis end, our model haraterizes, estimates, and analyzesseveral QoS properties, namely the exeution time and thereliability [17,21℄, on the basis of the past exeutions ol-leted in a history, and takes into onsideration the failurereperussions.7.1 PreliminariesWe give an overview of the QoS onepts we are onernedwith beause the QoS onept in itself is broad. It has beenapplied to many areas and, depending on the area of appli-ation, its de�nition varies.Some de�ne it as �a set of user-pereivable attributes,whih desribe a servie and the way it is pereived� [50,51℄. We are not onerned with this form of QoS beauseit has been widely addressed and was the subjet of onsid-erable researh efforts in the area of WSC. Several studieshave foused on the dynami seletion of the provider [52�54℄ and on semantiWS desription to improve the seletion[55℄. These studies are lassi�ed under the umbrella of max-imizing user satisfation.A more appropriate de�nition of the QoS we treat in theFENECIA approah is �the system property that onsists ofa set of quality requirements on the olletive behavior ofone or more objets, suh as the information transfer rate,the lateny, the system failure probability, et.� [50,56℄. Thatis, this ategory of QoS assessment hie�y targets estimatinga number of QoS properties for later analysis by the systemdesigners to verify to what extent the CWS are ef�ientlyserving their purpose during exeution (i.e., are the intro-dued fault-tolerane mehanisms working properly? Arethe seleted WS adequate?).7.2 MotivationThe issues guiding us toward introduing suh a model aresummarized below.� Most of the proposed approahes that address the esti-mation of the QoS issue, �rst, make use of either math-ematial modeling or simulation tools [57�60℄. Seond,they typially provide a global view of the range of vari-ation of the estimates of ertain properties of the CWS asa whole, or their estimates are only appliable for statiCWS, whih make them inappliable for both THROWSandWS-SAGAS for dynami omposition. However, pro-viding more detailed estimations, espeially in the aseof omplex CWS, is required more and more. To ful�llthis requirement, our QoS model for CWS is orientedtoward aquiring more pratial and detailed estimatesof the QoS of eah element, and derives equivalent esti-mates for the overall CWS;

� Most of the urrent approahes dealing with QoS esti-mates in the WS ontext rely on the QoS information ad-vertised by the WS owners/providers, whih may be notup to date or subjet to manipulation by the providers.To overome this limitation, we ompute the QoS esti-mations on the basis of the CWS exeution observation,where the observation results are olleted in a history. Indoing so, we believe that more aurate estimates an beaquired beause we do not rely on the providers' data.� A major part of the work done up until now onsid-ers only situations where the CWS do not fail. As a re-sult, the estimates obtained are very often regarded astoo optimisti beause they do not aount for any fail-ure (information, reovery) and their reperussions. Inour model we aount for failures and their reperus-sions on the effetive performanes of the CWS beausethis is partiularly required in the WS arhiteture, inview of the WS inherent tendeny to fail relatively eas-ily (relative to other omputing omponents). Typialauses of failure inlude: nonompliant WS harater-istis (e.g., transational supports, management poliies,aess rights) and obvious Internet limitations (e.g., la-teny, time-out, seurity).� Finally, beause WS are generally stateless, traking thefailures and determining their loations is almost impos-sible. To overome this limitation, the notion of state thatwe initially introdued in WS-SAGAS is used. Introdu-ing the state onept is expeted to ontribute in aquir-ing more aurate information on the loation of failuresand to be used later to improve the CWS QoS.
7.3 Exeution Time CharaterizationIn our QoS model, we �rst estimate the exeution time ofeah atomi element Ei:k for a subtransationWS-SAGASifrom a hierarhy of nested WS-SAGAS forming a proessPi. Then, we desribe the derivation of the equivalent esti-mate for the entireWS-SAGASi and the entire proess. OurQoS model builds heavily on the observation of the past in-voations of the proess and on olleting these observationsin a history. Beause the exeution follows the THROWSarhiteture, the history ontent is hie�y formed from thedifferent opies of CEP stored in the different engines' logsthat ooperated to exeute the whole proess. By enforingthe poliy, all the opies of the differentCEPs stored loallyon the different engines must be kept until the end of eahproess invoation; at the end we have information about theproess life yle and of all its onstituent elements. More-over, applying the same poliy to all the different CELs anbe very interesting as eah CEL, in itself, is a history of theengine-ws ouples attempted. With both the CEP and theCEL ontents, traking failures' loations and determina-tions of the engine-ws ouples that fail readily an, in thefuture, signi�antly improve the quality of exeution.

32 Neila BEN LAKHAL et al.7.3.1 The Exeution Time of an Atomi ElementBeause eah atomi element is mapped dynamially to aWS, we investigate �rst the issue of estimating the exeutiontime of an elementary WS, whih has been addressed previ-ously on several oasions. Spei�ally, we refer to [60,57℄in whih the authors de�ned the exeution time taken by asingle WS invoation with the sum of the three followingonstituents:� The servie time S(WS) is the time that theWS takesto perform its task.� The message delay time M(WS) is determined by thesize of the message being transmitted/returned and theload on the network through whih the message is sent.� The waiting time W(WS) is the delay aused by theload on the system where the WS is deployed.This model does not omply with our approah beause wetarget a dynami and fault-tolerant exeution. However, theabove model is, �rst, only for CWS with one-to-one statiWS-element mapping. Seond, it does not take into aountany eventual failure and how it may intervene in varying theperformanes. These two reasons prelude it from being di-retly appliable in the FENECIA approah, without furtherextensions.In haraterizing the exeution time, we build on theabove model and introdue the Optimisti Exeution Timeand Probable Exeution Time where the former is limitedto the orret exeution situations and where the latter on-siders all the possible exeution situations (i.e., ommittedexeution, failed exeution, ompensated exeution, abortedexeution, et.) of a fault-tolerant CWS. Distinguishing be-tween these two variants provides more aurate estimatesto aount for the failure reperussions on the delivered per-formanes.De�nition 7.1 (The Optimisti Exeution Time(opt))We de�ne theOptimisti Exeution Time (denoted T (Evi:k)opt),as the time spent by the dynamially mapped engine exeutor-WS ouple in exeuting the vital element Evi:k. This de�-nition onsiders only the best ase where the exeution isommitted when Evi:k is mapped to the �rst-ranked oupleengine exeutor-WS in the orresponding CEL.We note here that any atomi elementEvi:k an be mappedat runtime to more than one engine exeutor-WS, at most ex-atly jCEL(Evi:k)j, the ardinality ofCEL(Evi:k), with [1::jCEL(Evi:k)j℄ranging over p, and every time the element Evi:k is to be exe-uted it is alloated an engine exeutor eepi:k (ontrolling theWS wspi:k). If we assume that for a partiular value of p wenote q, Evi:k exeutions by eeqi:k ommitted suessfully, thenEvi:k was attempted by q engines from CEL(Evi:k) (q veri�es:q � jCEL(Evi:kj); in all these exeution attempts, (q�1) ex-eutions were �nished by failures. That is, we an say thatEvi:k was retried q times, and that the qth exeution delegatedto the engine eeqi:k (ontrolling the WS wsqi:k) was suessful.We de�ne T (Evi:k)opt by the following equation(7.1) whereT (Evi:k)opt is the sum of the exeution time (exatly S(wsqi:k))�

the time taken by theWS to proess its sequene of ativities�and of the lateny (exatly L(eeqi:k;wsqi:k))�the time nees-sary to send a request and reeive a response:T (Evi:k)opt = T (Evi:k;eeqi:k;wsqi:k) (7.1)= S(wsqi:k)+L(eeqi:k;wsqi:k)with: 1� q� jCEL(Evi:k)jIn the speial ase of a nonvital element, the exeutionis attempted only one; onsequently the equation (7.1) istransformed as follows:T (E v̄i:k)opt = T (E v̄i:k;ee1i:k;ws1i:k) (7.2)= S(ws1i:k)+L(ee1i:k;ws1i:k)with: jCEL(E v̄i:k)j= 1De�nition 7.2 (The Probable Exeution Time (prob))We de�ne the Probable Exeution Time(denoted T (Evi:k)prob)as the estimate of the time spent by an atomi element Evi:kin being exeuted effetively, whih is equal to T (Evi:k)opt , towhih we add the time neessary for reovering from fail-ures that the same instane of the WS-SAGAS as a wholehas enountered (see Equation (7.3)).T (Evi:k)prob = T (Evi:k)opt +RP(Evi:k)+R(Evi:k); (7.3)where:- T (Evi:k)opt is the time to exeute the WS wspi:k ontrolledby the engine exeutor eepi:k. We note that p ranges over[1::jCEL(Evi:k)j℄ and that, for a partiular value q of p, theexeution of Evi:k was ommitted. Where Evi:k was retriedwith all the engines inCEL(Evi:k) and the exeution failedfor all of them, then T (Evi:k)opt is assumed to be equal to0 and T (Evi:k)prob is equal to the time spent in performinga forward reovery by retrying Evi:k several times (exatlyjCEL(Evi:k)j times).- RP(Evi:k) is the time spent by Evi:k in informing of itsown failure or in being informed about others' failure.PR(Evi:k) is detailed more in the following de�nition.- R(Evi:k) is the total period of time spent in performinga forward reovery every time the element Evi:k failed,to whih we add the time spent by Evi:k in performing abakward reovery, if it happens that any of the elementsexeuted in parallel with it, or the elements that omediretly after it fail. R(Evi:k) is onsidered in greater detailbelow.De�nition 7.3 (The Failure Reovery Preparation Time)We de�ne the failure reovery preparation time of an atomielement (RP(Evi:k)) as the time neessary to notify of a fail-ure, or to send a reovery (abort/ompensation) request. Allthe messages are one-way SOAP messages that ontain thelast updated opy ofCEP. Depending on the failure loation(i.e., the element itself or another element from the sameproess) and on the elements state and vitality degree, thede�ned expression of the failure reovery preparation timevaries as follows:

FENECIA 33� In the �rst ase, Evi:k was ommitted by an engine ex-eutor eeqi:k after being reattempted q� 1 times; on ev-ery failure by an alloated engine eepi:k, it has to informits diret predeessor by sending a failure informationmessage to eqi:k�1 (i.e., it an be an engine exeutor oroordinator), thereby the notation I(eepi:k;eqi:k�1). If theelement is nonvital, performing a forward reovery isnot required:Case 1: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Committed(element ommitted / WS-SAGAS ommitted)RP(Evi:k) = q�1åp=1 I(eepi:k;eqi:k�1) (vital)RP(E v̄i:k) = 0 (nonvital)� In the seond ase, Evi:k was ommitted by an engine ex-eutor eeqi:k and was reattempted q� 1 times; however,the overall WS-SAGAS failed beause of the failure ofanother element that was exeuted later in the proess.If we assume the failed element to be Evi: j , with (j > k)(handled in the same way whether it is omposite oratomi), then the engine alloated to Evi:k reeives a om-pensation request from the engine responsible for Evi: j(CR(epi: j;eeqi:k) is the time spent in exhanging suh amessage):Case 2: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Compensated(element ommitted/WS-SAGAS failed)RP(Evi:k) = q�1åp=1 I(eepi:k;eqi:k�1)+CR(epi: j;eeqi:k) (vital)RP(E v̄i:k) =CR(epi: j;ee1i:k) (nonvital)� In the third ase, while the element Evi:k is being exeutedby an engine exeutor eeri:k (i.e., it was reattempted r�1times), the overall proess failed beause of the failureof another element that was exeuted later in this WS-SAGAS. If we assume the failed element to be Evi: j , withj > k, the engine alloated to Evi:k reeives an abort re-quest from the engine responsible for Evi: j (the time spentin exhanging suh a message is denoted AR(epi: j;eeri:k)):Case 3: :CEP(WS-SAGASi;eeri:k):�!DR(Ei:k):state=Aborted(element still exeuting with eeri:k /proess failed)RP(Evi:k) = r�1åp=1 I(eepi:k;eqi:k�1)+AR(epi: j;eeri:k) (vital)RP(E v̄i:k) = AR(epi: j;eeri:k) (nonvital)

� In the fourth ase, Evi:k was attempted by all the enginesin itsCEL (i.e., it was reattemptedCEL(Evi:k) times) but,unfortunately, it failed in all the retried times; therefore,the overall WS-SAGAS failure is dedued.This ase is not appliable to a nonvital element be-ause its failure does not entail overall proess failure:Case 4: :CEP(WS-SAGASi;eejCEL(Evi:k)ji:k):�!DR(Evi:k):state=Failed(vital element failed/WS-SAGAS failed)RP(Evi:k) = jCEL(Evi:k)jåp=1 I(eepi:k;eqi:k�1)De�nition 7.4 (The Failure Reovery Time)We de�ne the failure reovery time(exatly R(Evi:k)) as thetime required for Evi:k to reover from its own failures andfrom the failure of other elements. We note that an elementfailure an trigger at most the ardinality of itsCEL forwardreoveries; however, it an be subjet to only one bakwardreovery, triggered by another element. The expression ofR(Evi:k) is de�ned by the following equation:R(Evi:k) = å1�p�jCEL(Evi:k)jFor(Evi:k)+Bak(Evi:k) (7.4)For(Evi:k) = å1�p�jCEL(Evi:k)jT (Evi:k;eepi:k;wspi:k)Bak(Ei) = xor(Comp(Evi:k);Abort(Evi:k))� For(Evi:k) is the total time spent in retrying Evi:k by theother engine-ws ouple from CEL(Evi:k) every time thealloated engine fails to ommit Evi:k.� For(E v̄i:k) is always equal to 0 for a nonvital elementbeause its exeution is not retried even if it fails.� Bak(Evi:k): In a bakward reovery, the mehanism to beapplied depends on the omposition spei�ation model;the more widely used tehniques are rolling bak, abort-ing, and ompensation. In the FENECIA approah, thebakward reovery time is the time neessary to triggera bakward reovery mehanism by aborting all the el-ements still exeuting and ompensating all the alreadyommitted elements. Therefore, the entityBak(Evi:k) anbe equal to the Compensation time(Comp(Evi:k)) if an-other element from the same proess that omes afterEvi:kfailed and triggered a bakward reovery when Evi:k hadalready ommitted; alternatively, it is equal to the Aborttime(Abort(Evi:k)) if another element from the same pro-ess that is exeuted onurrently with Evi:k failed andtriggered a bakward reovery while Evi:k is still beingexeuted.� Depending on loation of the failure (of the element it-self or of other elements) and on the element's state andvitality degree, the de�ned expression of R(Evi:k) in Equa-tion (7.4) varies as follows:

