[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Od/dodn
Article / Book Information

Title FENECIA: failure endurable nested-transaction based execution of
compositeWeb services with incorporated state analysis

0000 /Copyright The original publication is available at www.springerlink.com.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.springerlink.com/content/g546851225w35404/
http://t2r2.star.titech.ac.jp/

The VLDB Journal manuscript No.
(will be inserted by the editor)

Neila BEN LAKHAL - Takashi KOBAYASHI - Haruo YOKOTA

FENECIA: Failure Endurable Nested-transaction based Execution
of Composite Web Services with Incorporated State Analysis

the date of receipt and acceptance should be inserted later

Abstract Interest in the Web services (WS) composition
(WSC) paradigm is increasing tremendously. A real shift
in distributed computing history is expected to occur when
the dream of implementing Service-Oriented Architecture
(SOA) is realized. However, there is a long way to go to
achieve such an ambitious goal. In this paper, we support the
idea that, when challenging the WSC issue, the earlier that
the inevitability of failures is recognized and proper failure-
handling mechanisms are defined, from the very early stage
of the composite WS (CWS) specification, the greater are
the chances of achieving a significant gain in dependability.
To formalize this vision, we present the FENECIA (Failure
Endurable Nested-transaction based Execution of Compos-
ite Web services with Incorporated state Analysis) frame-
work. Our framework approaches the WSC issue from dif-
ferent points of view to guarantee a high level of dependabil-
ity. In particular, it aims at being simultaneously a failure-
handling-devoted CWS specification, execution, and qual-
ity of service (QoS) assessment approach. In the first sec-
tion of our framework, we focus on answering the need for
a specification model tailored for the WS architecture. To
this end, we introduce WS-SAGAS, a new transaction model.
WS-SAGAS introduces key concepts that are not part of the
WS architecture pillars, namely, arbitrary nesting, state, vi-
tality degree, and compensation, to specify failure-endurable
CWS as a hierarchy of recursively nested transactions. In
addition, to define the CWS execution semantics, without
suffering from the hindrance of an XML-based notation, we
describe a textual notation that describes a WSC in terms of
definition rules, composability rules, and ordering rules, and

Neila BEN LAKHAL

Tokyo Institute of Technology, Department of Computer Science
2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 JAPAN

Tel.: +81-3-5734-3505, Fax: +81-3-5734-3504

E-mail: neila@de.cs.titech.ac.jp

Takashi KOBAYASHI - Haruo YOKOTA

Global Scientific Information and Computing Center

Tokyo Institute of Technology, Department of Computer Science
2-12-1 Oh-Okayama, Meguro-ku Tokyo, 152-8552 JAPAN

Tel.: +81-3-5734-3505, Fax: +81-3-5734-3504

E-mail: {tkobaya,yokota} @cs.titech.ac.jp

we introduce graphical and formal notations. These rules
provide the solid foundation needed to formulate the execu-
tion semantics of a CWS in terms of execution correctness
verification dependencies. To ensure dependable execution
of the CWS, we present in the second section of FENECIA
our architecture THROWS, in which the execution control
of the resulting CWS is distributed among engines, discov-
ered dynamically, that communicate in a peer-to-peer fash-
ion. A dependable execution is guaranteed in THROWS by
keeping track of the execution progress of a CWS and by
enforcing forward and backward recovery. We concentrate
in the third section of our approach on showing how the fail-
ure consideration is trivial in acquiring more accurate CWS
QoS estimations. We propose a model that assesses several
QoS properties of CWS, which are specified as WS-SAGAS
transactions and executed in THROWS. We validate our pro-
posal and show its feasibility and broad applicability by de-
scribing an implemented prototype and a case study.

Keywords Web services - composition - dependability -
failure - distributed execution - transaction model - QoS

1 Introduction

With the current proliferation of Web services (WS), a con-
siderable shift is expected to occur in the way distributed
computing systems are integrated. The conventionally in-
tegrated systems are foreseen to be gradually replaced in
the near future by distributed and loosely coupled services-
oriented systems. The key features that allow the WS tech-
nology to accomplish such a shift are: a) It builds on a set
of universally recognized XML standards, especially WSDL
(Web Service Description Language) [1], SOAP (Simple Ob-
ject Access Protocol) [2], and UDDI (Uniform Description
Discovery and Integration) [3] to describe, discover, and in-
voke any type of services in a networked environment. b) It
has the potential to glue any systems together, no matter how
different they are. c) It reduces dependency among compo-
nents to obtain less fragile systems with increased respon-
siveness and ability to be frequently modified.

Neila BEN LAKHAL et al.

One issue that is gaining notable momentum in the re-
search community is WS composition (WSC), which is used
to create what is called value-added services or compos-
ite Web services (CWS) by taking a set of preexisting ele-
mentary WS, typically owned and managed by diverse enti-
ties, and weaving them together to build more powerful and
feature-rich business processes. An example of CWS is an
application that books a flight, rents a car, and makes a hotel
reservation to provide a complete trip reservation process.

There is a myriad of specifications available for com-
posing WS, exemplified by the emerging standards such as
BPEL4WS (Business Process Execution Language for Web
Services) [4] and industrial solutions such as IBM’s Emerg-
ing Technologies Toolkit ETTK [5] and Microsoft’s .Net
[6]. In addition, academic researchers are making substan-
tial research efforts, working on a whole panoply of WSC
strategies including dynamic composition (e.g., eFlow [7,
8]), declarative composition (e.g., SELF-SERV [9,10]), and
semantic composition (e.g., SHOP2 [11]). A careful investi-
gation of the major part of the available solutions for WSC
reveals that only a very few cases are geared toward a dis-
tributed environment, such as the SELF-SERV framework.
However, all the other approaches, such as BPEL4WS and
eFlow, only support the integration of WS into a centralized
model consisting of dedicated centralized engine(s). They
have totally ignored the nature of the WS environment where
interaction follows a peer-to-peer model and where each peer
WS owner provides a set of services that can be used to com-
pose a CWS.

The WSC technology is still regarded as immature: it re-
quires considerable development before reaching its apogee
[12,13]. In particular, the WSC technology has to overcome
a major obstacle—the widely recognized unreliability of the
Internet—because all the available WS rely heavily on the
Internet to be deployed. Adding to the Internet unreliability
is a whole set of characteristics of the modern computing en-
vironments (e.g., unpredictability, heterogeneity, autonomy,
dynamism, complexity, etc.) in which the WS subsist, mak-
ing the most unexpected failure a normal part of any WS.
Furthermore, with the assembly of several elementary WS
into a CWS to create richer functionalities, the failure fre-
quency is more important than ever.

In this paper we advocate that, when challenging the
WSC issue, the earlier we accept the inevitability of failures
and make available proper failure-handling mechanisms—
from the very early stage of the CWS design—the greater
are the chances of achieving a significant gain in dependabil-
ity. To formalize this vision, we propose FENECIA (Failure
Endurable Nested-transaction based Execution of Compos-
ite web services with Incorporated state Analysis), in which
we tackle the WSC issue from different viewpoints to guar-
antee a higher level of dependability. Our approach aims
at being, simultaneously, a failure-handling-devoted CWS
specification, execution, and QoS assessment approach. Our
framework is depicted in (Figure 7.1) and its contributions
are threefold:

WS-SAGAS: a CWS specification model. The first sec-
tion of our approach tackles the WSC issue from a differ-
ent viewpoint: instead of trying to avoid failures, we accept
their inevitability and we propose a new CWS specification
model that builds primarily on the fransaction concept—
widely recognized by the database community as a strong
concept for enhancing reliability and availability [14]. Specif-
ically, we present a new transaction model that we name
WS-SAGAS [15-18] to capture the underpinning logic of the
CWS in transactions. Our model is specifically tailored to fit
the characteristics of the WS architecture, thereby allowing
to overcome the constraints imposed by the traditional trans-
action model [14]. In particular, WS-SAGAS specifies the
CWS as a hierarchy of arbitrary nested transactions and in-
troduces key features including szate capture, vitality degree,
and compensation mechanisms. These mechanisms are crit-
ical to inform of and recover from any transient failure. We
build on these concepts to specify failure-endurable CWS
as a hierarchy of recursively nested transactions. In addi-
tion, to define the CWS execution semantics without suf-
fering from the hindrance of an XML-based notation, we
describe a WSC in terms of Definition Rules (DR), Compos-
ability Rules (CR), and Ordering Rules (OR), and we intro-
duce graphical and formal notations. These rules provide the
solid foundation required to formulate the execution seman-
tics of a CWS in terms of execution correctness verification
dependencies.

THROWS: a CWS execution architecture. In the second
section of FENECIA, we propose a new architecture, named
THROWS (Transaction Hierarchy for Route Organization of
Web Services), for a highly dependable distributed execu-
tion of CWS. In THROWS [19,20], CWS execution control
is hierarchically delegated among distributed engines; these
engines are discovered dynamically throughout the CWS ex-
ecution progress and they interact in a peer-to-peer fash-
ion, thereby avoiding WS execution dependence on a sin-
gle authority, which can constitute a potential single point of
failure. In THROWS, we achieve failure capture and recov-
ery, and control of long-running and parallel transactions by
introducing two key concepts: the Candidate Engines List
(CEL) and the Current Execution Progress (CEP).

QoS estimation and analysis model. In the third section
of FENECIA, we focus on another issue related to the qual-
itative aspect of CWS: we verify to what extent the failure-
handling mechanisms we propose are sufficiently strong to
achieve a significant gain in dependability. during execu-
tion. We present a novel model that characterizes, estimates,
and analyzes several QoS properties of dynamically exe-
cuted CWS [21,17]. In particular, we estimate the reliability
and the execution time of the CWS. We concentrate on one
important issue that has received little attention to date, that
is, considering the potential failures repercussions on the
CWS execution performance estimates. We advocate that ac-
counting for failures and their repercussions on the effective
performance of the CWS is particularly required in the WS
architecture, in view of the WS inherent tendency to fail rel-
atively easily (compared to other computing components).

FENECIA

Contrary to most of the current approaches dealing with
QoS estimations in the WS context, which rely on the QoS
information advertised by the WS providers, our model com-
putes QoS estimates on the basis of the CWS execution ob-
servation.

Approach validation. To check the feasibility of our ap-
proach, we present a prototype that we implemented [18,22]
and that specifies CWS as a hierarchy of recursively nested
WS-SAGAS transactions and simulates their execution in
THROWS architecture. In addition, we report a case study
that demonstrates the applicability of our proposal [21].

By bringing together the sections described above: i) We
build on the strength of the WS architecture-enabling stan-
dards. ii) We combine a number of carefully selected fea-
tures: the transaction-based specification and execution, the
state-guided execution failure monitoring, the failure-aware
QoS estimation, and the execution observation-driven QoS
analysis. ii7) Finally, we introduce the dedicated failure han-
dling and recovery strategy, and we provide a solid founda-
tion for the FENECIA approach to become a comprehen-
sive methodology for the development of highly dependable
CWS.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the type of failures we consider in this pa-
per. Section 3 describes the key requirements that a transac-
tion model for the WS context must satisfy. Section 4 is an
overview of the evolution of the transaction concept. Sec-
tion 5 describes our WS-SAGAS transaction model. Sec-
tion 6 describes our architecture, THROWS. Section 7 intro-
duces our QoS model. Section 8 describes our validation and
checks the applicability of our proposal. Section 9 describes
related work. Finally, Section 10 concludes our paper and
gives a few tentative suggestions for future work.

2 Fault Model

The fault model and the failure modes we identified were
inspired by a failure taxonomy for the particular case of WS
architecture developed in [23], which in turn is based on the
seminal work of [24].

A fault model is a model of the types of faults that can
occur in a system while it is running. The widely recognized
specificities of the modern IT environment in which WS
subsist (e.g., heterogeneity, complexity, and autonomy of
the participating systems and of their underlying platforms,
versatile communications protocols and dynamic manage-
ment policies, uncertainties about system boundaries, etc.)
make the system subject to all the classes of faults catego-
rized in [24]. The classes of faults of interest are physical
faults including all fault classes that affect hardware, inter-
action faults including all external faults, and development
faults including all fault classes occurring during develop-
ment. However, in multitier CWS, which span multiple in-
teracting systems, interaction faults, which occur during use,
have the greatest impact. Examples of faults in this class are
lost/corrupted messages, process crashes, and faults intro-

duced by updates. The interaction faults can be categorized
as transient faults or permanent faults. We consider perma-
nent faults beyond the scope of this paper.

2.1 Failure Modes

A complete understanding of possible failure modes helps
determine the mechanisms for fault tolerance. In this paper,
we consider failure modes encountered by the system users,
specifically timing-related failures where the time of arrival,
or the duration of the information delivered, at the service
deviates from the expected duration implemented by the sys-
tem function. These failures are environment-related failures
and are associated with WS crashes and timeouts; they are
commonly characterized as silent failures because the sys-
tem service is no longer available to users. At the composi-
tion level, special monitoring is required to handle these fail-
ures. This class of failure is handled by performing either a
forward recovery or a backward recovery without requiring
any external intervention.

The other category of failures encountered by system
users is content-related failures, such as WS execution ex-
ceptions, WS programmed exceptions, exceptions propagated
from other participant WS, and fault messages received from
SOAP calls to WS. We consider content-related failures to
be beyond the scope of this paper; dealing with them is com-
plex because WS providers define WS differently.

3 A Transaction Model for WS Context: Key
Requirements

We identify the key requirements that a transaction model

for CWS must satisfy. A number of contributions have added

a transactional support for CWS such as WS-transaction [25]

and WS-CAF [26]. Although available solutions are mostly

for statically composed WS, we target a dynamic CWS. Af-

ter identifying the different requirements that a transaction

model for dynamic CWS must satisfy, we provide a state-

of-the art summary of the concept of transactions in database

technology to identify previously proposed concepts that may
help to increase dependability.

REQUIREMENT 1. A generic model that can combine dif-
ferent transactional semantics: WS interleaved in a CWS
tends to be hosted by different providers. It is most likely
that their providers are using noncompliant transaction sup-
ports (if they provide any). Moreover, it is not possible to
compel the WS providers to make the same transaction model
available. To this end, a transaction model for the WS con-
text must be sufficiently generic to accommodate different
transactional semantics in the same model. Furthermore, it
must add the required transactional semantics to the WS, if
they do not exist. BPEL [4] is a typical example of a WSC
specification that defines only one type of transactional se-
mantic for all the WS interleaved in the same CWS.

Neila BEN LAKHAL et al.

The sagas model [27] was used to define the required
transactional support for static CWS in BPEL. In BPEL, the
only way to handle a failure is by compensation; the case
where it is impossible or unnecessary to define a compen-
sator for a particular saga is not addressed. It is true that fail-
ure atomicity is guaranteed because if any activity fails the
overall process is compensated. However, we argue that the
support of other transactional behaviors in the same model
improves the chances of CWS execution completing suc-
cessfully. Other required transactional behaviors in this situ-
ation are: (i) envisaging alternative mechanisms to compen-
sation if compensation is not an option; (ii) having recourse
to compensation only as a last resort, when there is no means
of saving some part of the process progress; (iii) including
idempotent tasks that need no compensation.

REQUIREMENT 2. A model that can support different inter-
action patterns: The logic underpinning business processes
tends to be versatile and semantically varying. Consequently,
in the same transaction, we may have to orchestrate elemen-
tary WS in different ways and in line with different control
flow patterns (e.g., join, split, synchronize, etc.). However,
a major part of the proposed transaction models only sup-
ports a concurrent or sequential interaction within a trans-
action. To overcome this limitation, the Workflow commu-
nity contributions are of interest. In particular, well-known
Workflow Patterns are those proposed in the seminal work
[28]. This collection of patterns has been used to evaluate the
functionality of commercial products and standards support-
ing the development of process-oriented applications (e.g.,
the METEOR project [29] and BPEL [4]). This work serves
as a reliable starting point for defining the required aggrega-
tion patterns.

REQUIREMENT 3. A model that can guarantee the best match
between WS and CWS components: A well-known charac-
teristic of the WS realm is its unpredictability; this character-
istic is not part of the equation in either the Workflow area or
transaction models. Both are designed for a computing en-
vironment where modifications are very rare. Moreover, the
different components, for either a transaction (subtransac-
tions) or tasks for Workflows, are predefined, which totally
eliminates unpredictability.

Returning to the WS context, unpredictability introduces
a high probability of failure when WS are statically orches-
trated. To overcome this limitation, it is required to define
several alternative WS for the same component so that if
the execution using one fails, it can be reattempted using
others. Moreover, as WS tends to provide basic functionali-
ties, it is very probable that one transaction as a whole can-
not be satisfied by one WS alone. This introduces another
requirement for component/transaction semantics, compo-
sition/decomposition, to facilitate and ensure that the best
match is made. This requirement satisfaction is partially ad-
dressed in this paper; for a full description, refer to [18].

REQUIREMENT 4. A model that can guarantee correct and
dependable execution: Many specified details of the CWS
relate to the defined execution correctness restriction meth-
ods. In particular, we cite serializability [30], widely accepted
as the cornerstone of database correctness, as unsuitable.
Our justification is that serializability is very rigid and im-
poses restrictions that are not required (or feasible) in the
WS context. For example, the shared resource condition is
not satisfied because we are no longer dealing with transac-
tions to be serializable against only one database; the differ-
ent processes described as CWS are far more complex than
simple write/read operations.

Several proposals, such as quasiserializability for a mul-
tidatabase environment [31], have proposed solutions that,
although they relax the strict serializability condition, still
target concurrency control and database integrity control.

Nevertheless, for CWS, correctness means ensuring that
the semantics of the CWS are correct against the process-
predefined semantics (i.e., process logic and components or-
ders). Therefore, serializable execution is not required in the
same way as in a conventional database [32]. An important
approach, which indeed was already used for ensuring cor-
rect execution of CWS, is by specifying a set of Acceptable
Terminal States (ATS) [33,34].

This approach was initially proposed for transactional
Workflow systems and later extended to CWS. In this ap-
proach, designers have a crucial role in determining which
is the correct execution, in terms of ATS. We argue that ATS
is a powerful approach that fits well for CWS with a central-
ized and static execution, as in [34]. However, for a dynamic
and distributed execution, ATS is insufficient as there is no
central entity that is responsible for verifying that the execu-
tion verifies, or violates, the predefined ATS. Moreover, ATS
only verifies termination dependency and, even if the differ-
ent components of a CWS terminate in states included in
their ATS, there is no guarantee, or means of proving, their
execution order correct. We require special mechanisms to
enforce that the execution order of the components of a CWS
does not deviate from the prescribed order.

4 Transaction Concept: State of the Art

We highlight features of several transaction models that are
interesting for dependability enhancement. We explain for
each feature/model why it can or cannot be integrated in a
transaction model tailored for CWS.

4.1 Traditional Transaction Model

This model is undoubtedly the precursor of all the transac-
tion models that have been proposed. It refers to a transac-
tion endowed with the ACID (Aromicity, Consistency, Isola-
tion, and Durability) properties [35]. With these properties,
each transaction is guaranteed to enforce failure atomicity
and serializability as a correctness criterion. Each transac-
tion has a flat structure.

FENECIA

Although the effectiveness of the traditional transaction
model in conventional database applications, where transac-
tions are generally simple and of short duration, is irrefutable,
the unsuitability of its strict ACID properties for the WS
context is clear. Maintaining strict isolation and serializabil-
ity causes a lack of functionality, flexibility, and performance.
This precludes the possibility of intertransaction cooperation
and long-running transactions.

4.2 Advanced Transaction Models

Several advanced transaction models have been proposed
in response to the inflexibility of the traditional transaction
model (refer to [14] for a comprehensive description of some
of these). We investigated the applicability of some of these
models that inherently allow transaction composition (struc-
turing) —an essential feature for a model for CWS—and en-
compass concepts with recognized contributions in enhanc-
ing dependability but not yet part of the WS architecture.

The nested-transaction model [36], which uses a serializ-
able correctness criterion, made a significant contribution to
the database community by: (i) extending the flat transaction
structure to a multilevel structure; (ii) introducing the con-
cept of contingent and nonvital subtransactions; and (iii) al-
lowing a higher degree of intratransaction parallelism. All of
these concepts are of considerable relevance to WS architec-
ture because, first, the concurrent execution of transaction is
an essential feature. Second, contingent subtransactions are
easily realizable because WS that share the same function-
alities are numerous; considerable research effort is directed
toward achieving this issue. Third, definition of nonvital sub-
transactions is essential to increase availability.

To deal with the problem of long-lived transaction faults,
the concept of compensation was first introduced in the sagas
model [27]. A saga consists of a set of ACID subtransac-
tions with a predefined order of execution and a set of com-
pensating subtransactions. If a long-lived transaction fails,
it can be aborted and rolled back, and then retried. How-
ever, if a saga as a whole becomes irrecoverable and has to
abort, appropriate compensations are run to compensate for
the completed parts of the transaction (backward recovery),
that is, semantically undoing the effects of the failed parts.
The other possibility in recovery is a forward recovery, that
is, the system needs to retry the same failed transaction parts.
The compensation ingredient here is of particular interest
because it can realize a flexible fault-handling approach—a
highly desirable characteristic in the WS context, in view of
its high failure tendency. However, the restriction imposed
by sagas that each subtransaction must be successfully com-
pensatable cannot always be fulfilled. Therefore, alternative
mechanisms for noncompensatable tasks are required.

The nested-sagas transaction model has been proposed
as an extension to the sagas model [37]. It treats commu-
nication between transaction steps as an essential feature in

the WS context. Each saga specifies input and output ports,
bound at run time to mailboxes (i.e., queue of messages).
Communication is achieved using three different classes of
predefined commands: Bind, Send, and Receive.

The Flex transaction model was designed to allow more
flexibility in transaction processing [33,38]. A flexible trans-
action is specified by defining a set of subtransactions, a set
of intratransaction execution dependencies, and a set of ac-
ceptable terminal states (ATS) defining the conditions for
the success of the flexible transaction. The Flex transaction
model goals are very similar to our goals because it tar-
gets a multidatabase system, which can be assimilated to
a special case of the WS environment where the partici-
pating systems are predefined and cannot dynamically dis-
appear without prior notice. In particular, the way a flex-
ible transaction is defined makes it the best candidate for
CWS, as it allows the designer to specify a set of function-
ally equivalent subtransactions, each of which, when com-
pleted, accomplishes the task. Moreover, the contribution of
the state and the intratransaction execution dependencies as-
sociated with each transaction can overcome the stateless
WS and provide flexible atomicity and isolation, especially
if the subtransactions support some form of compensation.
It is also suitable for controlling and tracking the execution
progress in a distributed environment.

While these advanced models differ in various forms,
they all share the same line of thinking: the strict ACID
properties support is no longer a viable solution for a non-
traditional database environment. In this sense, they exploit
application-specific semantics to define nonserializable cor-
rectness criteria to specify and constrain the behavior of the
transaction components and their interactions. As well as
these transaction models, many others were also proposed
for databases (e.g., cooperative SEE transactions [14], DOM
transactions [14], etc.) or by the Workflow research commu-
nity. We limited our study to these models because they are
at the base of many others that were proposed later.

5 WS-SAGAS Transaction Model

We propose to adopt features of interest from the transac-
tion models described above and to build on them to make
our transaction model sufficiently rich to support any CWS
underpinning logic and to provide it with the required mech-
anisms to guarantee a dependable specification of dynamic
CWS executed in a peer-to-peer environment.

Specifically, we inherit the arbitrary nesting of transac-
tions, the forward recovery with execution retrial, the back-
ward recovery ensured with compensation mechanism, the
vitality degree, the state, the Workflow-like aggregation pat-
terns, and the intratransaction execution dependencies to
ensure correct execution.

6 Neila BEN LAKHAL et al.
(_—>lin]ProcessR[n;,m] [out——>®)
WS- SAGAS (n; ; Elements)
statg 5 statg, , Nesting
«Lin | Ba Coul[n] Ep, (Levell)
- (description) (description)é
WS- SAGAS, (n; , Elements) ™.
. LEQE'J Stateal Statganl) NeStIng
control flow
i i E d - : t| (Level2
input parameters El BI lal n E‘-a-r\,z out] ()
i (description) .- . (description) ¢
output parameters out
atomic -
element ’
o WS- SAGAS,.,, (1 , Elements) "~
element state;.al*.bll State.a.* b.n .
compensating [j j : - . E. " out | i E - Nesting
element I' i.a*b.1 Lout I' i.a*.b.nip out out (LEV6|p)
7 WS-SAGAS,. . (N, Elements)
State.a.*.b.*.c. 1 Stat€,: b cn m
Tin>{in] B axprer out| Nesting
(description) E'i . a*b*cl (Level m)

Fig. 4.1 WS-SAGAS transaction model: graphical notation &; of a process P; described as a hierarchy of recursively nested WS-SAGAS

5.1 General Assumptions

ASSUMPTION 1. We assume we are dealing with business
processes that may need to combine various transactional
behaviors. That is, a process puts together different activi-
ties: several are idempotent and need not be undone (e.g.,
displaying order information), several can be easily undone
or compensated for (e.g., adding products to an order), and
several others cannot be (automatically) undone because they
mark a decision, commonly called noncompensatable (e.g.,
checking out and ordering).

ASSUMPTION 2. We assume that there is no dependency
between successive invocations of the selected WS, if the
dynamic WS discovery and selection leads to selecting the
same WS,

ASSUMPTION 3. We assume the process of candidate
WS discovery, selection, and mapping, and that verification
that a certain candidate WS and a certain component from
a CWS are semantically equivalent can be performed auto-
matically. A very active area of research is measuring the
semantic and syntactic similarity between WS to ensure the
best match can be done. We consider this issue beyond the
scope of this paper, as we can apply any of the available pro-
posals.

ASSUMPTION 4. We assume the system designers have
a comprehensive description of the business rules buried in
the process-underpinning logic and they can use these rules
without ambiguity to discern the different transactional be-
haviors and their scope (i.e., a CWS, a component from a
CWS, an aggregation of components, etc.).

FENECIA

5.2 Description of WS-SAGAS Model Salient Features

Our model introduces the following features to specify the
underpinning logic of a process (e.g., virtual travel agency),
as a fault-tolerant and dynamically executed CWS against a
peer-to-peer environment:

5.2.1 Process, Transaction, and Element

To allow a dynamic process composition, instead of speci-
fying the underpinning logic of a process using a set of pre-
existing WS woven together into a static CWS, we intro-
duce the concept of an Element—represented by a rectangle
in (Figure 4.1)—and use it as a unit in the composition of
a process as a hierarchy of recursively nested WS-SAGAS
transactions.

The same element can be simultaneously a component
from a WS-SAGAS and a parent of other elements in an-
other WS-SAGAS. Therefore, it is called a composite ele-
ment and we represent it as a blue rectangle. Alternatively,
an atomic element is only embedded in a WS-SAGAS and
is represented as a white rectangle.

On executing a process, WS are dynamically discovered,
and candidates are selected and mapped either to the differ-
ent elements or to WS-SAGAS, considering the WS avail-
ability. In this paper we limit the WS selection and mapping
to the atomic elements. However, our approach supports the
mapping to entire WS-SAGAS. This issue is detailed in [18].
The control flow between the different elements specifies the
ordering relation between the different elements and is rep-
resented by directed edges. Finally, the data flow specifies
how the data produced by an element are transferred to an-
other element and are represented by the mapping between
the different input and output boxes; we do not consider this
issue in this paper and we will address it in our future work.
More precisely, we adopt the following notation of a pro-
cess, illustrated also by (Figure 4.1):

P,-[n,-,m,-] . WS-SAGAS,’
F WS-SAGAS; 4

(n,-7 1 elements) (nesting level 1)

(n,-72 elements) (nesting level 2)

|_

FWS-SAGAS; 4.«p (n,-J, elements) (nesting level p)

|_

(5.1)

A process (denoted P) is assumed to have a unique identi-
fier i as a subscript, where i ranges over the set of natural
numbers N to designate different processes. Each process is
assumed to have n; elements distributed over m; nesting lev-
els. In the hierarchy of WS-SAGAS forming the process, we
denote the uppermost WS-SAGAS WS-SAGAS;. Note that
we keep the same subscript for the corresponding process.
Note also that WS-SAGAS; is the only WS-SAGAS in the
hierarchy that has no parent.

In (WS-SAGAS; - WS-SAGAS; ;), the symbol “F” indi-
cates that WS-SAGAS; is defined at the top of the subtrans-
action WS-SAGAS; ,. That is, the parent element of the sub-
transaction WS-SAGAS; , must be E; ,, one of the elements
aggregated in WS-SAGAS;.

A hierarchy of WS-SAGAS forming a process contains
a parent WS-SAGAS, plus zero or more children; the children
can be atomic elements or composite elements, parents of
other WS-SAGAS.

We guarantee the uniqueness of an element identifier by
keeping the identifier of the subtransaction it appertains to
and concatenating it to a unique identifier for the element.
More formally, let E;, be one of the elements from the up-
permost transaction WS-SAGAS; and “i.a” its identifier; *“i”
is the index of its parent WS-SAGAS. We emphasize that the
number of ““.” in the identifier indicates the nesting level, and
the last digit (i.e., a for E; ;) indicates the order. We assume
that “a” is defined in [1..|WS-SAGAS;|] where |WS-SAGAS;|
is the cardinality (i.e., the number of assembled elements)
of the subtransaction W S-SAGAS; and is equal to 7; ;. Sim-
ilarly, it is equal to n;» for WS-SAGAS;, forming the sec-
ond nesting level, and equal to n;,, for the nesting level
WS-SAGAS; ,...» the symbol “x” to indicate that there exists
a subtransaction that has as a parent the element E; , . , and
that comes in one of the nesting levels after nesting level 1,
which contains the element E; ;. In “i.a. = .b” the symbol “x”
is replaced to define the WS-SAGAS actual identifier. We
assume WS-SAGAS; , .. 1s the nesting level p where p < m;
and m; corresponds to the last nesting level in £;. We denote
the last subtransaction in the hierarchy, which corresponds

Ei.a.*.b.*.c.n,-_,,,l. .
5.2.2 Vitality Degree

To add flexibility to the way failures cascade through a pro-
cess, depicted as a hierarchy of WS-SAGAS transactions,
we distinguish vital from nonvital elements. The vital-
ity degree of an element is denoted by a superscript set to
“y” for vital and to “v” for nonvital. The vitality degree
obeys these assumptions:

— A vital element (denoted E},) must be executed suc-
cessfully (i.e., it has to commit) for its parent transaction
to commit.

— A nonvital element (denoted El") may abort without
preventing its parent transaction from committing.

— Aborting a vital element £}, induces aborting the whole
transaction it appertains to if there is no alternative WS
to retry it.