34 Neila BEN LAKHAL et al.Case 1: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Committed(element ommitted / WS-SAGAS ommitted)R(Evi:k) = q�1åp=1For(Evi:k) = q�1åp=1T (Evi:k;eepi:k;wspi:k) (vital)R(E v̄i:k) = 0 (nonvital)Case 2: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Compensated(element ommitted/WS-SAGAS failed)R(Evi:k) = q�1åp=1For(Evi:k)+Comp(Evi:k) (vital)R(E v̄i:k) = Bak(E v̄i:k) =Comp(E v̄i:k) (nonvital)Case 3: :CEP(WS-SAGASi;eeri:k):�!DR(Ei:k):state=Aborted(element still exeuting with eeri:k /WS-SAGAS failed)R(Evi:k) = r�1åp=1For(Evi:k)+Abort(Evi:k) (vital)R(E v̄i:k) = Bak(E v̄i:k) = Abort(E v̄i:k)(nonvital)Case 4: :CEP(WS-SAGASi;eejCEL(Evi:k)ji:k):�!DR(Evi:k):state= Failed(element failed/WS-SAGAS failed)R(Evi:k) = jCEL(Evi:k)jåp=1 For(Evi:k)7.3.2 The Exeution Time of a WS-SAGAS and of a ProessThe exeution time of a WS-SAGASWS-SAGASi is derivedfrom the estimates of the exeution time of the different ele-ments it ombines. Beause these elements might be orhes-trated in different ways to struture the CWS, we proposede�ning an expression that estimates the exeution time foreah of the different aggregation patterns that WS-SAGASde�ned (see Table 7.1).Beause WS-SAGAS are reursively nested, the exeu-tion time of the uppermost WS-SAGAS in the hierarhy isequal to the exeution time of the entire proess. The ex-pression to estimate the exeution time of a WS-SAGASWS-SAGASi is derived as follows:T (Pi)prob = T (WS-SAGASi)probT (WS-SAGASi)prob = T (WS-SAGASi:a)prob+(i:ni;1Õ`=i:1T (E`)probjDR(E`):type= atomi) :

The expression Õ means that the exeution time is derivedaording to the aggregation pattern that onnets the differ-ent elements that we de�ned in (Table 7.1). By deriving theexeution time of every WS-SAGAS in the hierarhy in thesame way as forWS-SAGASi:a, we an derive the expressionbelow for the exeution time of the whole proess:T (Pi)prob =(i:a:�:b:�::ni;miÕ`=i:1 T (E`)probjDR(E`):type= atomi) :We emphasize that the estimate of the exeution time�obtained by ombining the exeution time of the differentelements�does not inlude the time spent in the oordi-nation/onversation between peer-engines, that is, the timespent in the exeution ontrol delegation (predelegation phaseand synhronization phase) or the time spent in CEP om-muniation, that is, the time spent in propagating the syn-hronization signals. Seond, it does not inlude the timespent in generating the CEL=REL and the time spent in up-dating CEP. Any of these different times fall into the ate-gory of ontrol delegation time. We de�ne in what followshow the ontrol delegation time is estimated in our approah.In general, it an be inorporated in: (i) the time taken by aone-way SOAP message, (ii) the time taken by a two-waysynhronous SOAP message (request/response), or (iii) thetime taken by an update/searh query.De�nition 7.5 (The Control Delegation Time)The ontrol delegation time is the time between the momentof termination of the exeution of one or many elements bya �rst entity (i.e., one or more engines) and the moment ofstarting the exeution of one or more elements by a seondentity (i.e., one or more engines). It typially inludes thetime neessary to generate the CEL=REL and selet the en-gine(s), the time spent in the predelegation and synhroniza-tion phases, and the time spent in updating and ommuniat-ing the CEP ontent.Depending on the WS-SAGAS OR, the ontrol delega-tion an be: (a) from one engine (exeutor or oordinator)eqi:k to another engine (exeutor or oordinator) epi:k+1 (i.e.,eqi:k and epi:k+1 ontrol a sequene of elements) (see ase 1).(b) from one engine (exeutor or oordinator) eqi:k to the setof enginesS (eqi:k)su alloated to ontrol the set of elementsS (Ei:k)su (see ase 2). () from many engines (exeutor oroordinator)S (epi:l)pre ontrolling the set of elementsS (Ei:l)preto the engine (exeutor or oordinator) epi:l alloated to Ei:l(see ase 3). (d) from many engines (exeutor or oordina-tor) to many engines (exeutor or oordinator); this ase anbe dedued by ombining the seond and third ases.Case 1 :(one engine / one engine)D(eqi:k;epi:k+1) =GS(eqi:k;CEL(Ei:k+1))+PC(eqi:k;epi:k+1) ;where:� D(eqi:k;epi:k+1) is the time to delegate the exeution on-trol between the engine eqi:k and engine epi:k+1;

FENECIA 35Pattern Notation Probable exeution timeSequene (Ei:k;Ei:k+1) T (Ei:k)prob+T (Ei:k+1)prob+D(eeqi:k;eepi:k+1)Parallel (Ei:k;(Ei:k+1jj:::jjEi:k+ j)) T (Ei:k)prob+ jmax`=1 (T (Ei:k+`)prob)+ jmax`=1 D(eeqi:k;eepi:k+`)Seletion (Ei:k � (Ei:k+1jjEi:k+2jj:::jjEi:k+ j)) T (Ei:k)prob+max(T (S (Ei:k)su)prob)+max(D(eeqi:k;S (Ei:k)su))Swith (Ei:k C (Ei:k+1jjEi:k+2jj : : : jjEi:k+ j)) T (Ei:k)prob+T (S (Ei:k)su)prob+D(eeqi:k;S (eeqi:k)su)Rendezvous ((Ei:kjjEi:k+1jj : : : jjEi:k+ j)^Ei:l) max(T (S (Ei:l)pre)prob)+T (Ei:l)prob+max(D(S (eepi:l)pre;eepi:l))Seletive merge ((Ei:k? ::: ?Ei:k+ j)� Ei:l) max(T (S (Ei:l)pre)prob)+ jS (Ei:l)prejT (Ei:l)prob+max(D(S (eepi:l)pre;eepi:l))Exlusive merge ((Ei:k? ::: ?Ei:k+ j)� Ei:l) T (S (Ei:l)pre)prob+T (Ei:l)prob+D(S (eepi:l)pre;eepi:l)Iterative (Ei:k;lEi:k+1) T (Ei:k)prob+lT (Ei:k+1)prob+D(eeqi:k;eepi:k+1)Table 7.1 The probable exeution time expressions of WS-SAGAS patterns� GS(eqi:k;CEL(Ei:k+1)) is the time spent in generating ei-ther CEL(Ei:k+1) or REL(Ei:k+1) and in seleting an en-gine, we assume that the seleted engine is epi:k+1;� PC(eqi:k;epi:k+1) is the predelegation phase duration andthe time spent in updating and ommuniating the CEPontent.Case 2 :(one engine / many engines)D(eqi:k;S (eqi:k)su) = GS(eqi:k;CEL(S (Ei:k)su))+PC(eqi:k;S (eqi:k)su) :Case 3 :(many engines / one engine)D(S (epi:l)pre;epi:l) =GS(S (epi:l)pre;CEL(Ei:l))+PC(S (epi:l)pre;epi:l) :De�nition 7.6 (The Engine-WS Waiting Period)We de�ne the engine-ws Waiting Period to avoid the situa-tion where an engine epi:k alloated to an element Ei:k waitseternally for an answer from a WS wspi:k that might neverome, if the WS fails to respond. After the engine-ws Wait-ing Period (exatlyW (epi:k;WSpi:k)) has elapsed and no infor-mation has been reeived of the exeution progress of theWS wspi:k, then the engine epi:k must onsider itself failed anda reovery has to be triggered. The question is how to deter-mineW (epi:k;wspi:k), in ase the element Ei:k) has not yet beenattempted.Usually, WS providers advertise the proessing time oftheir provided WS or offer methods to inquire about it. Thisould be used here to ompute an initial estimate of the en-tityW (epi:k;wspi:k). Later, when the element is invoked a num-ber of times,W (epi:k;wspi:k) an be estimated on the basis of

the observation results of these past invoations(a). In Equa-tion (7.5)), T (Ei:k)1opt is the Optimisti Exeution Time ofEi:k when invoked for the 1st time:W (epi:k;wspi:k) =max(T (Ei:k)1opt ; : : : ;T (Ei:k)aopt) : (7.5)7.4 Reliability Property CharaterizationIn this setion, we desribe the QoS of a CWS in terms ofreliability. It is widely reognized that the way the reliabilityis de�ned and assessed is spei� to the domain onsideredbut, in general, the reliability onept is always kept some-how losely related to the system behavior and its failurehistory.In our approah, in haraterizing the reliability dimen-sion, we introdue a new ategory of reliability, named re-liability tendeny, that builds heavily on the state oneptattahed to eah element from a proess, depited as a hi-erarhy of nested WS-SAGAS. Our proposal was motivatedby the reliability and the state onepts being very loselyrelated and that the element's ontribution to the overall pro-ess reliability estimation varies from one state to another.To this end, we propose olleting the proess past invo-ation in a history (i.e., the different opies ofCEP stored inevery engine exeution log).Later, the olleted history is used to analyze thoroughlythe different elements' behavior when exeuted by trakingtheir different states and by how and when they transit be-tween different states. To estimate the reliability tendeny,the proess exeution history is used to derive for eah ele-ment the element's Terminal States Set (TSS), the element'sState Tendeny Set (STS), and the State Reliability Contribu-tion (SRC).

36 Neila BEN LAKHAL et al.De�nition 7.7 (The Terminal States Set (TSS))Eah atomi element Ei:k, after being invoked for exeu-tion as a omponent from a subtransationWS-SAGASi, hasa Terminal State (exatly TS(Ei:k)) with whih its invoationis terminated. If the element Ei:k is alloated to an engineexeutor eepi:k, every progress in the element's exeution isre�eted on the loally stored opy of CEP on the engine'seepi:k side by updating the attribute state in CEP of the ele-ment Ei:k. When the element's exeution is �nished, the ele-ment's TS is updated as follows:TS(Ei:k) :=CEP(WS-SAGASi;eepi:k):�!DR(Ei:k):state :After a invoations of the same proess Pi, for eah ele-ment, a Terminal State Set (exatly TSS(Ei:k)) is formed.The TSS(Ei:k) is a set of 2-tuples where the ourrenenumber of eah 2-tuple is assoiated with eah terminal stateas a TS after a invoation of the element Ei:k. If we assumethat there are b possible TS, and eah TS TS(Ei:k)x is asso-iated with a number of ourrenes ox, as x ranges over[1::b ℄, then TSS(Ei:k) is formulated as follows:TSS(Ei:k) = f(TS(Ei:k)1;o1); :::;(TS(Ei:k)x;ox); :::;(TS(Ei:k)b ;ob)gwith: å1�x�b ox = aThe ardinality of TSS(Ei:k) depends on the differentpossible TS of the element. In the FENECIA approah, aompensatable atomi element at a given moment an bein one of the following states:DR(Ei:k):state 2 fWaiting, Exeuting, Failed, Aborted,Committed, CompensatedgAs we follow a transational exeution, the Exeuting stateannot be a TS; therefore, b veri�es:(b = 5) and the TS ofany element an only be in:TS(Ei:k)2 fWaiting,Failed,Aborted,Committed,CompensatedgTSS(Ei:k) is denoted as follows:TSS(Ei:k)=f(Waiting;o1);(Failed;o2);(Aborted;o3);(Committed;o4);(Compensated;o5)gwith: 5åx=1ox = aDe�nition 7.8 (The State Tendeny Set (STS))After a invoations of an atomi element Ei:k, at least oneTerminal State (TS(Ei:k)) from the different possible TS tendsto have the largest ourrene number. We introdue the on-ept of State Tendeny Set (exatly STS(Ei:k)), as the set thatontains the TS that has the largest ourrene number aftera invoations of an element.That is, STS(Ei:k)must verify the ondition STS(Ei:k)�TSS(Ei:k); that is, STS(Ei:k) is the set of TS tuples that areinluded within the TSS TSS(Ei:k) of Ei:k and that has thelargest ourrene number, after a invoations of Ei:k.

De�nition 7.9 (The State ReliabilityContribution (SRC))We assume that from one TS to another, the ontribution toreliability differs: terminating the exeution of an atomielement Ei:k in the Failed state negatively affets the reli-ability, ontrary to the Committed state, whih would on-tribute positively by inreasing the reliability. Aordingly,we de�ne this onept as the State Reliability Contribution(exatly SRC) of a partiular TS. We assume that a transitionfrom one TS to another makes the SRC stronger if it is to-ward a state denoting exeution suess, and it is ontribut-ing negatively and making the SRC weaker if it is toward astate denoting a faulty exeution. The de�nition of the SRCof eah state depends greatly on the environment harater-istis onsidered (e.g., number of TS, possible states, statestransitions, et). Initially, the different SRC an be alloateda value based on the designer's judgment (i.e., when the de-signer wishes to emphasize the more error-prone elements, astronger SRC values to the faulty TS an be assigned). Typ-ial values of the SRC of the TS of WS-SAGAS are as fol-lows:f(SRC(Waiting) = 0);(SRC(Failed) = -1);(SRC(Aborted) = -0.5);(SRC(Committed) = 1);(SRC(Compensated) = +0.5)gHowever, in some systems, making the human intervene tode�ne the different SRC may not be desirable beause thesystem is to be ompletely automated. In suh a ase, mak-ing the system able to de�ne automatially the different SRCand to revise them when required is neessary. We will ad-dress this issue in future work.De�nition 7.10 (Element Reliability Tendeny (RT))The onept of Reliability Tendeny of an atomi elementEi:k (exatly RT (Ei:k)) is derived from its TSS and the dif-ferent SRC values, as shown in Equation (7.6).RT (Ei:k) = åTS(Ei:k)x2TSS(Ei:k)ox:SRC(TS(Ei:k)x)jTSS(Ei:k)j (7.6)De�nition 7.11 (Proess Reliability Tendeny)Any proess Pi depited as a hierarhy of nestedWS-SAGASan be formed by both vital and nonvital elements. Be-ause the failure of a nonvital element is not handled inthe same way as the failure of a vital element and inves-tigating the reasons for failure of the nonvital elementsis seondary, we propose onsidering only the vital ele-ments to estimate the overall proess RT and ignoring thenonvital elements.Therefore, the RT of a proess Pi formed by ni elementswhere n0i elements are vital and distributed between minesting levels is estimated by the following formula:RT (Pi) = RT (WS-SAGASi)= i:a:�:b:�::ni;miå`=i:1 RT (E`)jDR(E`):vitality= vital/n0i :

FENECIA 37
...E

i.k

E
i.k+1

E
i.k+2

i

State
i.k

State

State
i.k

... E

E

i.k+1CR(P
i
)

...