— Aborting anonvital element E}, does not reflect on the
execution of the transaction it appertains to; the process
could complete successfully although not all its compo-
nent elements were committed. Doing so is expected to
increase availability and to decrease the probability of
overall process failure occurring.

Neila BEN LAKHAL et al.

We describe below the definition of the vitality degree of a
process P; depicted as a hierarchy of recursively nested WS-
SAGAS transactions. In the remainder of this paper, an ele-
ment’s superscript is omitted and the notation (E; ;) without
specifying the vitality degree is used for an element when
not relevant or interesting. The distinction between a vital
element (£7,) and a nonvital element (Efk) is only given

L.
when a special consideration is required.

5.2.3 Transactional Behavior

Every atomic element E; ; has a transactional behavior. The
transactional behavior of an element is closely related to the
nature of its functional semantics and is determined princi-
pally by the designers to describe how the element failure
can be handled. The transactional behavior of an element
can be one of the transactional behaviors described below:

— Compensatable: The functional semantics of the ele-
ment can be undone.

— Noncompensatable: The functional semantics of the
element cannot be undone (automatically) once done.

Two other transactional behaviors are implicitly supported
by our model: retriable and idempotent elements. We
assume all the vital elements are retriable with differ-
ent semantically equivalent WS and that the nonvital ele-
ments are not retriable because their fulfillment is optional.
An idempotent element is one that has no effect (e.g., read
operation); we treat this as a compensatable element that
is undone by running an empty compensator.

The choice of potential candidate WS for a particular el-
ement must consider the required transactional behavior for
that element. When an atomic element is compensatable,
we represent its compensating element just below it with a
round-cornered rectangle (see Figure 4.1). Assume that the
element E;; is compensatable: we denote its compensat-
ing element E] . Similarly, a composite element is com-
pensated by the different elements aggregated in its corre-
sponding WS-SAGAS: in (Equation 5.1), E; ; is a composite
element represented by the subtransaction WS-SAGAS; ; and
it can be compensated by compensating W S-SAGAS; ,. We
describe this in detail below.

5.2.4 State

We attach to each atomic element from a WS-SAGAS trans-
action a state for the following reasons.

(i) To decide how to advance a process execution, (i.e., to
decide whether to delegate the execution control to other
element(s) or to resume it), it is essential to know the
execution progress of each element separately.

(ii) At a certain point of the execution of a process, the pre-
specified objectives may be achieved. In this case, the
process is considered to be successfully completed and
can be committed. Because we consider a distributed
model, where there is no central monitor that has all
the required information about the execution progress,

we cannot make a decision unless we attach a state to
each element. We can then derive the current state of the
whole process. More importantly, we can deduce whether
the execution progress is correct against the process pre-
specified semantics and ordering.

At any time, the stare of every element E; ;—denoted state; x
(in Figure 4.1)—keeps the same identifier as the element it is
attached to. The state of an element is assumed to be exclu-
sively in one of the six states defined below, if the element
is compensatable (see Figure 5.1 (a) and (b)):

1. Waiting: E; is not yet submitted for execution and is
still waiting for the execution progress to reach its level.

2. Executing: E; is effectively being executed.

3. Failed: E;; has encountered a failure.

4. Aborted: E;; has received a request to abort itself and
has obeyed it.

5. Committed: E;; has successfully terminated and was
committed.

6. Compensated: E;; has been compensated for.

If an element isnoncompensatable, the set of states that
model the element’s internal behavior is reduced to five states
by eliminating the compensated state (see Figure 5.1 (c)
and (d)). A vital element is assumed to be retriable,
and there is therefore a directed edge between the failed
and executing states in Figure 5.1, (a) and (c).

For an element to transfer from one state to another, a
transition condition has to be evaluated. When it is verified,
several actions may be triggered. Of the different actions,
one action makes the state of the element change from one
state to another.

For a compensatable element E;, to transit from the
state waiting to the state executing, we assume the veri-
fiability of the condition that indicates that at least one WS
bearing the same semantic functionalities as the element must
be selected. Only when the selected WS is mapped to the el-
ement does the element’s state becomes executing.

Depending on the allocated WS execution progress and
the progress of other elements in the same WS-SAGAS, the
executing state can transit to aborted, if the WS execu-
tion must be canceled, or it can transit to either the committed
or the failed states; this depends on whether the selected
WS achieved the element’s objectives or not.

Assume that the state of a compensatable element was
setto failed. Subsequently, depending on the element’s vi-
tality degree, the processing differs:

a) When the element is vital, another candidate WS
that bears the same semantic functionalities is selected and
the execution is retried with this new candidate by changing
the element state back to executing; success of execution
of the new WS means success of the element and its state is
set to committed. However, if an element is retried a num-
ber of times with different WS and all the attempts are un-
successful and it is no longer possible to retry the execution,
for any predefined reason, then the element’s state remains
failed, and a backward recovery is triggered.

FENECIA

Abort()

aborted

(b) State transition diagram of a
non-vital compensatable element

(a) State transition diagram of a
vital compensatable element

Fig. 5.1 State transition diagram for elements

b) The other possible case is when we have a nonvital
element. If the first candidate WS execution failed, the el-
ement’s state is set to Failed, no execution retrial is at-
tempted, and the execution of the whole WS-SAGAS is re-
sumed, as if the element was successful.

The main difference in processing a compensatable
and a noncompensatable element becomes clear when an
element is in the committed state and the execution of an-
other vital element from the same WS-SAGAS cannot be
retried so a backward recovery is necessary. In such a case,
all the compensatable elements in the committed state are
compensated and their state then becomes compensated.

The case of noncompensatable elements included in
a WS-SAGAS requires special consideration because the is-
sue of mixing compensatable and noncompensatable com-
ponents in the same transaction is a difficult problem.

In [38], the authors introduced a commit protocol to en-
sure the compensatable components are committed before
the commitment of the noncompensatable components.
The global commit/abort decision is determined by the out-
come of the noncompensatable components. If they abort,
all of the compensatable components are compensated. In
our model, we extend this protocol and we use mainly the
state concept to allow the execution of a hierarchy of recur-
sively nested WS-SAGAS more flexibly. A detailed discus-
sion of this issue is in the following section.

5.2.5 Failure Recovery

The WS-SAGAS defines a compensating element for each
element, when possible. There are two choices when an el-
ement fails to commit (e.g., allocated WS failure): the first
is to attempt the element execution retrial, which is a vari-
ant of the sagas forward recovery. However, the difference is
that the same element is reattempted bur with another WS.
If the first choice is not possible, then the second choice is
backward recovery, in which the WS-SAGAS offers either
to compensate or to abort the elements to bring the overall
CWS back to a consistent state. We elaborate on this point
in greater detail later in this section.

start

Initiate()

executing

waiting

Start()

executing

:

end

Commit()

Abort()

Commit()

[aborted H failed][committcd}

S —

end

committed

(c) State transition diagram of a
vital non-compensatable element

(d) State transition diagram of a
non-vital non-compensatable element

5.2.6 WS-SAGAS Notations

An investigation of most of the current CWS specification
languages and approaches showed that there are three main
categories of notations adopted to depict a CWS: (a) The
first category uses an XML-based notation; BPEL [4] and
WebTransact [39,40] are typical examples. () The second
category opts for a graphical notation for more expressive-
ness and to overcome the complexity of an XML-based no-
tation; they typically use a standardized modeling notation to
describe CWS. Examples are state charts and UML models—
a typical example is SELF-SERV [41]—or they define a
proprietary notation, if the standard notations are not suf-
ficiently rich to accommodate all the desired semantics of
their approaches, e.g., eFlow [8]. (¢) The third category prefers
formal notations such as 7-calculus or other process alge-
bras because of their conciseness and power to analyze the
semantics and correctness of the model [42].

In WS-SAGAS, we advocate the use of three notations
because we are strongly convinced that one notation alone is
inadequate to express all the semantics of an approach and
may not be suitable for different users. First, instead of an
XML-based notation, we propose a textual notation that can
be used to generate automatically an XML-based notation
of the CWS, when later implementing the system. Our tex-
tual notation is much less error prone, less complex, more
human readable, and more easily modifiable. The most im-
portant feature of our notation is that we exploit it to specify
and constrain the behavior of the different elements in a pro-
cess and the interactions between them. In addition, to com-
plement our textual notation and to define a common solid
foundation for comparison with other formal approaches,
we propose a formal notation. We also define a proprietary
graphical notation and we use this to illustrate a running
example, because the standardized notations, such as UML
diagrams, do not encompass all the semantics we required
for our model. Finally, to have a comprehensive notation of
a CWS, our three notations can be combined or used sepa-
rately.

10

Neila BEN LAKHAL et al.

Statei_k Statei_k,,l State ik

Ei\ [ou in] Eikii

State]-_k+1

State ik+

State;

EiAk+l

Statei.k

Eiy

Statei.kﬂ-:

(a) Sequence pattern

Ei.k+j

Eigg

(b) Parallel pattern (c) Selection pattern
State; ., State; x State;
E. E out E
Statei.k E] ik+1 ik Statei | ik . Statel]
E. [: M . : - Exclusive p
oo I e, || Tl
i+ Statei,k+j i Statei.kﬂ» merge Jtimes i
in L =
B E,.] E i.kﬂ./ el
(d) Switch pattern (e) RendezVous pattern (f) Exclusive merge pattern
State; i
State;_k
Ei.k
\ State;; Ei_k out
: State; .
Selective i
mm;’a . B Ei.l
Statei k. Mimes| in [E; i fout
E. i / A=IS(E; ‘)prJ A Times
ikt

(g) Selective merge pattern

Fig. 5.2 WS-SAGAS aggregation patterns

5.2.7 WS-SAGAS Aggregation Patterns

To define the aggregation patterns, we propose building on
existing work on Workflow patterns and on an analysis of
existing Workflow languages reported in [28]. The following
motivated our choice: a) Control flow dependencies encoun-
tered in Workflow modeling comply with the WS context,
because the situations they capture are also relevant in this
domain. b) Existing languages for WSC, such as BPEL and
BPML, were built on the basis of languages for Workflow
modeling [43]; therefore, we have a common basis for com-
paring our work with these approaches. c¢) It is possible for
our model to incorporate different aggregation patterns into
the same structure, which was not allowed with advanced
transaction models proposed previously. By incorporating
the transaction concept with the different aggregation pat-
terns we enable a flexible and dependable WSC [18].

The analysis of existing Workflow languages allowed us
to identify the relevant patterns necessary to model the logic
of any process, no matter what it is. We identified eight
patterns: sequence, parallel, selection, switch, rendezvous,

(h) Iterative pattern

selective merge, exclusive merge, and iterative (see Figure
5.2) [17,18]. In [28], the authors introduced 20 patterns,
but we limited our study to eight of these and we delib-
erately excluded the others (such as the cancellation pat-
terns or the state-based patterns) because those eight pat-
terns, when combined with the compensation, the state, and
the virality degree, are sufficient to express any process that
our approach can support. Existing Workflow languages pro-
vided either a graphical notation or an XML-like notation of
these patterns and, to the best of our knowledge, there is no
standard notation for such aggregation patterns. We have al-
ready identified the limitations of XML-like notation and de-
scribed why we prefer to define our textual notation. We con-
tinue with the same line of thinking and propose a process
algebraic approach to formalize the description of our aggre-
gation patterns. Instead of an informal notation, we propose
using process algebras (PAs) because we are dealing with
aggregation patterns that have semantics and the correctness
of their semantics needs to be verified. PA contributions in
this direction make them an interesting candidate.

FENECIA

11

5.3 WS-SAGAS Notation

The underpinning logic of a process P, depicted as a hier-
archy of recursively nested WS-SAGAS, is denoted by a 3-
tuple (%, %;,.%;) formed by a textual notation (.%), a graph-
ical notation (%;), and a formal notation (%;).

5.3.1 Description of Textual Notation (J;)

A textual notation of a process P; (denoted .7;) is formed
with three different sets of Rules identified by the system
designers using the process logic description: the set of Def-
inition Rules (DR), the set of Composability Rules (CR), and
the set Ordering Rules (OR).

The DR,CR, and OR share the same tuple-like notation
but their semantics differ because: (i) Each DR gives relevant
information of an entity that either relates to the CWS spec-
ification (e.g., a process, an element, a component, etc.) or
intervenes in the CWS execution (e.g., a WS, a coordinator,
etc.). (ii) Each CR specifies the relation between the differ-
ent entities defined by the different DR (i.e., how the entities
are combined, how the entities interact with each other, etc.).
(iii) Each OR defines the condition that the relation between
the different entities defined by the CR must verify (i.e., un-
der which condition entities are combined, under which con-
dition entities interact with each other).

We propose the following tuple-like generic notations to
define a DR, a CR, and an OR:

DR(Entity,): (Attribute;x,...)

DR(Entity,): (Attributesx,...)

DR(Entity,,): (Attributeze, (Attributes,Attributes), ...)
CR(Entity,,) — (Entity,, Entity,)

OR(Entity,,) — (Entity, op Entity,) ,

where:

— Artribute is the relevant information about an Entity.
We define the multiplicity of each attribute to indicate
the Artribute occurrence number, that is, the number of
times we may find the attribute; we define four forms
of an attribute’s multiplicity: i) The notation Attribute;*
indicates that Entity, may define zero or several values
of Artribute;. ii) The notation Attribute; x indicates that
the Entiry, must define at least one value of Attribute,.
iii) The notation Attributeze indicates that this attribute
is optional and at most one value can be provided. iv) An
attribute name with nothing next to it similarly to the at-
tribute Attributes indicates that one value only is to be
provided. v) Finally, Attributes and Attributes are asso-
ciated and this is indicated by the parentheses.

- CR(Entity,,) indicates that Entity,, defines a compos-
ability relation between Entity, and Entity,.

— op is the condition that the composability relation be-
tween Entity, and Entity, must define.

Specifically, we define DR to provide relevant information
about three different entities: a process, a WS-SAGAS, and

an element. The set of CR identifies the relation of com-
posability between the different elements and WS-SAGAS
(e.g., which WS-SAGAS is composed of/composing which
WS-SAGAS/elements). Finally, the set of OR identifies the
ordering condition that every relation of composability be-
tween the elements and process must verify.

Definition 5.1 (Definition Rule of an Element)

Let E;x be an Atomic element from WS-SAGAS;. DR(E;)
is an ordered tuple that provides relevant information of an
E; 1, namely its name, description, state, vitality degree, trans-
actional behavior, operation with its corresponding input
and output parameters, and its QoS attributes. We added only
those attributes we considered to be fundamental in compos-
ing WS; extending the DR expression with other attributes is
possible. We use the following notation of a DR of an ele-
ment, which is a specialization of the generic DR notation
for an entity described above:

DR(E;) :(name,description, behavior, state,
type,vitality, (operation x (inx,outx)),qosx) ,

where:

- name is the name of the element.

- description is a concise description of the element’s
main semantic functionality.

- behavior is the transactional behavior of the element.
This attribute verifies the condition:

DR(E;).behavior € {compensatable,
non-compensatable} .

- state describes the execution progress of the element.
- vitality is the vitality degree of the element. This at-
tribute verifies the condition:

DR(E;y).vitality € {vital,nonvital} .

- type is the element granularity: an element that has no
children is atomic. Otherwise the element is a parent of
a WS-SAGAS and its type is composite.

- operationx indicates that an element may define sev-
eral values of operation, but at least one.

- inx and ourx are the different input and output parame-
ters of the element.

- The different input and output parameters are associated
with their corresponding operation by using parenthe-
ses; we may define at least one operation, but input and
output parameters are optional. For example, we may
have (operation;(iny,iny,out,)), (operationy()), for an
element with two operations, one of which is a void func-
tion that takes no argument.

- qosx are the different QoS attributes of the element,
which are estimated when the element is executed. We
denote this by gos tuples of attributes; for example, we
may have gosx =< qos,qos»,qos3 > to describe an ele-
ment where we are interested in three particular QoS at-
tributes: the execution time, the reliability, and the cost.

12

Neila BEN LAKHAL et al.

For each atomic compensatable element E;; verifying
(DR(E;).behavior = Compensatable and DR(E;).type =
Atomic), we define a compensating element (denoted E;).
This element is invoked if a failure later in the execution of
E;; makes it necessary.

The occurrence of element E/, after element E;; restores
the system to a state that is an acceptable approximation of
its state before the start of the execution. For every compen-
sating element, we may define the definition rule of a com-
pensating element (exactly DR(E!,)), in the same way we
defined it for an element.

Definition 5.2 (Definition Rule of a WS-SAGAS)

Let WS-SAGAS;, be a subtransaction formed by n;, ele-
ments and having as a parent the composite element E;,
from WS-SAGAS; (see Equation 5.1).

DR(WS-SAGAS; ;) is an ordered tuple that provides relevant
information on WS-SAGAS;, specifically its name, descrip-
tion, state, vitality degree, transactional behavior, and QoS
attributes. The values of several attributes are deduced from
the attributes in the composing elements of the WS-SAGAS.

DR(WS-SAGAS; ;) : (name,description, behaviorx,
statex,vitality,qosx) ,

where:

- name is the name identifier of the WS-SAGAS.

- descriptionx is a concise description of the WS-SAGAS;
it combines the description of the different elements that
appertain to this WS-SAGAS and verifies:

DR(WS-SAGAS; ;). description =
ll,"z
\J (DR(E;o.).description) .
(=1

- statex describes the execution progress of the subtrans-
action WS-SAGAS; , Itis an n; >-tuple formed by the states
of the elements composing WS-SAGAS; 4:

ni2
DR(WS-SAGAS; ,).statex = U (DR(E; q0).state) .
(=1

We assume that only the state of the vital elements af-
fects the overall WS-SAGAS commitment’s decision. In
addition, all the compensatable elements must wait for
the noncompensatable elements from the same sub-
transaction (i.e., nesting level) to be able to commit their
work. By putting together these two assumptions, we can
reduce the state of a WS-SAGAS to the set of states of
the elements that verify the conditions;

ni2

DR(WS-SAGAS; ,).statex = | J(DR(Ejq).state) with:
=1

DR(E; q).vitality=Vital and

DR(E; 4.¢).behavior = Noncompensatable .

- vitality is a reduction of a tuple formed by n; vitality
degrees, one for every atomic element aggregated in
WS-SAGAS; .. We reduce this n;>-tuple to a one-value
tuple. If there is at least one vital element in a WS-
SAGAS, the overall WS-SAGAS is vital. However, a
WS-SAGAS is nonvital if all of its composing ele-
ments are nonvital. These requirements are formulated
below:

e DR(WS-SAGAS; ;).vitality = nonvital iff
{VEiac € WS-SAGAS; 4|t € [1..n;5]} we have:
(DR(E; 4¢).vitality = nonvital).

o DR(WS-SAGAS; ,).vitality = vital iff
{3Eic € WS-SAGAS; 4|l € [1..n;2]} that verifies:
(IDR(E; 4.0)-vitality = vital).

- behaviorx is a n; > tuple formed by the transactional be-
haviors of the atomic elements in WS-SAGAS; ,. Its ex-
pression is:

ni2
DR(WS-SAGAS; 4).behaviorx = |_J (DR(E;q.¢).behavior) .
(=1

- Finally, gosx are the different QoS attributes we con-
sider; we derive these on the basis of the gos attributes
of the elements that appertain to the WS-SAGAS. We
describe how below.

Definition 5.3 (Set of Definition Rule of a Process)
The set of DR that defines a process P, is derived below based
on the expression of a process in (Equation 5.1):

i.a.*.b.*.c.n,-‘m’.

U DrE)

d=i.l

i.a.x.b.x.c

| DR(WS-SAGAS))
(=i

DR(P)[ni,m;] =

011
= (DR(WS—SAGASi) U DR(Ey))
d=i.l
i.a.n;p
U (DR(WS-SAGAS;q) | DR(E;))---
d=i.a.l
i.ax.b.nip
U (DR(WS_SAGASi.a.*.b) U DR(Ea)) T
d=i.a.x.b.1

i.a.*.b.*.c.n,-‘m,.

U (DR(WS-SAGAS;a.pc) | DR(E3)> .

d=i.a.x.bx.c.l

Definition 5.4 (Composability Rule of a WS-SAGAS)
The next step in our modeling approach is defining the Com-
posability Rules (CR), essential in defining the nesting and
composition dependency between the different WS-SAGAS.
A typical CR of a WS-SAGAS is the specialization of the
entity CR described above. Below we describe the CR of
WS-SAGAS; ,, the second nesting level composed of n; > el-
ements:

CR(WS-SAGASi_a) — <E,‘.a.1, v ’Ei-a-"i,2> .

FENECIA

13

Definition 5.5 (Set of Composability Rules for a Process)
We define the set of CR for the process shown in (Figure 4.1)
and (Equation 5.1):

i.a.x.b.x.c

U (CR(WS-SAGAS;))
=i

= CR(WS-SAGAS;)

U CR(WS-SAGAS;4) - -

U CR(WS-SAGAS; q...5) -
U CR(WS-SAGAS,’ a.x.b.x c))

CR(P,') [I’l,‘, m,-] =

where:
CR(WS-SAGAS;)
CR(WS-SAGAS; ;)

— <Ei.17 e 7Ei.a7 e 7Ei.71,'_1>
— (Ei.a.la T 7Ei.a.n,-‘2>

CR(WS‘SAGASi.a.*.b) — <Ei.a.*.b.1)T 7Ei.a.*.b.n,-‘,,>

Definition 5.6 (Ordering Rule of a WS-SAGAS)

The step that comes after identifying the different CR is the
Ordering Rules (OR) definition. The most important feature
of this step is that each rule builds on the process’s prede-
fined semantics to define and restrict the execution depen-
dencies between the different elements/WS-SAGAS form-
ing a process (i.e., the correct execution orders). For a WS-
SAGAS, if no OR is explicitly defined, then the order of the
different elements order is interchangeable. Below we de-
scribe the OR of WS-SAGAS; , representing the second nest-
ing level and composed of ;> elements:

OR(WS-SAGAS; 4) = (Eia10p---0p Eian,) -

Definition 5.7 (Set of Ordering Rules of a Process)

We define the different OR of the WS-SAGAS subtrans-
actions nested in the process depicted in (Figure 4.1) and
(Equation 5.1):

OR(P,') [I’l,’, m,-] =

i.a.x.bx.c

U (OR(WS-SAGAS;))
=i

= OR(WS-SAGAS;)

U OR(WS-SAGAS;) - --

U OR(WS-SAGAS,; 4..5) -
U OR(WS'SAGASia ®.D.% c))

where:
OR(WS-SAGAS;)
OR(WS-SAGAS; 4)

—Ei1op ---0pEiy,)
_)<Ei.a.1 op---op Ei.a.n,-‘2>

OR(WS'SAGASi.a.*.b) _><Ei.a.*.b.1 op---op Ei.a.*.b.n,;,,)

OR(WS_SAGASl a.x.b.x C)_)<Ei.a.*.b.*.c.l op--- OpEi.a.*.b.*.c.n,-‘,n’. >

ax.bxcly " ;Ei.a.*.b.*.c.n,-‘,,,i > .

In the different OR, op stands for “operator” and it de-
pends on the control flow that describes the process in terms
of elements and their execution ordering through different
constructors (e.g., sequence, choice, parallelism, and syn-
chronization).

Considering how business process logic tends often to
involve complex behaviors and capabilities, which are struc-
tured in different ways, we need to enrich WS-SAGAS with
a set of constructors that broadens its potential scope and
make it sufficiently rich to sustain any business process, no
matter how complex; this remains an ongoing problem in the
area of transaction models. The different “operators” are the
eight different aggregation patterns we defined on the basis
of the seminal work in [28]. To fill the gap caused by the ab-
sence of a standard textual notation of the different patterns,
we build on the formal notations and PAs.

5.3.2 Description of Formal Notation (%;)

PAs [44] are formal description techniques to specify soft-
ware systems, particularly those formed from concurrent and
communicating components. Numerous PAs have been pro-
posed; well-known PAs are Milner’s Calculus for Commu-
nicating Systems (CCS) [45], Hoare’s Communicating Se-
quential Processes (CSP) [46], and all their extensions, such
as the m-calculus and LOTOS [44]. These PAs define typ-
ically simple constructions to describe dynamic behavior,
compositional modeling, operational semantics, behavioral
reasoning by model checking, and process equivalence.

PAs comply with the WSC issue because they allow de-
scription of formally dynamic processes. In addition, their
predefined constructs are adequate to specify CWS, due to
their inherent composability property [42].

There are a large number of existing PAs; the most ad-

equate formalism can be determined based on the desired
expressiveness orientation. The encoding proposed in any of
the PAs can be smoothly translated into any other standard
PA.
We chose to build on the Compensating CSP [47], a vari-
ant of the CSP PA, because it already supports compensa-
tion and reasoning for long-running transactions. The atomic
events of CSP are used to model the elements of a WS-
SAGAS; several atomic elements can be combined using the
operators provided by the CSP language to support sequenc-
ing, choice, and parallel composition. In addition, to sup-
port failed transactions, compensation operators are inher-
ited from the Compensating CSP. Finally, to allow more ad-
vanced combinations to support other aggregation patterns
that WS-SAGAS requires to formalize the eight aggregation
patterns it defined but that CSP does not define, we introduce
a set of advanced aggregation operators.

In formalizing WS-SAGAS, we describe a syntax in the
spirit of CSP defined by the following grammar in BNF-like

‘notation:

14

Neila BEN LAKHAL et al.

[Ei.k] * [Ei.k+1]) 0= [Ei_k+2] (selective merge)

([Eik] * [Eik+1]) O [Ei k2] (exclusive merge)
| AlEiA]

(Eix] o= Bl E' i | Ele+ Efy”

P; == WS-SAGAS; - WS-SAGAS; . (nesting)
WS-SAGAS; = [Ei.k]§[Ei.k+1] (sequence)

| [Ei.k] || [Ei.k+1] (parallel)

| [Ei.k] * [Ei.k+1] (arbitrary ordering)

| [Eix] O ([Eiktr] || [Eiktal) (selection)

| [Eik] < ([Eikt1] || [Eixt1]) (forkichoice)

| (Eik] || [Eik1]) @ [Eikt2] (join)

|

|

(iteration)

(compensating pair) .

where:

P; designates a process and we represent it as a hierar-
chy of recursively nested WS-SAGAS by adopting the
notation (WS-SAGAS; - WS-SAGAS; ,.);

WS-SAGAS; . is the lowermost nested subtransaction and
“i.x” is to be replaced by the subtransaction identifier;
[Eix], [Eix+1], and [E; g42] are elements from W S-SAGAS;
where an element enclosed between “[” and “]” can be a
compensating pair of a vital or a nonvital element,
if the element is defined as compensatable;

[E;x)and[E; ;1] represent the sequential construction that
combines two elements: [E; ;] is executed first, and only
when [E; ;] terminates successfully can [E; ;] be executed;

e [Eit] || [Eixt1]is a parallel composition of two elements;

[Eik] % [E;x+1] represents the operator for constructing
the execution of elements where the execution order is
arbitrary; it can be in parallel, sequentially, or a combi-
nation of these two;

[Eix]O([Eig+1] || [Eix+2]) represents the selective choice
of [E;], which selects whichever of [E; ;1] and/or [E; 2]
is to be enabled,;

[Eix] < ([Eikt1] || [Eix+2]) represents a particular case of
the selective choice operator because only one of [E; 41 1]
and [E; z41] is to be enabled,

([Eit] || [Eik+1])O[Eik+2] represents where the elements
[Eik] and [E;j41] are synchronized at a particular ren-
dezvous point and must wait for each other to execute
the element that comes directly after them;

([Eit] *[Eik+1]) &= [Eirs2] represents where [E; ;] and
[E;x+1] converge but without synchronization at a par-
ticular rendezvous point; the element that comes directly
after them (i.e., [E; x42]) is activated every time either of
these two elements reaches the rendezvous point;

([Eik] % [Eik+1]) O= [Eik+2] is a special case of (([Ejx] *
[Eix+1]) O [Eix+2]); the difference is that the first ele-
ment that terminates its execution activates the execution
of [E; r42];

AlE; ;] is A iteration of [E;].

5.3.3 Description of Graphical Notation (¥;)

Our proposed graphical notation of WS-SAGAS is shown in
(Figure 5.2).

5.4 WS-SAGAS Transaction Model: Execution Semantics
and Correctness

To eliminate ambiguities, to allow analysis and further rea-
soning regarding our transaction model, and to facilitate its
comparison with other models, it is necessary to define our
model operational semantics and correct execution. Because
we are considering a peer-to-peer execution model, the use
of strict serializability poses severe limitations that are un-
acceptable. The description of a process in terms of DR, CR,
and in particular OR, partly contributes to avoiding incon-
sistencies because the different OR allow definition of the
correct control flow in a process.

To ensure the semantics of each element are respected,
when each element executed, in particular its nesting, trans-
actional behavior, and vitality degree, we build on the state
concept and define several types of dependencies that must
hold between the different elements combined in the same
pattern; we term these intrapattern dependencies. These de-
pendencies formulate the required conditions for a pattern to
commit and describe how failure recovery is performed. Be-
cause every WS-SAGAS combines elements following dif-
ferent patterned operational semantics, to define a correct
WS-SAGAS on the basis of the different intrapattern depen-
dencies, we describe another form of dependencies, called
intra-WS-SAGAS dependencies, that formulate the required
conditions for a WS-SAGAS to commit and describe how
failure recovery is performed.

Finally, we formulate the conditions for correct execu-
tion of a process in terms of intraprocess dependencies by
taking as a basis the intra-WS-SAGAS dependencies formu-
lated for each WS-SAGAS appertaining to the hierarchy of
WS-SAGAS in the process.

5.4.1 WS-SAGAS Pattern Execution Semantics

Let WS-SAGAS; , be a subtransaction from a hierarchy form-
ing a process P, (Equation 5.1). WS-SAGAS;, combines a
collection of elements defined in CR(WS-SAGAS;). This

collection of elements is equal to U}il’l'azl Ey.

We define WS-pattern as the set of possible patterns de-
fined by combining the CSP-like notation and the Workflow
patterns:

WS-pattern : {sequence(;), parallel(||),arbitrary(x),
selection(O),switch(<),iterative(A), rendezvous($),
selectivemerge(O), exclusivemerge(0=)} .

The different patterns, with their defined operators, are used
to write the set of OR, as described above in this section.

FENECIA

15

Depending on the pattern’s semantics, the operator of a
pattern can be prefixed (O, <, A), postfixed (¢, 0=, and O—),
or infixed (;, ||, and x). We define for each pattern a scope
that delimits the elements within the reach of that pattern
and that should verify its semantics.

We assume in what follows that the scope of each pat-
tern includes only atomic elements between E; , ; and E; ,;,
where the subscripts of these two elements verify £ < [<
n; 2. The end of one scope and the start of another is decided
when a postfixed or a prefixed operator is encountered in an
OR. Overlapping of elements between consecutive scopes
is allowed. The case of composite elements is considered
below in the description of the nesting semantics.

We assume there is an entity that contains the different
DR, CR, and OR of the entire process. On every execution of
every element of a process, the element’s state in this entity
is updated.

The entity that contains all this information is transferred
between elements (i.e., an engine or an authority responsible
for the execution of the element) as the execution process
advances. We also assume that each element keeps a copy
of this entity until the end of the process instance execution.
Therefore, any element can know the set of elements that
come after and before it.

To describe the patterns’ semantics, we define for each
pattern several types of dependencies that formulate the con-
ditions that the elements in the pattern must satisfy to ac-
tivate, commit, interrupt, compensate, or abort the pattern
execution. The concept of dependencies is strongly related
to the concept of state. We define five types of dependency.
Each dependency is denoted by intra®'**™"® (partern), where
the superscript is replaced with an abbreviation of the type
of dependency and the pattern is defined in WS-pattern:

o intra®(pattern) is an intrapattern execution activation
dependency and describes the condition(s) that must be
verified for the elements combined in the pattern to start
execution.

e intra‘(pattern) is an intrapattern execution commitment
dependency that describes the condition(s) required for
the pattern to be successfully terminated.

o intral (pattern) is an intrapattern execution interruption

dependency that describes the condition(s) where, if ver-
ified, the execution of the whole pattern is in a situation
where forward recovery is insufficient to suppress a fail-
ure and a backward recovery is required.
When intra'(pattern) is valid, depending on the pattern
execution progress and from its composing elements, an
intrapattern execution compensation dependency and/or
intrapattern execution aborting dependency is/are trig-
gered.

o intra®(pattern) is an intrapattern execution compensa-
tion dependency that formulates the condition(s) that, if
verified, ensure the consistency of the execution by trig-
gering a compensation mechanism.

o intra®(pattern) is an intrapattern execution aborting de-
pendency that formulates the condition(s) where, if veri-
fied, the consistency of the execution is ensured by abort-

ing the elements that have to be aborted included in the
pattern.

SEQUENCE PATTERN ([E; qk];...; [Eiak+)])

By U'[i,k ;’,ﬁ Ey (Figure 5.2 (a)) we denote a set of elements

aggregated in a sequence pattern. To ensure the correct ex-
ecution of a sequence, we assume that among U’[Sék Ey,
there must exist only one vital noncompensatable ele-
ment. Where more than one vital noncompensatable el-
ement is included in the sequence, splitting the sequence into
several sequences is envisaged. Assuming that the vital
noncompensatable element in question is E} _, it must
verify the following conditions:

DR(E; , 5).behavior = non-compensatable and
DR(E; ;. 5).vitality=vital .

The activation of the execution of each element requires
the termination of each direct predecessor. More formally,
let E; be an element verifying {¢ € [i.a.k .. i.a.k+ j]}; the ex-
ecution of E, requires the successful termination of its direct
predecessor, if itis vital (i.e., DR(E;_,).state = Committed),
and the termination of its predecessor, even with a failure
(i.e., DR(E] ,).state = Failed), if it is nonvital.

The commitment of the sequence of elements depends
on E} ; more formally, the intracommitment dependency
of this pattern is specified as:

e intra‘(sequence) verification requires that (CONDITION
S1) and (CONDITION S2) are valid:
(ConDITION S1.) The sequence can attempt to commit
iff DR(E;,p).state = Committed.
(ConDITION S2.) If the previous condition is valid, then
the sequence can be committed iff

VEo|l € [i.a.k..i.a.k+ j] verifying: DR(Ey).vitality =
vital, we have: DR(E;).state = Committed.

If the set of elements combined in the sequence does not en-
compass any vital noncompensatable element, then the
intracommitment dependency verification requires satisfac-
tion only of (CONDITION S2).

If (CONDITION S2) is not verified, that is:

AE|C € [i.a.k .. i.a.k + j] that verifies: DR(E,).state =
Failed and DR(Ey).vitality = vital.

then the two conditions we define below, (CONDITION S3)
and (CONDITION S4), are evaluated. Subsequently, a back-
ward recovery is triggered in the same way whether a se-
quence includes a vital noncompensatable element or
not.

An extreme situation is when the set of elements com-
bined in the sequence are compensatable and nonvital;
in such a case, even if all the elements fail, the pattern intra-
interruption dependency is deduced and it has no effect on
the overall WS-SAGAS, because a nonvital WS-SAGAS
success is not critical for the overall process commitment.

16

Neila BEN LAKHAL et al.

Assume that the element E; , was attempted a number
of times with different WS but none of those attempts was
successful; this mechanism is actually a forward recovery
where an element is reattempted with different WS. In this
case, the element is assumed to have failed and a backward
recovery is triggered, which implies the verification of the
intrainterruption dependency of this sequence pattern; more
formally:

o intra'(sequence) verification requires that (CONDITION
S3) is valid:

(ConDITION S3.) The execution of the sequence pat-

tern is interrupted iff DR(E;, g).state = Failed is
verified.

Depending on the execution progress of all the other ele-

ments in the sequence (i.e., U'ES'ZI Et—E; 4.9), the verifica-

tion of intra'(sequence) may trigger an intrapattern compen-
sation dependency, an intrapattern aborting dependency, or
both. More formally:

o intra®(sequence) denotes an intrapattern aborting depen-
dency in a pattern; it requires that intra'(sequence) was
verified and that (CONDITION S4) is valid:
(CONDITION S4.) The intrapattern aborting dependency

holds and there are elements in the sequence that ver-
ify:

AE|C € [i.a.k .. i.k+ j] we have : DR(Ey).state =
Executing and DR(E).vitality = vital.

The verification of (CONDITION S4) implies that the valid-
ity of intra®(sequence) and that all the elements that verified
(CONDITION S4) are aborted.

e intra®(sequence) denotes an intracompensation depen-
dency in a pattern; it requires that intra'(sequence) was
verified and that (CONDITION S5) is valid:

(CoNDITION S5.) The intrapattern compensation depen-
dency is satisfied and there are elements in the se-
quence that verify:

Eje|lefiak.. ik+ j|, we have: DR(E;).state =
Committed and DR(E).vitality = vital.

The verification of (CONDITION S5) implies that the valid-
ity of intra® (sequence) is verified and that all the elements
that verified (CONDITION S5) are compensated for.

To explain compensation performance, assume that we
have the following sequence from WS-SAGAS;,; we note

that an element placed between “[]” is actually a compensatable

element:
sequence : [E} (L [E] g rils 5 El g 9500 [E,-V.a.k_H-]
The execution of the different elements verifies:

VE; a0k <l < d,DR(E;).state = Committed and
VE; 0|0 < £ <k+ j,DR(E;).state = Executing

When intra® (sequence) is verified, the sequence execution
is:

[El}fa.k;EZa.k+l; "';Exa.a; “‘;E}).a.k+j; "";E,}}.a.k+1 ;E,}}.a.k]
We assume that the execution of every compensating ele-
ment, such as E’ Lk 41 is successful and does not fail. Its ex-
ecution is performed by executing a previously mapped WS
that can reverse the effects of the WS that was mapped to
E7 41~ The failure of compensation is considered beyond
the scope of this paper because it remains an unresolved

complex issue.

PARALLEL PATTERN ([E; o] ([Eiait1]l]---||[Eiak+)])) is
the notation of this pattern. Let 2(E; 4t)« be the set of all
the elements that are directly ordered after E; ,; and that are
presumed to be executed concurrently, and .7 (Ej ... be a
subset that only contains the subset of elements that is exe-
cuted effectively. The content of .%(E;).... depends on the
aggregation pattern semantics (Figure 5.2(b)). For a paral-
lel pattern, all the elements in 2(E; 4).... must be activated
after E; , x. This means that: .7 (E; 4.1)see = Z(Eiak)suee-

The activation of the execution of the elements in the set
P (Eiak)see Tequires that E;,; successfully terminates its
execution (i.e., DR(E;).state =Committed), where it is
vital. Otherwise, it may terminate in any other state, with-
out affecting the execution progress.

Assume that the set .%(E; k)« cONtains one or sev-
eral vital noncompensatable elements. For this pattern
to commit, a special synchronization mechanism needs to be
added to inform the different elements of the progress of the
other vital noncompensatable elements in the same pat-
tern. The synchronization mechanism must guarantee that
either all or none of the vital noncompensatable ele-
ments are committed.

The commitment of this pattern depends on the vital
noncompensatable elements’ execution progress.

More formally, the intrapattern commitment dependency
intra(parallel) is specified as:

o intra‘(parallel) verification requires that (CONDITION
P1) and (CONDITION P2) are valid:
(ConDITION P1.) The set of elements can attempt to
commit iff

{VE; 40 € L (Eiak)ue} verifying:
DR(E; , 5)-behavior = non-compensatable and
DR(E; q¢).vitality = vital, we have:

DR(E;, 5).state = Committed.

(ConpITION P2.) Ifthe previous condition is valid, then
the parallel pattern can be committed iff

VE; 40 € & (Eiak)eee and DR(E; 4 ¢).vitality = vital,
we have: DR(E; ,).state = Committed.

FENECIA

17

If the set of elements .%(E; 4t)«ue. dO€S NOt encompass any
vital noncompensatable element, then the intrapattern
commitment dependency verification requires only the sat-
isfaction of (CONDITION P2).

If (CONDITION P2) is not verified, that is:

3E‘laé 6 ‘y(Ei.a.k)succ Verifying:
DR(E}, ,).state = Failed,

then the conditions, (CONDITION P3) and (CONDITION
P4), have to be evaluated, and subsequently, a backward re-
covery is triggered corresponding to the definition below for
a parallel pattern that combines vital noncompensatable
elements.

An extreme situation is when all the elements in the set
(Eiqk)suee are nonvital,

Even if all the elements fail, the intrapattern commitment
dependency is deduced and the failure of this WS-SAGAS
has no effect on the overall process, as a nonvital WS-
SAGAS success is not crucial for the overall process com-
mitment.

Assume that one or more elements from the set of vital
noncompensatable elements were attempted a number of
times with different WS but none of those attempts was suc-
cessful. Similar to the sequence pattern, these elements are
assumed to be failed and a backward recovery is triggered,
which implies the verification of the intrapattern interruption
dependency of this parallel pattern; formally:

o intra'(parallel) verification requires that (CONDITION
P3) is valid:
(ConDITION P3.) The execution of the parallel pattern
is interrupted iff

3E} 5 € S (Eiak)sw that verifies:
DR(E; ;. »).behavior = non-compensatable,
we have: DR(E; , 5).state = Failed.

Depending on the execution progress of all the other concur-
rent elements combined in the same pattern, the verification
of intva(parallel) may trigger an intrapattern compensation
dependency, an intrapattern aborting dependency, or both.
Formally:

e intra®(parallel) denotes an intrapattern aborting depen-
dency; it requires that intra'(parallel) was verified and
that (CONDITION P4) is valid:

(CONDITION P4.) The intrapattern aborting dependency
holds and there are elements in .%(E; 4t)su. that ver-
ify:

3E; 40| € L (Eiak)ee We have: DR(E;). state =
Executing and DR(E;).vitality = vital.

The verification of (CONDITION P4) implies the validity of
intra®(parallel). It entails that all the elements that verified
(CONDITION P4) are aborted.

e intra®(parallel) denotes an intrapattern compensation
dependency; it requires that intra'(parallel) was verified
and that (CONDITION P5) is valid:

(Condition P5.) The intrapattern compensation dependency
holds and we have:

3E; 40 € L (Eiqk)swee that verify:

DR(E; ,¢).behavior = compensatable,
DR(E; ,).state = Committed, and
DR(E; qy).vitality = vital.

The verification of (CONDITION P5) implies that the valid-
ity of intra®®(parallel) is verified and that all the elements
that verified (CONDITION P5) are compensated for. We de-
scribe below how compensation is performed: Assume that
the only vital noncompensatable elementis E; 5 and it
has failed. Assume also that:

VE; 41 € (Eiak)see — Eia.9, we have: DR(E; , ¢).vitality
=vital and DR(E;,¢).behavior = compensatable.

If the execution progress of these elements verifies:

VEIGZ 6 ‘-sﬂ(El..a.k)succ - Elaa’ we haVC.
DR(E; 44).state = Committed.

then, when intra®(parallel) is verified, the compensation
order is:

[EXa.k;((EXa.k+1||"' Xa.a ||Etak+j) (E,Yak+j|| ||E’1ak+1))

We assumed that £}, is vital and compensatable. We
emphasize that this element can be nonvital; however, it
must be compensatable. Otherwise, a backward recovery
would not be possible, because a noncompensatable element’s
effects, once committed, cannot be undone. If the underpin-
ning process logic requires a parallel pattern with E; ; non-
compensatable, a plausible solution is to insert an idempo-
tent between E; ,; and the set of elements to be executed
concurrently.

SELECTION PATTERN ([E; 4] O([Ejak+1]||---||[Eiatj]))-
This pattern is a special case of the parallel pattern, where
at least one and ar most all the elements from 2(E; ;4 e
could be selected. After executing the element E; , x, a selec-
tion condition is evaluated to choose from the set of its direct
successors Z(E; 4)we- Building on the assumption of equal
probabilities for the different choices, E; , ; can choose from
P(2(Eiqk)swe), the power set of 2(E; 4k)suee Which is the
set of all subsets of 2(E; ;). (Figure 5.2(c)).

The execution commitment, interruption, aborting, and
compensation obey the same dependencies defined for the
parallel pattern. The only difference is that the chosen set of
elements from & (2(E; ;.)«e.) must verify the conditions:

and

{ Ly(E‘lA.(l.k>succ g =Q(E‘i.a.k>succ ty(E‘ll.a.k>succ ¢ 0 .

18

Neila BEN LAKHAL et al.

SWITCH PATTERN ([E; o] < ([Eiaks1]l|---||[Eiaksj])-
Similarly, this pattern is a specialization of the Selection pat-
tern (see Figure 5.2(d)). It differs in that only one element
can be chosen from 2(E;;k)we the set of elements that
comes directly after E; , ;. Similarly, by defining .% (E; 4 &)suce
as the subset chosen from & (2(E; t)e), it must verify the
following conditions:

ty(E‘i.a.k)succ g =Q(E‘i.a.k)succa Lsﬂ(E‘i.a.k)succ ¢ 0 and
|‘-§ﬂ(El..a.k)succ| = 1 .

The execution commitment, interruption, abortion, and
compensation obey the same dependencies defined for the
parallel pattern.

RENDEZVOUS PATTERN (([E;ak]||---||[Eiak+j])OEiai])-
Assume that 2(E; ,;),. is the set of elements that are the di-
rect predecessors of the element E; ,;. This pattern restricts
the commitment of a set of elements executed in parallel
as follows: all the vital elements in 2(E;,),. must be
committed for E;,; to start execution. Therefore, the ele-
ment E; ,; activation requires that the intra‘(parallel) de-
pendency of the elements in 2(E;), is verified. When
intra*(parallel) is verified, E; ,; execution starts.

The commitment of this pattern depends on E; ,; progress;
the intrapattern commitment dependency is formulated as
follows:

o intra‘(rendezvous) verification requires that (CONDITION
R1) is valid:
(ConNDITION R1.) The execution commitment can be
deduced iff :

{ DR(E},,).state = committed or
DR(E; ;)" .state = failed,;

Assume that E; ,; is compensatable and vital, and a fail-
ure that could not be resolved by a forward recovery oc-
curred. In such a case, a backward recovery must be trig-
gered. A backward recovery mechanism requires undoing
the effects of all the elements in 2(E; ;;),.. However, this
may not be possible in the case where we have 2(E; ;)
verifying the following condition:

3E, € 2(E;41)pe verifying:
DR(Ej).behavior = non-compensatable

In this paper, we assume that in this pattern, 2(E; ;7). in-
cludes only compensatable elements.

SELECTIVE MERGE PATTERN (([E; o]*.. *x[Eiqkyj]) 0
[E;41]). Consider the case where two or more elements come
together but without synchronization. Assume no elements
are ever executed in parallel (Figure 5.2(g)).

Let 2(Eiai)pe = {Eiak;---»Eiaksj} be the set of all the
elements that are the direct predecessors of the element E; ;.
The execution of E;,; cannot be activated unless either of
the elements appertaining to 2(E; ,;).. has terminated.

On every element termination, E;,; is activated again.
Let .Z(E; 41)x be the subset chosen from P(2(E;,1)pe)
and let A = |.Z(E; 41),|. In this case, A represents the up-
per bound of the interval of time the element E;,; can be
activated.

As Z(E;41)pe can combine vital and nonvital ele-
ments, the condition for the activation of the execution of
E;,; varies because a successful termination for a vital
element is equivalent to a commitment; nevertheless, for a
nonvital element it can be any other state. More formally:

Assume that at least one of the elements in . (E; 4 /), i8
vital, that is, the following condition is verified:

{3Ey € S (Eiat)es|PR(Ey).vitality = vital}

If the above condition is verified, the activation condition
for E; ,; is verified and its execution is started every time the
following condition is valid:

Ey € S (Eiai)ee|DR(E).vitality = vital
we have: DR(E).state = conmitted .

To ensure consistent execution, E; ,; needs to know the car-
dinality A of . (E; 4.1),. This can be deduced by referring to
OR’s content. An incremental counter needs to be increased
on every activation of E;,;. When this counter reaches A,
the pattern commitment is verified. The intrapattern com-
mitment dependency is formulated as follows:

o intra‘(selective merge) verification requires (CONDITION
SM1) to be valid:
(ConDITION SM1.) The pattern commitment can be de-
duced iff :

DR(E},,).state = committed or
DR(E; ;)" .state = failed (i.e., because E; ,; can be vital
or not); and the counter reached A .

If (ConDITION SM1) is verified, a backward recovery is
triggered. The backward recovery includes all the elements
in (E; 1) Depending on their vitality degree and ex-
ecution progress, an intrapattern compensation dependency
and/or abortion dependency may be triggered, the same as
that defined for the previous parallel pattern. However, a
critical situation may occur when E; ,; is activated A times
and some of these activations fail and require a backward
recovery. In such a situation, inconsistencies occur, espe-
ciallyif E; ,; isnoncompensatable. To deal with this situa-
tion, we assume that E; , ; and all the elements in . (Ej 41)
are noncompensatable and in the first failure of E; ,;, the
whole pattern failure is deduced and a backward recovery
is performed. E;,; is compensated first, then the different
elements in .%(E; 41),. are either compensated or aborted,
in view of their execution progress. This is performed under
the same conditions as formulated for the parallel pattern.

FENECIA

19

EXCLUSIVE MERGE PATTERN (([Ejail*...x[Eiakyj]) =
[Eiqi])) is a point in a WS-SAGAS where the execution of
two or more elements converge bur without synchroniza-
tion (see Figure 5.2(f)). In contrast to the selective merge
pattern, this pattern assumes that only one element is exe-
cuted and its execution success triggers the direct successor
E; 4 only once. 2(E; 41),. contains the elements within the
scope of this pattern and is where any of them may trigger
the execution of E; ,;; we assume that all the elements from
2(E; 4.1)w have the same probability of triggering the exe-
cution of E; ;.

Activation of the execution of E; ,; requires the verifica-
tion of either of the two following conditions:

e Assume that 2(E; ;). contains only vital elements:
(ConpITION EM1.) The activation of the execution of
E; ., requires that only one vital element has been
committed and it is the first to be committed; more
formally:

3DR(E}, ,).state = committed and
VE! 5 € 2(Eiai)m—1E},}> We have:
DR(E/, ,).state # committed.

e Assume that 2(E; 4/),. contains only nonvital elements:

(ConDITION EM2.) The activation of the execution of
E;,; requires that only one nonvital element has
terminated and it is the first to do so; more formally:

ADR(E}, ,).state € {committed,failed,aborted,
compensated} and VE; 5 € L(Eia1)we —{E] 44}
we have: DR(E] ,).state € {executing,waiting}.

Upon satisfaction of either of the above conditions, the exe-
cution of E;,; can be started. The commitment of this pat-
tern depends on E; ,; progress.

o intra(exclusive merge) verification requires that the fol-
lowing condition, (CONDITION EM1), is valid:
(ConbDITION EM1) The pattern commitment can be de-

duced iff :

{ DR(E}, ,).state = committed or
DR(E; ;)" .state = failed,;

IfE;,; is compensatable and vital and a failure that can-
not be handled using forward recovery occurs, the same as-
sumption made for the rendezvous pattern applies for failure
handling.

ITERATIVE PATTERN ([E; t];A[Eiqk+1]) is a point in a
WS-SAGAS execution where the execution of a particular
element E;;,; must be repeated A times (Figure 5.2(h)).
The number of iterations depends on the process semantics.
This pattern is a special case of the selective merge pattern;
the only difference is when .7 (E; ,;).. is a set that contains
only one element. It follows that the processing is the same
as for the selective merge pattern, if we replace E; i by
y(Ei.a.[)pre and Ei.a.k+1 by Eiar-

5.4.2 WS-SAGAS Patterns Correct Structuring

We define a set of aggregation patterns that combines a col-
lection of elements in different ways. A WS-SAGAS is de-
fined by connecting a number of patterns in order to satisfy
a particular business rule logic. Putting together different
patterns permits the definition of a wide range of process-
underpinning semantics. However, some of these pattern com-
binations may lead to inconsistencies in the control flow. To
avoid this, we need to differentiate the permissible pattern
combinations from the pattern combinations that may cause
inconsistencies. Moreover, we need to define the correct or-
der of combination. To this end, because the process logic
is encompassed in the different OR it defines, we need to
define the permissible combinations that we use to say if an
OR is correct or if it has consistency conflicts.

Let pattern) and pattern, be two patterns to be defined
in WSpattern and that have overlapping scopes (i.e., they
come one after the other and have overlapping scope of el-
ements); to obtain a correctly structured WS-SAGAS, the
designer must observe several restrictions:

— If pattern; = parallel, then pattern, can be either a
rendezvous pattern or a selective merge pattern.

— If pattern; = switch, then pattern, can be only an ex-
clusive merge pattern.

— If pattern; = selection, then pattern; can be either a
selective merge pattern or an exclusive merge pattern.

5.4.3 WS-SAGAS Subtransactions Execution Semantics

Every WS-SAGAS forms a collection of elements assem-
bled following different aggregation patterns. Therefore, the
execution of the WS-SAGAS depends on the execution of
the different patterns it composes. We formulate the exe-
cution semantics of a WS-SAGAS in terms of intra-WS-
SAGAS dependencies and we define four types of dependen-
cies. Let WS-SAGAS; 4, be a subtransaction and pattern; , its
ordered set of patterns described by OR(WS-SAGAS; ;). Let
pattern; o, be the first pattern in pattern; ., and pattern; g,
the last pattern.

intra® (WS SAGAS;) is an intra-WS-SAGAS activation
dependency. It places conditions on the different intrapat-
tern dependencies formulated for the different patterns in
pattern;,. Let pattern;, and pattern;,, be two consecu-
tive patterns from WS-SAGAS; . For pattern;,, execution
to be activated, pattern;,, must have terminated its execu-
tion. We do not restrict the termination to a successful com-
mitment because a pattern can be a collection of nonvital
elements.

intra®(WS-SAGAS; ;) is an intra-WS-SAGAS commitment
dependency. It places conditions on the different intrapat-
tern dependencies formulated for the different patterns in
pattern; .. A WS-SAGAS can commit if all the patterns that
contain at least one vital element are committed. More for-
mally, intra®(WS-SAGAS; ;) is valid iff:

Vpattern; o € pattern;, where 3E7 5 € pattern; gy,
we have: intra®(partern; q,) is verified.

20

Neila BEN LAKHAL et al.

If any of the patterns in WS-SAGAS; , that contain at least
one vital element were interrupted by a failure and a back-
ward recovery was triggered, then the WS-SAGAS failure is
deduced. More formally, intrai(WS-SAGAS,;a) is valid iff

dpattern;q, € patterniq where JE; - € patternig,,
we have: intva'(pattern;) is verified.

Assume that pattern; 4, and pattern; 4, are two consecutive
patterns from WS-SAGAS; 4, and pattern; 4, is verifying the
above condition. Therefore, intra' (WS SAGAS;) is verified
and it requires that all the patterns in pattern;, have to re-
cover.

Every pattern activates implicitly the intrapattern inter-
ruption dependency of its predecessor when its own intra-
pattern interruption dependency is verified and terminated.
This is ensured by every successive pattern having overlap-
ping scopes.

5.4.4 WS-SAGAS Nesting Semantics

In the description of all the patterns semantics, we assumed

that all the elements were atomic. However, we have de-

fined our process with multinesting levels where an element

can be at the same time part of one WS-SAGAS and par-

ent of another WS-SAGAS. The element E; , is included in

WS-SAGAS; and therefore it is regarded as atomic elements

in the same nesting level, that is, {VE, € CR(WS-SAGAS;) —

{Eiq}}, E; does not know that E; ; is composite. That is, if
the execution progress of the elements in WS-SAGAS; reaches
the composite element E; , the execution of WS-SAGAS; ,

is triggered. However, for the other elements in WS-SAGAS;,

we assume that the execution delegation is totally transpar-

ent in the sense that the other elements in WS-SAGAS; are

only waiting for the execution of the element E; ,.

On the other hand, E;, is the parent of the subtransac-
tion WS-SAGAS; ,. Consequently, the commitment of E;, in
WS-SAGAS; is equivalent to the intra‘(WS-SAGAS; ;). There-
fore, in the intracommitment dependency of every pattern
that has E;, in its scope, we have to replace the condition:
“DR(E; ,).state = committed” by
“intra’(WS-SAGAS;) is verified”. Similarly, all the intra-
interruption, intracompensation, and intra-abortion depen-
dencies for each pattern, including a composite element
within its scope, should be revised likewise.

In the same way, another form of execution dependency
is required to guarantee that the nesting relation between
the WS-SAGAS forming a process is respected. We intro-
duce another form of dependency, inter-WS-SAGAS nesting
dependency to ensure that commitment of WS-SAGAS; de-
pends on WS-SAGAS;, and that failures of WS-SAGAS; ,
should also be cascaded to WS-SAGAS;. More formally:

Let WS-SAGAS, and WS-SAGAS, be two subtransac-
tions in P, (i.e., £ and Jd are defined in [i..i.a.x .b. x .c]).
There is an inter-WS-SAGAS nesting dependency between
WS-SAGAS, and WS-SAGAS,, we note:
inter"(WS-SAGAS,, WS-SAGAS;) iff:

{3E, € CR(WS-SAGAS,)| DR(E,).type = composite}.

5.4.5 Process Execution Semantics

We assume a peer-to-peer execution model of a process P;
depicted as a hierarchy of recursively nested WS-SAGAS,
which in turn are collections of aggregated elements. We de-
note a process execution instance by P where x is ranging in
[1..o] and o designates the number of invocations of the pro-
cess. The execution of a process instance assumes a dynamic
WS discovery and candidate selection. For each process ex-
ecution instance, we have a set of DR, a set of OR, and a set
of CR: DR(E-")[n,-,m,-], CR(Pf)[I’l,’,m,'], and CR(P,-")[n,-,m,-].

A successful termination of a process execution instance
is reached when all the vital WS-SAGAS forming the hi-
erarchy are successfully committed and that the invocation
order of the collection of elements forming the hierarchy of
WS-SAGAS is correct against the prescribed order. More
formally, the following conditions are satisfied:

- inter(PF) is verified and
— OR(P})[n;,m;] respected the same prescribed order de-
fined in OR(B;)[n;, m;)].

intra‘(PF) is an intraprocess commitment dependency. It puts
conditions on the different intra-WS-SAGAS dependencies
formulated for the different WS-SAGAS in P,. A process can
commit if all the vital WS-SAGAS are committed. More
formally, intra(PY) is valid iff:

VWS-SAGAS, € P, verifying DR(W S-SAGASy).vitality =
vital, we have: intra®(WS-SAGASy) is verified.

If any of the vital WS-SAGAS in P, were interrupted by
a failure and a backward recovery was triggered, then the
whole WS-SAGAS failure is deduced. A failure is cascaded
up and down the hierarchy. More formally, intra(P,) is valid

dWS-SAGAS, € P, verifying DR(W S-SAGAS)).vitality =
vital, we have: intra“(WS-SAGASy).

5.5 Illustrative Example

We specify the trip reservation process P| using our defined
textual, graphical, and formal notations. The travel itinerary
reservation process P [n1,m;] is described as a hierarchy of
WS-SAGAS composed of n; = 6 elements distributed over
my = 2 nesting levels. The first level is WS-SAGAS] that
combines n; | elements: a trip information registration (£7),
a flight-booking element (E7 ,), a hotel reservation element
(EY3), and a car rental element (E} ;). The second nesting
level is W S-SAGAS 3 that has as a parent £ 5 that combines
ny > elements: a reserve room element (E7 5 ;) and a reserve
restaurant element (Ef_3_2). To each atomic element, a com-
pensating element is defined: E}’| is the compensating ele-
mentof £ |, E ilz is the compensating element of EY ,, EIV.’3.1
is the compensating element of £} 5 |, E}'5 , is the compen-
sating eler_nent of E} 5 ,, and E}', is the compensating ele-
ment of EY ,.

FENECIA

21

Travel reservation process (P,)

O—[n] P, [26] [oul—®

(travel reservation)

WS-SAGAS,
State, ,
] Y, o0
State1 1 / (book flight) State1 4
............ -
- - vV |out v | _
_____ W/ .
(travel information) >
rmm—— S State 1.3 —('Z:l—ts?-’-)-\
| E\,- i i ¥ |
1.1 \'J ! Eia i
-, EE1.3 @ '\ _____ >N, i
" (reserve hotel) ™,
WS-SAGAS, 5
State1 3.1 Stateis.2
v v
(reserve room) (reserve restaurant)
{ } { _ §
| v i i v i
i FEiaa | i Fisz !
) B e)
O Start IE' input data E element
—> flow State state
End v vitality degree
Legend @ out| output data (text) description
[M
i |
LT

Atomic element ~ Composite element Compensating element

Fig. 5.3 WS-SAGAS graphical notation: example of a trip reservation
process

We assume that a potential user of the process has to pro-
vide his desired destination, his desired departure and return
dates, and his name. As QoS attributes, we assume that we
are only interested in knowing the execution time and the
reliability.

5.5.1 Textual Notation: T3

The textual notation of P, is formed by the triplet combining
the list of DR, the list of CR, and the list of OR, as described
below.