DR(P
i
)

DR(E
i.k

)

DR(E
i.k+1)

...

identify
definition rules

identify
 composability

rules

identify
ordering rules

identify vital/non vital elements, composite/atomic
elements, compensating elements etc.

make WS SAGAS diagram

update definition rules
 with QoS estimates

WS-SAGAS specification

Process Pi Textual description of the process
underpinning logic

UDDI registries

ws

Invocate\control

Invocate /control

 WSs discovery/
selection

...... ws
1

i.k+1

ws

 WSs discovery/
selection

CEP(Pi ,ee1
i.k)

CEL(Ei.k+1)

CEL(Ei.k+2)

engine ee
1
i.k

CEP(Pi,,ee1
i.k+1)

engine ee1
i.k+1

CEP(Pi
,ee1

i.k+2)

engine ee1
i.k+2

CEL(Ei.k+3)

CEL(Ei.k+3)

generate CEP

send CEP

delegate control

synchronize

Inform about failure

recovery request

...

...

...

E execution log i.k +2

Ei.k execution log

Ei.k+1 execution log

update

...

WS-SAGAS execution in THROWS architecture

generate CELs

Ei.k execution log

Ei.k+1 execution log

...

Process Pi execution historycollect execution log

QoS of Ei.k

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

QoS of Ei.k+2

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

QoS of Ei.k+1

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

Ei.k+2 execution log

Estimate QoS of element

QoS of Pi

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

Derive QoS of process Pi
analyse QoS estimates

QoS assessment and analysis

collect execution log

collect execution log

QoS estimatesProcess execution
history storage

legend

Start

End

in

out Flow between elements
input data
output data

Atomic element

Composite element

Compensating element

relation/operation that uses one part to generate
second part

Web service/engine flow

element execution log

Failure related flow

Peer engines flow/execution related flow

QoS estimation/analysis related flow

Multiple DR, CR,
 or OR of an
element/process

CEP/CELengine

WS-SAGAS specification flow

Invocate\control

WSs discovery/
selection

i.k

1 1

i.k+2

update update

OR(P
i
)

...

allocate toallocate toallocate to

P

WS-SAGASi

Fig. 7.1 FENECIA Framework8 FENECIA Framework ValidationBelow we desribe two axes of validation for our FENE-CIA framework models and artifats. In the �rst part of ourvalidation, we present a prototype that provides an imple-mentation of our exeution arhiteture's (THROWS) mainfuntionalities. The prototype implementation is intended toshow that the failure reovery-oriented features that THROWSarhiteture provides are feasible with the urrent WS teh-nologies.In the seond part of our validation, we show the ap-pliability of our failure-aware QoS estimation and analysismodel. To this end, we provide a ase study of using ourmodel for a real-world example of CWS assembled usingJopera [61,62℄, a visual WSC tool.8.1 PrototypingAs in our prototype we target a fully automati WSC. Wehave to desribe the semantis of the models and elements ofour FENECIA framework in a learer and unambiguous waythat an be easily automated or transformed into any plat-form spei� ode for automati exeution. In ahieving this

target, we translate all the FENECIA models and elements(i.e., the textual notation of a WS-SAGAS, THROWS arhi-teture CEP, CEL, and REL onepts, and QoS model at-tributes) into an XML-based language. Our proposed XML-based spei�ation language is de�ned and expressed a-ording to a well-formed struture, the XML Shema de-sription (XSD). An XML-based desription of aWSC servesas an input to our prototype as we show below in this setion.The prototype implementation is heavily based on theJava programming language and on a set of WS enablingtehnologies. In the remainder of this setion, we desribeour implementation and we sketh a ase study and reporton its exeution. We used a simpli�ed version of the travelitinerary reservation senario desribed in the setions above,with only one nesting level (i.e., all elements are assumed tobe atomi).8.1.1 Implementation Environment Choies andMotivationsOur prototype implements a logially distributed prototypeof THROWS arhiteture to exeute CWS spei�ed as WS-SAGAS and desribed using our XML-based language.

38 Neila BEN LAKHAL et al.We have made extensive use of Java threads and of anumber of synhronization mehanisms to allow the onur-rent exeution of engines. Although a physially distributedprototype appears more suitable, the irumstanes we itebelow preluded us from implementing suh a system:� The urrent progress in WS arhiteture in terms of se-mantially equivalent WS availability is very limited asthere are few UDDI registries in operation (maintainedby IBM, Mirosoft, et.). Moreover, these registries arestill very small and most of their entries do not workor do not orrespond to any real servie. Furthermore,most of the UDDI registries in plae today are privateregistries operating inside ompanies or maintained by aset of ompanies privately. Therefore, they are not of useto us.� The urrent unpreditability of theWS environment, whihmakes WS appear and disappear on daily basis, makesthe dynami WS disovery proess very likely to fail inall attempts. This may onsiderably impair our resultsand may even make exeution impossible.� Even if we assume that a wide range of WS equivalents,in terms of funtionalities, was provided, fully automatiand dynami WS disovery and seletion remains an un-resolved issue with very few solutions. Even large en-terprises agree that manual WS disovery and seletionremains the most ef�ient approah and that automateddisovery of WS requires aurate desriptions of thefuntionality of WS and an approah to �ndingWS basedon the funtionality they provide. This remains infea-sible beause it is not possible for a servie lient tohave full knowledge of the exat form and meaning ofall the servie's WSDL in advane, and this for all theWS hosted on different providers.These onditions, and in partiular the last, have direted ourhoie toward building our private UDDI registry and pub-lishing our own WS loally in this registry. In building ourWS, we deliberately reated a WS that shares the same se-mantis and syntax (as represented by their WSDL messagede�nitions); thereby, an automati WS disovery and sele-tion an be performed suessfully, the all to the serviesueeds, and no unexpeted results an be returned. Ourprototype features the following funtionalities:� Of the eight different aggregation patterns we de�ned inWS-SAGAS, our prototype supports only three: the se-quene, parallel, and rendezvous patterns. Adding all thedifferent patterns to have a full-featured implementationis feasible.� In our prototype, we only onsider the ase of proessesformed by ompensatable elements alone.� In our prototype, we onsider a proess with only onenesting level; therefore, we have only one engine oor-dinator that starts the overall proess exeution and thatis responsible for terminating the proess.

engine

web services manager

web service
description

web service call

CEP manager

CEL manager

update

communicate

update

web service builder

web service deployer

web service registrer

build

deploy

search

invoke

register

UDDI registry

web services repository

Fig. 8.1 Simpli�ed oneptual arhiteture for our prototype modeledin UML with omponent diagram8.1.2 Desription of Implementation ToolsWe have made extensive use of the different APIs providedby Sun's JWSDP 1.2 (Java Web Servies Developer Pak)[63℄. Of the tehnologies that JWSDP ontains, we havehie�y used the Java API for XML Registries (JAXR) withthe Registry Server for building, deploying, and publishingthe WS we used. All the WS that we needed for our sys-tem were built and deployed in an XML registry that fol-lowed the UDDI spei�ation (version 1.2). We used JAXRto aess this XML registry. To build the different WS, weused Java API for XML-based RPC (JAX-RPC). The WSinvoation and its ontext ommuniation is done impliitlyusing synhronous SOAP messages over HTTP. Moreover,all the ommuniations between the different modules usedSOAP with Attahments API for Java (SAAJ). Dependingon the CWS exeution stage, the exhanged SOAPmessagesmay enapsulate different forms of XML douments. ThoseXML douments were parsed using JAXP and manipulatedwith JDOM and DOM.8.1.3 Desription of Prototype ComponentsThe implementation featured omponents desribed in theoneptual arhiteturemodel of Figure 8.1. We implementedtwo main modules, the Web Servies Manager and the En-gine. Eah Engine enapsulates two submodules, the CEPManager and the CEL Manager. Eah Manager has twomain funtions, an information update and retrieval funtionand a ommuniation funtion, that is, sending and reeivingSOAP messages.THEWEB SERVICESMANAGER: This implements thedifferent funtions that relate to WS reation, deployment,and invoation. It onsists of the following three submod-ules: (1) the Servies Builder, whih hie�y uses JAX-RPCAPI and several other tools (e.g., wsompile, wsdeploy) togenerate the WS endpoints, their lients, and their WSDLdouments; (2) the Servies Deployer, whih deploys thebuilt WS in a Web ontainer (we used TOMCAT); (3) theServies Register, whih is responsible for registering thedifferent WS in our private UDDI registry.

FENECIA 39
<fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="null">
 <fnc:state value="waiting" />
 <fnc:operation operationID="operati on1">
 <fnc:param paramID="departDate" paramtype="inout">
 january 12 </fnc:param>
 <fnc:param paramID="destination "
 paramtype="inout">
 japan </fnc:param>
 <fnc:param paramID="returnDate" paramtype="inout">
 february 12 </fnc:param>
 <fnc:param paramID="customerNam e"
 paramtype="inout">
 Ahmed </fnc:param>
 </fnc:operation>
</fnc:elementADR>Fig. 8.2 Exerpt from the simpli�ed trip reservation proess: differentelements' attributes with the values affetedTHE ENGINE: Our prototype implements two types ofengine: engine oordinator and engine exeutor. The numberof instantiated engines depends on the number of elementsand the number of nesting levels of a proess. The main dif-ferene is that an engine oordinator is not responsible fora WS invoation. Both of the two forms of engines ontaintwo submodules, the CEL Manager and the CEP Manager,and the enapsulated funtions are the same: (1) CEL man-ager: The main funtion of this omponent is to generatethe CEL of the next element(s) to be exeuted. To this end, itsends a query with the element desription (available in theative de�nition rule of the element in CEP) to the UDDIregistry to searh for WS with funtionalities mathing thedesription and whih are published in the registry. On re-eiving a response to the disovery query, a new engine ex-eutor is alloated and a new engine DR added to the CELfor eah WS disovered. This module is also used to seletan engine exeutor from a CEL doument. (2) CEP Man-ager: This mainly updates and monitors the CEP doumentstored on the engine to whih it appertains. Typially, an up-date operation hanges an element's statewhen a new SOAPmessage is reeived, for example, a message that tells thatthe WS exeution was suessful.8.1.4 Detailed Desription of Typial Exeution Steps of aProess in our PrototypeWe desribe the different steps of the exeution of a simpli-�ed version of the trip reservation proess that we used inthe setions above.1. CUSTOMER REQUEST SUBMISSION. The exeutionstarts when a ustomer inputs his request (the destination,the departure date, the return date, and his name). Submit-ting the request entails saving the entered values in the CEPdoument. The trip request is simulated by assigning atualvalues to the different �elds in the XML doument. (List-ing 8.2) is an exerpt from the initial CEP doument of theproess de�ned in our XML language.

-- The selected element is : E1.1 Desc:trip paralle l with :none
 this CEP number of elts is :4 dirCEL is : E1.1
 Organization Query string is trip
 Service Query string is trip
 Created connection to registry
 Got registry service and query manager
 Org name: trip organizer
 company Org description:
 trip reservation: hotel and airplane ticket booki ng with car rental(optional)
 Org key id: f9e4f93d-2bf9-e4f9-7297-2864692ad619
 Contact name: Neila BEN LAKHAL
 Phone number: (012) 345-678
 Email Address: neila.benlakhal@Voyager.com
 Service name: TripService
 Service description: trip service Tunisia
 Access URI: http://localhost:8080/trip-jaxrpc/tri p Service
 name: JapanTripService
 Service description: trip service Japan
 Access URI: http://localhost:8080/japantrip-jaxrp c/japantrip
 2
 WS name = TripService
 WS name = JapanTripService
 WS URI = http://localhost:8080/trip-jaxrpc/trip
 WS URI = http://localhost:8080/japantrip-jaxrpc/ja pantrip
 WS binding = tripInformation
 WS binding = TripIF
 WS binding = String_1
 WS binding = String_2
 WS binding = String_3
 WS binding = String_4
 WS binding = japantripInformation
 WS binding = JapanTripIF
 WS binding = String_1
 WS binding = String_2
 WS binding = String_3
 WS binding = String_4
 TripServicehttp://localhost:8080/trip-jaxrpc/trip
 JapanTripServicehttp://localhost:8080/japantrip-ja xrpc/japantrip
 --GENERATED CEL contained in file :
 C:\eclipse-SDK-2.1.1-win32\eclipse\workspace\THROW S4\\E1.1\CEL.XMLFig. 8.3 Exerpt from the messages output on the Java exeution on-sole to monitor the exeution progress. In this part, a WS disovery isperformed by querying the UDDI registry for WS to the element E1:1;two WS are found and their binding information is used to generate aCEL with two engine elements.ThisCEP doument is updated and handled by the differ-ent engines throughout the proess exeution. By the end ofits exeution, the CEP doument ontains information aboutthe exeution suess (e.g., �ight booked, hotel tiket re-served, ar reserved) or failure (e.g., no available �ight).2. Element seletion and CEL generation The engineoordinator e11 runs on the server side. When it reeives anew CEP doument it starts proessing by parsing the XMLdoument and seleting a urrent element, that is, the �rstelement to be exeuted. In the CEP doument of Listing of(Figure 8.2), the �rst element is the elementID = �E 1:1�.The funtion of going through this CEP doument for selet-ing elements is attahed to the CEP Manager module.After an element is seleted, a CEL doument is gener-ated. This is the responsibility of the CEL Manager: whihreeives, as input from the CEP Manager, a desription ofan element (here, desription = �trip information�).The desription is used to reate a query that is sent tothe UDDI registry for searhing WS that eventually meetthe desription provided.

40 Neila BEN LAKHAL et al.
<fnc:CEL>
 <fnc:engineExecutorDR engineCoordinator="ec_1-1 "
 engineExecutorID="ee_1.1-1" wsdescription=" TripService"
 wsdlLink="http://localhost:8080/trip-jaxrpc /trip">
 <fnc:operation operationID="tripInformation ">
 <fnc:param paramID="String_1" paramtype ="inout" />
 <fnc:param paramID="String_2" paramtype ="inout" />
 <fnc:param paramID="String_3" paramtype ="inout" />
 <fnc:param paramID="String_4" paramtype ="inout" />
 </fnc:operation></fnc:engineExecutorDR>

 <fnc:engineExecutorDR engineCoordinator="ec_1-1 "
 engineExecutorID="ee_1.1-2" wsdescription=" JapanTripService"
 wsdlLink="http://localhost:8080/japantrip-j axrpc/japantrip">
 <fnc:operation operationID="japantripInform ation">
 <fnc:param paramID="String_1" paramtype ="inout" />
 <fnc:param paramID="String_2" paramtype ="inout" />
 <fnc:param paramID="String_3" paramtype ="inout" />
 <fnc:param paramID="String_4" paramtype ="inout" />
 </fnc:operation></fnc:engineExecutorDR>
</fnc:CEL>Fig. 8.4 Exerpt from the CEL of the element E 1:1 from the trip reser-vation proessWe show in (Listing 8.3) the progress of the exeution ofthis step in terms of messages output on the Java onsole.3. Web servies disovery and seletion To ensure in-teroperability of the engine (here onsidered as the JAXRlient) and the UDDI registry implementation, the SOAPmessages that ontain the query (and its orresponding re-sults) are handled ompletely unseen using SAAJ. Searhingthe UDDI registry for WS results in a list of all the organi-zation(s) that ontain(s) WS we are interested in (i.e., theyhave apabilities that meet the funtionalities of the urrentelement E 1.1). When we query the UDDI registry, the re-sult is all the organizations with the name that ontains thestring trip.4. CEP generation The retrieved information, as a resultof the query, is parsed for details about the organization(s)and the servies it/they provide(s) and is used to generatethe CEL doument (refer to Listing 8.4) for the automat-ially generated CEL doument for the element E 1:1. Toeah WS, an engine exeutor is alloated, that is, a new en-gine exeutor ID engineid is dynamially reated and storedin the CEL Doument oupled with the WS information asan engine de�nition rule (see Listing 8.4 and Listing 8.3 forthe CEL doument ontent).After terminating the CEL doument generation, a an-didate engine exeutor is seleted and the CEP Manager up-dates the CEP doument. Here, the seleted engine exeutoris engineExeutorID = �ee 1:1�1�.5. CEP update and ontrol delegationWhen preparingthe neessary data for effetively alloating the exeutionontrol to the engine exeutor ee 1:1� 1, the CEP dou-ment is enapsulated and sent as a SOAP message. Simulta-neously, a new thread engine ee 1:1� 1 is reated, the re-eived CEP doument is stored loally, and a response issent bak to e 1�1 notifying that the SOAP message wasreeived and the exeution launhed.

the parameter id : destination has the value: japan is an input parameter
 the parameter id:departuredate has the value: jan1 2 is an input parameter
the parameter id : returndate has the value: feb12 is an input parameter
 the parameter id : name has the value: Ahmed is an input parameter

input:[destination, departuredate, returndate, name]output:[] start running
ws Endpoint
address=http://localhost:8080/trip-jaxrpc/trip Mr/M s Ahmed, your trip
information were received
successfully
 * Your desired destination is: japan
 * Your chosen departure date is :jan12
 *Your chosen return date is :feb12
successFig. 8.5 Exerpt from the messages output on the Java exeution on-sole to monitor the exeution progress. In this part, the WS alloatedto element E 1:1 and ontrolled by engine ee 1:1�1 is invoked and a�suess� messagereturned.6. Control delegation �nalization and WS invoationpreparation After reeiving the exeution ontrol, the en-gine exeutor ee1:1�1 updates in the CEP doument the stateof E 1:1 from Waiting to Exeuting, and extrats from theCEP doument the values of the parameters with whih theWS will be invoked (see Listing 8.5).7. WS invoation The engine exeutor invokes the WSlient. The JAX-RPC runtime is responsible for reeivingthis WS invoation message within the lient all and forpassing it to the WS endpoint. In addition, when the WS�nishes exeuting, it passes the results to the JAX-RPC run-time. Likewise, the latter takes are of handing over theseresults to the CEP Manager.At this point, depending on the WS exeution progress,two senarios an our: the WS failure or suess. Beausewe implemented the WS, their failure probability was low.The exeution often terminated with suess so to show howfailure handling is performed we fored WS failure (i.e.,fault injetion). In what follows, we �rst desribe the aseof a senario in whih the WS exeution was suessful (seeListing 8.5).In this proess instane exeution, theWS sends bak theresult of its exeution to the engine exeutor, whih uses thisto update the CEP doument to add the WS exeution resultand to add the required hange in the exeution progress. Inthe ase of the engine exeutor ee 1:1�1, the only updateis hanging the element E 1:1's state from Exeuting toCommitted.The next step is to proeed with the exeution of theproess as the urrent element exeution is ommitted. Tothis end, the engine exeutor ee 1:1�1 �nds that there aretwo elements, elementID = �E 1:2� and �E 1:3�, that areassembled in a parallel aggregation pattern. The CEL do-uments of these elements are generated and the engine ex-eutor proesses as desribed above and alloates the en-gines exeutors (ee 1:2� 1 and ee 1:3� 1), respetively.The CEP doument is updated with the new alloated en-gines (see Listing 8.6).

FENECIA 41
</fnc:CEP>...
 <fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="ee_1.1- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_flight" behavior= "compensatable"
 elementID="E_1.2" engineID="ee_1.2- 1">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_hotel" behavior=" compensatable"
 elementID="E_1.3" engineID="ee_1.3- 1">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
 description="rent_car" behavior="co mpensatable"
 elementID="E_1.4" engineID="null">
 <fnc:state value="waiting" />
 ...
<fnc:composabilityRules>
<fnc:composabilityRule OF="WS-SAGAS_1">
<fnc:member memberID="E_1.1" />
<fnc:member memberID="E_1.2" />
<fnc:member memberID="E_1.3" />
<fnc:member memberID="E_1.4" />
</fnc:composabilityRule></fnc:composabilityRules>
<fnc:orderingRules><fnc:orderingRule>
<fnc:sequence IN="WS-SAGAS_1">
<fnc:member memberID="E_1.1" /></fnc:sequence>
<fnc:parallel IN="WS-SAGAS_1">
<fnc:member memberID="E_1.2" />
<fnc:member memberID="E_1.3" /></fnc:parallel>
<fnc:rendezvous IN="WS-SAGAS_1">
<fnc:member memberID="E_1.2" />
<fnc:member memberID="E_1.3" /></fnc:rendezvous>
<fnc:sequence IN="WS-SAGAS_1">
<fnc:member memberID="E_1.4" /></fnc:sequence>
</fnc:orderingRule></fnc:orderingRules>
</fnc:CEP>Fig. 8.6 Exerpt from the simpli�ed trip reservation proess: the exe-ution progress an be monitored by the hange in the state. Here, the�rst element was exeuted and ommitted suessfully whereas the ex-eution of the two following elements is about to start as engines arealloated to both.The CEPManager omponent from the engine ee 1:3�1 sends the CEP doument to both of the new engines. Theexeution proess start is almost the same as that desribedfor ee 1:1�1. The main differene is that that two elementselementID = �E 1:2� and elementID = �E 1:3� are as-sembled in a parallel pattern and they must wait for eahother as they are also assembled in a rendezvous pattern (seeListing 8.6). Consequently, we divided the exeution proessinto two phases; when every thread engine �nishes a phase,it informs the other engine. The �rst phase is dediated to theWS invoation and the seond phase to preparing for ontroldelegation, in ase the WS invoation is suessful.By the end of the exeution of both of the elements E 1:2and E 1:3, the engines ee 1:2� 1 and ee 1:3� 1 generatethe CEL doument of their suessors (here elementID =�E 1:4�: eah engine generates CEL doument by itself andthe resulting CEL doument is a ombination of the two do-uments. The engines ee 1:2� 1 and ee 1:3� 1 agree on

REQUEST:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/env elope/">
 <SOAP-ENV:Body>
<directory>...</directory>
<fnc:CEP>
 ...
 <fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="ee_1.1- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_flight" behavior= "compensatable"
 elementID="E_1.2" engineID="ee_1.2- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_hotel" behavior=" compensatable"
 elementID="E_1.3" engineID="ee_1.3- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
 description="rent_car" behavior="co mpensatable"
 elementID="E_1.4" engineID="ee_1.4- 1">
 <fnc:state value="failed" />
 ...
</fnc:elementADR>
 ...
/fnc:CEP></SOAP-ENV:Body></SOAP-ENV:Envelope>Fig. 8.7 Exerpt from the simpli�ed trip reservation proess: the exe-ution progress an be monitored with the hange in the state. All threevital elements were exeuted and ommitted suessfully whereas theexeution of the last nonvital elements failed.the andidate engine to exeute the element elementID =�E 1:4� by merging their CEL douments and seleting anengine, ee 1:4� 1, to exeute it. Subsequently, ee 1:4� 1suspends ee 1:2� 1 and ee 1:3� 1, and proeeds with itsexeution.Up to this point in the urrent proess exeution, all theelements exeuted had a vitality degree attribute in the CEPdoument equal to vital. For that purpose, when they fail,their failure is ritial and auses the whole WS-SAGAS towhih they appertain to fail, as desribed below in desrib-ing a proess instane that failed.If the WS attahed to ee 1:4� 1 fails while being ex-euted by ee 1:4� 1, then this implies that the failure ofE 1:4 is ignored and the entire WS-SAGAS exeution pro-eeds, and the state of the element E 1:4 is set to Failed.As this element is the last element (i.e., parsing the lo-ally storedCEP doument and looking for an elements hildfrom the same omposite WS returns an empty list), then thesuess of the entire WS-SAGAS and of the whole proessexample is dedued by sending the loally stored CEP do-ument to the engine oordinator of the whole WS-SAGAS;here e 1:1 reeives the CEP doument enapsulated in aSOAP message (see Listing 8.7 for an exerpt).

42 Neila BEN LAKHAL et al.
RESPONSE:

 <?xml version="1.0" encoding="UTF-8"?>
 <soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/env elope/">
 <soap-env:Header/>
<soap-env:Body> <Response>OK CEP is received correc tly</Response>
</soap-env:Body>
</soap-env:Envelope>Fig. 8.8 SOAP message enapsulating a on�rmation message to in-diate that a CEP doument was delivered orretly
<fnc:CEP elementnb="4" enginecoordinatorID="ec_1-1" nestinglevel="1"
 ws-sagasID="WS-SAGAS_1">
 ...
 <fnc:ws-sagasADR nestinglevel="1" elementnb="4"
 behavior="compensatable" descriptio n="trip_process"
 ws-sagasID="WS-SAGAS_1" type="true " vitality="vital">
 <fnc:state value="committed" />
 ...
 <fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="ee_1.1- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_flight" behavior= "compensatable"
 elementID="E_1.2" engineID="ee_1.2- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_hotel" behavior=" compensatable"
 elementID="E_1.3" engineID="ee_1.3- 1">
 <fnc:state value="committed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
 description="rent_car" behavior="co mpensatable"
 elementID="E_1.4" engineID="ee_1.4- 1">
 <fnc:state value="failed" />
 ...
</fnc:elementADR>
 ...
/fnc:CEP></SOAP-ENV:Body></SOAP-ENV:Envelope>Fig. 8.9 Exerpt from the simpli�ed trip reservation proess. Here,all three vital elements were exeuted and ommitted suessfullywhereas the exeution of the last nonvital elements failed. The stateof the overall WS-SAGAS is dedued on the basis of the state of thevital elements.8.1.5 Proess Instane Exeution TerminationIn response to the reeived CEP doument (see Listing 8.7for an exerpt), the engine oordinator e 1:1 sends the SOAPmessage in (Listing 8.8) and resumes exeution ontrol.The engine oordinator e 1:1 terminates the exeutionof the proess instane and dedues the overall proess su-ess beause all the vital elements were ommitted. Thelast version of the CEP doument is then available on thisengine (see Listing 8.9 for an exerpt).8.1.6 Exeution of a Example Proess with FailureHandlingThis proess example was subjet to a WS failure. Here,we intentionally modi�ed the ontent of the response of the

<fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="ee_1.1- 1">
 <fnc:state value="failed" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_flight" behavior= "compensatable"
 elementID="E_1.2" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_hotel" behavior=" compensatable"
 elementID="E_1.3" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
 description="rent_car" behavior="co mpensatable"
 elementID="E_1.4" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR>Fig. 8.10 Exerpt from the simpli�ed trip reservation proess; here the�rst element was exeuted by the engine ee1:1�1 and a failure ourred.�rst WS (i.e., reeived response ontains �failure� instead of�suess�) andidate to element elementID = �E 1:2 in or-der to make the engine onsider the WS as failed. Thereby,the engine ee 1:1�1 needs to dedue its own failure and todelegate the exeution ontrol to the previous engine thread.For that, the urrent engine ee 1:1�1 updates the urrent el-ement elementID = �E 1:1� state to Failed and will om-muniate the CEP doument to its diret predeessor. As itwas responsible for the very �rst element in the urrentlyexeuted WS-SAGAS, it must inform the the engine oor-dinator e 1:1 beause that is the engine that has ontroldelegated to it.Listing of Figure 8.10 is an exerpt from the CEP do-ument that ee 1:1� 1 sends to e 1:1. On reeiving thisdoument in a SOAP message, e 1:1 handles the failure byattempting a forward reovery. First, the engine is updated(the element E 1:1 state is set to waiting), the engineidis set to null, and an attempt to selet another andidateengine from the CEL doument is performed.
8.1.7 Forward Reovery in the Exeution of a ProessInstaneBeause we have made available for eah element two an-didate engines, the engine oordinator e 1:1, when parsingthe CEL doument of element E 1:1 desribed in Listing 8.4,�nds a seond andidate engine: engine ee 1:1� 2. It fol-lows that a forward reovery is possible; e 1:1 updates theCEP doument with the new seleted andidate engine andthe exeution is resumed with ee 1:1� 2 as desribed foree 1:1�1 (see Listing 8.11).