Definition Rules:
1.3 132
DR(P)[n1,m1] = |JDR(WS-SAGAS;) |) DR(E;)
(=1 0=1.1

= (DR(WS—SAGASl) le DR(Ea)>
d=1.1

132
U(DR(WS—SAGASl,g) U DR(Ea)>
0=13.1

DR(WS-SAGAS:) : (name = WS-SAGAS,

14
description=|_J DR(E;.description),
0=1.1
14
state = U DR(Ey.state),vitality = vital,
9=1.1
14
behavior = U DR(E;.behavior)) .
9=1.1

DR(EY] |):{name = Eq 1,description = travel
information,fype = atomic,state = Waiting,
vitality = vital,operation;((in; = destination,
inp = depart,inz = return,ins = name),
(out; = destination,our, = depart,
out3 = return,outs = name)),
gos; = reliability gos, = executionTime) .
Composability Rules:
CR(Pl)[nl,ml] ECR(WS-SAGASl)

| JCR(WS-SAGAS, 3) .

CR(WS-SAGAS1) — (EY |,E} 2,E] 3,E} 4)
CR(WS-SAGAS13) — (E{3.1,E]32) -
Ordering Rules:
OR(Py)[ny,m] = OR(WS-SAGAS))

| JOR(WS-SAGAS 3) .

OR(WS-SAGAS1) — (EY 1: (EY | |EY 3)OEY 4)
OR(WS-SAGAS 3) = (E} 3 1:El 3,) -

5.5.2 Graphical Notation: 4,

(Figure 5.3) is an illustrative example of how a trip reserva-
tion process P is specified using the WS-SAGAS transac-
tion model graphical notation.

5.5.3 Formal Notation: .7,

The formal notation of the process P is described below
using the syntax, in the spirit of CPS, that we defined:

P, = WS-SAGAS| - WS-SAGAS; 3
WS-SAGAS: = [E] 1]; ([E 5] |[ET 3]0 [ET 4])
= (EY1+EY1)s (((EY o+ ETL)[|EY 3)©
(EV4+EVY))
WS-SAGAS13 = [EY 3,]; [Ef.3.2]
= (E31+EV5.1):(EV32+ El32) -

22

Neila BEN LAKHAL et al.

6 THROWS Architecture
6.1 Motivations

The FENECIA approach defined the WS-SAGAS model to
describe how a business process is specified. However, the
WS-SAGAS remains only a specification because it dealt
only with modeling and did not consider the evident need of
a CWS enactment model to have a comprehensive methodol-
ogy that tackles the WSC issue from all its different aspects.
To this end, in the FENECIA approach, we investigated the
issue of CWS execution.

Typically, a CWS can be organized in either a central-
ized or a distributed fashion. We refer to the execution mode
as centralized when a single coordinator or engine, such as
the BPWS4J engine, executes a CWS developed, for exam-
ple using BPEL4WS [4]. In contrast to a distributed model
where data are transferred directly between two points, in a
centralized model all data must go through the coordinator.
The coordinator may thereby become a performance bottle-
neck and constitute a single point of failure. In addition, al-
lowing a large amount of irrelevant data to traverse the coor-
dinator may overload the network and cause poor scalability
and significant performance degradation.

To cope with the revealed inadequacy of the execution of
CWS with a centralized control in FENECIA, we opted for
a distributed model and we present THROWS architecture,
which is an acronym for a Transaction Hierarchy for Route
Organization of Web Services, where the composition exe-
cution control is distributed [19] over multiple engines, each
allocated to an element from a process depicted as a hierar-
chy of recursively nested WS-SAGAS transactions. Rather
than communicating through a central authority, the engines
communicate directly with each other to transfer data and
delegate execution control when required.

6.2 General Assumptions and Description of THROWS
Architecture

In THROWS architecture, the execution control of a process
P, depicted as hierarchy of recursively nested WS-SAGAS is
allocated to dynamically discovered engines. To ensure high
availability of distributed execution of the CWS, we make
available on each engine side the following information: the
CEL (Candidate Engines List) and the CEP (Current Execu-
tion Progress).

In THROWS, for each atomic element E; ; from a sub-
transaction WS-SAGAS;, a CEL is generated by searching for
WS that have capabilities satisfying the element E;; func-
tionalities. To each discovered WS, an engine is allocated,
and together, they are stored as a couple, engine-ws, in the

trols and that provides the required functionalities from the
element E; ;. Therefore, the engine is responsible of the in-
vocation, execution and completion, failure information, and
recovery of Ej .

An engine allocated to an element E; is denoted as e,
and it controls a WS denoted as wsf » Where the subscript
“i.k” is kept the same as the element to which it is allocated
and the superscript “p” is a unique identifier ranging over
[1..|CEL(E;)|], with |CEL(E;)| the cardinality of CEL.

We assume that there are two types of engines. The first
type of engine is allocated to atomic elements and is re-
sponsible for the invocation, execution and completion, fail-
ure information, and recovery; we call this type engine ex-
ecutor and we denote it as eefk. The second type of engines
is responsible for composite elements. An engine allocated
to a composite element controls an overall WS-SAGAS,;
we call this the engine coordinator and we denote it as ec? .

Assume that for a particular value g of p in eefk, the en-
gine ee?_k committed successfully the element E; ;. Then, in
such a scenario, the engine ee?, is responsible for generating
the CEL of the direct successors of the element it controls;
this is how the execution progresses in THROWS. However,
if the engine fails, then a forward recovery can be attempted
if there are other engines in the CEL; otherwise, a backward
recovery is triggered.

The CEP, using the srate concept defined in WS-SAGAS
and with every element being updated with every state change,
allows for information about failures to be collected and the
backward recovery mechanism to be realized, as described
in WS-SAGAS. On the other hand, the CEL allows an in-
crease in the chances for the execution of a CWS commit
by realizing the forward recovery mechanism, described in
WS-SAGAS. In the future, both the CEL and CEP, because
of their contents, can serve as a solid base for investigating
and analyzing the reasons for failures that have occurred if
they are stored in a history that collects the execution logs of
different CWS.

To return to the engine coordinator, assume that E; , is a
composite element from the process described by (Equa-
tion 5.1). When the execution progress reaches E; ,, an en-
gine ecf , 1s allocated to E; ,. Because E; , is the parent of the
subtransaction WS-SAGAS;, 4, the engine ecf ., has to initiate
the execution of WS-SAGAS; ,.

The particularity of ec! ,—as engine coordinator—is that
it has no unique WS under its control; therefore, it does not
invoke any WS. Instead, it has to generate the CEL of the
first element in WS-SAGAS; 4, that is, CEL of E; ;1. Then,
an engine eef .1 18 selected and the execution proceeds until
it reaches the last element in WS-SAGAS; ;; we assume this
element is E;, ,,, and it is allocated to an engine e¢; 4y,
This engine, when it terminates the execution of the element,

CEL of the element E; ., denoted as CEL(E; ;). That is, CEL(E; g¢turns execution control to the engine parent of the entire

is an ordered set of engine-ws couples, and every time an
element is to be executed, CEL(E;) is generated and an
engine-ws couple is allocated. When allocated to execute a
particular element E;x, the engine executes the WS it con-

subtransaction WS-SAGAS; 4, that is, to the engine coordi-
nator ec? . The engine coordinator ec’ resumes execution
termination of element E;, by updating the state of E;, in
line with the overall state of WS-SAGAS; 4.

FENECIA

23

We describe the coordination between engine coordina-
tor and engine executor below in this section.

In describing our execution architecture, we only con-
sider the case where all the elements in a process F; are
compensatable. The case of a process that includes one
or more noncompensatable elements is addressed in our
future work.

In searching for WS that match an element’s function-
alities, we assume only simple matching based on the ele-
ment’s predefined operations in its DR and the WS descrip-
tion included in its WSDL. We consider only simplified con-
ditions that can be developed in a future work. We assume
that we can determine easily and automatically whether a
WS and an element are semantically equivalent. To date, as-
sessing the similarity of WS to achieve the best match is an
active area of research. We can apply one of the available
proposals ranging from keyword-based methods to ontolo-
gies and reasoning algorithm-enriched methods. We con-
sider the applied WS discovery and selection methods be-
yond the scope of this paper.

Definition 6.1 (Engine Executor (ee¢’,)) An engine execu-
tor ee!, is allocated to control the execution of a WS WS?,
that provides capabilities satisfying the functionalities of a
particular atomic element E;; from a WS-SAGAS;.

Because an engine is an entity that relates to the CWS
execution, we define it using the following specialization of
the generic DR introduced in the preceding section:

DR(eel,) = (name,description, wsdlLink, ec?,

(operation x (inx,outx))x) ,
where:

- name is necessary to identify the engine executor;

- description is a concise description of the capabilities
of the WS controlled by the engine eef o

- wsdlLink is the location of the WSDL of the WS con-
trolled by the engine ee!;

- (operation x (inx,outx)) are the different operations that
a particular WS WS{’ « can provide with their correspond-
ing input and output parameters;

- every first and last engine executor controlling the first
and last element in a subtransaction, respectively, must
know the engine coordinator that controls the subtrans-
action they relate to.

This is required because the WS-SAGAS execution starts
by receiving the control from the engine coordinator, and
when the execution of the last element terminates, this
element has to inform the coordinator of its termination
and of its execution results. However, because a WS-
SAGAS execution may be subject to failure and inter-
rupted before reaching the last element, ideally we must
make this information available in all the elements. More
precisely, in (Equation 5.1), assume that ecf7 is the engine
coordinator that initiated the execution of the subtrans-
action and that was allocated W S-SAGAS;; then, in every
engine executor controlling an element from W S-SAGAS;,
we have the information ec/ made available.

Definition 6.2 (Engine Coordinator (ecf »)) An engine co-
ordinator (denoted ecf) is allocated to control the execution
progress of a composite element E;, aggregated in a sub-
transaction WS-SAGAS; and the parent of another subtrans-
action WS-SAGAS; ,. Because an engine is an entity that re-
lates to the CWS execution, we define it using the following
specialization of the generic DR introduced in the preceding
section:

DR(ecl) = (name,description,CR(WS-SAGAS, ,)) ,
where:

- name is necessary to identify the engine coordinator;
- description is a concise description of the functionali-
ties of the engine ecf - 1t verifies:

DR(ec?).description= DR(WS-SAGAS; ,).description

- CR(WS-SAGAS; ;) has the same content as CR specified
in the preceding sections. This content is required for the
engine coordinator to know the elements it is responsible
for invoking. In particular, as described above, ec!’, has
to generate the CEL of the first element in WS-SAGAS; 4;
therefore, it requires full knowledge of CR(W S-SAGAS; ;).

Definition 6.3 (The Candidate Engine List of an Atomic
Element (CEL(E;y))) For each atomic element E;; from
WS-SAGAS; we define CEL as the list of candidate engines
potentially enabled to execute E;; (i.e., they control the ex-
ecution of WS providing the same semantics as E; ;). Gen-
erating CEL is the responsibility of the direct predecessor
of the element, that is, when the execution of E;; by a cer-
tain engine ee;{k is committed. Then, the engine executor
ee;{ « must allocate the execution control to another engine to
progress the process execution by generating the CEL of its
direct successor; we assume it generates CEL(E; ;41), and
then it selects an engine eef 4,1 and delegates the execution
control to that engine.

Depending on the element it controls (i.e., order in the
WS-SAGAS’s OR), an engine may have to generate only
one CEL, many CELs, or it may not have to generate any.

In addition, generating the CEL of a particular element
might be the responsibility of only one engine, or it might
be the responsibility of several engines. We show in what
follows that distinguishing one case from another depends
on the content of OR(WS-SAGAS;):

1. (Eix op (Eix+1 0p Eixy20p ... 0p Ej iy j)) where every
prefixed operator verifies op € {||,0, <}: In this case, the
engine responsible for executing the element E; ; on fin-
ishing successfully E;; has to generate the CELs of all
the elements in .%(E; ;). (the subset of elements cho-
sen for execution from all the direct successors of E; ;).
If we assume that ee;’ « is the engine that was allocated to
E;; and has committed it, then the generated CELs of all
the elements in .7 (E; i)a. is denoted CEL((Ej k) suec)
and the set of the selected engines (each for each element
from .7 (Ej k). is denoted .7 (€],) e

24

Neila BEN LAKHAL et al.

2. ((Eix0PEik41 0p Eixy2 0p...0p Ejyyj) op E;j) where
every postfixed operator verifies op € {O,0~,0=} : In
this case, CEL(E;) is generated by the engine(s) respon-
sible for executing the element(s) in .%(E;;),. (the sub-
set of elements being executed from all the direct prede-
cessors of E;;); if we assume eef ; to be the engine se-
lected to execute E;;, then this set of engines is denoted
Lsﬂ(eeﬁ?l)Pre;

3. As defined in (Equation 5.1), Ej ,, is the last element in
this WS-SAGAS and does not have to generate any CEL.

We use the following notation for CEL(E;;):
CEL(E;;) = {DR(ee}_k),DR(eeﬁk),...,DR(ee;{k),...} (6.1)

where:

— the number of discovered engines in CEL(E;) is vari-
able and depends on WS availability.

— DR(ee},) is assumed to be the DR of the engine executor
that was allocated to E;; and was successful in its exe-
cution. Every time the execution of an element E; ;. fails,
it is allocated a new engine from the CEL(E;), defined
with DR(ee?,) and p € [1..|CEL(E;)]].

Because each nonvital element has to be attempted
only once, the cardinality of the different CELs of all the
nonvital elements from WS-SAGAS; must verify the con-
dition:

(VE}|E], € WS-SAGAS; : |CEL(E],)| = 1}

However, because the successful commitment of all the vital
elements is essential, the probability of their success must be
increased by generating CELs verifying the condition:

{VE/ |E], € WS-SAGAS; : |CEL(E}})| > 1}

It is possible that throughout the execution of the different
instances of the same element, an engine generates a CEL
that contains multiple candidate engines and that in almost
all execution instances, the element execution was commit-
ted by the first allocated engine.

Consequently, the time spent in generating the CEL con-
stitutes an overhead. It is required to determine for each
element the most suitable value of the cardinality of CEL,
which allows the element to be successfully terminated, but
in addition, avoids the risk of having to trigger a recovery
only because there is no available candidate engine. This can
be possible by considering and analyzing the execution his-
tory of the different elements.

Definition 6.4 (The Replica Engines List of a Composite
Element (REL(E; ,))) The REL of a composite element is
defined in the same way as an atomic element. However,
it does not require any WS discovery or selection. The main
difference is that an REL contains the replicas from the same
engine coordinator. That is, assume a composite element
E;, is the parent of a WS-SAGAS;, in P,. When the exe-
cution control reaches E; ,, instead of generating a CEL, be-
cause this element is composite it makes its predecessor(s)

generate REL(E; ;), which is a list of replica engines. This
avoids failure, because if one of the engines in REL(E; ;)
fails, another engine takes charge of the execution instead of
the failed engine. The information in the different engines is
continuously updated to avoid having any obsolete informa-
tion. Moreover, any update/information that reaches any of
the replica engine coordinators in REL(E; 4) is transparently
broadcast to all the others. We use the following notation for
REL(E;,):

REL(E;,) = {DR(ec}a),DR(ecﬁa),...,DR(ecj’_a),...} (6.2)

where:

— the number of replica engines in REL(E;,) is variable
and depends on the designer’s judgment;

— DR(ec!)) is assumed to be the DR of the replica en-
gine coordinator that was allocated to E;,, which was
not subject to a failure, and which contains the last up-
dated information concerning the execution progress of
WS-SAGAS; ,.

Definition 6.5 (The Current Execution Progress (CEP))
We define the concept of CEP to keep track of the execution
progress of a process, depicted as a hierarchy of recursively
nested WS-SAGAS. When an engine executor eefk executes
an atomic element E; , every change in that element’s state
has to be reflected on the copy of the CEP, stored locally
on the engine executor ee’, side. The CEP content is made
available on each engine (executor and coordinator).

On every engine executor, only one type of CEP copy is
available. Consider the process depicted in (Equation 5.1),
where a copy of CEP of WS-SAGAS;, which is stored on the
engine executor ee!,, is formulated as:

CEP(WS-SAGAS;,ee?,) : {ﬁ(E,l) op---op D—I%(Ei,k) op

---op ﬁ(Ei.a) op---op ﬁ$(Ei-n.-,1)} 5

where:

- D_I%(Ei_k) is defined as the Active DR of the element E; :
it is equal to the DR of the element E;; to which an at-
tribute engine is added, indicating the name of the cur-
rently allocated engine to the element; this notation is
used to indicate that the element E;; is allocated to en-
gine ee?,. The last value of the attribute engine is the
value of the engine that either committed the element or
failed to commit it.

— initially, the attribute ﬁ(E,-_k).engine is set to null in
all the elements’ active DR in CEP.

- E;) and E; ;| are, respectively, the first and the last ele-
ment of the subtransaction WS-SAGAS;.

— op is the operator that connects the different element
with op € {|,;,%*,<,0,0,0-,0=} . Depending on the
considered operator, it can be prefixed (e.g., A, <, and O),
postfixed (e.g.,¢, O, and 0=), or infixed (e.g.,|| and ;).

ecl N SAes r
CEP(WS - SAGAS . e?,)
‘
CEP(WS - SAGAS;ecl')
O—>{in] lout—>@®) [cerE]
——————————— WS - SAGAS; T 7
. ec]
state; | state; , state; | =
- - [czravs-saGas ecl) |
= E; -0 B Dol [0 Ei e
[’ E'iy jiwm”mmm (description) wescrpion| E'; w1| CEPWS —SAGAS eclp)]|)
R [— CEP(WS - SAGAS; ee!) -
— . CEP(WS - SAGAS, . cc,)
WS- SAGAS; , CEP(WS - SAGAS, ,, ec ,'[,wl M%“M
Legend state; , state; ; p, . l ool
ee! P i.an
control flow — —3» “ “ . - ia.l ec; 2
input = — PN m—)@ ERWS-SAGAS cc” 4L CEP(WS - SAGAS, , ee?)
________ = RN € 5 CEPWS - SAGAS, ecl,
parameters [in] (Y escriion S eeripion r—-J i 06 EPOVS - SAGAS,, ecl,) ‘
outpu L a1 Eian - >
parametors [out L@« - SR W B,
atomic S - 8
doment [CEP(WS - SAGAS, .ee!,)
composite WS- SAGAS, .,] s sagas, et
eloment l:l .a Lau .
compensating -1 state; g xp | state; 4« pp,, l :
element _w— :
[0 E, :
engine @ .a*b. i.a.
executor Y s eserionf B “"\l
engine S 1 Lab.rm; .
e o " Eiaden, | ,
CEP/CEL [l CEPWS - SAGAS, 55 ceel v)
WS- SAGAS, 1, T~
iarb¥c. 0 kK
state; ,x e STAT€; ;5o i.a*brcn,,
- ICEP(WS - SAGAS, gy 00l i
E; qxpca E; 4xp out iabre Caprc)) CEPVS - SAGAS, e €€l e,
r Y "
description) | E'j g5, description) (7 T]
|

CEP (WS - SAGAS ;4 e €0 s e 1)

Fig. 6.1 WS-SAGAS transaction model execution in THROWS architecture: control delegation and CEP exchange between engine coordinator

and engine executor

Because we consider a hierarchy of nested WS-SAGAS, we
have different CE P expressions, one for every nesting level.
More precisely, consider the process in (Equation 5.1). P; is
formed with m; nesting levels. Therefore we have m; differ-
ent CEP, one for each WS-SAGAS.

Because we consider a peer-to-peer execution model, the
only connection point between two subtransactions in two
consecutive nesting levels, such as WS-SAGAS; in nesting
level 1 and WS-SAGAS;, in level 2, is the engine coordi-
nator responsible for the composite element E; ,, parent of
WS-SAGAS; , and part of WS-SAGAS;. The important role
of an engine coordinator becomes apparent here because ev-
ery engine executor is the connection point level and consti-
tutes, similar to the bridge that delegates the execution con-
trol from one level to another.

Assume that the engine coordinator ecf , Was allocated
to the composite element E;, from WS-SAGAS;. On being
allocated to execute the element E; 4, this engine receives
a copy of CEP(WS-SAGAS;,ee!) from its direct prede-
cessor (i.e., assume it is an engine eef 41 allocated to an
element E; ,_1).

Because E;, is composite, the engine coordinator ecf u
has to initiate the execution of WS-SAGAS;, ,; therefore, it
has to generate a CEL of E; ;1 and must provide it with the
copy of CEP(WS-SAGAS; 4,ec!,). Therefore, on ec! , we
have two CEPs: the first is CEP(WS-SAGAS;,ee!,_|) and
the second is CEP(WS-SAGAS; 4,ect). In this way we can
start the execution of another nested level. The content of
CEP(WS—SAGAS,-_a,ecf ,) is described in the same way as
CEP(WS-SAGAS;,ee’).

When the execution of WS-SAGAS;, terminates, ec’,
has to resume execution control. On receiving a copy of
CEP(WS-SAGAS; 4,e¢?), it deduces its own state on the

iano
basis of the execution progress of the whole WS-SAGAS
and has to generate a CEL for E; ;4 1—its direct successor in
WS-SAGAS;—select an engine, and allocate execution con-
trol to it; assume the allocated engine is ee; 441, if Ej gy is
atomic. In this case, engine ecfa sends to ee; 41 a copy of
CEP(WS-SAGAS;, ec?) (see Figure 6.1).

6.3 Collaboration between Peer Engines and Web Services

To execute a WS-SAGAS, the engines in THROWS archi-
tecture communicate by the different messages that we de-
fine. All the messages are sent in a peer-to-peer fashion, that
is, from the source to the destination without going through
any central entity, as they would for centralized execution.
Consequently, performance bottlenecks should decrease.

In what follows, the distinction between an engine ex-
ecutor or coordinator is only made when the processing dif-
fers.

6.3.1 Conversation between Peer Engines:

Messages exchanged between peer engines contain:

(i) The current execution progress (CEP): After an engine
is chosen to be in charge of a particular element, it has to
be informed of the CEP content (last-updated version).

26

Neila BEN LAKHAL et al.

To guarantee that the necessary information for any po-
tential recovery is still available, we assume that the CEP
content is preserved in the side of every engine until the
end of all the WS-SAGAS executions.

Therefore, even if a message sent between two engines is
discarded or does not reach its destination for any reason
(e.g., network broken, time out), it is possible to submit it
again. We note that CEP contains the execution context
(e.g., input/output variables, services invocation results)
necessary for each WS invocation.

(i) The execution start signal, abortion request, and com-
pensation request: These messages enable a synchronized
transactional execution of CWS. However, they are not
sufficient. We also need special synchronization mes-
sages to control delegation of the execution control be-
tween engines to prevent race conditions occurring, and
improper control flow signals may be triggered, leading
to possible inconsistencies.

Considering that in our architecture, we are constrained by a
distributed and loosely coupled environment, the distributed
two-phase commit protocol (2PC) cannot apply, because the
Atomicity property and the locking mechanisms on which it
is founded are not required and a central monitor’s existence
is undesirable.

There are a number of proposed protocols for distributed
and loosely coupled environments, including BTP [48], WS-
transaction [25] with WS-coordination [49], and WS-CAF
[26]. Not all the available WS support the same protocol,
so instead of using any of these protocols, for flexibility
in THROWS architecture we introduced the predelegation
phase, the synchronization phase, the peer-engines waiting
period, and the engine-ws waiting period:

— The predelegation phase: During this phase, a first entity
(one or more engines) agrees that it will release execu-
tion control while a second entity (one or more engines)
agrees that it is ready to accept delegation of the con-
trol. This phase is necessary at the beginning of each el-
ement execution. Introducing such a phase reduces the
potential for cancellations (e.g., engine not ready) and
improves the probability of successfully completing the
composite WS execution. The first entity sends a control
delegation request and it is assumed to receive a control
delegation agreement from the second entity.

— The synchronization phase: This phase follows directly
after the predelegation phase where one or more ele-
ments has to be executed in parallel. To ensure this, dif-
ferent engines, on receiving a start signal propagated by
their direct common predecessor, start the execution si-
multaneously.

— Peer engines waiting period: This is the estimated period
of time, after which the engine does not receive any con-
firmation or agreement, so the message for control del-
egation ignores that engine and chooses another engine
from the CEL as a new candidate for control delegation;
then, the predelegation phase is repeated.

— Engine-web service waiting period: It is most likely that
an engine executor controlling a WS, for an unknown

O start

Generate (CEL(E;,))
[CEL (E;)) not Empty]

Engine:=e";

State; ,:=Executing
Update(CEP)
[start_signal received]
Execute(E;, e',)

Commit()

[Finish_Signal received]
State:=Committed
Update(CEP)

Finish()

Abort()

[abort_request received]
State; , :=Aborted
Update(CEP)

|

Executing

error()

[failure detected]
State; ;= Failed
Update (CEP)
Propagate (failure)

[CEL(E;) not empty]
Engine:=e?
State, ,.=Executing| Committed
Update(CEP)

Execute(E; .62)

Aborted

[vital]

Allocate()
[CEL(E;) Empty]
Back_Recovery()
Finish()

[non-vital]
Resume(Successors)
Finish(E;)

Compensate()
[compensate_request received]

State; ,:=Compensated
Update(CEP)

X Finish()
Generate(CEL(successors))

Fig. 6.2 State transition diagram of an atomic compensatable ele-
ment executed in THROWS architecture

reason (e.g., failure) does not receive a response message
from the WS for a time; in some cases, the waiting time,
as an answer time may even tend to be infinite, which
is unacceptable. To avoid this, a similar situation to the
above occurs. We define this as the engine-ws waiting
period. It avoids the engine executor waiting eternally
for an answer that may never come: if the WS fails to re-
spond after the engine-ws waiting period has elapsed and
no information was received of the execution progress
of the WS, then the engine executor must consider itself
failed and a recovery must be triggered.

6.3.2 Conversation between an Engine Executor and a WS:

The different messages that are used to communicate be-
tween an engine executor and a WS are defined according
to the WS execution progress and they are chiefly of two
forms:

— The engine executor sends a notification of execution
start to ask the WS it controls to start executing. At the
same time it provides the WS with the necessary input
data for its execution.

— When a WS finishes executing, it notifies the engine ex-
ecutor of its own execution results. In this case also, the
engine-ws waiting period, which has to be estimated, is
essential to avoid the engine executor finding itself eter-
nally waiting for an answer that may not arrive. There-
fore, after the engine-ws waiting period has elapsed, the
engine executor has to be informed of the WS execu-
tion’s progress. If no answer is received, it implies that
the WS has failed.

FENECIA

27

6.4 Description of THROWS Architecture Functionality

The WS-SAGAS transaction model supports the specifica-
tion of a process in different ways following different de-
fined aggregation patterns. For these different patterns, we
need to describe how they are to be executed. In the fol-
lowing, we show how the state and vitality degree concepts
play a crucial role in determining how the execution is to
progress, and especially, in distinguishing successful from
faulty situations, in informing of failures, and in recovering
from failures. In describing the functioning of THROWS ar-
chitecture, we mostly describe sequential and parallel WS-
SAGAS. Other patterns can be deduced in the same way, be-
cause we have defined the execution semantics of each pat-
tern in detail in the previous section. (Figure 6.2) shows the
different transition rules that THROWS defines to make an
atomic compensatable element’s state change from one
state to another. The diagram is for vital and nonvital
elements.

6.4.1 Initiating the Execution of a Process P,

The entire process P; execution is initiated by an engine co-
ordinator ec”. To ensure that it does not constitute a single
point of failure, we assume that we have REL(F;), a replica
engine coordinator list that contains several replicas of ecf7 .

A process running on a server side is responsible for tak-
ing a user request for a particular process and for creating
REL(P;), and starting the execution with one of the replica
engine coordinators; we assume here that it is ecf7 . More pre-
cisely, below is the content of REL(F):

REL(P,-):{DR(ec}),---,DR(ecf),- ,DR(ecf),-- }(63)

Every replica in REL(F;) contains the CEP of the over-
all process and the CEP of the WS-SAGAS for which the
engine coordinator is responsible. That is, in ecf7 we have
both, CEP(P,,ec’) and CEP(WS-SAGAS;, ec); CEP(P,) is
formed as follows:

CEP(P,ec’) :CEP(WS-SAGAS;, ee”))

UCEP WS SAGAS! as eel a. 1)
| JCEP(WS-SAGAS ., e¢, . 1)

UCEP (WS-SAGAS, achsc €€l pocr) -

CEP(P,,ec) means that the CEP copy is stored on engine
Smnlarly, CEP(WS- SAGAS,a,eel ..1) is stored on en-
glne eel 2.1 CEP(WS-SAGAS; 4. l,,ee, s 1) isstored on en-

gine eefa'*_b_l, etc (see Figure 6.1).
The engine coordinator initiates the process execution by
starting the execution of the WS-SAGAS at the first nesting

level, that is, WS-SAGAS;. The first step is to generate the
CEL of the element appearing first in the first pattern; in the
case of WS-SAGAS;, CEL(E;) is generated, an engine is al-
located, the predelegation phase is performed, and a copy of
CEP(WS-SAGAS;, ec’) is passed to ee”| and the execution
of the WS-SAGAS starts.

We describe below the internal functioning of a WS-
SAGAS: the execution of patterns that only contain atomic
elements. Then, we describe how the execution is delegated
between different nesting levels.

6.4.2 Sequence Pattern Execution ([E;x]; [Eix+1])

We describe the general execution model of a sequence pat-
tern aggregating only compensatable atomic elements.
We assume that an engine executor eef « has been allocated
to the element E;;. Depending on the execution progress,
different scenarios may occur:

1. Element E;; commitment. In this scenario we assume
that the execution of wsff « controlled by eef © Was suc-
cessful. The successful execution must be reflected on
the CEP content (to comply with our proposed notation
of an engine that uses p to designate any engine and ¢
to designate an engine that was successful, we use eeqk
instead of ee’ k) Therefore, the engine ee? . has to update
the locally stored copy of CEP; specifically, the state of
the element is to be modified as follows:

CEP(WS-SAGAS;, ee!,).DR(E;).state := Committed .

The execution results are used to update the output pa-
rameters of the element:

CEP(WS—SAGAS,-,ee?_k).ﬁ(E,;k).operation.out =

DR(eel,).operation.out .

Afterwards, the engine executor has to delegate execu-
tion control. To this end, it generates CEL(E;41) and
chooses an engine executor to which it must delegate the
execution control; we assume here that the engine ee’ ; k 41
was allocated to execute E;r+1. We note that the execu—
tion of E; ;. by ee i k41 1s the execution of a WS wsl k1

controlled by eel 1~ The WS wsl_k 41 to be mapped to
E; k41 must satisfy the following three conditions:
CEP(WS-SAGAS;, eel, ﬁ E;ky1).description =
CEL(E;k41).DR(ee?, |).description .
(the functionalities of the element meet the WS capabilities)
CEP(WS-SAGAS;, ee],) ﬁ (Ejxy1).0peration.in =
CEL(E;ky1)-DR(e€?, . |).operation.in .
(the input parameters of the element and of the WS are compliant)
CEP(WS- SAGAS,,ee
CEL(E;j+1)-DR(ee? k+1> operation.out .