FENECIA 43
<fnc:CEP elementnb="4" enginecoordinatorID="ec_1-1" nestinglevel="1"
 ws-sagasID="WS-SAGAS_1"...>
 ...
<fnc:elementADR type="false" vitality="vital"
 description="trip_information" beha vior="compensatable"
 elementID="E_1.1" engineID="ee_1.1- 2">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_flight" behavior= "compensatable"
 elementID="E_1.2" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
 description="book_hotel" behavior=" compensatable"
 elementID="E_1.3" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
 description="rent_car" behavior="co mpensatable"
 elementID="E_1.4" engineID="null">
 <fnc:state value="waiting" />
 ...
</fnc:elementADR>Fig. 8.11 Exerpt from the simpli�ed trip reservation proess; here,the �rst element was alloated to a new engine.8.2 QoS Model Appliability Veri�ationThe previous setion foused on showing that our failurereovery-devoted WSC spei�ation and exeution strategyis feasible only to some extent with the urrent level of WStehnology. Our prototype ould not be used to validate ourQoS model unless speial mehanisms and modules, ded-iated to taking a log of eah proess instane exeutionin terms of exeution time and hange in state, need to beadded. We intend to add suh modules in our future workby olleting the different CEP and CEL opies in a history.In this paper, to validate our QoS model, we use data gener-ated using JOpera [61℄ [62℄, a rapid omposition tool offer-ing a visual language and an exeution platform for buildingdistributed appliations from reusable servies with a CWSdepiting a quoting proess. Our hoie of JOpera was in-�uened by its pratiability and its similarity to our FENE-CIA approah in introduing the state onept. However, theJOpera tool is for stati CWS with entralized exeution. Byusing JOpera, we simultaneously show our proposal's appli-ability and give a foretaste of what it is like to use it withother systems.As a proess instane is exeuted in Jopera, the exeutionprogress is expressed in terms of state. The exeution of aWS in Jopera, when the proess is invoked for exeution,follows the state diagram of (Figure8.12(b)).8.2.1 Proess DesriptionWe onsider a proess P2 that retrieves quotes in a desiredurreny for a user-provided stok symbol. The proess wede�ned ombines four WS that we searhed manually andwe used from xmethods.net [64℄. This proess ombines fourvital elements. The �rst element quotes stok pries Ev2:1and the seond performs a urreny onversion Ev2:2; these

E2.1in out

E2.3
outin

E2.2
in out

CWS2in out

Quoting process (P2)

v

v

v

State2.1

State2.2

State2.3

Rendezvous out

(retrieve stock quote)

(retrieve currency exchange rate)

(multiply rate by quote)

Start

End

in

out

State state

E element

flow

input data

output dataLegend
v vitality degree

v

State1

(text) description

(stock quoting)

Atomic element Composite element

In E2.4
outin v

State2.4

(convert to European currency)

E2.1in out

E2.3
outin

E2.2
in out

CWS2in out

Quoting process (P2)

v

v

v

State2.1

State2.2

State2.3

Rendezvous out

(retrieve stock quote)

(retrieve currency exchange rate)

(multiply rate by quote)

Start

End

in

out

State state

E element

flow

input data

output dataLegend
v vitality degree

v

State1

(text) description

(stock quoting)

Atomic element Composite element

In E2.4
outin v

State2.4

(convert to European currency)

(a) proess depited using our graphial notation
Unreachable

Initial

Waiting

Running
Failed

Finished

Aborted

Suspended

(b) state transition diagram from [61℄Fig. 8.12 Quoting proesstwo elements are invoked in a parallel WS-SAGAS patternand they join subsequently in a rendezvous pattern. A thirdelement Ev2:3 integrates the results obtained from the previ-ous two elements. Finally, a fourth element Ev2:1 onverts thestok quote from Euro to the urreny of any of the 12 Euro-partiipating ountries and bak. The quoting proess P2 isdepited using the WS-SAGAS graphial notation in (Fig-ure 8.12(a)). However, we are obliged to delegate exeutionontrol to a entralized authority, whih is responsible forexeution and failure reovery of all the elements and forthe WS disovery and mapping to the elements, whih isperformed statially, beause this is how JOpera is built.

44 Neila BEN LAKHAL et al.
instance number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

1.102 0.981 2.544 1.282 1.031 0.160 0.902 1.022 1.001 5.859 31.425
1.202 1.151 2.564 0.991 1.182 0.160 1.172 1.181 9.704 5.879 31.395
1.222 2.343 2.104 0.010 20.900 0.000 0.010 0.010 0.000 0.000 0.000
2.313 1.161 6.309 0.000 0.000 0.000 2.592 1.062 0.000 0.000 0.000
4.737 4.655 10.977 1.292 22.082 0.160 3.774 2.253 9.704 5.879 31.425

v
1.2E

v
2SAGAS-WS

v
2.2E

v
3.2E

v
4.2E(a) The observed exeution time (se.) of the four Web servies alloated to the elements and of the overall stok quoting proess depitedas a WS-SAGAS

instance number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Finished Finished Finished Finished Finished Failed Finished Finished Finished Failed Failed
Finished Finished Failed Finished Finished Failed Finished Finished Failed Failed Failed
Finished Finished Unreachable Failed Failed Unreachable Finished Finished Unreachable Unreachable Unreachable

Finished Finished Unreachable Failed Unreachable Unreachable Finished Finished Unreachable Unreachable Unreachable

Finished Finished Failed Failed Failed Failed Finished Finished Failed Failed Failed

v
1.2E

v
2SAGAS-WS

v
2.2E

v
3.2E

v
4.2E(b) The observed terminal states of the four Web servies alloated to the elements and of the overall stok quoting proess depited as aWS-SAGASFig. 8.13 Results of quoting proess exeuted instanes8.2.2 Proess Exeution and Data ColletionWe invoked the stok quoting proess 11 times (a = 11).The results from the invoations in terms of exeution timeand Terminal States, respetively, for eah element and forthe overall proess are shown in (Figure 8.13) and (Fig-ure 8.14). The reasons for failures during the running of theproess instanes are: (i) The Internet onnetion failed dur-ing the SOAPmessage roundtrip (e.g., instane ℄10). (ii) TheWS timed out beause of a network onnetion failure (e.g.,instane ℄5). (iii) TheWS returned a failuremessage beauseof data inonsisteny (e.g., instane ℄9).8.2.3 Exeution Time Estimation and AnalysisBefore stating our exeution time estimate analysis, note thatin Figure 8.13 if only the results of the �rst table are on-sidered the only information obtained is the exeution timerange of the different omponents. There is no way to tellwhether a failure took plae or the reasons behind the ritialvariation in the exeution time between instane ℄6 instane℄11. However, even without further analysis, onsidering theexeution progress in terms of state helps to show that fail-ures have ourred and helps estimate the omponent(s) thatis/are behind the failures (ells highlighted in gray in the twotables in Figure 8.13).To analyze thoroughly the obtained data olleted fromexeuting the stok quoting proess listed in Figure 8.13(a),we onsider different senarios. The differentiation into se-narios allows us to emphasize the effets of failures on theobserved exeution time. As shown in the two senarios on-

sidered, how the exeution time is estimated varies aord-ing to whether a failure has ourred or not.SCENARIO 1. In this senario, we onsider the ase ofinstanes where the proess P2 exeution is terminated in theFinished state and where no failure ourred; for example,see instane ℄1 in (Figure8.13). The following equation isde�ned on the basis of our proposed model to estimate theProbable Exeution Time ofWS-SAGAS2:T (P2)prob = (2:4Õ`=2:1T (E`)probjDR(E`):type= atomi)= max(T (Ev2:1)prob;T (Ev2:2)prob)+T (Ev2:3)prob+T (Ev2:4)prob (8.1)For instane ℄1, the expression of 8.1 is transformed as fol-lows:T (P2)1prob = T (Ev2:2)1opt +T (Ev2:3)1opt +T (Ev2:4)1optNote that T (P2)1prob is used to designate the Probable Ex-eution Time of P2, when invoked. The symbol Õ was in-trodued to indiate that the exeution time is derived a-ording to the aggregation pattern that onnets the differentelements that we de�ned. In addition, this symbol onsidersonly atomi elements, whih is the type for all the elementsin the stok quoting proess.In addition, note that the entity ontrol delegation timein the estimation of the probable exeution time of a pro-ess is ignored beause the JOpera tools provide no meansto inquire about it.

FENECIA 45Beause no failure ourred when instane ℄1 was exe-uted, we have:T (Ev2:1)1opt = T (Ev2:1;ws12:1)1 RP(Ev2:1)1+R(Ev2:1)1 = 0T (Ev2:2)1opt = T (Ev2:2;ws12:2)1 RP(Ev2:2)1+R(Ev2:2)1 = 0T (Ev2:3)1opt = T (Ev2:3;ws12:3)1 RP(Ev2:3)1+R(Ev2:3)1 = 0T (Ev2:4)1opt = T (Ev2:4;ws12:4)1 RP(Ev2:4)1+R(Ev2:4)1 = 0This senario onsidered only the ase of proess instaneswith no failure; therefore, in our model the expression thatrelates to the failure reovery time estimates are irrelevant.SCENARIO 2. In this senario, we onsidered the aseof one of the instanes in whih a failure ourred. The exe-ution retrial of the failed element was not possible beausethere were no other availableWS to reattempt it. As a result,a bakward reovery was neessary. In the following expres-sion, we followed the ase of instane ℄5 in whih the WSws12:3, alloated to Ev2:3, has failed. The expression of 8.1 istransformed as follows:T (P2)5prob =max(T (Ev2:1)5prob;T (Ev2:2)5prob)+T (Ev2:3)4prob+T (Ev2:4)5prob (8.2)Beause a failure ourred when instane ℄5 was exeutingthe element Ev2:3, we have:T (Ev2:1)5prob = T (Ev2:1;ws12:1)5+RP(Ev2:1)5+R(Ev2:1)5T (Ev2:2)5prob = T (Ev2:2;ws12:2)5+RP(Ev2:2)5+R(Ev2:2)5T (Ev2:3)5prob = T (Ev2:3;ws12:3)5+RP(Ev2:3)5T (Ev2:4)5prob = 0R(Ev2:1)5 = Bak(Ev2:1)5R(Ev2:2)5 = Bak(Ev2:2)58.2.4 Reliability Estimation and AnalysisFrom the results of the invoations of the quoting proess(Figure8.13), we determined the TSS, STS, and RT of thedifferent elements of the omposition (see Figure 8.14).The estimates of the Reliability Tendeny (RT) of the dif-ferent elements are shown in (Figure 8.14).In determining these estimates, de�ning the different StateReliability Contributions (SRC) of eah Terminal State wasrequired. In this ase study, we alloated as initial values forthe Terminal States Finished, Failed, and Unreahablethe SRC of +1:0, �1:0 and +0:5, respetively. Our motiva-tion behind assuming suh values is that, when a negativeSRC value is assumed, the variation in the overall reliabil-ity of the estimate an be more important. Therefore, that afailure is taking plae an be more readily highlighted by at-trating the designer's attention to the element with the moreritial reliability estimate. To realize this, we attahed tothe Finished state a more neutral value, beause we aremore interested in failures; we attahed a negative value to

the SRC of the Failed state to make its effets notied veryquikly. In addition, we attahed to the Unreahable state amedian value beause in this ase the element exeution wasabout to start but it did not beause its ativation onditionwas not �red; therefore, it requires the designer's attentionto hek why suh a situation ourred.Typial interpretations of these results are:� First, both Ev2:3 and Ev2:4 tend not to sueed in their ex-eutions in 9:1% of ases beause of their own failures(i.e., in 9:1% of ases their exeutions terminate in theFailed state). For example, instane ℄5 and instane℄4 failed beause failures ourred, respetively, at Ev2:3(ws12:3 failed to send bak its response and a time-out o-urred) and at Ev2:4 (a network failure prohibited ws12:4reeiving its input).� Seond, the elements Ev2:3 and Ev2:4 tend not to start theirexeutions and to terminate in the Unreahable state in36:4% and 45:5% of the total invoations, respetively.An element state is set to the Unreahable state whenthe ondition assoiated with the start of its exeution isevaluated as false. In suh a ase, its exeution is skipped[62℄. In the ase of Ev2:3 and Ev2:4, their onditions werenot �red beause their predeessors failed (e.g., in in-stane ℄9, Ev2:2 failed).� Finally, elements Ev2:1 and Ev2:2 have a strong tendenyto �nish in the Failed state: up to 27:3% for Ev2:1 and36:4% for Ev2:2. Their frequent failures ause overall om-position failure. Therefore, the reasons behind the fre-quent failures of Ev2:1 and Ev2:2 need to be investigated.Moreover, other WS bearing the same funtionalities asEv2:1 and Ev2:2 need to be searhed. Lastly, revising theCWS struture (i.e., order of elements, invoation ondi-tions) has to be planned, if other andidate WS show noimprovements in the quality of exeution of the proess.8.3 Validation Results DisussionIn the introdution to this paper, we advoate that perfetawareness of inevitability of failures in the WS ontext anda failure-handling-devoted omposite Web servies model-ing, exeution, and analysis strategy are required to realizea greater gain in dependability. In this setion, we have val-idated that laim. We have heked the appliability of ourproposed ideas and shown that they are feasible and an beimplemented using the available WS enabling tehnologies(e.g., WSDL, UDDI, and SOAP), to a limited extent. In ourprototype, we only implemented part of the omplete FENE-CIA approah features beause a full-featured implementa-tion is dif�ult to realize with the urrent state of WS teh-nology, as desribed above. A full implementation requiresa more mature WS tehnology, partiularly regarding dy-nami WS disovery and seletion, solutions that onsiderthe semanti and syntati aspet of WS are needed.

46 Neila BEN LAKHAL et al.
Terminal States Set (TSS) State Tendency Set (STS) Reliability Tendency (RT)

(E2.1,WS 2.1) {(Finished,72.7%), (Failed,27.3%), (Unreachable,0%)} {(Finished,72.7%)} (72.7%*1+27.3%*(-1)+0%*0.5)/3=15.1%

(E2.2,WS 2.2) {(Finished,63.6%), (Failed,36.4%), (Unreachable,0%)} {(Finished,63.6%)} 9.1%

(E2.3,WS 2.3) {(Finished,54.5%), (Failed,9.1%), (Unreachable,36.4%)} {(Finished,54.5%)} 21.2%

(E2.4,WS 2.4) {(Finished,45.5%), (Failed,9.1%), (Unreachable,45.5%)} {(Finished,45.5%), (Unreachable,45.5%)} 19.7%

 Reliability tendency(RT(CWS2)) 16.3%

v

v

v

v

1

1

1

1Fig. 8.14 Quoting proess: TSS, STS, and RTIn partiular, in this prototype implementation, we haveshown that the different mehanisms de�ned byWS-SAGASare feasible. Spei�ally, by desribing a proess in termsof elements and by removing any exeution-related details,suh as binding eah element to only one WS, a higher de-pendability level an be ahieved by realizing forward re-overy. This annot be said of other available WSC lan-guages, notably BPEL where when a fault ours at one stat-ially boundWS; BPEL proesses handle the fault by a om-pensation handler invoked to ompensate for the faulty a-tivity. Although BPEL adds some reliability support, delar-ing a proess failed should nevertheless be the last resortand envisaging forward reovery with dynami WS disov-ery and binding is more promising; otherwise, the WS arhi-teture offering the possibility of swithing easily from oneprovider to another is useless.In our prototype desription, we have also shown howthe WS-SAGAS proess de�nitions and, in partiular, theway eah DR enapsulates information about an element anbe used as the proess exeution runs for dynami WS dis-overy and mapping. The desription of an element and itsoperation provided with its parameters is used to reate aquery that is sent to WS registries for searhing WS thateventually meet the desription. We emphasize that our de-sribed method for element-WS mathmaking is intention-ally simpli�ed beause we onsider WS disovery and se-letion issues beyond the sope of this paper. Assessing thesimilarity of WS to ahieve the best math is an ative areaof researh, so we may apply one of the available propos-als, suh as the keyword-based methods and ontologies andreasoning algorithm enrihed methods. Therefore, the pro-ess exeution an transparently resume without interruptionand, even when a dynamially mapped WS fails, instead ofstopping the overall exeution, as in BPEL, a forward re-overy an be transparently attempted by automatially al-loating another WS. In addition, equivalently to BPEL, ourmodel supports bakward reovery beause a ompensatingelement is provided to eah element.In addition, we have also shown the broad sope of theappliability of our QoS model and that our failure-awareQoS analysis approah, with the state inorporation, an pro-vide step-by-step information about the exeution progress,

whih an help to trak the loation of failures and explainthe reasons for failures.In many of the available WSC languages, exempli�edby BPEL, mapping between WS and partners is set when aproess is invoked, and this mapping is �xed for all the ex-eutions. As the proess runs, there is no means of knowingthe exeution progress, beause WS are generally statelessand BPEL provides only a orrelation-based stateful inter-ation that only allows identifying instanes. Another meh-anism is required to identify the progress of the interatingparts as the proess runs, and to derive the proess instanesprogress. This is exatly the ruial role of the state oneptintrodued in our proposal. Traking the exeution progressby keeping a log of all the CEPs, whih are updated on ev-ery hange in any of the element states, provides a step-by-step exeution progress of all the proess instanes thatwe an analyze to investigate failures' reasons or loations.We have shown how this an be done when we applied ourstate-guided failure analysis approah to data olleted us-ing Jopera.Finally, the ase study allowed us to show that in esti-mating the exeution time, onsidering all the possible exe-ution situations and building on the state onept an helpdesigners to aquire detailed data about the failure loationand auses more easily, without having to use any omplexmodeling formalisms. Moreover, the data derived from theexeution history (i.e., state tendeny sets, terminal statesset) are more pratial and straightforward beause no simu-lation systems are required for analysis. On the basis of suhdata, system designers an more readily loate error-proneomponent(s), reasons for failure an be more easily inves-tigated, and eventually, the proess overall struture an bealtered to improve performane, if required. However, in ourproposal, to reah its full potential, we need to use a morerobust real-time monitoring tool that an, besides measuringand olleting the total response time of a proess invoa-tion, distinguish between a faulty and a suessful invoa-tion, measure separately the SOAP messages roundtrip timeand the WS exeution time, and measure the ontrol delega-tion time. Several WS monitoring tools are already availablebut, to the best of our knowledge, they are only for elemen-tary WS or for statially omposed WS; the ase of dynam-ially exeuted omposite WS has not yet been onsidered.

FENECIA 479 Related Work and Disussion9.1 WSC ApproahesA number of alternative approahes have been suggestedby several authors to aggregate individual WS to produea new CWS, enabled even to enapsulate the underpinninglogi of omplex business proesses. However, large parts ofthe available solutions are oriented toward omparing the se-mantis of the interleaved servies and heking their ports'ompatibility.The most important feature that distinguishes our ap-proah from others is that we onsidered the dependabilityissue in all the different stages of the WSC proess, that is,from the spei�ation, to the exeution, to the QoS assess-ment.TheWSC platform StarWSCoP (StarWeb Servies Com-position Platform) [65℄ is very losely related to our workand it follows a similar approah to ours beause it fouseson dynami omposition. It provides a servie exeution in-formation library that stores trae information of CWS ex-eution; in our approah, this library is equivalent to thehistory that ollets the observed exeution progress of theCWS instanes (i.e., the opies of CEP).Another similarity with our approah is that in StarWS-CoP, the authors developed the notion of a wrapper for eahWS, whih is very similar to the engine notion, beause it isalso used to at as a proxy of the WS; others ommuniatewith the wrapper instead of the WS. The wrapper initiates,freezes, and ontinues the WS aording to the requests sentby the requester. However, the wrapper does not have anyprede�ned mehanism to handle potential failures suh asthose we de�ned in our approah, where eah engine, besideonversing with the WS it wraps, also ommuniates withdifferent engines in a peer-to-peer fashion to progress theexeution and to handle failures, whih is ompletely absentin the StarWSCoP approah. Furthermore, eah wrapper im-plements different managers to deal with the seurity, trans-port, and data type mismath issues. We reognize that se-urity is a very important dependability attribute, espeiallyin the ontext of WS. However, beause the tehniques forseurity assessment are still rudimentary in the WS arhite-ture, seurity is not addressed in this paper. Considering theexeution aspet, our approah is more salable than Star-WSCoP beause exeution ontrol in StarWSCoP is allo-ated to a entralized engine whereas in our approah it isdistributed among different engines to avoid the possibilityof bottleneks and of having a single point of failure.For QoS estimation and analysis, the StarWSCoP ap-proah estimates real-time QoS metris of the CWS by ex-tending WSDL to support QoS metris, suh as ost, time,and reliability. The de�ned QoS metris are very simplistiompared to ours: they do not onsider the reperussions offailures and the authors do not state how reliability is esti-mated. In addition, the real-time QoS estimations are usedto hek if a partiular CWS �ts the user's prede�ned QoSrequirements, whih means that StarWSCoP targets user sat-

isfation. However, our approah is oriented more towardallowing the system designers to assess the system quality,analyze it, and eventually produe some improvements.Similarly, we also onsider two other approahes wherethe CWS is reated dynamially by desribing the funtion-alities of interest that omponents should have without ref-erening any spei� WS. The �rst is eFlow, a platform de-veloped by HP [7,8℄; the seond approah is SELF-SERV, aframework developed by the University of New South Wales[41,10,9℄. In the eFlow platform, the de�nition of a servienode enloses a servie seletion rule written in a partiularquery language. When invoking the servie node, the ruleis exeuted to selet a spei� servie. Conerning SELF-SERV, it exploits the onept of servie ommunity, a on-tainer of alternative servies. At runtime, a ommunity del-egates any requests it reeives to one of its urrent mem-bers. The eFlow platform ontrasts with our approah be-ause it works with a entralized sheduler. As with star-WSCoP, it may suffer from salability problems and no QoSmodel is expliitly supported. On the other hand, SELF-SERV uses an approah similar to ours: a distributed exeu-tion system where oordinators (i.e., software omponentshosted by WS providers) may ontrol a set of WS, ratherthan only one. Although the SELF-SERV strategy avoidshaving a single point of failure, to exeute a CWS the dif-ferent oordinators need to manage routing tables, statiallygenerated from the oordinators' preondition and poston-dition states transition tables; a large amount of data needsto be exhanged among oordinators. Doing so may eas-ily provoke failures of the oordinators beause of bottle-neks. To the best of our knowledge, the SELF-SERV strat-egy does not provide any mehanisms for handling similarsituations. On the other hand, in our approah, the CEP on-ept, equivalent to the oordinators' routing tables in SELF-SERV, allows a dynami deision of the exeution ontroldelegation of the engines based on the CWS different om-ponents exeution states; however, the advantage is that aminimal amount of data is exhanged, ompared with SELF-SERV. Furthermore, an engine is alloated only if it is ingood ondition. Moreover, exeution retrial and ompensa-tion mehanisms are provided in ase of failure, whih an-not be said of SELF-SERV. Note that the notion of om-munity in SELF-SERV differs greatly from the notion ofCEL in our approah beause there is no de�ned poliy tohandle the ase where one or more omponent servies thatform a ommunity fail. Therefore, onsidering extending theomposition model to integrate transational semantis, as inour approah, is very interesting for SELF-SERV. However,an unresolved issue remains and needs to be addressed forour approah/SELF-SERV: how to deide on the size of theommunity/CEL to inrease the hanes of suessful exe-ution. Here, the idea of using the history of past exeutionsof a CWS an be used to dynamially optimize an ongoingexeution�aording to a given set of parameters, suh astime, prie, and QoS�and to deide the suitable number ofCELs available in view of the suess perentage of the dif-ferent WS invoked in the different CWS instanes.

48 Neila BEN LAKHAL et al.One of the most profound features that is of great impor-tane for designing and developing dependable ompositeservies is transation support. WS are well known for beingautonomous, heterogeneous units, where eah WS providerhas its own management poliies; suh harateristis makeimplementing CWS with a transation support more dif�-ult, but essential. Very few proposals ontain transationsupport in their omposition. [39,40℄ introdues a frame-work alled WebTransat, whih provides the neessary in-frastruture to build reliable CWS.WebTransat is omposed of a multilayered framework.It uses WSDL to desribe the WS funtionalities and addsa Web Servies Transation Language (WSTL) on top ofWSDL, enhaning it with funtionalities failitating om-posite WS by desribing transation support for a WS. As inour approah, WebTransat de�nes different types of trans-ation behavior. However, it supports ompensation and re-triability behaviors and introdues virtual-ompensatable be-havior for operations whose underlying system supports 2PCand pivot behavior for the operations, whih are neither om-pensatable nor retriable.However, the main differenes between our approah andWebTransat are, �rst, the WS are statially integrated inWebTransat by the developer who plays the role of WS in-tegrator. However, this is not a �exible method of WS inte-gration. Seond, the WebTransat framework is mainly forintegrating WS that have (and expose) their own loal trans-ation support; however, this ondition is not always veri�-able beause not all WS have transation support and pre-sumably, if they do, not all are ompliant with eah other,or are limited only to the above suggested transation sup-port of WebTransat. This is what made us onsider om-pletely ignoring transation support that the different WSmay provide and to deide to offer/append at a higher levelthe same transation support at the omposition WS levelinstead. Currently in our approah, WS-SAGAS supportsompensatable, nonompensatable, retriable, vital, and non-vital behaviors. Finally, our approah an omplement theWebTransat framework beause our QoS model an be veryimportant in auditing and analyzing the WS exeution to im-prove the quality and ef�ieny of the mediator servie om-position given that QoS assessment is not yet addressed inWebtransat.In [66℄, an approah to seleting servies based on theirsemantis as well as their quality, as judged by users, isproposed. To this end, a query language based on DAMLthat aommodates several essential query and manipulationtemplates is developed. The users'/providers' estimations ofthe QoS may be inorret and/or biased by the users' subje-tivity. In our approah, we do not rely on the users'/providers'QoS rating; instead, designers observe the CWS exeutionand ollet the exeution results in a history to use later as abasis to estimate the QoS properties.In [67,58℄, the authors introdue a QoS-aware middle-ware for CWS. They fous on a dynami and quality-drivenapproah to selet omponent servies for a omposite ser-vie. Multiple QoS riteria, suh as prie, exeution time,

and reliability, are onsidered. They propose a global plan-ning approah to optimize the overall QoS using linear pro-gramming tehniques. Their approah is effetive with re-spet to reahing QoS optimality. However, their omplexWork�ow patterns, suh as using branhing and frequentloop iterations, seems to make their approah less ef�ientand inreasingly omplex for business proesses. Further-more, potential failure reperussions on the global QoS havenot been onsidered. Moreover, reliability is mapped diretlyto the reliability of eahWS individual. Reliability is de�nedas the probability that a request to a partiular WS reeivesa orret response within a maximum expeted time frame.This method of haraterizing the reliability is not extend-able to dynamially assembled CWS.Similarly to our approah, the authors of [68,57,69,70℄have proposed building new CWS that are QoS-optimizedand have either de�ned their own QoS models or been in-spired by other models. However, all these approahes areonly appliable for statially aggregated CWS. In addition,the authors of [57,59,69,70℄ have investigated different QoSdimensions, suh as time, ost, reliability, and �delity. How-ever, they have not onsidered how the different states andeffets of failure ause the QoS estimates vary. To harater-ize the reliability dimension, their proposed models are de-rived from a more general work [59℄, in whih the disrete-time stable reliability model proposed in [71℄ is followed todesribe the reliability of tasks in the Work�ow ontext:R(t) = 1� (system failure rate+proess failure rate) :This equation is only appliable for stati CWS as it onlygives a global idea of the reliability estimates of a ompo-nent. Our approah for reliability estimation goes further be-ause it obtains more detailed estimates with the possibilityof knowing what omponent(s) was/were behind the onsid-erable variation in the overall reliability estimates and thereason (i.e., failure).9.2 Standards and Commerial PlatformsWS are beoming an important part of mainstream IT. Ev-ery day, it seems, a new aronym is introdued and addedto the mass of aronyms ranging from SOAP to UDDI toWSDL. Moreover, ongoing massive standardization effortsseek to enable CWS; these inlude, among others, businessproess modeling languages suh as WSCI, WSFL (WebServies Flow Language), and, most reently, BPEL4WS[4℄, whih have been developed to model CWS. Of these,only BPEL4WS onsiders failure handling but it offers onlylimited support beause it introdues fault handlers to spe-ify the ations to be taken when a WS exeution fails. How-ever, these fault handlers are de�ned in a way similar to theexeption-handling tehniques exploited in programming lan-guages. Moreover, the handlers are dediated to trying to re-over from the effets of the failed servie but they do notattempt to investigate the auses behind the failure, as we doin our approah.