ﬁ (Ejx+1)-0peration.out =

(the output parameters of the element and of the WS are compliant)

28

Neila BEN LAKHAL et al.

Once these conditions are satisfied, the two engines start
a predelegation phase in which one engine agrees to del-
egating control while the other agrees to having control
delegated to it. When eef, receives the agreement notifi-
cation from ee’ i k41» it finalizes the delegation by updat-
ing and sendlng he CEP content to the allocated engine:

CEP(WS-SAGAS;, eel,) ﬁ Ejky1).engine: —eelkJrl .

We emphasize that whether or not E;; was vital does
not affect the functioning of the engine for a successful
execution.

Vital Element E}, , | Failure: We assume that exceptional
behavior (e. g unavailable, timed out, error message) of
the WS wsl x41 precluded the engine eel 441 from suc-
cessfully committing the element £7,; ;. Consequently,

the element £}, | execution attempt by the engine eel k1
is considered to have failed and the following steps must
be performed to recover to a consistent state, because the
element’s success is crucial for the overall subtransaction
success. First, the engine eel 41 has to update its locally
stored copy of CE P with the latest progress in execution
as follows:

CEP(WS-SAGAS;, eel’,,).DR(E}).,,).state := Failed .

Second, a copy of the locally stored CEP is sent as a fail-
ure notification message to the engine responsible for the
execution of the predecessor of £}, 41 that is, to engine
eegk, so that it takes charge of the failure recovery pro-
cess. Depending on the cardinality of CEL(E}, , ,) either
a forward recovery (i.e., trying to advance the execution
process with an attempt at an execution retrial) or a back-
ward recovery (i.e., to recover the CWS to a consistent
state) is to be performed by eeg ©

. Vital Element E}, | Forward Recovery' After being no-

tified of E} , | execution failure by eel iy (Le., receiv-
ing a copy of CEP in which the element E7, | state was

set to Failed), the engine ee?_k checks the cardinality
of CEL(E},,) to determine whether trying a forward
recovery, by allocating another engine in order to reat-
tempt the execution of £}, , ,, is feasible or not.

When (|CEL(E},)| # 0) is verified, it means that other
WS satisfying the element £}, +1 required functionalities
are ava11able Therefore, execution retrial is p0551ble the
engine ee! . . Searches for the engine ranked next to eel ikl

. v 1+1
in CEL(E], ,,); here we assume it is the engine ee; ;.

This engine 1s allocated to reattempt the execution of the
element £}, ,; the locally stored content of CEP in eeg k
is updated as follows:

p+1

Eé (Ejk+1).engine: =l -

CEP(P; ee!,

Subsequently, a predelegation has again been performed
with the new engine eel k 1, the CEP content, with the
required context data for effectlvely starting the execu-
tion, is communicated.

CEP(WS-SAGAS;, ee!,

4. Vital Element E"k | Backward Recovery: If it happens

that (|CEL(E], , 1)| = 0), the execution retrial is impos-
sible and a backward recovery is necessary. To this end,
all the other elements from the same WS-SAGAS that
are ordered before E} | | and have already committed are
compensated for, that is, all the vital and nonvital el-
ements that verify the following conditions:

CEP(WS-SAGAS}, ee!,) DR(E; ye(1 i) -state=Commi t ted

are compensated for by executing for each element its
compensating element. We emphasize that a compensa-
tion mechanism is triggered by a compensation request
propagated for all the engines of the elements that verify
the above condition. In addition, we note that the com-
pensation request propagation is handled as described
below.

. Element E;; Compensation: On receiving a compensa-

tion request, an engine first checks if it has any predeces-
sor to which it must, similarly, propagate a compensation
request. Second, it has to compensate the execution of
the element for which it is responsible.

That is, if we consider the case of the engine eegk, Te-
sponsible for the element E;; (applicable to the case of
vital and nonvital), the engine ee?k searches for a
WS that satisfies the functionalities of E] ,, the compen-
sating element of E; .

!
Here, we assume that a WS ws;{k was discovered. The

! !
engine ee!, executes the WS ws?,. On completing ws?,
execution, ee?_k updates CEP and propagates it with the
compensation request to the engines concerned:

ﬁ E;x).state:=Compensated .

The engine that finds that it has no predecessor engine is
presumably the engine responsible for the first element
E; ;. This engine executor has only to compensate the el-
ement E; ;. Finally, the overall WS-SAGAS of this level
failure is calculated. The engine executor eef] » responsi-
ble for the element E; ;, after compensating the element
E; | must propagate the failure information up the hierar-
chy to perform a backward recovery in other terminated
WS-SAGAS. To this end it sends its last updated copy of
CEP(WS-SAGAS;, eel|) to the engine coordinator con-
trolling the element parent of the WS-SAGAS;. In this
case, it propagates the copy to ecl . We describe below
in this section how an engine coordinator handles this
failure information.

6. Nownvital Element E‘_’k 11 Failure: Assume that the direct

successor of E "k is the nonvital element El 1 In this

case, even if the engine eei_ k1 allocated to El" . fails, itis
not necessary to attempt a recovery because its success is
optional. However, the engine eef kil continues the exe-
cution as if the element was committed by updating the
CEP and performing the control predelegation phase as
usual.

FENECIA

29

6.4.3 Parallel Pattern Execution (E;; (Ej11]]...||Eik+j))
The main difference with the execution of a sequence of WS-
SAGAS is that the engine allocated to the element E; ;—we
assume here it is engine ee?_k—on finishing executing E;
has to generate the CEL of the set of elements to be exe-
cuted in parallel, that is, the elements from E; s, to E; ¢,
as noted above .7 (E; i)auee- Similarly, ee?_ , generates CEL for
all the elements in .7 (Ej). If we assume that the CEL
generation and the engine allocation steps were done, we
have the CEP updated as follows:

CEP(WS-SAGAS;, ee!,) ﬁ Eiki1).engine := eePkJrl
CEP(WS-SAGAS;, ee!,) ﬁ Eik12).engine: —eelk+2

CEP(WS-SAGAS;, e¢!) ﬁ Eikyj)-engine :=ecj) ;.

Because starting the execution of the elements pertaining
t0 . (E; k)suec MUst be synchronized, a synchronization phase
has to be introduced.

The synchronization phase comes directly after the pre-
delegation phase finishes. It aims at ensuring that the en-
gine ee,, after receiving the delegation agreements from the
other, different engines, simultaneously propagates a start
signal. In addition, because a significant delay in receiving
the delegation agreement messages can seriously compro-
mise the CWS execution, we use the peer-engine waiting
period, as already specified. After it has elapsed without re-
ceiving the acknowledgment message from one of the en-
gines, ee], must select another candidate engine. When the
elements in .%(E; ¢). are being executed, three situations
are most likely to occur:

1. Simultaneous Commitment of all the Vital Elements: All
the vital elements in .%(E; ¢).... have been successfully
committed, that is, they verify the following condition:

VE!, |E}, € S (Eik)sand L € [k+1.k+ j]:
CEP(WS- SAGASi,ee}_ ,)-DR(E;,).state = Commi tted .

If the above condition is verified, first, all the engines
controlling the elements verifying the above condition
have to exchange copies of their locally stored CE P con-
tents. At the end of this update, all the engines control-
ling vital elements in .%(E;)... have the same copy
of CEP.

Second, depending on the pattern used to make the dif-
ferent elements in .7 (E; x).,.. converge to a single point,
a set of elements from .%(E;j)... has to generate the
CEL(s) for the element(s) that comes directly after them.
If we assume that E;; is the common successor, then the
elements in .%(E;k)... have to cooperate in generating
the CEL(E; ;) by taking the union of the different CEL(s)
generated by each of their engines.

Finally, we note that only the results of the execution of
the vital elements were considered because the other
nonvital elements’ success or failure does not affect
the others’ progress.

2. Failure of one or more vital elements: One or more
vital elements in .% (E;). verify the following con-
dition:

3E}, | E}y € S (Eik)s and £ € [k+ 1.k + j] :
CEP(WS-SAGAS;, ee?,)ﬁ(E ¢).state = Failed .

If a similar situation occurs, then the failed engine(s) has
to inform its direct predecessor, here ee;{k, of the fail-
ure(s). As described above, ee?_k tries to perform a fail-
ure recovery. The main differences reside in that, first,
the failed engine(s) also have to inform the concurrent
engines controlling the other elements to avoid compro-
mising the subtransaction execution by making the oth-
ers wait forever.

Second, if a backward recovery is necessary, it is most
likely that the execution of one or several elements from
P (E; k)ae 18 still in progress. As a result, the compensa-
tion mechanism described above is not applicable.

It is essential to abort all the elements that verify the fol-
lowing condition by stopping their execution:

3E}, | E}y € L (Eik)suse and £ € [k+ 1.k + j]:
CEP(WS-SAGAS;, ee!,).DR(E;,).state = Executing .

To abort all the elements that verify the above condition,
eel « has to propagate an abort request to all their allo-
cated engines. Each engine that receives an abort request
responds by immediately stopping its execution and up-
dating its locally stored CE P copy, then sends it to ee?_k.
After all the different engines have properly handled the
received abort request, the CEP content stored on ee?k
side is:

JEY, | EYy € L (Eik)ese- and £ € [k+1..k+ j] :
CEP(WS-SAGAS;, ee;{k)-ﬁ(Ei.é)-Slate = Aborted .

3. One or more vital elements are still executing while
the others have already committed: At least one vital
element in .7 (E;).... verifies the following condition:

VE!, | E}y € F(Eir)uweand £ € [k+1.k+j]:
CEP(WS-SAGAS;, ee],).ﬁ(El_g).state = Executing .

In this case, two scenarios are possible:

— Scenario 1: The engine(s) responsible for the com-
mitted element(s) informs, as described above, the
concurrent engine(s) of their commitment(s) and gen-
erates the CEL of the successor(s), if they exist. How-
ever, they wait for the termination of the element(s)
that is/are still being executed to agree on the CEL
and to choose the engine to allocate to the succes-
sor(s), so that a predelegation phase is performed to
effectively start executing the successor(s).

— Scenario 2: The committed elements’ engines inform
the concurrent engines of their commitment and en-
ter a latent state while waiting for the remaining un-
finished elements’ commitment.

30

Neila BEN LAKHAL et al.

A comparison of the two scenarios shows that in (Sce-
nario 1) the time spent by the concurrent engines in gen-
erating the CEL(s) of the successor(s) etc can be mean-
ingless if one of the still executing engines fails. On the
other hand, if all the remaining elements were commit-
ted, then the time spent in a latent state by the different
engines in (Scenario 1) is an overhead.

6.4.4 Execution Control Delegation between an Engine
Executor and an Engine Coordinator

Assume that E; , is a composite element from WS-SAGAS;.
If the execution progress of W S-SAGAS; reaches the element
E; ., that is, the element E; ,_; terminates its execution then,
ee?_‘k1 has to delegate the execution control as described
above.

The particularity here is that when ee;{ a—1 checks for a
predecessor, the CEP content reveals that the next element
to be executed is E;, and it is composite. Consequently,
the engine executor ee _; generates an REL not a CEL,
the generated REL be1ng REL(E; ;). Then, an engine coor-
dinator is selected; let this engine be ecf . The execution
of WS-SAGAS; is suspended waiting for the element E; , to
be executed by ec?,. As described at the beginning of this
section, ec , starts executlon of WS-SAGAS; , in exactly the
same way as the engine coordinator ec!’ starts the execution
of WS-SAGAS;.

6.4.5 Execution Termination of a WS-SAGAS Transaction

Assume that the execution of WS-SAGAS; , was terminated

and the execution reached the last element Ej,p;,, which

q

q
was executed by the engine executor ee; , nia ©Cians checks

the locally stored CEP, CEP(WS-SAGAS 4,¢¢],, ..), for el-
ements not yet executed. The result is that all the elements
in WS-SAGAS; ; have finished already.

Therefore, it has to inform the engine coordinator re-
sponsible for the parent element of WS-SAGAS;, that the
execution was terminated. To this end, it sends a copy of
CEP(WS-SAGAS; a ee!,,.,) to the engine ecf),.

The engine ec . deduces the element E; ;s state from the
received CEP(WS SAGAS,a,eem”). More precisely, as-
sume we deduced from CEP(WS- SAGAS,a,ee
that:

DR(WS-SAGAS; ,).state = committed, then ec!, updates
the state of the element E;, in CEP(WS-SAGAS,-,ecf 4) as
follows:

Lan; 2) state

CEP(WS-SAGAS;,ec! \).DR(E; ,).state := committed

Then, the execution is continued as described above.
6.4.6 Execution Termination of a Process

On every termination of a WS-SAGAS, the last engine re-
sponsible for the last element in the subtransaction final-

izes the execution in the way described above. Every WS-
SAGAS termination is cascaded up in the hierarchy until the
uppermost level controlled by the engine coordinator ecf7 is
reached. Then, this engine finalizes the overall process ex-
ecution by requesting from every other engine coordinator
the last updated copy of the CEP of the subtransaction for
which it was responsible.
When all the copies have been collected, the locally stored

copy of the overall process CEP is updated and process ter-
mination is deduced.

6.4.7 Interruption of the Execution of a WS-SAGAS with a
Failure

Assume that the execution of WS-SAGAS; , was interrupted
by a failure of one of its constituent vital elements and
that the forward recovery mechanism was unable to over-
come the failure. As a last resort, a backward recovery is per-
formed as described in the execution of a sequence/parallel
pattern.

When the failure message (i.e., CEP(WS-SAGAS; ,), with
the state of one element set to failed), reaches the engine
responsible for the ﬁrst element in WS-SAGAS; ;,—in this
case this engine is ee, o 1—this element performs a back-
ward recovery for the element it controls and propagates the
failure information up in the hierarchy. All it has to do is
to send the updated copy of CEP(WS-SAGAS; 4,ee! ,|) to
the parent of the engine coordinator controlhng the parent
of WS-SAGAS; . In this case, a copy reaches ec , and, be-
cause it checks the CEP content, a failure is deduced Sub-
sequently, a backward recovery is triggered: ec,i ,, initiates a
backward recovery in WS-SAGAS; by changing the state of
the element E; , as follows:

CEP(WS-SAGAS;,ec!).DR(E; ;).state := failed.

The failure of E;, is handled in the same way as described
above by compensating all the committed elements in the
transaction WS-SAGAS; and aborting the other elements still
executing. When the failure message reaches the uppermost
level, that is, the engine ecf, this engine propagates the fail-
ure down the hierarchy to all the WS-SAGAS that were ter-
minated before the WS-SAGAS; , failure (i.e., all the WS-
SAGAS lower in the hierarchy must also be recovered).

7 Composite Web Services QoS Modeling and Analysis

We describe the third part of the FENECIA approach: as-
sessing the QoS of CWS depicted as WS-SAGAS and ex-
ecuted following THROWS architecture. Our chief aims in
defining a QoS model are that, first, it allows verification
of the described CWS as WS-SAGAS are reliably serving
their purpose, when executed, by achieving a high level of
dependability. Second, it allows greater improvement of the
quality of execution in the future by favoring the more re-
liable WS and discarding the WS that are most likely to be
the stage failures.

FENECIA

31

Moreover, we aim to use the QoS estimation and anal-
ysis as a basis for improving the WS-SAGAS structure. To
this end, our model characterizes, estimates, and analyzes
several QoS properties, namely the execution time and the
reliability [17,21], on the basis of the past executions col-
lected in a history, and takes into consideration the failure
repercussions.

7.1 Preliminaries

We give an overview of the QoS concepts we are concerned
with because the QoS concept in itself is broad. It has been
applied to many areas and, depending on the area of appli-
cation, its definition varies.

Some define it as “a set of user-perceivable attributes,
which describe a service and the way it is perceived” [50,
51]. We are not concerned with this form of QoS because
it has been widely addressed and was the subject of consid-
erable research efforts in the area of WSC. Several studies
have focused on the dynamic selection of the provider [52—
54] and on semantic WS description to improve the selection
[55]. These studies are classified under the umbrella of max-
imizing user satisfaction.

A more appropriate definition of the QoS we treat in the
FENECIA approach is “the system property that consists of
a set of quality requirements on the collective behavior of
one or more objects, such as the information transfer rate,
the latency, the system failure probability, etc.” [50,56]. That
is, this category of QoS assessment chiefly targets estimating
a number of QoS properties for later analysis by the system
designers to verify to what extent the CWS are efficiently
serving their purpose during execution (i.e., are the intro-
duced fault-tolerance mechanisms working properly? Are
the selected WS adequate?).

7.2 Motivation

The issues guiding us toward introducing such a model are
summarized below.

— Most of the proposed approaches that address the esti-
mation of the QoS issue, first, make use of either math-
ematical modeling or simulation tools [57-60]. Second,
they typically provide a global view of the range of vari-
ation of the estimates of certain properties of the CWS as
a whole, or their estimates are only applicable for static
CWS, which make them inapplicable for both THROWS
and WS-SAGAS for dynamic composition. However, pro-
viding more detailed estimations, especially in the case
of complex CWS, is required more and more. To fulfill
this requirement, our QoS model for CWS is oriented
toward acquiring more practical and detailed estimates
of the QoS of each element, and derives equivalent esti-
mates for the overall CWS;

— Most of the current approaches dealing with QoS esti-
mates in the WS context rely on the QoS information ad-
vertised by the WS owners/providers, which may be not
up to date or subject to manipulation by the providers.
To overcome this limitation, we compute the QoS esti-
mations on the basis of the CWS execution observation,
where the observation results are collected in a history. In
doing so, we believe that more accurate estimates can be
acquired because we do not rely on the providers’ data.

— A major part of the work done up until now consid-
ers only situations where the CWS do not fail. As a re-
sult, the estimates obtained are very often regarded as
too optimistic because they do not account for any fail-
ure (information, recovery) and their repercussions. In
our model we account for failures and their repercus-
sions on the effective performances of the CWS because
this is particularly required in the WS architecture, in
view of the WS inherent tendency to fail relatively eas-
ily (relative to other computing components). Typical
causes of failure include: noncompliant WS character-
istics (e.g., transactional supports, management policies,
access rights) and obvious Internet limitations (e.g., la-
tency, time-out, security).

— Finally, because WS are generally stateless, tracking the
failures and determining their locations is almost impos-
sible. To overcome this limitation, the notion of state that
we initially introduced in WS-SAGAS is used. Introduc-
ing the state concept is expected to contribute in acquir-
ing more accurate information on the location of failures
and to be used later to improve the CWS QoS.

7.3 Execution Time Characterization

In our QoS model, we first estimate the execution time of
each atomic element E; ; for a subtransaction WS-SAGAS;
from a hierarchy of nested WS-SAGAS forming a process
P.. Then, we describe the derivation of the equivalent esti-
mate for the entire WS-SAGAS; and the entire process. Our
QoS model builds heavily on the observation of the past in-
vocations of the process and on collecting these observations
in a history. Because the execution follows the THROWS
architecture, the history content is chiefly formed from the
different copies of CEP stored in the different engines’ logs
that cooperated to execute the whole process. By enforcing
the policy, all the copies of the different CE Ps stored locally
on the different engines must be kept until the end of each
process invocation; at the end we have information about the
process life cycle and of all its constituent elements. More-
over, applying the same policy to all the different CELs can
be very interesting as each CEL, in itself, is a history of the
engine-ws couples attempted. With both the CEP and the
CEL contents, tracking failures’ locations and determina-
tions of the engine-ws couples that fail readily can, in the
future, significantly improve the quality of execution.

32

Neila BEN LAKHAL et al.

7.3.1 The Execution Time of an Atomic Element

Because each atomic element is mapped dynamically to a
WS, we investigate first the issue of estimating the execution
time of an elementary WS, which has been addressed previ-
ously on several occasions. Specifically, we refer to [60,57]
in which the authors defined the execution time taken by a
single WS invocation with the sum of the three following
constituents:

— The service time S(WS) isthe time that the WS takes
to perform its task.

— Themessage delay time M(WS) is determined by the
size of the message being transmitted/returned and the
load on the network through which the message is sent.

— The waiting time W(WS) is the delay caused by the
load on the system where the WS is deployed.

This model does not comply with our approach because we
target a dynamic and fault-tolerant execution. However, the
above model is, first, only for CWS with one-to-one static
WS-element mapping. Second, it does not take into account
any eventual failure and how it may intervene in varying the
performances. These two reasons preclude it from being di-
rectly applicable in the FENECIA approach, without further
extensions.

In characterizing the execution time, we build on the
above model and introduce the Optimistic Execution Time
and Probable Execution Time where the former is limited
to the correct execution situations and where the latter con-
siders all the possible execution situations (i.e., committed
execution, failed execution, compensated execution, aborted
execution, etc.) of a fault-tolerant CWS. Distinguishing be-
tween these two variants provides more accurate estimates
to account for the failure repercussions on the delivered per-
formances.

Definition 7.1 (The Optimistic Execution Time(opt))

We define the Optimistic Execution Time (denoted T (E,)opi)s
as the time spent by the dynamically mapped engine executor—
WS couple in executing the vital element £}, . This defi-
nition considers only the best case where the executlon is
committed when E;, is mapped to the first-ranked couple
engine executor-WS in the corresponding CEL.

We note here that any atomic element E}, can be mapped
at runtime to more than one engine executor-WS, at most ex-
actly |CEL(E
ranging over p, and every time the element E7 is to be exe-
cuted it is allocated an engine executor eef « (controlling the
WS wsf - If we assume that for a particular value of p we
note ¢, E}, executions by ee! ;. committed successfully, then
E}, was attempted by g engines from CEL(E},) (q verifies:
g < < |CEL(EY,|); in all these execution attempts, (¢ — 1) ex-
ecutions were finished by failures. That is, we can say that
E}, was retried q times, and that the ¢'" execution delegated
to the engine eel (controlhng the WS ws; k) was successful.

We define T'(E;

)|, the cardinality of CEL(E},), with [1..|CEL(E})

the time taken by the WS to process its sequence of activities—
and of the latency (exactly L(eel - Ws?))—the time neces-
sary to send a request and receive a response:
_ q ool
T(Eit)op = T(Ejy,e€;y,wsiy)
_ q a
= S(ws;,)+ L(ee],ws;,)
with: 1 < ¢ < |CEL(E},)]

(7.1)

In the special case of a nonvital element, the execution
is attempted only once; consequently the equation (7.1) is
transformed as follows:

T(E])op = T(E[i eeir,wsiy)
= S(wsiy) +L(e_ei1.kawsil.k)
with: [CEL(ET,)| = 1

Definition 7.2 (The Probable Execution Time (prob))
We define the Probable Execution Time(denoted T (E!,) prob)
as the estimate of the time spent by an atomic element £},
in being executed effectively, which is equal to T'(E},) o to
which we add the time necessary for recovering from fail-
ures that the same instance of the WS-SAGAS as a whole
has encountered (see Equation (7.3)).

T(E;) prob = T(E{)op +RP(E}) + R(E}}),

where:

(7.2)

(7.3)

- T(E},)op is the time to execute the WS ws;k controlled
by the engine executor ee, « We note that p ranges over
[1..|CEL(E},)|] and that, for a particular value g of p, the
execution of E}, was committed. Where E7, was retried
with all the engmes in CEL(E;,) and the executlon failed
for all of them, then T(E},), is assumed to be equal to
0and T (E},) prop is equal to the time spent in performing
a forward recovery by retrying £}, several times (exactly
|CEL(E},)| times).

- RP(E},) is the time spent by E}, in informing of its
own failure or in being 1nf0rmed about others’ failure.
PR(E},) is detailed more in the following definition.

- R(E},) is the total period of time spent in performing
a forward recovery every time the element E;, failed,
to which we add the time spent by E7, in performmg a
backward recovery, if it happens that any of the elements
executed in parallel with it, or the elements that come

|E1rectly after it fail. R(E},) is considered in greater detail

Definition 7.3 (The Failure Recovery Preparation Time)
We define the failure recovery preparation time of an atomic
element (RP(E},)) as the time necessary to notify of a fail-
ure, or to send a recovery (abort/compensation) request. All
the messages are one-way SOAP messages that contain the
last updated copy of CEP. Depending on the failure location
(i.e., the element itself or another element from the same
process) and on the elements state and vitality degree, the

'«)Jop Dy the following equation(7.1) where defined expression of the failure recovery preparation time

T(E};)op isthe sum of the execution time (exactly S (wsl.))— Vvaries as follows:

FENECIA

33

— In the first case, E}, was committed by an engine ex-
ecutor eegk after being reattempted ¢ — 1 times; on ev-
ery failure by an allocated engine ee?,, it has to inform
its direct predecessor by sending a failure information
message to e?_,&l (i.e., it can be an engine executor or
coordinator), thereby the notation I(ee?,,ef,). If the
element is nonvital, performing a forward recovery is
not required:

Case 1. : CEP(WS-SAGAS;, e¢!,) DR(E;) state =
Committed
(element committed / WS-SAGAS committed)

q—1
RP(E}y) =) I(eely efy_;) (vital)
p=1

RP(fk) = 0 (nonvital)

— In the second case, E};, was committed by an engine ex-
ecutor eegk and was reattempted ¢ — 1 times; however,
the overall WS-SAGAS failed because of the failure of
another element that was executed later in the process.
If we assume the failed element to be E} it with (j > k)
(handled in the same way whether it is composite or
atomic), then the engine allocated to E}, receives a com-

pensation request from the engine responsible for £} ;
(CR(e] ;,eef,) is the time spent in exchanging such a

message):

Case 2. : CEP(WS-SAGAS;, e¢!,) DR(E;) state =
Compensated

(element committed/WS-SAGAS failed)
q—1

Case 4. : CEP(WS-SAGAS;, ee;

In the fourth case, E}, was attempted by all the engines
inits CEL (i.e., it was reattempted CEL(E},) times) but,
unfortunately, it failed in all the retried times; therefore,
the overall WS-SAGAS failure is deduced.

This case is not applicable to a nonvital element be-
cause its failure does not entail overall process failure:

CEHEDL DR(EY,) stare =
Failed
(vital element failed/WS-SAGAS failed)
|CEL(E])|
RP(E;,) = I(eefy,ely_y)
p=1

Definition 7.4 (The Failure Recovery Time)

We define the failure recovery time(exactly R(E},)) as the
time required for £, to recover from its own failures and
from the failure of other elements. We note that an element
failure can trigger at most the cardinality of its CEL forward
recoveries; however, it can be subject to only one backward
recovery, triggered by another element. The expression of
R(E},) is defined by the following equation:

RP(E}y) =) I(eefyely_y) +CR(e]; eefy) vital) —

p=1
RP(E},) = CR(efj,eeil,k) (nonvital)

— In the third case, while the element £}, is being executed
by an engine executor ee}, (i.e., it was reattempted r — 1
times), the overall process failed because of the failure
of another element that was executed later in this WS-
SAGAS. If we assume the failed element to be £} i with
J > k, the engine allocated to E}, receives an abort re-
quest from the engine responsible for £} ; (the time spent

in exchanging such a message is denoted AR(e; ;, eej;)):

Case 3. : CEP(WS-SAGAS;, ee{k).ﬁ%(E,-,k).state =
Aborted
(element still executing with e}, /process failed)

r—1

RP(E{y) =) (el el) +AR(e]), eefy) (vital) ~

p=1
RP(E}) ZAR(ef,’j,ee{k) (nonvital)

For(E},) + Back(E},) (7.4)

I<p<|CEL(E}})|
For(Ej}y) = T(E[el wsty)
1§p§|CEL(El.‘:k)\
Back(E;) = xor(Comp(E;,),Abort (E}}))

R(E};) =

For(E},) is the total time spent in retrying E}, by the
other engine-ws couple from CEL(E},) every time the
allocated engine fails to commit £}, .

For(E!,) is always equal to 0 for a nonvital element
because its execution is not retried even if it fails.
Back(E},): In a backward recovery, the mechanism to be
applied depends on the composition specification model;
the more widely used techniques are rolling back, abort-
ing, and compensation. In the FENECIA approach, the
backward recovery time is the time necessary to trigger
a backward recovery mechanism by aborting all the el-
ements still executing and compensating all the already
committed elements. Therefore, the entity Back(E}) can
be equal to the Compensation time(Comp(E},)) if an-
other element from the same process that comes after £},
failed and triggered a backward recovery when E}, had
already committed; alternatively, it is equal to the Abort
time(Abort (E},)) if another element from the same pro-
cess that is executed concurrently with E}, failed and
triggered a backward recovery while E7, is still being
executed.

Depending on location of the failure (of the element it-
self or of other elements) and on the element’s stare and
vitality degree, the defined expression of R(E},) in Equa-
tion (7.4) varies as follows:

34

Neila BEN LAKHAL et al.

lﬁ E;y).state =

Committed
(element committed / WS-SAGAS committed)
q—1

Z For

Case 1. : CEP(WS-SAGAS;, ee!,

q—1

p=1 p=

R(lk) 0 (nonvital)
Case 2. : CEP(WS-SAGAS;, e¢!,) DR(E;) state =
Compensated

(element committed/WS-SAGAS failed)

Z For

17_
= Back(E})

«) +Comp(E};) (vital)

R(E}) = Comp(E/;) (nonvital)

Case 3. : CEP(WS-SAGAS;, ee{k).ﬁ(E,-,k).state =
Aborted
(element still executing with ee}; /WS-SAGAS failed)

Z For

= Back(Ei‘fk)

'¢) +Abort (EY}) (vital)

R(Ei.k) = Abort(;?k)(nonvital)
Case 4. : CEP(WS-SAGAS;, ee ""“i*) DR(E}
State = Failed
(element failed/WS-SAGAS failed)
ICEL(E},)|

Z For(E})

=1

R(Ej}) =

7.3.2 The Execution Time of a WS-SAGAS and of a Process

The execution time of a WS-SAGAS WS-SAGAS; is derived
from the estimates of the execution time of the different ele-
ments it combines. Because these elements might be orches-
trated in different ways to structure the CWS, we propose
defining an expression that estimates the execution time for
each of the different aggregation patterns that WS-SAGAS
defined (see Table 7.1).

Because WS-SAGAS are recursively nested, the execu-
tion time of the uppermost WS-SAGAS in the hierarchy is
equal to the execution time of the entire process. The ex-
pression to estimate the execution time of a WS-SAGAS
WS-SAGAS; is derived as follows:

T(P) prop = T(WS-SAGAS;) prop
T(WS-SAGAS;) prop = T(WS-SAGAS;) prob

i1

+([T(E¢)prob| DR(Ey).type = atomic) .

(=il

ZT Veoeed wst)) (vital)

The expression [| means that the execution time is derived
according to the aggregation pattern that connects the differ-
ent elements that we defined in (Table 7.1). By deriving the
execution time of every WS-SAGAS in the hierarchy in the
same way as for WS-SAGAS; ,, we can derive the expression
below for the execution time of the whole process:

i.a.*.b.*.c.n,-‘m,.

[1

(=il

T(P)prov = (T(E¢) prob|DR(Ey).type = atomic) .

We emphasize that the estimate of the execution time—
obtained by combining the execution time of the different
elements—does not include the time spent in the coordi-
nation/conversation between peer-engines, that is, the time
spent in the execution control delegation (predelegation phase
and synchronization phase) or the time spent in CEP com-
munication, that is, the time spent in propagating the syn-
chronization signals. Second, it does not include the time
spent in generating the CEL/REL and the time spent in up-
dating CEP. Any of these different times fall into the cate-
gory of control delegation time. We define in what follows
how the control delegation time is estimated in our approach.
In general, it can be incorporated in: (i) the time taken by a
one-way SOAP message, (ii) the time taken by a two-way
synchronous SOAP message (request/response), or (iii) the
time taken by an update/search query.

Definition 7.5 (The Control Delegation Time)
The control delegation time is the time between the moment
of termination of the execution of one or many elements by
a first entity (i.e., one or more engines) and the moment of
starting the execution of one or more elements by a second
entity (i.e., one or more engines). It typically includes the
time necessary to generate the CEL/REL and select the en-
gine(s), the time spent in the predelegation and synchroniza-
tion phases, and the time spent in updating and communicat-
ing the CEP content.

Depending on the WS-SAGAS OR, the control delega-
tion can be: (a) from one engine (executor or coordinator)
el k to another engine (executor or coordinator) el 1 (e

e; k and el kil control a sequence of elements) (see case 1).
(b) from one engme (executor or coordinator) e « to the set
of engines . (e h k)sm allocated to control the set of elements
L (Eik)aee (s case 2). (c) from many engines (executor or
coordinator) . (e?,), controlling the set of elements .7 (E; ;),..
to the engine (executor or coordinator) e‘Z ; allocated to E;;
(see case 3). (d) from many engines (executor or coordina-
tor) to many engines (executor or coordinator); this case can
be deduced by combining the second and third cases.

Case 1 :(one engine / one engine)
D(e;l.k’efk+1) = GS(?k?CEL(lk+1)) +PC(ik? 1k+1))
where:

- D(e!,, el ,) is the time to delegate the execution con-

trol between the engine el . and engine e, 1

FENECIA

35

Pattern Notation Probable execution time
Sequence (Eii;Eiks1) T(Ei) prov + T (Eiks1) prob + D(ee] s eel 1)

J J
FParallel (Eiie; (Eigs1]l--||Eik+j)) T(Eik)prob + I}}jf&(T(Ef.kM)pmb) + r?:ang(ee?_k, eel)
Selection (Eix O (Eix1||Einsl| - [|Eik+))) T(Eix)prob + max(T (S (Eik)succ) pros) + max(D(eel | 7 (Eik)sucs))
Switch (Eix < (Eiks1l|Eiks2] - || Eiksf) T(Eik) prob + T (Eik)suco) prob + D{eel, 7 (€€l)suco)
Rendezvous ((E[_kHEI'_k+1|| ||E,‘_k+j)<>E,'_[) max(T(Y(EI-_,)p,e)pmb) +T(E,-_,)pmb+max(D(Y(eef,)P,e,eef[))

Selective merge ((Ejgx...xEjxyj) O Ejj)

Exclusive merge ((Ejjx...xEjxyj) 0= Ejj)

Iterative (Eij; AEijs1)

max (T (7 (Eit)pre) pro) + |- (Ei)pre [T (Eiv1) prob + max (D(F (ee] e €]))
T(y(Ei.l)pre)pmb+T(Ei.l)prob+D(y(eef])preaeef[)

T(Ei.k)prob + AT(Ei.k-H)prob + D(ee?_k > ee!?/ﬂ_l)

Table 7.1 The probable execution time expressions of WS-SAGAS patterns

- GS(e!,,CEL(E;+1)) is the time spent in generating ei-
ther CEL(E;j+1) or REL(E; 4)) and in selecting an en-
gine, we assume that the selected engine is efk L

— PC(ef\,el,,,) is the predelegation phase duration and
the time spent in updating and communicating the CEP
content.

Case 2 :(one engine / many engines)
(el (€)ue) = GS(ef, CEL(S (Ei)aee))+
PC(egk7 y(eqk)succ) .

L.

Case 3 :(many engines / one engine)
D(.L(€])pe,€l)) = GS(F(€}))oe, CEL(Ei 1))+
PC(Z(€l))perel))

Definition 7.6 (The Engine-WS Waiting Period)

We define the engine-ws Waiting Period to avoid the situa-
tion where an engine ef ¢ allocated to an element E;; waits
eternally for an answer from a WS wsf . that might never
come, if the WS fails to respond. After the engine-ws Wait-
ing Period (exactly W (e?,,WS?,)) has elapsed and no infor-
mation has been received of the execution progress of the
WS ws?,, then the engine e”, must consider itself failed and
a recovery has to be triggered. The question is how to deter-
mine W (e?,,ws”,), in case the element £, x) has not yet been
attempted.

Usually, WS providers advertise the processing time of
their provided WS or offer methods to inquire about it. This
could be used here to compute an initial estimate of the en-
tity W(e?,,ws?,). Later, when the element is invoked a num-
ber of times, W (e”,,ws?,) can be estimated on the basis of

the observation results of these past invocations(¢). In Equa-
tion (7.5)), T(E,-.k)},[,, is the Optimistic Execution Time of
E; x when invoked for the 1% time:

W(efbwsfk) = max(T(Ei-k)éptv) T(Ei-k>(()xpt> - (15)

7.4 Reliability Property Characterization

In this section, we describe the QoS of a CWS in terms of
reliability. It is widely recognized that the way the reliability
is defined and assessed is specific to the domain considered
but, in general, the reliability concept is always kept some-
how closely related to the system behavior and its failure
history.

In our approach, in characterizing the reliability dimen-
sion, we introduce a new category of reliability, named re-
liability tendency, that builds heavily on the state concept
attached to each element from a process, depicted as a hi-
erarchy of nested WS-SAGAS. Our proposal was motivated
by the reliability and the stare concepts being very closely
related and that the element’s contribution to the overall pro-
cess reliability estimation varies from one szate to another.

To this end, we propose collecting the process past invo-
cation in a history (i.e., the different copies of CEP stored in
every engine execution log).

Later, the collected history is used to analyze thoroughly
the different elements’ behavior when executed by tracking
their different szates and by how and when they transit be-
tween different srates. To estimate the reliability tendency,
the process execution history is used to derive for each ele-
ment the element’s Terminal States Set (TSS), the element’s
State Tendency Set (STS), and the State Reliability Contribu-
tion (SRC).

36

Neila BEN LAKHAL et al.

Definition 7.7 (The Terminal States Set (TSS))

Each atomic element E;, after being invoked for execu-
tion as a component from a subtransaction W S-SAGAS;, has
a Terminal State (exactly TS(E;)) with which its invocation
is terminated. If the element E; is allocated to an engine
executor eef €very progress in the element’s execution is
reflected on the locally stored copy of CEP on the engine’s
ee?, side by updating the attribute srare in CEP of the ele-
ment E; .. When the element’s execution is finished, the ele-
ment’s TS is updated as follows:

TS(E:y) := CEP(WS-SAGAS;, ee!).DR(E;) state .

After o invocations of the same process P, for each ele-
ment, a Terminal State Set (exactly TSS(E;)) is formed.

The TSS(E;) is a set of 2-tuples where the occurrence
number of each 2-tuple is associated with each terminal state
as a TS after a invocation of the element E; ;. If we assume
that there are B possible 7S, and each 7S T'S(E;x)* is asso-
ciated with a number of occurrences occ*, as x ranges over
[1..B], then TSS(E;) is formulated as follows:

TSS(Eix) = {(TS(Eix)}, 0cct), ..., (TS(Eix)*, 0ccb), ...,
(TS(E,-,k)ﬁ , occﬁ)}
with: Z occt =

1<x<p

The cardinality of TSS(E;x) depends on the different
possible 7§ of the element. In the FENECIA approach, a
compensatable atomic element at a given moment can be
in one of the following states:

DR(E;y).state € {Waiting, Executing, Failed, Aborted,
Committed, Compensated}
As we follow a transactional execution, the Executing state

cannot be a T'S; therefore, f verifies:(f = 5) and the TS of
any element can only be in:

TS(E;x) € {Waiting,Failed, Aborted, Committed, Compensated}

TSS(E;y) is denoted as follows:
TSS(E;x) ={(Waiting,occ'), (Failed,occ?), (Aborted, occ?),

(Commi tted, 0004) s (Compensated, OCCS) }

5
with: Z occ* =
x=1
Definition 7.8 (The State Tendency Set (STS))
After o invocations of an atomic element E; ;, at least one
Terminal State (T S(E; x)) from the different possible 7S tends
to have the largest occurrence number. We introduce the con-
cept of State Tendency Set (exactly STS(E;)), as the set that
contains the 7§ that has the largest occurrence number after
a invocations of an element.

That is, STS(E;) must verify the condition STS(E; ;) C
TSS(E;); that is, STS(E;) is the set of TS tuples that are
included within the 7SS TSS(E;x) of E;; and that has the
largest occurrence number, after o invocations of E; ;.

Definition 7.9 (The State Reliability Contribution (SRC))
‘We assume that from one 7S to another, the contribution to
reliability differs: terminating the execution of an atomic
element E;; in the Failed srate negatively affects the reli-
ability, contrary to the Committed state, which would con-
tribute positively by increasing the reliability. Accordingly,
we define this concept as the State Reliability Contribution
(exactly SRC) of a particular 7S. We assume that a transition
from one 7S to another makes the SRC stronger if it is to-
ward a state denoting execution success, and it is contribut-
ing negatively and making the SRC weaker if it is toward a
state denoting a faulty execution. The definition of the SRC
of each srate depends greatly on the environment character-
istics considered (e.g., number of TS, possible states, states
transitions, etc). Initially, the different SRC can be allocated
a value based on the designer’s judgment (i.e., when the de-
signer wishes to emphasize the more error-prone elements, a
stronger SRC values to the faulty 7 can be assigned). Typ-
ical values of the SRC of the TS of WS-SAGAS are as fol-
lows:

{(SRC(Waiting) = 0), (SRC(Failed) = -1), (SRC(Aborted) = -0.5),
(SRC(Committed) = 1), (SRC(Compensated) = +0.5)}

However, in some systems, making the human intervene to
define the different SRC may not be desirable because the
system is to be completely automated. In such a case, mak-
ing the system able to define automatically the different SRC
and to revise them when required is necessary. We will ad-
dress this issue in future work.

Definition 7.10 (Element Reliability Tendency (RT))
The concept of Reliability Tendency of an atomic element
E;x (exactly RT(E;)) is derived from its 7SS and the dif-
ferent SRC values, as shown in Equation (7.6).

Z OCCx.SRC(TS(Ei.k)x)
T'S(E; k) €TSS (Ei)

|TSS(Eix)]

Definition 7.11 (Process Reliability Tendency)
Any process F; depicted as a hierarchy of nested WS-SAGAS
can be formed by both vital and nonvital elements. Be-
cause the failure of a nonvital element is not handled in
the same way as the failure of a vital element and inves-
tigating the reasons for failure of the nonvital elements
is secondary, we propose considering only the vital ele-
ments to estimate the overall process R7 and ignoring the
nonvital elements.

Therefore, the RT of a process P, formed by n; elements
where 7 elements are vital and distributed between m;
nesting levels is estimated by the following formula:

RT(Eix) = (7.6)

RT(P) = RT(WS-SAGAS;)

i.a.*.b.*.c.n,-‘m’.

- ¥

(=il

RT (E;)|DR(Ey).vitality = vitalln! .

37

FENECIA
S =~ legend
’ 1 1 N
, q@ Textual description of the process \ [~ sat 7 aomic slement
i P .
! Q\ﬁ underpinning logic | @ End [composite element
|
\) [] input data [_] Compensating element
4 -7 output data <— Flow between elements
,, - Process execution QoS estimates
, g identify \ (history storage
/ efinition rules identify vital/non vital elements, composite/atomic . Multiple DR, CR,
! /o elements, compensating elements etc. ! (((element execution log ﬂ orOR ofan
! identify identify bl make WS SAGAS diagram I - element/process
d I composabili ')
| ordering rules Pru‘es y ! engine CEP/CEL
| o R e | =
| DR(P) L ! ')
! DRE i) | ~—— relation/operation that uses one part to generate
| ik . ! second part
| State, WS-SAGASI |
| ! - | WS-SAGAS specification flow
i 3 4— Peer engines flow/execution related flow
i ! Web service/engine flow
! ! P R— Failure related flow
' 1 QoS estimation/analysis related flow
‘ :
I I
| ! update definition rules
| i with QoS estimates
I i
| |
allocate to allocate to WS-SAGAS specification//
/" generate CEP 7 collect executionlog process P, execution history N
Generate CELs, update update |

G ; execution |0§§

Inform about failure
recovery request

CEP(Pi,ee]y.,)

engine ee'ix.o
k-:
CEL(Ejisq)

WSs discoveryy,
selection

uDDI retj\stries

WS-SAGAS execution in THROWS architecture

engine ee‘,k
CEP(P, eel,)] &

=
0

WSs discovery/

WSs discovery/,
selection

selection

Invocate /control

|
|
|
|
|
|
|
i
I
|
i
I
|
i
I
|
i
I
|
i
I
|
|
|
|
|
|
|
|
i
I
|
i
I
|
| Invocate\control
|

i

I

|

I

.

Fig. 7.1 FENECIA Framework

8 FENECIA Framework Validation

Below we describe two axes of validation for our FENE-
CIA framework models and artifacts. In the first part of our
validation, we present a prototype that provides an imple-
mentation of our execution architecture’s (THROWS) main
functionalities. The prototype implementation is intended to

show that the failure recovery-oriented features that THROWS

architecture provides are feasible with the current WS tech-
nologies.

In the second part of our validation, we show the ap-
plicability of our failure-aware QoS estimation and analysis
model. To this end, we provide a case study of using our
model for a real-world example of CWS assembled using
Jopera [61,62], a visual WSC tool.

8.1 Prototyping

As in our prototype we target a fully automatic WSC. We
have to describe the semantics of the models and elements of
our FENECIA framework in a clearer and unambiguous way
that can be easily automated or transformed into any plat-
form specific code for automatic execution. In achieving this

collect execution log, E;xexecution log

E .+ execution log
collect execution log ikt g

Ej o €xecution log

Estimate QoS of element

QoS of Eik QoS of Eik+1 QoS of Eik+2

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

Optimistic execution time
Probable execution time

Reliability tendency

Derive QoS of process Pi
analyse QoS estimates

QoS of Pi

Optimistic execution time
Probable execution time

STS,TSS
Reliability tendency

QoS assessment and analysis L/

target, we translate all the FENECIA models and elements
(i.e., the textual notation of a WS-SAGAS, THROWS archi-
tecture CEP, CEL, and REL concepts, and QoS model at-
tributes) into an XML-based language. Our proposed XML-
based specification language is defined and expressed ac-
cording to a well-formed structure, the XML Schema de-
scription (XSD). An XML-based description of a WSC serves
as an input to our prototype as we show below in this section.

The prototype implementation is heavily based on the
Java programming language and on a set of WS enabling
technologies. In the remainder of this section, we describe
our implementation and we sketch a case study and report
on its execution. We used a simplified version of the travel
itinerary reservation scenario described in the sections above,
with only one nesting level (i.e., all elements are assumed to
be atomic).

8.1.1 Implementation Environment Choices and
Motivations

Our prototype implements a logically distributed prototype
of THROWS architecture to execute CWS specified as WS-
SAGAS and described using our XML-based language.

38

Neila BEN LAKHAL et al.

We have made extensive use of Java threads and of a
number of synchronization mechanisms to allow the concur-
rent execution of engines. Although a physically distributed
prototype appears more suitable, the circumstances we cite
below precluded us from implementing such a system:

— The current progress in WS architecture in terms of se-
mantically equivalent WS availability is very limited as
there are few UDDI registries in operation (maintained
by IBM, Microsoft, etc.). Moreover, these registries are
still very small and most of their entries do not work
or do not correspond to any real service. Furthermore,
most of the UDDI registries in place today are private
registries operating inside companies or maintained by a
set of companies privately. Therefore, they are not of use
to us.

web services manager —|web services repository

—Obuild -
web service builder -

\ invoke
\

deploy _ <
Z

web service deployer -0~

\
k‘Jweb service call

2]

engine

web service registrer
g | |[-oupdate
CEP manager

web service
4; description /}’
/
’ N
\ 7 \
register N
\ ’
N 7/

—Ocommunicate

CEL manager —Oupdate

UDDI registry

o
search

Fig. 8.1 Simplified conceptual architecture for our prototype modeled
in UML with component diagram

— The current unpredictability of the WS environment, which 8.1.2 Description of Implementation Tools

makes WS appear and disappear on daily basis, makes
the dynamic WS discovery process very likely to fail in
all attempts. This may considerably impair our results
and may even make execution impossible.

— Even if we assume that a wide range of WS equivalents,
in terms of functionalities, was provided, fully automatic
and dynamic WS discovery and selection remains an un-
resolved issue with very few solutions. Even large en-
terprises agree that manual WS discovery and selection
remains the most efficient approach and that automated
discovery of WS requires accurate descriptions of the
functionality of WS and an approach to finding WS based
on the functionality they provide. This remains infea-
sible because it is not possible for a service client to
have full knowledge of the exact form and meaning of
all the service’s WSDL in advance, and this for all the
WS hosted on different providers.

These conditions, and in particular the last, have directed our
choice toward building our private UDDI registry and pub-
lishing our own WS locally in this registry. In building our
WS, we deliberately created a WS that shares the same se-
mantics and syntax (as represented by their WSDL message
definitions); thereby, an automatic WS discovery and selec-
tion can be performed successfully, the call to the service
succeeds, and no unexpected results can be returned. Our
prototype features the following functionalities:

— Of the eight different aggregation patterns we defined in
WS-SAGAS, our prototype supports only three: the se-
quence, parallel, and rendezvous patterns. Adding all the
different patterns to have a full-featured implementation
is feasible.

— In our prototype, we only consider the case of processes
formed by compensatable elements alone.

— In our prototype, we consider a process with only one
nesting level; therefore, we have only one engine coor-
dinator that starts the overall process execution and that
is responsible for terminating the process.

We have made extensive use of the different APIs provided
by Sun’s JWSDP 1.2 (Java Web Services Developer Pack)
[63]. Of the technologies that JWSDP contains, we have
chiefly used the Java API for XML Registries (JAXR) with
the Registry Server for building, deploying, and publishing
the WS we used. All the WS that we needed for our sys-
tem were built and deployed in an XML registry that fol-
lowed the UDDI specification (version 1.2). We used JAXR
to access this XML registry. To build the different WS, we
used Java API for XML-based RPC (JAX-RPC). The WS
invocation and its context communication is done implicitly
using synchronous SOAP messages over HTTP. Moreover,
all the communications between the different modules used
SOAP with Attachments API for Java (SAAJ). Depending
on the CWS execution stage, the exchanged SOAP messages
may encapsulate different forms of XML documents. Those
XML documents were parsed using JAXP and manipulated
with JDOM and DOM.

8.1.3 Description of Prototype Components

The implementation featured components described in the
conceptual architecture model of Figure 8.1. We implemented
two main modules, the Web Services Manager and the En-
gine. Each Engine encapsulates two submodules, the CEP
Manager and the CEL Manager. Each Manager has two
main functions, an information update and retrieval function
and a communication function, that is, sending and receiving
SOAP messages.

THE WEB SERVICES MANAGER: This implements the
different functions that relate to WS creation, deployment,
and invocation. It consists of the following three submod-
ules: (1) the Services Builder, which chiefly uses JAX-RPC
API and several other tools (e.g., wscompile, wsdeploy) to
generate the WS endpoints, their clients, and their WSDL
documents; (2) the Services Deployer, which deploys the
built WS in a Web container (we used TOMCAT); (3) the
Services Register, which is responsible for registering the
different WS in our private UDDI registry.

FENECIA

39

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha
elementID="E_1.1" enginelD="null">
<fnc:state value="waiting" />
<fnc:operation operationID="operati
<fnc:param paramID="departDate"
january 12 </fnc:param>
<fnc:param paramID="destination
paramtype="inout">
japan </fnc:param>
<fnc:param paramID="returnDate"
february 12 </fnc:param>
<fnc:param paramID="customerNam e
paramtype="inout">
Ahmed </fnc:param>
</fnc:operation>
</fnc:elementADR>

vior="compensatable"

onl">
paramtype="inout">

paramtype="inout">

Fig. 8.2 Excerpt from the simplified trip reservation process: different
elements’ attributes with the values affected

THE ENGINE: Our prototype implements two types of
engine: engine coordinator and engine executor. The number
of instantiated engines depends on the number of elements
and the number of nesting levels of a process. The main dif-
ference is that an engine coordinator is not responsible for
a WS invocation. Both of the two forms of engines contain
two submodules, the CEL Manager and the CEP Manager,
and the encapsulated functions are the same: (1) CEL man-
ager: The main function of this component is to generate
the CEL of the next element(s) to be executed. To this end, it
sends a query with the element description (available in the
active definition rule of the element in CEP) to the UDDI
registry to search for WS with functionalities matching the
description and which are published in the registry. On re-
ceiving a response to the discovery query, a new engine ex-
ecutor is allocated and a new engine DR added to the CEL
for each WS discovered. This module is also used to select
an engine executor from a CEL document. (2) CEP Man-
ager: This mainly updates and monitors the CEP document
stored on the engine to which it appertains. Typically, an up-
date operation changes an element’s stafe when a new SOAP
message is received, for example, a message that tells that
the WS execution was successful.

8.1.4 Detailed Description of Typical Execution Steps of a
Process in our Prototype

We describe the different steps of the execution of a simpli-
fied version of the trip reservation process that we used in
the sections above.

1. CUSTOMER REQUEST SUBMISSION. The execution
starts when a customer inputs his request (the destination,
the departure date, the return date, and his name). Submit-
ting the request entails saving the entered values in the CEP
document. The trip request is simulated by assigning actual
values to the different fields in the XML document. (List-
ing 8.2) is an excerpt from the initial CEP document of the
process defined in our XML language.

-- The selected element is : E1.1 Desc:trip paralle | with :none
this CEP number of elts is :4 dirCELis:E1.1
Organization Query string is trip
Service Query string is trip
Created connection to registry
Got registry service and query manager
Org name: trip organizer
company Org description:
trip reservation: hotel and airplane ticket booki ng with car rental(optional)
Org key id: f9e4f93d-2bf9-e4f9-7297-2864692ad619
Contact name: Neila BEN LAKHAL
Phone number: (012) 345-678
Email Address: neila.benlakhal@Voyager.com
Service name: TripService
Service description: trip service Tunisia
Access URI: http:/localhost:8080/trip-jaxrpcitri
name: JapanTripService
Service description: trip service Japan
Access URI: http:/localhost:8080/japantrip-jaxrp
2
WS name = TripService
WS name = JapanTripService
WS URI = http://localhost:8080/trip-jaxrpc/trip
WS URI = http://localhost:8080/japantrip-jaxrpc/ja
WS binding = tripInformation
WS binding = TriplF
WS binding = String_1
WS binding = String_2
WS binding = String_3
WS binding = String_4
WS binding = japantripinformation
WS binding = JapanTriplF
WS binding = String_1
WS binding = String_2
WS binding = String_3
WS binding = String_4
TripServicehttp:/localhost:8080/trip-jaxrpcitrip
JapanTripServicehttp://localhost:8080/japantrip-ja
--GENERATED CEL contained in file :
C:\eclipse-SDK-2.1.1-win32\eclipse\workspace\THROW S4\E1.1\CEL.XML

p Service

cljapantrip

pantrip

xrpc/japantrip

Fig. 8.3 Excerpt from the messages output on the Java execution con-
sole to monitor the execution progress. In this part, a WS discovery is
performed by querying the UDDI registry for WS to the element E 1;
two WS are found and their binding information is used to generate a
CEL with two engine elements.

This CEP document is updated and handled by the differ-
ent engines throughout the process execution. By the end of
its execution, the CEP document contains information about
the execution success (e.g., flight booked, hotel ticket re-
served, car reserved) or failure (e.g., no available flight).

2. Element selection and CEL generation The engine
coordinator ec} runs on the server side. When it receives a
new CEP document it starts processing by parsing the XML
document and selecting a current element, that is, the first
element to be executed. In the CEP document of Listing of
(Figure 8.2), the first element is the elementID = “E_1.1".
The function of going through this CEP document for select-
ing elements is attached to the CEP Manager module.

After an element is selected, a CEL document is gener-
ated. This is the responsibility of the CEL Manager: which
receives, as input from the CEP Manager, a description of
an element (here, description = “trip_information”).
The description is used to create a query that is sent to
the UDDI registry for searching WS that eventually meet
the description provided.

40

Neila BEN LAKHAL et al.

<fnc:CEL>
<fnc:engineExecutorDR engineCoordinator="ec_1-1

engineExecutoriD="ee_1.1-1" wsdescription=" TripService"

wsdlILink="http://localhost:8080/trip-jaxrpc /trip">

<fnc:operation operationID="tripInformation ">
<fnc:param paramID="String_1" paramtype ="inout" />
<fnc:param paramID="String_2" paramtype ="inout" />
<fnc:param paramID="String_3" paramtype ="inout" />
<fnc:param paramID="String_4" paramtype ="inout" />

</fnc:operation></fnc:engineExecutorDR>

<fnc:engineExecutorDR engineCoordinator="ec_1-1

engineExecutoriD="ee_1.1-2" wsdescription=" JapanTripService"

wsdlLink="http://localhost:8080/japantrip-j axrpc/japantrip">

<fnc:operation operationID="japantripInform ation">
<fnc:param param|D="String_1" paramtype ="inout" />
<fnc:param param|D="String_2" paramtype ="inout" />
<fnc:param paramID="String_3" paramtype ="inout" />
<fnc:param paramID="String_4" paramtype ="inout" />

</fnc:operation></fnc:engineExecutorDR>

</fnc:CEL>

Fig. 8.4 Excerpt from the CEL of the element E_1.1 from the trip reser-
vation process

We show in (Listing 8.3) the progress of the execution of
this step in terms of messages output on the Java console.

3. Web services discovery and selection To ensure in-
teroperability of the engine (here considered as the JAXR
client) and the UDDI registry implementation, the SOAP
messages that contain the query (and its corresponding re-
sults) are handled completely unseen using SAAJ. Searching
the UDDI registry for WS results in a list of all the organi-
zation(s) that contain(s) WS we are interested in (i.e., they
have capabilities that meet the functionalities of the current
element E_1.1). When we query the UDDI registry, the re-
sult is all the organizations with the name that contains the
string trip.

4. CEP generation The retrieved information, as a result
of the query, is parsed for details about the organization(s)
and the services it/they provide(s) and is used to generate
the CEL document (refer to Listing 8.4) for the automat-
ically generated CEL document for the element E_1.1. To
each WS, an engine executor is allocated, that is, a new en-
gine executor ID engineid is dynamically created and stored
in the CEL Document coupled with the WS information as
an engine definition rule (see Listing 8.4 and Listing 8.3 for
the CEL document content).

After terminating the CEL document generation, a can-
didate engine executor is selected and the CEP Manager up-
dates the CEP document. Here, the selected engine executor
is engineExecutorID = “ee_1.1—1".

5. CEP update and control delegation When preparing
the necessary data for effectively allocating the execution
control to the engine executor ee_1.1 — 1, the CEP docu-
ment is encapsulated and sent as a SOAP message. Simulta-
neously, a new thread engine ee_1.1 — 1 is created, the re-
ceived CEP document is stored locally, and a response is
sent back to ec_1 — 1 notifying that the SOAP message was
received and the execution launched.

the parameter id : destination has the value: japan
the parameter id:departuredate has the value: janl
the parameter id : returndate has the value: feb12
the parameter id : name has the value: Ahmed is an

is an input parameter
2 is an input parameter
is an input parameter
input parameter

input:[destination, departuredate, returndate, name
ws Endpoint
address=http://localhost:8080/trip-jaxrpc/trip Mr/M
information were received

successfully

* Your desired destination is: japan

* Your chosen departure date is ;jan12

*Your chosen return date is :feb12

success

Joutput:[] start running

s Ahmed, your trip

Fig. 8.5 Excerpt from the messages output on the Java execution con-
sole to monitor the execution progress. In this part, the WS allocated
to element E_1.1 and controlled by engine ee_1.1 — 1 is invoked and a
“success” message

returned.

6. Control delegation finalization and WS invocation
preparation After receiving the execution control, the en-
gine executor eej |1 updates in the CEP document the state
of E_1.1 from Waiting to Executing, and extracts from the
CEP document the values of the parameters with which the
WS will be invoked (see Listing 8.5).

7. WS invocation The engine executor invokes the WS
client. The JAX-RPC runtime is responsible for receiving
this WS invocation message within the client call and for
passing it to the WS endpoint. In addition, when the WS
finishes executing, it passes the results to the JAX-RPC run-
time. Likewise, the latter takes care of handing over these
results to the CEP Manager.

At this point, depending on the WS execution progress,
two scenarios can occur: the WS failure or success. Because
we implemented the WS, their failure probability was low.
The execution often terminated with success so to show how
failure handling is performed we forced WS failure (i.e.,
fault injection). In what follows, we first describe the case
of a scenario in which the WS execution was successful (see
Listing 8.5).

In this process instance execution, the WS sends back the
result of its execution to the engine executor, which uses this
to update the CEP document to add the WS execution result
and to add the required change in the execution progress. In
the case of the engine executor ee_1.1 — 1, the only update
is changing the element E_1.1’s state from Executing to
Committed.

The next step is to proceed with the execution of the
process as the current element execution is committed. To
this end, the engine executor ee_1.1 — 1 finds that there are
two elements, elementID = “E_1.2” and “E_1.3", that are
assembled in a parallel aggregation pattern. The CEL doc-
uments of these elements are generated and the engine ex-
ecutor processes as described above and allocates the en-
gines executors (ee_1.2 — 1 and ee_1.3 — 1), respectively.
The CEP document is updated with the new allocated en-
gines (see Listing 8.6).

FENECIA

41

</fnc:CEP>...