FENECIA 49In addition, other existing standards, suh as BTP [48℄,the WS-Transation [25℄ proposed by IBM, and WS-TXM(from WS-CAF framework) [26℄ by Sun de�ne models tosupport transations between loosely oupled systems in theWS ontext. They de�ne models for entralized and peer-to-peer transations, whih support a two-phase oordina-tion of WS. These standards build on extended transationalmodels to speify how different WS are oordinated. Thedifferent entities have to agree a priori on the transationmodel. Consequently, they inherit the advaned transationalmodels' lak of funtionality and performane when usedin appliations that involve dynami omposition of hetero-geneous servies in a peer-to-peer ontext [72℄. Hierarhi-al QoS Markup Language (HQML), Web Ontology Lan-guage (OWL-S), and Web Servie Level Agreement lan-guage (WSLA) are examples of spei�ations that have ad-dressed the need for a QoS model.The ommon point of these spei�ations is that they de-sribe the QoS of WS. For example, DAML-S has inludedonstruts that speify several QoS parameters, namely, thequality rating and the degree of quality. However, these spe-i�ations have not supplied any preise haraterization ofthe different parameters and they are only suitable for WSand not for ompositions.Finally, examples of ommerial platforms that deal withWS automation inlude Mirosoft's .NET and BizTalk toolsand IBM's WebSphere. These appliations provide supportfor SOAP, WSDL, and UDDI onnetivity. However, to thebest of our knowledge, they provide little or no support forCWS.9.3 Conventional Composite SystemsMaking several entities work in tandem to reah a om-mon goal is not a new hallenge in itself, beause it hasbeen widely addressed for deades in several areas, inlud-ing Work�ow management systems, software engineering,and arti�ial intelligene. Many argue that when onsider-ing CWS, it is important to take into aount, and use expe-riene and knowledge from, these losely related areas [73,43℄, beause the main differene is that omposition in WSarhiteture hie�y aims at taking XML-based standards andthe Internet as starting points to reah the same goal. In thedifferent parts of our approah, we promote the same ideabeause we were inspired by several works in related areas,spei�ally in the area of Work�ow tehnology and softwareengineering.In de�ning the different aggregation patterns for the CWSspei�ation model, we hose to build on Work�ow patternsto de�ne the different WS-SAGAS aggregation patterns be-ause the typial ontrol �ow dependenies enountered inWork�ow modeling arguably apply as well in the ontextof CWS, beause the situations they apture are notieablysimilar. In [43℄, the authors showed that the Work�ow pat-terns apply to existing CWS languages suh as BPEL4WSand BPML. Our approah builds on the state onept that

was used well in the ontext of software engineering to de-�ne QoS models, where many mathematial tehniques havebeen developed. The models that are losely related to ourapproah are the strutural models of reliability [74℄ and theMarkov reward models [75℄, whih form the basis of all per-formability models. In the former, a state diagram that de-pits the system behavior is used.Based onMarkov hain properties, the transition betweenstates is assumed to be a Markov proess. This means thatthe omponents to be exeuted in the next state depend onlyon the omponents of the urrent state and the omponentsof the next state do not depend on the history of the urrentstate. In the latter, the system is assumed to be modeled as aMarkov proess with a �nite state spae, and a reward rate(performane measure) is assoiated with eah state.Our approah omplements thesemodels beause we usethe state onept to de�ne in the same way the behaviorof the different omponents in terms of transition betweendifferent states; we augment this by making the state on-ept play an important role in enhaning failure informa-tion, de�ning the QoS estimates, and analyzing the QoS esti-mates. On the other hand, our approah differs in its simpli-ity from these proposals and from other tehniques proposedin [76,77℄, whih are supported by underlying modeling for-malisms (e.g., blok diagrams, Markov hains, Petri-nets,logis, et.), beause the aquired estimates are easily ana-lyzed, whih is not the ase of the tehniques above, widelyknown for requiring onsiderable expertise and effort. Veryoften, the designers are not eager to build suh models be-ause of their inherent omplexity. Finally, the models ob-tained are not straightforward to interpret so further simula-tions have to be performed.10 ConlusionsIn this paper, we introdue FENECIA, our framework forCWS spei�ation, exeution, and QoS assessment. Our ap-proah puts forward the view that WS/CWS failures are notexeptional situations, as often laimed, but takes a radiallydifferent view by aepting that failures are inevitable forany WS/CWS. In addition, our approah emphasizes thatwhen earlier failures are taken into onsideration, by de�n-ing in advane proper failure-handling mehanisms, thereare greater hanes of seeing a CWS perform with greaterdependability. To ahieve this vision, our work's main on-tributions are summarized below.First is the onstrution of WS-SAGAS, whih providesthe framework required to build a transation model speif-ially tailored to �t the harateristis of the WS arhite-ture, thereby allowing movement away from the onstraintsimposed by the traditional transation model. WS-SAGASinherited several interesting features from previously pro-posed transation models, spei�ally, arbitrary nesting, re-laxed ACID properties, state, vitality degree, forward andbakward reovery, and ompensation.

50 Neila BEN LAKHAL et al.We demonstrate how these onepts, whih were adaptedfrom onventional omposite systems, need to beome partof the WS arhiteture pillars to provide major ontributionsin dependability enhanement.We also show how our model provided a powerful on-strut for extending other approahes to support WSC moreexpressively, with an inreasing level of �exibility and de-pendability, by de�ning a textual notation that is as free aspossible from programming onstruts and as expliit as pos-sible. This would allow it to be easily understood and up-dated, whih annot be said of the syntax of other exist-ing proposals, whih are heavily based on XML. Further-more, our textual notation that desribes a CWS in termsof de�nition rules (DR), omposability rules (CR), and or-dering rules (OR) is partiularly useful for us to de�ne ourtransation model operational semantis and orret exeu-tions. Beause we onsider a peer-to-peer exeution model,the use of strit serializability, adopted in traditional trans-ation models, is inadequate. The desription of a proessin term of DR, CR, and in partiular, OR, ontributes partlyto avoiding inonsistenies, beause the different OR allowde�nition of the orret ontrol �ow in a proess. To ensurethe semantis of eah element are respeted when it is ex-euted, partiularly the nesting, transational behavior, andvitality degree, we build on the state onept and we de�neseveral forms of dependeny that must hold between the dif-ferent elements ombined in the same pattern, the sameWS-SAGAS, and in the same proess; we all these intrapatterndependenies, intra-WS-SAGAS dependenies, and intrapro-ess dependenies.We have attahed a graphial syntax to our model toexploit the pereptual apabilities of designers by allowingthem to apture themodels at different levels of detail, whereasother solutions either de�ne no graphial notation or advo-ate the use of state-harts for ease of use, although they maynot allow expression of all their models' semantis.From WS-SAGAS for WSC dependable spei�ation asa hierarhy of reursively nested transations omes our se-ond ontribution toward de�ning an exeution environmentthat supports the abstrat onepts suggested byWS-SAGAS,whih we named THROWS arhiteture. The exeution ofWSC, depited asWS-SAGAS, is made possible by the on-�uene of several novel ideas. First, most existing WSC sys-tems only support the integration of WS in a entralizedmodel, onsisting of dediated entralized engine(s). Theyhave totally ignored the inherent nature of the WS environ-ment where interation follows a peer-to-peer model andwhere eah peer WS owner provides a set of servies thatomprise CWS. We take a radial approah and proposean arhiteture where the exeution ontrol is hierarhiallydelegated to distributed engines disovered dynamially. Ex-euting the CWS in a distributed fashion allows us to avoidhaving a single point of failure and to split the messages thatthe entral authority is required to manage among the dis-tributed engines.In addition, beause WS are in essene loosely oupled,integrating them into a CWS makes the system reliability

and availability a ritial issue. To deal with this issue, wepropose generating the CEL dynamially, where a list of dy-namially disovered WS-engine ouples is ranked. More-over, the CEL onept allows the exeution retrial with al-ternative andidates. Beause CEL are dynamially gener-ated, engine sequenes of invoation annot be known be-forehand. Here, we propose the CEP onept so that the exe-ution ontrol delegation between engines an be performedby keeping trak of the exeution progress.We also introdue a model to assess the QoS of CWS. Inour model, rather than relying on the QoS information adver-tised by the different WS providers (whih may be not up todate), we estimate the QoS properties on the basis of CWSexeution observations, whih are olleted in a history thatonsists of the different opies of CEP and its different up-dated opies. Seond, we onfer paramount importane tothe failure reperussions on the CWS performanes; in fat,not only were orret exeution instanes examined to esti-mate the QoS and later analyze it, but also our model wasoriented toward onsidering the system in all of its possiblestates (e.g., orret, faulty, reoverable, exeutions). By do-ing so, we intend to make our model apable of re�eting thereal state of the typial ase of CWS, with their inherent ten-deny to fail rather easily ompared with others. Third, weuse the onept of element state, initially introdued in WS-SAGAS, so that the more error-prone elements an be morereadily loated. Finally, our model does not use any omplexmodeling tehniques, thus making it diretly usable withoutrequiring a dif�ult learning urve.Our method illustrates how onferring paramount impor-tane to failure reperussions on the CWS performanes anturn the observed failures throughout a proess exeutionyle from a dif�ulty to a bene�t. We demonstrate in ourase study how the history of exeution of faulty proess in-stanes an serve as solid basis for analyzing the robustnessof fault-tolerane mehanisms by traking failures to �ndthe most error-prone element in a proess. We also showhow suh observations are used to restruture the proessde�nition to ahieve better quality of exeution and how our�exible proess de�nition in terms of DR, CR, and OR sup-port suh a method.We demonstrate that the abstrat onepts and artifatsde�ned by FENECIA an be implemented to some extent ina prototype in the ontext of a researh projet. While ourprototype implementation suffers from tehnologial limi-tations, it does demonstrate that our proposal is within therealm of feasibility. The possibility of implementing a fully�edged implementation of this work will depend greatly onthe evolution speed of the servie industry and researh.The FENECIA approah proposal allows us to realizethat basi onepts that exist in onventional omposite sys-tems, namely the element state and, more generally, the om-ponent behavior, need to be made available for WS as theyan assist greatly in obtaining information about the exeu-tion and in adding improvements. Moreover, in onventionalomposite systems, where the same omponents are on-neted, only stati omposition strategies were available.