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha vior="compensatable"
elementID="E_1.1" enginelD="ee_1.1- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_flight" behavior= "compensatable"
elementID="E_1.2" enginelD="ee_1.2- 1">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_hotel" behavior=" compensatable"
elementID="E_1.3" enginelD="ee_1.3- 1">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
description="rent_car" behavior="co mpensatable"
elementID="E_1.4" enginelD="null">
<fnc:state value="waiting" />

<fnc:composabilityRules>

<fnc:composabilityRule OF="WS-SAGAS_1">
<fnc:member memberID="E_1.1" />

<fnc:member memberlD="E_1.2" />

<fnc:member memberID="E_1.3" />

<fnc:member memberID="E_1.4" />
</fnc:composabilityRule></fnc:composabilityRules>
<fnc:orderingRules><fnc:orderingRule>
<fnc:sequence IN="WS-SAGAS_1">

<fnc:member memberID="E_1.1" /></fnc:sequence>
<fnc:parallel IN="WS-SAGAS_1">

<fnc:member memberID="E_1.2" />

<fnc:member memberID="E_1.3" /></fnc:parallel>
<fnc:rendezvous IN="WS-SAGAS_1">
<fnc:member memberlD="E_1.2" />

<fnc:member memberlD="E_1.3" /></fnc:rendezvous>
<fnc:sequence IN="WS-SAGAS_1">

<fnc:member memberID="E_1.4" /></fnc:sequence>
</fnc:orderingRule></fnc:orderingRules>
<[fnc:CEP>

Fig. 8.6 Excerpt from the simplified trip reservation process: the exe-
cution progress can be monitored by the change in the state. Here, the
first element was executed and committed successfully whereas the ex-
ecution of the two following elements is about to start as engines are
allocated to both.

The CEP Manager component from the engine ee_1.3 —
1 sends the CEP document to both of the new engines. The
execution process start is almost the same as that described
for ee_1.1— 1. The main difference is that that two elements
elementID = “E_1.2” and elementID = “E_1.3” are as-
sembled in a parallel pattern and they must wait for each
other as they are also assembled in a rendezvous pattern (see
Listing 8.6). Consequently, we divided the execution process
into two phases; when every thread engine finishes a phase,
it informs the other engine. The first phase is dedicated to the
WS invocation and the second phase to preparing for control
delegation, in case the WS invocation is successful.

By the end of the execution of both of the elements E_1.2
and E_1.3, the engines ee_1.2 — 1 and ee_1.3 — 1 generate
the CEL document of their successors (here elementID =
“E_1.4": each engine generates CEL document by itself and
the resulting CEL document is a combination of the two doc-
uments. The engines ee_1.2 — 1 and ee_1.3 — 1 agree on

REQUEST:

<SOAP-ENV:Envelope

xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/env
<SOAP-ENV:Body>

<directory>...</directory>

<fnc:CEP>

elope/">

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha vior="compensatable"
elementID="E_1.1" enginelD="ee_1.1- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_flight" behavior=" "compensatable”
elementID="E_1.2" enginelD="ee_1.2- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_hotel" behavior=" compensatable"
elementID="E_1.3" enginelD="ee_1.3- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
description="rent_car" behavior="co mpensatable"
elementID="E_1.4" enginelD="ee_1.4- 1">
<fnc:state value="failed" />

</fnc:elementADR>

/f.r;c:CEP></SOAP—ENV:Body></SOAP—ENV:EnveIope>

Fig. 8.7 Excerpt from the simplified trip reservation process: the exe-
cution progress can be monitored with the change in the state. All three
vital elements were executed and committed successfully whereas the
execution of the last nonvital elements failed.

the candidate engine to execute the element elementID =
“E_1.4” by merging their CEL documents and selecting an
engine, ee_1.4 — 1, to execute it. Subsequently, ee_1.4 — 1
suspends ee_1.2 — 1 and ee_1.3 — 1, and proceeds with its
execution.

Up to this point in the current process execution, all the
elements executed had a virality degree attribute in the CEP
document equal to vital. For that purpose, when they fail,
their failure is critical and causes the whole WS-SAGAS to
which they appertain to fail, as described below in describ-
ing a process instance that failed.

If the WS attached to ee_1.4 — 1 fails while being ex-
ecuted by ee_1.4 — 1, then this implies that the failure of
E_1.4 is ignored and the entire WS-SAGAS execution pro-
ceeds, and the state of the element E_1.4 is set to Failed.

As this element is the last element (i.e., parsing the lo-
cally stored CEP document and looking for an elements child
from the same composite WS returns an empty list), then the
success of the entire WS-SAGAS and of the whole process
example is deduced by sending the locally stored CEP doc-
ument to the engine coordinator of the whole WS-SAGAS;
here ec_1.1 receives the CEP document encapsulated in a
SOAP message (see Listing 8.7 for an excerpt).

42

Neila BEN LAKHAL et al.

RESPONSE:

<?xmlversion="1.0" encoding="UTF-8"?>
<soap-env:Envelope
xmins:soap-env="http://schemas.xmlsoap.org/soap/env
<soap-env:Header/>

<soap-env:Body> <Response>OK CEP is received correc
</soap-env:Body>

</soap-env:Envelope>

elope/">

tly</Response>

Fig. 8.8 SOAP message encapsulating a confirmation message to in-
dicate that a CEP document was delivered correctly

<fnc:CEP elementnb="4" enginecoordinatoriD="ec_1-1"
ws-sagasID="WS-SAGAS_1">

nestinglevel="1"

<fnc:ws-sagasADR nestinglevel="1" elementnb="4"
behavior="compensatable" descriptio n="trip_process"
ws-sagasID="WS-SAGAS_1" type="true " vitality="vital">
<fnc:state value="committed" />

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha
elementID="E_1.1" enginelD="ee_1.1-
<fnc:state value="committed" />

vior="compensatable"
1

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_flight" behavior= "compensatable"
elementID="E_1.2" enginelD="ee_1.2- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_hotel" behavior=" compensatable"
elementiD="E_1.3" enginelD="ee_1.3- 1">
<fnc:state value="committed" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
description="rent_car" behavior="co mpensatable"
elementID="E_1.4" enginelD="ee_1.4- 1">
<fnc:state value="failed" />

</fnc:elementADR>

/fnc:CEP></SOAP-ENV:Body></SOAP-ENV:Envelope>

Fig. 8.9 Excerpt from the simplified trip reservation process. Here,
all three vital elements were executed and committed successfully
whereas the execution of the last nonvital elements failed. The state
of the overall WS-SAGAS is deduced on the basis of the state of the
vital elements.

8.1.5 Process Instance Execution Termination

In response to the received CEP document (see Listing 8.7
for an excerpt), the engine coordinator ec_1.1 sends the SOAP
message in (Listing 8.8) and resumes execution control.

The engine coordinator ec_1.1 terminates the execution
of the process instance and deduces the overall process suc-
cess because all the vital elements were committed. The
last version of the CEP document is then available on this
engine (see Listing 8.9 for an excerpt).

8.1.6 Execution of a Example Process with Failure
Handling

This process example was subject to a WS failure. Here,
we intentionally modified the content of the response of the

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha
elementID="E_1.1" enginelD="ee_1.1-
<fnc:state value="failed" />

vior="compensatable"
1>

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_flight" behavior= "compensatable"
elementID="E_1.2" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_hotel" behavior=" compensatable"
elementID="E_1.3" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
description="rent_car" behavior="co mpensatable"
elementID="E_1.4" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR>

Fig. 8.10 Excerpt from the simplified trip reservation process; here the
first element was executed by the engine ee; ;1 and a failure occurred.

first WS (i.e., received response contains “failure” instead of
“success”) candidate to element elementID = “E_1.2 in or-
der to make the engine consider the WS as failed. Thereby,
the engine ee_1.1 — 1 needs to deduce its own failure and to
delegate the execution control to the previous engine thread.
For that, the current engine ee_1.1 — 1 updates the current el-
ement elementID = “E_1.1" state to Failed and will com-
municate the CEP document to its direct predecessor. As it
was responsible for the very first element in the currently
executed WS-SAGAS, it must inform the the engine coor-
dinator ec_1.1 because that is the engine that has control
delegated to it.

Listing of Figure 8.10 is an excerpt from the CEP doc-
ument that ee_1.1 — 1 sends to ec_1.1. On receiving this
document in a SOAP message, ec_1.1 handles the failure by
attempting a forward recovery. First, the engine is updated
(the element E_1.1 state is set to waiting), the engineid
is set to null, and an attempt to select another candidate
engine from the CEL document is performed.

8.1.7 Forward Recovery in the Execution of a Process
Instance

Because we have made available for each element two can-
didate engines, the engine coordinator ec_1.1, when parsing
the CEL document of element E_1.1 described in Listing 8.4,
finds a second candidate engine: engine ee_1.1 — 2. It fol-
lows that a forward recovery is possible; ec_1.1 updates the
CEP document with the new selected candidate engine and
the execution is resumed with ee_1.1 — 2 as described for
ee_1.1—1 (see Listing 8.11).

FENECIA

43

<fnc:CEP elementnb="4" enginecoordinatoriD="ec_1-1"
ws-sagasID="WS-SAGAS_1"...>

nestinglevel="1"

<fnc:elementADR type="false" vitality="vital"
description="trip_information" beha vior="compensatable"
elementID="E_1.1" enginelD="ee_1.1- 2">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_flight" behavior= "compensatable"
elementID="E_1.2" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="vital"
description="book_hotel" behavior=" compensatable"
elementID="E_1.3" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR> <fnc:elementADR type="false" vita lity="nonvital"
description="rent_car" behavior="co mpensatable"
elementID="E_1.4" enginelD="null">
<fnc:state value="waiting" />

</fnc:elementADR>

Fig. 8.11 Excerpt from the simplified trip reservation process; here,
the first element was allocated to a new engine.

8.2 QoS Model Applicability Verification

The previous section focused on showing that our failure
recovery-devoted WSC specification and execution strategy
is feasible only to some extent with the current level of WS
technology. Our prototype could not be used to validate our
QoS model unless special mechanisms and modules, ded-
icated to taking a log of each process instance execution
in terms of execution time and change in state, need to be
added. We intend to add such modules in our future work
by collecting the different CEP and CEL copies in a history.
In this paper, to validate our QoS model, we use data gener-
ated using JOpera [61] [62], a rapid composition tool offer-
ing a visual language and an execution platform for building
distributed applications from reusable services with a CWS
depicting a quoting process. Our choice of JOpera was in-
fluenced by its practicability and its similarity to our FENE-
CIA approach in introducing the state concept. However, the
JOpera tool is for static CWS with centralized execution. By
using JOpera, we simultaneously show our proposal’s appli-
cability and give a foretaste of what it is like to use it with
other systems.

As a process instance is executed in Jopera, the execution
progress is expressed in terms of state. The execution of a
WS in Jopera, when the process is invoked for execution,
follows the state diagram of (Figure8.12(b)).

8.2.1 Process Description

We consider a process P, that retrieves quotes in a desired
currency for a user-provided stock symbol. The process we
defined combines four WS that we searched manually and
we used from xmethods.net [64]. This process combines four
vital elements. The first element quotes stock prices EJ
and the second performs a currency conversion Ej ,; these

Quoting process (P,)

State,

(stock quoting)

State, 4

[in] E 1 fou

(retrieve stock quote)

State, 4

State, 5

w8

Rendezvous,

State, ,
(multiply rate by quote) (convert to European currency)
4
El E, 5 lout
(retrieve currency exchange rate)

O Start IE' input data E element

—> flow State state
End v vitality degree
Legend @ out output data (text) description

[]

Atomic element

Composite element

(a) process depicted using our graphical notation

(b) state transition diagram from [61]

Fig. 8.12 Quoting process

two elements are invoked in a parallel WS-SAGAS pattern
and they join subsequently in a rendezvous pattern. A third
element EJ ; integrates the results obtained from the previ-
ous two elements. Finally, a fourth element E7 | converts the
stock quote from Euro to the currency of any of the 12 Euro-
participating countries and back. The quoting process P is
depicted using the WS-SAGAS graphical notation in (Fig-
ure 8.12(a)). However, we are obliged to delegate execution
control to a centralized authority, which is responsible for
execution and failure recovery of all the elements and for
the WS discovery and mapping to the elements, which is
performed statically, because this is how JOpera is built.

44

Neila BEN LAKHAL et al.

instance number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Es 1102 | 0981 | 2544 | 1.282 | 1.031 | 0.160 | 0.902 | 1.022 | 1.001 | 5.859 | 31.425
E’. 1.202 | 1.151 | 2564 | 0991 | 1.182 | 0.160 | 1.172 | 1.181 | 9.704 | 5.879 | 31.395
E’s 1222 | 2.343 | 2.104 | 0.010 | 20.900 | 0.000 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000
Era 2313 | 1.161 | 6.309 | 0.000 | 0.000 | 0.000 | 2592 | 1.062 | 0.000 | 0.000 | 0.000

WS -SAGAS ;| 4.737 | 4.655 |10.977 | 1.292 | 22.082 | 0.160 | 3.774 | 2.253 | 9.704 | 5.879 | 31.425

(a) The observed execution time (sec.) of the four Web services allocated to the elements and of the overall stock quoting process depicted

as a WS-SAGAS

instance number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Ej. Finished | Finished | Finished | Finished | Finished | Failed | Finished | Finished | Finished | Failed Failed
E, Finished | Finished Failed | Finished | Finished Failed | Finished | Finished Failed Failed Failed
E;, Finished | Finished |Unreachable | Failed Failed |Unreachable | Finished | Finished |Unreachable |Unreachable | Unreachable
E., Finished | Finished |Unreachable | Failed |Unreachable |Unreachable | Finished | Finished |Unreachable |Unreachable | Unreachable

WS -SAGAS ; | Finished | Finished | Failed Failed Failed Failed | Finished | Finished | Failed Failed Failed

(b) The observed terminal states of the four Web services allocated to the elements and of the overall stock quoting process depicted as a

WS-SAGAS

Fig. 8.13 Results of quoting process executed instances

8.2.2 Process Execution and Data Collection

We invoked the stock quoting process 11 times (@ = 11).
The results from the invocations in terms of execution time
and Terminal States, respectively, for each element and for
the overall process are shown in (Figure 8.13) and (Fig-
ure 8.14). The reasons for failures during the running of the
process instances are: (i) The Internet connection failed dur-
ing the SOAP message roundtrip (e.g., instance £10). (ii) The
WS timed out because of a network connection failure (e.g.,
instance £5). (iii) The WS returned a failure message because
of data inconsistency (e.g., instance £9).

8.2.3 Execution Time Estimation and Analysis

Before stating our execution time estimate analysis, note that
in Figure 8.13 if only the results of the first table are con-
sidered the only information obtained is the execution time
range of the different components. There is no way to tell
whether a failure took place or the reasons behind the critical
variation in the execution time between instance #6 instance
#11. However, even without further analysis, considering the
execution progress in terms of state helps to show that fail-
ures have occurred and helps estimate the component(s) that
is/are behind the failures (cells highlighted in gray in the two
tables in Figure 8.13).

To analyze thoroughly the obtained data collected from
executing the stock quoting process listed in Figure 8.13(a),
we consider different scenarios. The differentiation into sce-
narios allows us to emphasize the effects of failures on the
observed execution time. As shown in the two scenarios con-

sidered, how the execution time is estimated varies accord-
ing to whether a failure has occurred or not.

SCENARIO 1. In this scenario, we consider the case of
instances where the process P» execution is terminated in the
Finished state and where no failure occurred; for example,
see instance f1 in (Figure8.13). The following equation is
defined on the basis of our proposed model to estimate the
Probable Execution Time of WS-SAGAS>:

24
T(Py)prob = ([T(Et) prov|DR(E¢).type = atomic)
(=21
= max(T (Ey.1)prob, T (E32) prob) + T (E3.3) prov
+T(E3.4) prob 8.1)

For instance 1, the expression of 8.1 is transformed as fol-
lows:

1 1 1 1
T(P2)1)r0b = T(E;.Z)opl + T(E;ﬁ)opt + T(E;A)opt

Note that T(Pg)},mb is used to designate the Probable Ex-
ecution Time of P>, when invoked. The symbol [] was in-
troduced to indicate that the execution time is derived ac-
cording to the aggregation pattern that connects the different
elements that we defined. In addition, this symbol considers
only atomic elements, which is the type for all the elements
in the stock quoting process.

In addition, note that the entity control delegation time
in the estimation of the probable execution time of a pro-
cess is ignored because the JOpera tools provide no means
to inquire about it.

FENECIA

45

Because no failure occurred when instance f1 was exe-
cuted, we have:

T(EY))bp = T(EY ,wsh) RP(EY ;) +R(EY,) =0
T(EYy)om = T(E55,ws35)" RP(EY,)' +R(Ey,) =0
T(EY3)om = T(E53,ws33)" RP(EY;)' +R(Ey3)' =0
T(EY4)om = T(E54,ws34)" RP(EY,)' +R(Ey,)' =0

This scenario considered only the case of process instances
with no failure; therefore, in our model the expression that
relates to the failure recovery time estimates are irrelevant.

SCENARIO 2. In this scenario, we considered the case
of one of the instances in which a failure occurred. The exe-
cution retrial of the failed element was not possible because
there were no other available WS to reattempt it. As a result,
a backward recovery was necessary. In the following expres-
sion, we followed the case of instance {5 in which the WS
ws} 5, allocated to E 5, has failed. The expression of 8.1 is
transformed as follows:

T(P2)pr0b = max(7T(E;, l)prob’ T(E5 2)pr0b) +T(E3, 3)pr0b
+ T(EZ 4)1)r0b (8.2)

Because a failure occurred when instance {5 was executing
the element £ 5, we have:

T(E3))p = T(E>1,wsh 1)’ +RP(EY)’ +R(E5 ;)
T(E2))mp = T(ES 5, wsy5)° +RP(EY,) + R(E3)
T(EY3)50p = T(E33,ws33)° + RP(E}3)°

T(E34) 500 =0

R(E3)’ = Back(E3)’

R(EY,)’ = Back(E},)?

8.2.4 Reliability Estimation and Analysis

From the results of the invocations of the quoting process
(Figure8.13), we determined the 7'SS, ST'S, and RT of the
different elements of the composition (see Figure 8.14).

The estimates of the Reliability Tendency (RT) of the dif-
ferent elements are shown in (Figure 8.14).

In determining these estimates, defining the different State
Reliability Contributions (SRC) of each Terminal State was
required. In this case study, we allocated as initial values for
the Terminal States Finished, Failed, and Unreachable
the SRC of +1.0, —1.0 and +0.5, respectively. Our motiva-
tion behind assuming such values is that, when a negative
SRC value is assumed, the variation in the overall reliabil-
ity of the estimate can be more important. Therefore, that a
failure is taking place can be more readily highlighted by at-
tracting the designer’s attention to the element with the more
critical reliability estimate. To realize this, we attached to
the Finished state a more neutral value, because we are
more interested in failures; we attached a negative value to

the SRC of the Failed state to make its effects noticed very
quickly. In addition, we attached to the Unreachable state a
median value because in this case the element execution was
about to start but it did not because its activation condition
was not fired; therefore, it requires the designer’s attention
to check why such a situation occurred.

Typical interpretations of these results are:

— First, both EJ ; and EJ , tend not to succeed in their ex-
ecutions in 9.1% of cases because of their own failures
(i.e., in 9.1% of cases their executions terminate in the
Failed state). For example, instance £5 and instance
t4 failed because failures occurred, respectively, at E 5
(ws 5 failed to send back its response and a time-out oc-
curred) and at E}, (a network failure prohibited ws’ ,
receiving its input).

— Second, the elements E} ; and Ej , tend not to start their
executions and to terminate in the Unreachable state in
36.4% and 45.5% of the total invocations, respectively.
An element state is set to the Unreachable state when
the condition associated with the start of its execution is
evaluated as false. In such a case, its execution is skipped
[62]. In the case of EJ 5 and EJ ,, their conditions were
not fired because their predecessors failed (e.g., in in-
stance 9, E , failed).

— Finally, elements Ey | and EJ, have a strong tendency
to finish in the Failed state: up to 27.3% for EJ ;| and
36.4% for EY ,. Their frequent failures cause overall com-
position failure. Therefore, the reasons behind the fre-
quent failures of E7 | and E;, need to be investigated.
Moreover, other WS bearing the same functionalities as
E; | and E}, need to be searched. Lastly, revising the
CWS structure (i.e., order of elements, invocation condi-
tions) has to be planned, if other candidate WS show no
improvements in the quality of execution of the process.

8.3 Validation Results Discussion

In the introduction to this paper, we advocate that perfect
awareness of inevitability of failures in the WS context and
a failure-handling-devoted composite Web services model-
ing, execution, and analysis strategy are required to realize
a greater gain in dependability. In this section, we have val-
idated that claim. We have checked the applicability of our
proposed ideas and shown that they are feasible and can be
implemented using the available WS enabling technologies
(e.g., WSDL, UDDI, and SOAP), to a limited extent. In our
prototype, we only implemented part of the complete FENE-
CIA approach features because a full-featured implementa-
tion is difficult to realize with the current state of WS tech-
nology, as described above. A full implementation requires
a more mature WS technology, particularly regarding dy-
namic WS discovery and selection, solutions that consider
the semantic and syntactic aspect of WS are needed.

46

Neila BEN LAKHAL et al.

Terminal States Set (TSS)

State Tendency Set (STS)

Reliability Tendency (RT)

1
(B +WS2.1) |{(Finished,72.7%), (Failed,27.3%), (Unreachable,0%)}

{(Finished,72.7%)}

72.7%1427.3%*(-1)+0%*0.5)/3=15.1%

(Ez‘.’z,WS12.2) {(Finished,63.6%), (Failed,36.4%), (Unreachable,0%)}

{(Finished,63.6%)}

9.1%

(EY,WS'y 3) |{(Finished,54.5%), (Failed,.1%), (Unreachable,36.4%)}

{(Finished,54.5%)}

21.2%

(EZ,WS;A) {(Finished,45.5%), (Failed,9.1%), (Unreachable,45.5%)}

{(Finished,45.5%), (Unreachable,45.5%)}

19.7%

Reliability tendency(RT(CWSy))

16.3%

Fig. 8.14 Quoting process: TSS, STS, and RT

In particular, in this prototype implementation, we have
shown that the different mechanisms defined by WS-SAGAS
are feasible. Specifically, by describing a process in terms
of elements and by removing any execution-related details,
such as binding each element to only one WS, a higher de-
pendability level can be achieved by realizing forward re-
covery. This cannot be said of other available WSC lan-
guages, notably BPEL where when a fault occurs at one stat-
ically bound WS; BPEL processes handle the fault by a com-
pensation handler invoked to compensate for the faulty ac-
tivity. Although BPEL adds some reliability support, declar-
ing a process failed should nevertheless be the last resort
and envisaging forward recovery with dynamic WS discov-
ery and binding is more promising; otherwise, the WS archi-
tecture offering the possibility of switching easily from one
provider to another is useless.

In our prototype description, we have also shown how
the WS-SAGAS process definitions and, in particular, the
way each DR encapsulates information about an element can
be used as the process execution runs for dynamic WS dis-
covery and mapping. The description of an element and its
operation provided with its parameters is used to create a
query that is sent to WS registries for searching WS that
eventually meet the description. We emphasize that our de-
scribed method for element-WS matchmaking is intention-
ally simplified because we consider WS discovery and se-
lection issues beyond the scope of this paper. Assessing the
similarity of WS to achieve the best match is an active area
of research, so we may apply one of the available propos-
als, such as the keyword-based methods and ontologies and
reasoning algorithm enriched methods. Therefore, the pro-
cess execution can transparently resume without interruption
and, even when a dynamically mapped WS fails, instead of
stopping the overall execution, as in BPEL, a forward re-
covery can be transparently attempted by automatically al-
locating another WS. In addition, equivalently to BPEL, our
model supports backward recovery because a compensating
element is provided to each element.

In addition, we have also shown the broad scope of the
applicability of our QoS model and that our failure-aware
QoS analysis approach, with the state incorporation, can pro-
vide step-by-step information about the execution progress,

which can help to track the location of failures and explain
the reasons for failures.

In many of the available WSC languages, exemplified
by BPEL, mapping between WS and partners is set when a
process is invoked, and this mapping is fixed for all the ex-
ecutions. As the process runs, there is no means of knowing
the execution progress, because WS are generally stateless
and BPEL provides only a correlation-based stateful inter-
action that only allows identifying instances. Another mech-
anism is required to identify the progress of the interacting
parts as the process runs, and to derive the process instances
progress. This is exactly the crucial role of the state concept
introduced in our proposal. Tracking the execution progress
by keeping a log of all the CEPs, which are updated on ev-
ery change in any of the element states, provides a step-
by-step execution progress of all the process instances that
we can analyze to investigate failures’ reasons or locations.
We have shown how this can be done when we applied our
state-guided failure analysis approach to data collected us-
ing Jopera.

Finally, the case study allowed us to show that in esti-
mating the execution time, considering all the possible exe-
cution situations and building on the state concept can help
designers to acquire detailed data about the failure location
and causes more easily, without having to use any complex
modeling formalisms. Moreover, the data derived from the
execution history (i.e., state tendency sets, terminal states
set) are more practical and straightforward because no simu-
lation systems are required for analysis. On the basis of such
data, system designers can more readily locate error-prone
component(s), reasons for failure can be more easily inves-
tigated, and eventually, the process overall structure can be
altered to improve performance, if required. However, in our
proposal, to reach its full potential, we need to use a more
robust real-time monitoring tool that can, besides measuring
and collecting the total response time of a process invoca-
tion, distinguish between a faulty and a successful invoca-
tion, measure separately the SOAP messages roundtrip time
and the WS execution time, and measure the control delega-
tion time. Several WS monitoring tools are already available
but, to the best of our knowledge, they are only for elemen-
tary WS or for statically composed WS; the case of dynam-
ically executed composite WS has not yet been considered.

FENECIA

47

9 Related Work and Discussion
9.1 WSC Approaches

A number of alternative approaches have been suggested
by several authors to aggregate individual WS to produce
a new CWS, enabled even to encapsulate the underpinning
logic of complex business processes. However, large parts of
the available solutions are oriented toward comparing the se-
mantics of the interleaved services and checking their ports’
compatibility.

The most important feature that distinguishes our ap-
proach from others is that we considered the dependability
issue in all the different stages of the WSC process, that is,
from the specification, to the execution, to the QoS assess-
ment.

The WSC platform StarWSCoP (Star Web Services Com-
position Platform) [65] is very closely related to our work
and it follows a similar approach to ours because it focuses
on dynamic composition. It provides a service execution in-
formation library that stores trace information of CWS ex-
ecution; in our approach, this library is equivalent to the
history that collects the observed execution progress of the
CWS instances (i.e., the copies of CEP).

Another similarity with our approach is that in StarWS-
CoP, the authors developed the notion of a wrapper for each
WS, which is very similar to the engine notion, because it is
also used to act as a proxy of the WS; others communicate
with the wrapper instead of the WS. The wrapper initiates,
freezes, and continues the WS according to the requests sent
by the requester. However, the wrapper does not have any
predefined mechanism to handle potential failures such as
those we defined in our approach, where each engine, beside
conversing with the WS it wraps, also communicates with
different engines in a peer-to-peer fashion to progress the
execution and to handle failures, which is completely absent
in the StarWSCoP approach. Furthermore, each wrapper im-
plements different managers to deal with the security, trans-
port, and data type mismatch issues. We recognize that se-
curity is a very important dependability attribute, especially
in the context of WS. However, because the techniques for
security assessment are still rudimentary in the WS architec-
ture, security is not addressed in this paper. Considering the
execution aspect, our approach is more scalable than Star-
WSCoP because execution control in StarWSCoP is allo-
cated to a centralized engine whereas in our approach it is
distributed among different engines to avoid the possibility
of bottlenecks and of having a single point of failure.

For QoS estimation and analysis, the StarWSCoP ap-
proach estimates real-time QoS metrics of the CWS by ex-
tending WSDL to support QoS metrics, such as cost, time,
and reliability. The defined QoS metrics are very simplistic
compared to ours: they do not consider the repercussions of
failures and the authors do not state how reliability is esti-
mated. In addition, the real-time QoS estimations are used
to check if a particular CWS fits the user’s predefined QoS
requirements, which means that StarWSCoP targets user sat-

isfaction. However, our approach is oriented more toward
allowing the system designers to assess the system quality,
analyze it, and eventually produce some improvements.

Similarly, we also consider two other approaches where
the CWS is created dynamically by describing the function-
alities of interest that components should have without ref-
erencing any specific WS. The first is eFlow, a platform de-
veloped by HP [7,8]; the second approach is SELF-SERYV, a
framework developed by the University of New South Wales
[41,10,9]. In the eFlow platform, the definition of a service
node encloses a service selection rule written in a particular
query language. When invoking the service node, the rule
is executed to select a specific service. Concerning SELF-
SERY, it exploits the concept of service community, a con-
tainer of alternative services. At runtime, a community del-
egates any requests it receives to one of its current mem-
bers. The eFlow platform contrasts with our approach be-
cause it works with a centralized scheduler. As with star-
WSCoP, it may suffer from scalability problems and no QoS
model is explicitly supported. On the other hand, SELF-
SERV uses an approach similar to ours: a distributed execu-
tion system where coordinators (i.e., software components
hosted by WS providers) may control a set of WS, rather
than only one. Although the SELF-SERV strategy avoids
having a single point of failure, to execute a CWS the dif-
ferent coordinators need to manage routing tables, statically
generated from the coordinators’ precondition and postcon-
dition states transition tables; a large amount of data needs
to be exchanged among coordinators. Doing so may eas-
ily provoke failures of the coordinators because of bottle-
necks. To the best of our knowledge, the SELF-SERV strat-
egy does not provide any mechanisms for handling similar
situations. On the other hand, in our approach, the CEP con-
cept, equivalent to the coordinators’ routing tables in SELF-
SERYV, allows a dynamic decision of the execution control
delegation of the engines based on the CWS different com-
ponents execution states; however, the advantage is that a
minimal amount of data is exchanged, compared with SELF-
SERV. Furthermore, an engine is allocated only if it is in
good condition. Moreover, execution retrial and compensa-
tion mechanisms are provided in case of failure, which can-
not be said of SELF-SERV. Note that the notion of com-
munity in SELF-SERV differs greatly from the notion of
CEL in our approach because there is no defined policy to
handle the case where one or more component services that
form a community fail. Therefore, considering extending the
composition model to integrate transactional semantics, as in
our approach, is very interesting for SELF-SERV. However,
an unresolved issue remains and needs to be addressed for
our approach/SELF-SERV: how to decide on the size of the
community/CEL to increase the chances of successful exe-
cution. Here, the idea of using the history of past executions
of a CWS can be used to dynamically optimize an ongoing
execution—according to a given set of parameters, such as
time, price, and QoS—and to decide the suitable number of
CELs available in view of the success percentage of the dif-
ferent WS invoked in the different CWS instances.