FENECIA 51However, in the WS ontext, throughout the different partsof our approah, we show that suh a solution is not viable,and a dynami omposition strategy is far more preferable.However, to realize fully a dynami omposition strategy,muh remains to be done in the WS arhiteture beause itstill suffers signi�antly from being heavily based on the In-ternet.In the ase of some business proesses where failuresare not permissible (e.g., banking), effetive realization ofthe FENECIA vision, besides making the failure reoverymehanism possible, requires proper failure avoidane meh-anisms, whih may onstitute an interesting extension to ourpresent work. In addition, at present the CWS exeution inFENECIA is done independently by different engines, wherethe engines are volatile (i.e., on eah CWS invoation, newCEL are built to avoid using WS that are no longer avail-able or obsolete). Making the different engines nonvolatileand assigning QoS attributes to the different engines to esti-mate their performane an lead to a more optimized exeu-tion, beause the more reliable engines are seleted. Later, amore elaborate model of ollaboration between the differentengines an be developed. Finally, beause there is a widerange of toolkits supporting WS development, another inter-esting researh diretion will be �nalizing the implementedon�guration of WS-SAGAS for THROWS, experimentallymeasuring its performane, and omparing it with others.Aknowledgements Part of this researh was supported by CREST ofJST (Japan Siene and Tehnology Ageny), a Grant-in-Aid for Si-enti� Researh on Priority Areas from MEXT of the Japanese Gov-ernment (#16016232 and #18049026), and the 21st Century COE Pro-gram Framework for Systematization and Appliation of Large-saleKnowledge Resoures.Referenes1. W3C. Web servies desription language (wsdl).http://www.w3.org/TR/wsdl, 2005.2. W3C. Simple objet aess protool (soap).http://www.w3.org/TR/soap, 2005.3. W3C. Universal desription, disovery, and integration (uddi).http://www.uddi.org, 2005.4. IBM, BEA Systems, Mirosoft, SAP AG, and Siebel Systems.Bpel4ws business proess exeution language for web servies,2005.5. IBM. The emerging tehnologies toolkit (ettk), 2005.6. Mirosoft. Mirosoft web servies strategy.net.http://www.mirosoft.om/net/, 2005.7. Fabio Casati, Ski Ilniki, Li-Jie Jin, Vasudev Krishnamoorthy, andMing-Chien Shan. e�ow: A platform for developing and manag-ing omposite e-servies. In AIWORC '00: Proeedings of theAademia/Industry Working Conferene on Researh Challenges,page 341. IEEE Computer Soiety, 2000.8. Fabio Casati, Ski Ilniki, Li jie Jin, Vasudev Krishnamoorthy, andMing-Chien Shan. Adaptive and dynami servie omposition ine�ow. In B. Wangler and L. Bergman, editors, CAiSE '00: the12th international Conferene on Advaned information SystemsEngineering, volume 1789 of LNCS, pages 13�31, London, June05 - 09 2000. Springer-Verlag.9. Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, and EileenOi-Yan Mak. Self-serv: A platform for rapid omposition of web

servies in a peer-to-peer environment. In VLDB, pages 1051�1054, 2002.10. Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. Theself-serv environment for web servies omposition. IEEE Inter-net Computing, 7(1):40�48, Jan. 2003.11. DanWu, Bijan Parsia, Evren Sirin, James A. Hendler, and Dana S.Nau. Automating daml-s web servies omposition using shop2.In The Semanti Web - ISWC 2003, Seond International SemantiWeb Conferene, Sanibel Island, FL, USA, volume 2870 of Le-ture Notes in Computer Siene, pages 195�210. Springer, 2003.12. Nikola Milanovi and Miroslaw Malek. Current solutions for webservie omposition. IEEE Internet Computing, 8(6):51�59, 2004.13. N. J. Davies, D. Fensel, and M. Rihardson. The future of webservies. BT Tehnology Journal, 22:118�130, Jan. 2004.14. Ahmed K. Elmagarmid. Database transation models for ad-vaned appliations. Morgan Kaufmann, San Mateo, California,1992.15. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Ws-sagas:a transation model for reliable web servies ompositionspei�ation and exeution. DBSJ letters, 2(2):7�20, Ot. 2003.16. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Dis-tributed arhiteture for reliable exeution of web servies. Teh-nial Report DBWS2003 2B, IEICE, 2003.17. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Relia-bility and performane estimation for enrihed ws-sagas. In WIRI'05: Proeedings of the International Workshop on Challenges inWeb Information Retrieval and Integration, In onjuntion withICDE2005, pages 54�63, Tokyo, Japan, Apr. 2005. IEEE Com-puter Soiety.18. Neila Ben lakhal, Takashi Kobayashi, and Haruo Yokota. Depend-ability and �exibility entered approah for omposite web ser-vies modeling. In 14th International Conferene on CooperativeInformation Systems (CoopIS2006), volume 4275(OTM2006) ofLNCS, pages 163�182, Montpellier, Frane, Nov. 2006.19. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota.Throws: An arhiteture for highly available distributed exeutionof web servies ompositions. In IEEE 14th International Work-shop on Researh Issues on Data Engineering: Web Servies forE-Commere and E-Government Appliations (RIDE'04), pages103�110, Boston, USA, Marh 2004. IEEE.20. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. A sim-ulation system of throws arhiteture with ws-sagas transationmodel. DBSJ Letters, 3(1):89�92, June 2004.21. Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Afailure-aware model for estimating and analyzing the ef�ienyof web servies ompositions. In PRDC '05: Proeedings of the11th Pai� Rim International Symposium on Dependable Com-puting (PRDC'05), pages 114�124, Washington, DC, USA, 2005.IEEE Computer Soiety.22. Neila Ben Lakhal. A framework for modeling, exeuting, andanalyzing dependable transational Web servies ompositions.Phd.thesis, Tokyo Institute of Tehnology, Tokyo, Japan, 2007.23. A. Gorbenko, V. Kharhenko, P. Popov, A. Romanovsky, andA. Boyarhuk. Development of dependable web servies out ofundependable web omponents. Tehnial Report 863, Universityof Newastle upon Tyne, Shool of Computing Siene, Ot 2004.24. Jean-Claude Laprie and Brian Randell. Basi onepts and tax-onomy of dependable and seure omputing. IEEE Transationson Dependable Seure Computing, 1(1):11�33, 2004. Fellow-Algirdas Avizienis and Senior Member-Carl Landwehr.25. F. Cabrera and et al. Spei�ation: Web ser-vies transation (ws-transation). http://www-106.ibm.om/developerworks/webservies/library/ws-transpe/,2002.26. Orale Fujitsu, IONA and Arjuna Tehnologies Sun.Web servies omposite appliation framework(ws-af).http://www.arjuna.om/standards/ws-af/, 2003.27. Hetor Garia-Molina and Kenneth Salem. Sagas. In SIGMODConferene, pages 249�259, 1987.

52 Neila BEN LAKHAL et al.28. W.M.P. van der Aalst, A.H.M.ter Hofstede, B. Kiepuszewski,and A.P. Barros. Work�ow patterns. Distributed and ParallelDatabases, 14(1):5�51, 2003.29. A. Sheth, K. Kohut, and J. Miller. Meteor projet pageat large sale distributed information systems (lsdis)laboratory.http://lsdis.s.uga.edu/proj/meteor/meteor.html.30. Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L.Traiger. The notions of onsisteny and prediate loks in adatabase system. Commun. ACM, 19(11):624�633, 1976.31. W. Du and Ahmed Elmagarmid. Quasi serializability: a orret-ness riterion for global onurreny ontrol in interbase. In VLDB'89: Proeedings of the 15th international onferene on Verylarge data bases, pages 347�355, San Franiso, CA, USA, 1989.Morgan Kaufmann Publishers In.32. Krithi Ramamritham and Panos K. Chrysanthis. A taxonomy oforretness riteria in database appliations. The VLDB Journal,5(1):085�097, 1996.33. Ahmed K. Elmagarmid, Yungho Leu, Witold Litwin, and MarekRusinkiewiz. A multidatabase transation model for interbase.In Proeedings of the 16th International Conferene on Very LargeData Bases, pages 507�518, San Franiso, CA, USA, August 13-16 1990. Morgan Kaufmann Publishers In.34. Sami Bhiri, Olivier Perrin, and Claude Godart. Ensuring requiredfailure atomiity of omposite web servies. In WWW '05: Pro-eedings of the 14th international onferene on World Wide Web,pages 138�147, New York, NY, USA, 2005. ACM Press.35. J. Gray and A. Reuter. Transation Proessing: Conepts andTehniques. Morgan Kaufmann, 1993.36. J.E.B. Moss. Nested transations: an approah to reliable dis-tributed omputing. Cambridge, Massahusetts, 1985.37. Hetor Garia-Molina, Dieter Gawlik, Johannes Klein, KarlKleissner, and Kenneth Salem. Modeling long-running ativitiesas nested sagas. Data Engineering Bulletin, 14(1):14�18, Marh1991.38. Mansoor Ansari, Linda Ness, Marek Rusinkiewiz, and Amit P.Sheth. Using �exible transations to support multi-systemteleommuniation appliations. In VLDB '92: Proeedings of the18th International Conferene on Very Large Data Bases, pages65�76, San Franiso, CA, USA, 1992. Morgan Kaufmann Pub-lishers In.39. Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Me-diating heterogeneous web servies. In 2003 Symposium on Ap-pliations and the Internet (SAINT 2003), pages 344�347, 27-31January 2003 - Orlando, FL, USA.40. Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Web,Web-Servies, and Database Systems, volume 2593 of LetureNotes in Computer Siene, hapter Building Reliable Web Ser-vies Compositions, pages 59�72. Springer, 2003.41. Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Fail-itating the rapid development and salable orhestration of om-posite web servies. Distributed and Parallel Databases, 17(1):5�37, Jan. 2005.42. Gwen Salan, Luas Bordeaux, and Maro Shaerf. Desribingand reasoning on web servies using proess algebra. In ICWS'04: Proeedings of the IEEE International Conferene on WebServies (ICWS'04), page 43, Washington, DC, USA, 2004. IEEEComputer Soiety.43. W.M.P.V.D. Aalst. Don't go with the �ow: Web servies ompo-sition standards exposed. IEEE Intelligent Systems, 18(1):72�76,Marh 2003.44. J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of ProessAlgebra. Elsevier, 2001.45. R. Milner. Communiation and onurreny. Prentie-Hall, In.,Upper Saddle River, NJ, USA, 1989.46. C.A.R.Hoare. Communiating Sequential Proesses. PrentieHall, 1985.47. Mihael J. Butler, C. A. R. Hoare, and Carla Ferreira. A traesemantis for long-running transations. In 25 Years Communi-ating Sequential Proesses, pages 133�150, 2004.48. OASIS Committee. Business transation protool version 1.0,2004.

49. F. Cabrera and et al. Web servies oordination.http://www.ibm.om/developerworks/library/ws-oor/, 2002.50. AT van Halteren. Towards an adaptable QoS aware middlewarefor distributed objets. Phd.thesis, University of Twente, En-shede, the Netherlands, The Netherlands, 2002.51. ITU/ISO. Open distributed proessing referene model, part 2:Foundations, international standard. 10746-2 ITU-T Reommen-dation X.902, 1995.52. Christoph Shuler, Roger Weber, Heiko Shuldt, and Hans JorgeShek. Peer-to-peer proess exeution with osiris. In Springer,editor, International Conferene on Servie-Oriented Computing,volume 2910 of LNCS, pages 483�498, Italy, Deember 2003.53. Ulrike Greiner and Erhard Rahm. Quality-oriented handlingof exeptions in web-servie-based ooperative proesses. InProeedings of the GI-/GMDS Workshop on Enterprise Appli-ation Integration (EAI-04), Oldenburg, Germany, February 12-13, 2004, volume 93 of CEUR Workshop Proeedings. CEUR-WS.org, 2004.54. Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Reliableweb servie exeution and deployment in dynami environments.In Tehnologies for E-Servies the fourth International Workshop(TES 2003), volume 2819 of Leture Notes in Computer Siene,pages 104�118. Springer, September 2003.55. Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin,Drew V. MDermott, Sheila A. MIlraith, Srini Narayanan, Mas-simo Paolui, Terry R. Payne, and Katia P. Syara. Daml-s: Webservie desription for the semanti web. In First InternationalSemanti Web Conferene, (ISWC 02), volume 2342 of LetureNotes in Computer Siene, pages 348�363. Springer, 2002.56. Meyer B. Applying design by ontrat. IEEE Computer (SpeialIssue on Inheritane and Classi�ation), 25(10):40�52, Otober1992.57. S. Chadrasekaran, J.A. Miller, G. Silver, I.B. Arpinar, andA. Sheth. Composition, performane analysis and simulation ofweb servies. Eletroni Markets: The International Journal ofEletroni Commere Business Media, 2003.58. Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, JayantKalagnanam, and Quan Z. Sheng. Quality driven web serviesomposition. In WWW '03: Proeedings of the 12th internationalonferene on World Wide Web, pages 411�421, New York, NY,USA, 2003. ACM Press.59. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kohut. Qualityof servie for work�ows and web servie proesses. Journal ofWeb Semantis, 2004.60. J. Cardoso and A. Sheth. Semanti e-work�ow omposition. Jour-nal of Intelligent Information Systems, 2003.61. Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. Auto-nomi exeution of web servie ompositions. In ICWS '05: Pro-eedings of the IEEE International Conferene on Web Servies(ICWS'05), pages 435�442. IEEE Computer Soiety, 2005.62. C.Pautasso. A Flexible System for Visual Servie Composition.PhD thesis, ETH, July 2004.63. SUN. Java web servies developer pak v1.2 (jwsdp).http://java.sun.om/webservies/, 2003.64. xmethods. http://www.xmethods.net, 2004.65. H. Sun, X. Wang, B. Zhou, and P. Zou. Researh and Implementa-tion of Dynami Web Servies Composition, volume 2834, pages457 � 466. Springer LNCS, 2003.66. A. Soydan Bilgin and Munindar P. Singh. A daml-based reposi-tory for qos-aware semanti web servie seletion. In ICWS, pages368�375, 2004.67. Zeng L.and Benatallah B., Ngu A., Dumas M., Kalagnanam J.,and Chang H. Qos-aware middleware for web servies ompo-sition. IEEE Transations on Software Engineering, 30(5):311 �327, May 2004.68. M.C. Gronmo, R.and Jaeger. LNCS, volume 3543, hapter Model-Driven Methodology for Building QoS-Optimised Web ServieCompositions, pages 68 � 82. Springer, Jan. 2005.69. Amit P. Sheth, Jorge Cardoso, John A.Miller, Krzysztof J. Kohut,and M. Kang. Servie-oriented middleware. In Proeedings of

FENECIA 53The sixth World Multionferene on Systemis Cybernetis and In-formatis(Invited Session on Web Servies and Grid Computing),volume 8, Orlando, FL, 2002.70. J.Cardoso. Quality of Servie and Semanti Composition of Work-�ows. Ph.d. dissertation, Dep. of Computer Siene, University ofGeorgia, Athens, GA., 2002.71. E.C.Nelson. A statistial basis for software reliability assessment.Tehnial report, TRW Systems Report, Marh 1973.72. Nektarios Gioldasis and Stavros Christodoulakis. Utml: Uni�edtransation modeling language. In third International Confereneon Web Information Systems Engineering (WISE02), 0:115, 2002.73. Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter Hof-stede. Web servie omposition languages: Old wine in new bot-tles? euromiro Conferene, 00:298� 305, Sept. 2003.74. R.C. Cheung. A user-oriented software reliability model. IEEETransations On Software Engineering, 6(2):118, Marh 1980.75. M.A.Qureshi and W.H.Sanders. Reward model solution methodswith impulse and rate rewards:an algorithm and numerial results.Performane evaluation, 1994.76. H. Kobayashi. Modeling and Analysis: An Introdution to SystemPerformane Evaluation Methodology. Addison-Wesley, 1978.77. J-C. Laprie. Dependable omputing and faut tolerane: oneptsand terminology. In Pro. of the 15th int. Sym. on Fault-tolerantComputing (FTCS-15), pages 2�11, 1985.