48

Neila BEN LAKHAL et al.

One of the most profound features that is of great impor-
tance for designing and developing dependable composite
services is transaction support. WS are well known for being
autonomous, heterogeneous units, where each WS provider
has its own management policies; such characteristics make
implementing CWS with a transaction support more diffi-
cult, but essential. Very few proposals contain transaction
support in their composition. [39,40] introduces a frame-
work called WebTransact, which provides the necessary in-
frastructure to build reliable CWS.

WebTransact is composed of a multilayered framework.
It uses WSDL to describe the WS functionalities and adds
a Web Services Transaction Language (WSTL) on top of
WSDL, enhancing it with functionalities facilitating com-
posite WS by describing transaction support for a WS. As in
our approach, WebTransact defines different types of trans-
action behavior. However, it supports compensation and re-
triability behaviors and introduces virtual-compensatable be-
havior for operations whose underlying system supports 2PC
and pivot behavior for the operations, which are neither com-
pensatable nor retriable.

However, the main differences between our approach and
WebTransact are, first, the WS are statically integrated in
WebTransact by the developer who plays the role of WS in-
tegrator. However, this is not a flexible method of WS inte-
gration. Second, the WebTransact framework is mainly for
integrating WS that have (and expose) their own local trans-
action support; however, this condition is not always verifi-
able because not all WS have transaction support and pre-
sumably, if they do, not all are compliant with each other,
or are limited only to the above suggested transaction sup-
port of WebTransact. This is what made us consider com-
pletely ignoring transaction support that the different WS
may provide and to decide to offer/append at a higher level
the same transaction support at the composition WS level
instead. Currently in our approach, WS-SAGAS supports
compensatable, noncompensatable, retriable, vital, and non-
vital behaviors. Finally, our approach can complement the
WebTransact framework because our QoS model can be very
important in auditing and analyzing the WS execution to im-
prove the quality and efficiency of the mediator service com-
position given that QoS assessment is not yet addressed in
Webtransact.

In [66], an approach to selecting services based on their
semantics as well as their quality, as judged by users, is
proposed. To this end, a query language based on DAML
that accommodates several essential query and manipulation
templates is developed. The users’/providers’ estimations of
the QoS may be incorrect and/or biased by the users’ subjec-
tivity. In our approach, we do not rely on the users’/providers
QoS rating; instead, designers observe the CWS execution
and collect the execution results in a history to use later as a
basis to estimate the QoS properties.

In [67,58], the authors introduce a QoS-aware middle-
ware for CWS. They focus on a dynamic and quality-driven
approach to select component services for a composite ser-
vice. Multiple QoS criteria, such as price, execution time,

>

and reliability, are considered. They propose a global plan-
ning approach to optimize the overall QoS using linear pro-
gramming techniques. Their approach is effective with re-
spect to reaching QoS optimality. However, their complex
Workflow patterns, such as using branching and frequent
loop iterations, seems to make their approach less efficient
and increasingly complex for business processes. Further-
more, potential failure repercussions on the global QoS have
not been considered. Moreover, reliability is mapped directly
to the reliability of each WS individual. Reliability is defined
as the probability that a request to a particular WS receives
a correct response within a maximum expected time frame.
This method of characterizing the reliability is not extend-
able to dynamically assembled CWS.

Similarly to our approach, the authors of [68,57,69,70]
have proposed building new CWS that are QoS-optimized
and have either defined their own QoS models or been in-
spired by other models. However, all these approaches are
only applicable for statically aggregated CWS. In addition,
the authors of [57,59,69,70] have investigated different QoS
dimensions, such as time, cost, reliability, and fidelity. How-
ever, they have not considered how the different states and
effects of failure cause the QoS estimates vary. To character-
ize the reliability dimension, their proposed models are de-
rived from a more general work [59], in which the discrete-
time stable reliability model proposed in [71] is followed to
describe the reliability of tasks in the Workflow context:

R(t) = 1— (system failure rate + process failure rate) .

This equation is only applicable for static CWS as it only
gives a global idea of the reliability estimates of a compo-
nent. Our approach for reliability estimation goes further be-
cause it obtains more detailed estimates with the possibility
of knowing what component(s) was/were behind the consid-
erable variation in the overall reliability estimates and the
reason (i.e., failure).

9.2 Standards and Commercial Platforms

WS are becoming an important part of mainstream IT. Ev-
ery day, it seems, a new acronym is introduced and added
to the mass of acronyms ranging from SOAP to UDDI to
WSDL. Moreover, ongoing massive standardization efforts
seek to enable CWS; these include, among others, business
process modeling languages such as WSCI, WSFL (Web
Services Flow Language), and, most recently, BPELAWS
[4], which have been developed to model CWS. Of these,
only BPEL4WS considers failure handling but it offers only
limited support because it introduces fault handlers to spec-
ify the actions to be taken when a WS execution fails. How-
ever, these fault handlers are defined in a way similar to the
exception-handling techniques exploited in programming lan-
guages. Moreover, the handlers are dedicated to trying to re-
cover from the effects of the failed service but they do not
attempt to investigate the causes behind the failure, as we do
in our approach.

FENECIA

49

In addition, other existing standards, such as BTP [48],
the WS-Transaction [25] proposed by IBM, and WS-TXM
(from WS-CAF framework) [26] by Sun define models to
support transactions between loosely coupled systems in the
WS context. They define models for centralized and peer-
to-peer transactions, which support a two-phase coordina-
tion of WS. These standards build on extended transactional
models to specify how different WS are coordinated. The
different entities have to agree a priori on the transaction
model. Consequently, they inherit the advanced transactional
models’ lack of functionality and performance when used
in applications that involve dynamic composition of hetero-
geneous services in a peer-to-peer context [72]. Hierarchi-
cal QoS Markup Language (HQML), Web Ontology Lan-
guage (OWL-S), and Web Service Level Agreement lan-
guage (WSLA) are examples of specifications that have ad-
dressed the need for a QoS model.

The common point of these specifications is that they de-
scribe the QoS of WS. For example, DAML-S has included
constructs that specify several QoS parameters, namely, the
quality rating and the degree of quality. However, these spec-
ifications have not supplied any precise characterization of
the different parameters and they are only suitable for WS
and not for compositions.

Finally, examples of commercial platforms that deal with
WS automation include Microsoft’s .NET and BizTalk tools
and IBM’s WebSphere. These applications provide support
for SOAP, WSDL, and UDDI connectivity. However, to the
best of our knowledge, they provide little or no support for
CWS.

9.3 Conventional Composite Systems

Making several entities work in tandem to reach a com-
mon goal is not a new challenge in itself, because it has
been widely addressed for decades in several areas, includ-
ing Workflow management systems, software engineering,
and artificial intelligence. Many argue that when consider-
ing CWS, it is important to take into account, and use expe-
rience and knowledge from, these closely related areas [73,
43], because the main difference is that composition in WS
architecture chiefly aims at taking XML-based standards and
the Internet as starting points to reach the same goal. In the
different parts of our approach, we promote the same idea
because we were inspired by several works in related areas,
specifically in the area of Workflow technology and software
engineering.

In defining the different aggregation patterns for the CWS
specification model, we chose to build on Workflow patterns
to define the different WS-SAGAS aggregation patterns be-
cause the typical control flow dependencies encountered in
Workflow modeling arguably apply as well in the context
of CWS, because the situations they capture are noticeably
similar. In [43], the authors showed that the Workflow pat-
terns apply to existing CWS languages such as BPELAWS
and BPML. Our approach builds on the state concept that

was used well in the context of software engineering to de-
fine QoS models, where many mathematical techniques have
been developed. The models that are closely related to our
approach are the structural models of reliability [74] and the
Markov reward models [75], which form the basis of all per-
formability models. In the former, a state diagram that de-
picts the system behavior is used.

Based on Markov chain properties, the transition between
states is assumed to be a Markov process. This means that
the components to be executed in the next state depend only
on the components of the current state and the components
of the next state do not depend on the history of the current
state. In the latter, the system is assumed to be modeled as a
Markov process with a finite state space, and a reward rate
(performance measure) is associated with each state.

Our approach complements these models because we use
the state concept to define in the same way the behavior
of the different components in terms of transition between
different states; we augment this by making the state con-
cept play an important role in enhancing failure informa-
tion, defining the QoS estimates, and analyzing the QoS esti-
mates. On the other hand, our approach differs in its simplic-
ity from these proposals and from other techniques proposed
in [76,77], which are supported by underlying modeling for-
malisms (e.g., block diagrams, Markov chains, Petri-nets,
logics, etc.), because the acquired estimates are easily ana-
lyzed, which is not the case of the techniques above, widely
known for requiring considerable expertise and effort. Very
often, the designers are not eager to build such models be-
cause of their inherent complexity. Finally, the models ob-
tained are not straightforward to interpret so further simula-
tions have to be performed.

10 Conclusions

In this paper, we introduce FENECIA, our framework for
CWS specification, execution, and QoS assessment. Our ap-
proach puts forward the view that WS/CWS failures are not
exceptional situations, as often claimed, but takes a radically
different view by accepting that failures are inevitable for
any WS/CWS. In addition, our approach emphasizes that
when earlier failures are taken into consideration, by defin-
ing in advance proper failure-handling mechanisms, there
are greater chances of seeing a CWS perform with greater
dependability. To achieve this vision, our work’s main con-
tributions are summarized below.

First is the construction of WS-SAGAS, which provides
the framework required to build a transaction model specif-
ically tailored to fit the characteristics of the WS architec-
ture, thereby allowing movement away from the constraints
imposed by the traditional transaction model. WS-SAGAS
inherited several interesting features from previously pro-
posed transaction models, specifically, arbitrary nesting, re-
laxed ACID properties, state, vitality degree, forward and
backward recovery, and compensation.

50

Neila BEN LAKHAL et al.

We demonstrate how these concepts, which were adapted
from conventional composite systems, need to become part
of the WS architecture pillars to provide major contributions
in dependability enhancement.

We also show how our model provided a powerful con-
struct for extending other approaches to support WSC more
expressively, with an increasing level of flexibility and de-
pendability, by defining a textual notation that is as free as
possible from programming constructs and as explicit as pos-
sible. This would allow it to be easily understood and up-
dated, which cannot be said of the syntax of other exist-
ing proposals, which are heavily based on XML. Further-
more, our textual notation that describes a CWS in terms
of definition rules (DR), composability rules (CR), and or-
dering rules (OR) is particularly useful for us to define our
transaction model operational semantics and correct execu-
tions. Because we consider a peer-to-peer execution model,
the use of strict serializability, adopted in traditional trans-
action models, is inadequate. The description of a process
in term of DR, CR, and in particular, OR, contributes partly
to avoiding inconsistencies, because the different OR allow
definition of the correct control flow in a process. To ensure
the semantics of each element are respected when it is ex-
ecuted, particularly the nesting, transactional behavior, and
vitality degree, we build on the state concept and we define
several forms of dependency that must hold between the dif-
ferent elements combined in the same pattern, the same WS-
SAGAS, and in the same process; we call these intrapattern
dependencies, intra-WS-SAGAS dependencies, and intrapro-
cess dependencies.

We have attached a graphical syntax to our model to
exploit the perceptual capabilities of designers by allowing

them to capture the models at different levels of detail, whereas

other solutions either define no graphical notation or advo-
cate the use of state-charts for ease of use, although they may
not allow expression of all their models’ semantics.

From WS-SAGAS for WSC dependable specification as
a hierarchy of recursively nested transactions comes our sec-
ond contribution toward defining an execution environment
that supports the abstract concepts suggested by WS-SAGAS,
which we named THROWS architecture. The execution of
WSC, depicted as WS-SAGAS, is made possible by the con-
fluence of several novel ideas. First, most existing WSC sys-
tems only support the integration of WS in a centralized
model, consisting of dedicated centralized engine(s). They
have totally ignored the inherent nature of the WS environ-
ment where interaction follows a peer-to-peer model and
where each peer WS owner provides a set of services that
comprise CWS. We take a radical approach and propose
an architecture where the execution control is hierarchically
delegated to distributed engines discovered dynamically. Ex-
ecuting the CWS in a distributed fashion allows us to avoid
having a single point of failure and to split the messages that
the central authority is required to manage among the dis-
tributed engines.

In addition, because WS are in essence loosely coupled,
integrating them into a CWS makes the system reliability

and availability a critical issue. To deal with this issue, we
propose generating the CEL dynamically, where a list of dy-
namically discovered WS-engine couples is ranked. More-
over, the CEL concept allows the execution retrial with al-
ternative candidates. Because CEL are dynamically gener-
ated, engine sequences of invocation cannot be known be-
forehand. Here, we propose the CEP concept so that the exe-
cution control delegation between engines can be performed
by keeping track of the execution progress.

We also introduce a model to assess the QoS of CWS. In
our model, rather than relying on the QoS information adver-
tised by the different WS providers (which may be not up to
date), we estimate the QoS properties on the basis of CWS
execution observations, which are collected in a history that
consists of the different copies of CEP and its different up-
dated copies. Second, we confer paramount importance to
the failure repercussions on the CWS performances; in fact,
not only were correct execution instances examined to esti-
mate the QoS and later analyze it, but also our model was
oriented toward considering the system in all of its possible
states (e.g., correct, faulty, recoverable, executions). By do-
ing so, we intend to make our model capable of reflecting the
real state of the typical case of CWS, with their inherent ten-
dency to fail rather easily compared with others. Third, we
use the concept of element state, initially introduced in WS-
SAGAS, so that the more error-prone elements can be more
readily located. Finally, our model does not use any complex
modeling techniques, thus making it directly usable without
requiring a difficult learning curve.

Our method illustrates how conferring paramount impor-
tance to failure repercussions on the CWS performances can
turn the observed failures throughout a process execution
cycle from a difficulty to a benefit. We demonstrate in our
case study how the history of execution of faulty process in-
stances can serve as solid basis for analyzing the robustness
of fault-tolerance mechanisms by tracking failures to find
the most error-prone element in a process. We also show
how such observations are used to restructure the process
definition to achieve better quality of execution and how our
flexible process definition in terms of DR, CR, and OR sup-
port such a method.

We demonstrate that the abstract concepts and artifacts
defined by FENECIA can be implemented to some extent in
a prototype in the context of a research project. While our
prototype implementation suffers from technological limi-
tations, it does demonstrate that our proposal is within the
realm of feasibility. The possibility of implementing a fully
fledged implementation of this work will depend greatly on
the evolution speed of the service industry and research.

The FENECIA approach proposal allows us to realize
that basic concepts that exist in conventional composite sys-
tems, namely the element state and, more generally, the com-
ponent behavior, need to be made available for WS as they
can assist greatly in obtaining information about the execu-
tion and in adding improvements. Moreover, in conventional
composite systems, where the same components are con-
nected, only static composition strategies were available.

FENECIA

51

However, in the WS context, throughout the different parts
of our approach, we show that such a solution is not viable,
and a dynamic composition strategy is far more preferable.
However, to realize fully a dynamic composition strategy,
much remains to be done in the WS architecture because it
still suffers significantly from being heavily based on the In-
ternet.

In the case of some business processes where failures
are not permissible (e.g., banking), effective realization of
the FENECIA vision, besides making the failure recovery
mechanism possible, requires proper failure avoidance mech-
anisms, which may constitute an interesting extension to our
present work. In addition, at present the CWS execution in
FENECIA is done independently by different engines, where
the engines are volatile (i.e., on each CWS invocation, new
CEL are built to avoid using WS that are no longer avail-
able or obsolete). Making the different engines nonvolatile
and assigning QoS attributes to the different engines to esti-
mate their performance can lead to a more optimized execu-
tion, because the more reliable engines are selected. Later, a
more elaborate model of collaboration between the different
engines can be developed. Finally, because there is a wide
range of toolkits supporting WS development, another inter-
esting research direction will be finalizing the implemented
configuration of WS-SAGAS for THROWS, experimentally
measuring its performance, and comparing it with others.

Acknowledgements Part of this research was supported by CREST of
JST (Japan Science and Technology Agency), a Grant-in-Aid for Sci-
entific Research on Priority Areas from MEXT of the Japanese Gov-
ernment (#16016232 and #18049026), and the 21* Century COE Pro-
gram Framework for Systematization and Application of Large-scale
Knowledge Resources.

References

1. W3C. Web services description language (wsdl).
http://www.w3.org/TR/wsdl, 2005.

2. W3C. Simple object access protocol (soap).

http://www.w3.org/TR/soap, 2005.

3. W3C. Universal description, discovery, and integration (uddi).
http://www.uddi.org, 2005.

4. IBM, BEA Systems, Microsoft, SAP AG, and Siebel Systems.

Bpel4ws business process execution language for web services,

2005.

IBM. The emerging technologies toolkit (ettk), 2005.

Microsoft. Microsoft web services

http://www.microsoft.com/net/, 2005.

7. Fabio Casati, Ski Ilnicki, Li-Jie Jin, Vasudev Krishnamoorthy, and
Ming-Chien Shan. eflow: A platform for developing and manag-
ing composite e-services. In AIWORC ’00: Proceedings of the
Academia/Industry Working Conference on Research Challenges,
page 341. IEEE Computer Society, 2000.

8. Fabio Casati, Ski Ilnicki, Li jie Jin, Vasudev Krishnamoorthy, and
Ming-Chien Shan. Adaptive and dynamic service composition in
eflow. In B. Wangler and L. Bergman, editors, CAiSE "00: the
12" international Conference on Advanced information Systems
Engineering, volume 1789 of LNCS, pages 13-31, London, June
05 - 09 2000. Springer-Verlag.

9. Quan Z. Sheng, Boualem Benatallah, Marlon Dumas, and Eileen
Oi-Yan Mak. Self-serv: A platform for rapid composition of web

o

strategy.net.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

services in a peer-to-peer environment. In VLDB, pages 1051-
1054, 2002.

Boualem Benatallah, Quan Z. Sheng, and Marlon Dumas. The
self-serv environment for web services composition. /EEE Inter-
net Computing, 7(1):40-48, Jan. 2003.

Dan Wu, Bijan Parsia, Evren Sirin, James A. Hendler, and Dana S.
Nau. Automating daml-s web services composition using shop2.
In The Semantic Web - ISWC 2003, Second International Semantic
Web Conference, Sanibel Island, FL, USA, volume 2870 of Lec-
ture Notes in Computer Science, pages 195-210. Springer, 2003.
Nikola Milanovic and Miroslaw Malek. Current solutions for web
service composition. /[EEE Internet Computing, 8(6):51-59, 2004.
N. J. Davies, D. Fensel, and M. Richardson. The future of web
services. BT Technology Journal, 22:118-130, Jan. 2004.

Ahmed K. Elmagarmid. Database transaction models for ad-
vanced applications. Morgan Kaufmann, San Mateo, California,
1992.

Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Ws-
sagas:a transaction model for reliable web services composition
specification and execution. DBSJ letters, 2(2):7-20, Oct. 2003.
Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Dis-
tributed architecture for reliable execution of web services. Tech-
nical Report DBWS2003 2B, IEICE, 2003.

Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. Relia-
bility and performance estimation for enriched ws-sagas. In WIRI
'05: Proceedings of the International Workshop on Challenges in
Web Information Retrieval and Integration, In conjunction with
ICDE2005, pages 54-63, Tokyo, Japan, Apr. 2005. IEEE Com-
puter Society.

Neila Ben lakhal, Takashi Kobayashi, and Haruo Yokota. Depend-
ability and flexibility centered approach for composite web ser-
vices modeling. In 14" International Conference on Cooperative
Information Systems (CooplS2006), volume 4275(0TM2006) of
LNCS, pages 163-182, Montpellier, France, Nov. 2006.

Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota.
Throws: An architecture for highly available distributed execution
of web services compositions. In I[EEE 14th International Work-
shop on Research Issues on Data Engineering: Web Services for
E-Commerce and E-Government Applications (RIDE’04), pages
103-110, Boston, USA, March 2004. IEEE.

Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. A sim-
ulation system of throws architecture with ws-sagas transaction
model. DBSJ Letters, 3(1):89-92, June 2004.

Neila Ben Lakhal, Takashi Kobayashi, and Haruo Yokota. A
failure-aware model for estimating and analyzing the efficiency
of web services compositions. In PRDC '05: Proceedings of the
11'"" Pacific Rim International Symposium on Dependable Com-
puting (PRDC’05), pages 114-124, Washington, DC, USA, 2005.
IEEE Computer Society.

Neila Ben Lakhal. A framework for modeling, executing, and
analyzing dependable transactional Web services compositions.
Phd.thesis, Tokyo Institute of Technology, Tokyo, Japan, 2007.
A. Gorbenko, V. Kharchenko, P. Popov, A. Romanovsky, and
A. Boyarchuk. Development of dependable web services out of
undependable web components. Technical Report 863, University
of Newcastle upon Tyne, School of Computing Science, Oct 2004.
Jean-Claude Laprie and Brian Randell. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions
on Dependable Secure Computing, 1(1):11-33, 2004. Fellow-
Algirdas Avizienis and Senior Member-Carl Landwehr.

F. Cabrera and et al Specification: Web ser-
vices transaction (ws-transaction). http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/,
2002.

Oracle Fujitsu, IONA and Arjuna Technologies Sun.
Web services composite application framework(ws-caf).
http://www.arjuna.com/standards/ws-caf/, 2003.

Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD
Conference, pages 249-259, 1987.

52

Neila BEN LAKHAL et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.
46.

47.

48.

W.M.P. van der Aalst, A.H.M.ter Hofstede, B. Kiepuszewski,
and A.P. Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5-51, 2003.

A. Sheth, K. Kochut, and J. Miller. = Meteor project page
at large scale distributed information systems (Isdis)laboratory.
http://1sdis.cs.uga.edu/proj/meteor/meteor.html.

Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L.
Traiger. The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11):624-633, 1976.

W. Du and Ahmed Elmagarmid. Quasi serializability: a correct-
ness criterion for global concurrency control in interbase. In VLDB
’89: Proceedings of the 15th international conference on Very
large data bases, pages 347-355, San Francisco, CA, USA, 1989.
Morgan Kaufmann Publishers Inc.

Krithi Ramamritham and Panos K. Chrysanthis. A taxonomy of
correctness criteria in database applications. The VLDB Journal,
5(1):085-097, 1996.

Ahmed K. Elmagarmid, Yungho Leu, Witold Litwin, and Marek
Rusinkiewicz. A multidatabase transaction model for interbase.
In Proceedings of the 16' International Conference on Very Large
Data Bases, pages 507-518, San Francisco, CA, USA, August 13-
16 1990. Morgan Kaufmann Publishers Inc.

Sami Bhiri, Olivier Perrin, and Claude Godart. Ensuring required
failure atomicity of composite web services. In WWW ’05: Pro-
ceedings of the 14th international conference on World Wide Web,
pages 138-147, New York, NY, USA, 2005. ACM Press.

J. Gray and A. Reuter. Transaction Processing: Concepts and
Technigues. Morgan Kaufmann, 1993.

J.E.B. Moss. Nested transactions: an approach to reliable dis-
tributed computing. Cambridge, Massachusetts, 1985.

Hector Garcia-Molina, Dieter Gawlick, Johannes Klein, Karl
Kleissner, and Kenneth Salem. Modeling long-running activities
as nested sagas. Data Engineering Bulletin, 14(1):14-18, March
1991.

Mansoor Ansari, Linda Ness, Marek Rusinkiewicz, and Amit P.
Sheth. Using flexible transactions to support multi-system
telecommunication applications. In VLDB ’92: Proceedings of the
18th International Conference on Very Large Data Bases, pages
65-76, San Francisco, CA, USA, 1992. Morgan Kaufmann Pub-
lishers Inc.

Paulo F. Pires, Mario R. E. Benevides, and Marta Mattoso. Me-
diating heterogeneous web services. In 2003 Symposium on Ap-
plications and the Internet (SAINT 2003), pages 344-347, 27-31
January 2003 - Orlando, FL, USA.

Paulo F. Pires, Mario R. F. Benevides, and Marta Mattoso. Web,
Web-Services, and Database Systems, volume 2593 of Lecture
Notes in Computer Science, chapter Building Reliable Web Ser-
vices Compositions, pages 59—72. Springer, 2003.

Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Facil-
itating the rapid development and scalable orchestration of com-
posite web services. Distributed and Parallel Databases, 17(1):5—
37, Jan. 2005.

Gwen Salan, Lucas Bordeaux, and Marco Schaerf. Describing
and reasoning on web services using process algebra. In ICWS
"04: Proceedings of the IEEE International Conference on Web
Services (ICWS’04), page 43, Washington, DC, USA, 2004. IEEE
Computer Society.

W.M.P.V.D. Aalst. Don’t go with the flow: Web services compo-
sition standards exposed. IEEE Intelligent Systems, 18(1):72-76,
March 2003.

J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process
Algebra. Elsevier, 2001.

R. Milner. Communication and concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

C.A.R.Hoare. Communicating Sequential Processes.
Hall, 1985.

Michael J. Butler, C. A. R. Hoare, and Carla Ferreira. A trace
semantics for long-running transactions. In 25 Years Communi-
cating Sequential Processes, pages 133-150, 2004.

OASIS Committee. Business transaction protocol version 1.0,
2004.

Prentice

49

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.
64.
65.

66.

67.

68.

69.

F. Cabrera and et al Web services coordination.
http://www.ibm.com/developerworks/library/ws-coor/, 2002.

AT van Halteren. Towards an adaptable QoS aware middleware
Jor distributed objects. Phd.thesis, University of Twente, En-
schede, the Netherlands, The Netherlands, 2002.

ITU/ISO. Open distributed processing reference model, part 2:
Foundations, international standard. 10746-2 ITU-T Recommen-
dation X.902, 1995.

Christoph Schuler, Roger Weber, Heiko Schuldt, and Hans Jorge
Schek. Peer-to-peer process execution with osiris. In Springer,
editor, International Conference on Service-Oriented Computing,
volume 2910 of LNCS, pages 483498, Italy, December 2003.
Ulrike Greiner and Erhard Rahm. Quality-oriented handling
of exceptions in web-service-based cooperative processes. In
Proceedings of the GI-/GMDS Workshop on Enterprise Appli-
cation Integration (EAI-04), Oldenburg, Germany, February 12-
13, 2004, volume 93 of CEUR Workshop Proceedings. CEUR-
WS.org, 2004.

Markus Keidl, Stefan Seltzsam, and Alfons Kemper. Reliable
web service execution and deployment in dynamic environments.
In Technologies for E-Services the fourth International Workshop
(TES 2003), volume 2819 of Lecture Notes in Computer Science,
pages 104—118. Springer, September 2003.

Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin,
Drew V. McDermott, Sheila A. Mcllraith, Srini Narayanan, Mas-
simo Paolucci, Terry R. Payne, and Katia P. Sycara. Daml-s: Web
service description for the semantic web. In First International
Semantic Web Conference, (ISWC 02), volume 2342 of Lecture
Notes in Computer Science, pages 348-363. Springer, 2002.
Meyer B. Applying design by contract. IEEE Computer (Special
Issue on Inheritance and Classification), 25(10):40-52, October
1992.

S. Chadrasekaran, J.A. Miller, G. Silver, 1.B. Arpinar, and
A. Sheth. Composition, performance analysis and simulation of
web services. Electronic Markets: The International Journal of
Electronic Commerce Business Media, 2003.

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, and Quan Z. Sheng. Quality driven web services
composition. In WWW °03: Proceedings of the 12th international
conference on World Wide Web, pages 411-421, New York, NY,
USA, 2003. ACM Press.

J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality
of service for workflows and web service processes. Journal of
Web Semantics, 2004.

J. Cardoso and A. Sheth. Semantic e-workflow composition. Jour-
nal of Intelligent Information Systems, 2003.

Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. Auto-
nomic execution of web service compositions. In ICWS '05: Pro-
ceedings of the IEEE International Conference on Web Services
(ICWS’05), pages 435-442. IEEE Computer Society, 2005.
C.Pautasso. A Flexible System for Visual Service Composition.
PhD thesis, ETH, July 2004.

SUN. Java web services developer pack v1.2 (jwsdp).
http://java.sun.com/webservices/, 2003.

xmethods. http://www.xmethods.net, 2004.

H. Sun, X. Wang, B. Zhou, and P. Zou. Research and Implementa-
tion of Dynamic Web Services Composition, volume 2834, pages
457 — 466. Springer LNCS, 2003.

A. Soydan Bilgin and Munindar P. Singh. A daml-based reposi-
tory for qos-aware semantic web service selection. In /CWS, pages
368-375, 2004.

Zeng L.and Benatallah B., Ngu A., Dumas M., Kalagnanam J.,
and Chang H. Qos-aware middleware for web services compo-
sition. IEEE Transactions on Software Engineering, 30(5):311 —
327, May 2004.

M.C. Gronmo, R.and Jaeger. LNCS, volume 3543, chapter Model-
Driven Methodology for Building QoS-Optimised Web Service
Compositions, pages 68 — 82. Springer, Jan. 2005.

Amit P. Sheth, Jorge Cardoso, John A. Miller, Krzysztof J. Kochut,
and M. Kang. Service-oriented middleware. In Proceedings of

FENECIA

70.

71.

72.

73.

74.

75.

76.

7.

The sixth World Multiconference on Systemics Cybernetics and In-
Sformatics(Invited Session on Web Services and Grid Computing),
volume 8, Orlando, FL, 2002.

J.Cardoso. Quality of Service and Semantic Composition of Work-
Sflows. Ph.d. dissertation, Dep. of Computer Science, University of
Georgia, Athens, GA., 2002.

E.C.Nelson. A statistical basis for software reliability assessment.
Technical report, TRW Systems Report, March 1973.

Nektarios Gioldasis and Stavros Christodoulakis. Utml: Unified
transaction modeling language. In third International Conference
on Web Information Systems Engineering (WISE02), 0:115, 2002.
Wil M.P. van der Aalst, Marlon Dumas, and Arthur H.M. ter Hof-
stede. Web service composition languages: Old wine in new bot-
tles? euromicro Conference, 00:298- 305, Sept. 2003.

R.C. Cheung. A user-oriented software reliability model. /EEE
Transactions On Software Engineering, 6(2):118, March 1980.
M.A.Qureshi and W.H.Sanders. Reward model solution methods
with impulse and rate rewards:an algorithm and numerical results.
Performance evaluation, 1994.

H. Kobayashi. Modeling and Analysis: An Introduction to System
Performance Evaluation Methodology. Addison-Wesley, 1978.
J-C. Laprie. Dependable computing and faut tolerance: concepts
and terminology. In Proc. of the 15" int. Sym. on Fault-tolerant
Computing (FTCS-15), pages 211, 1985.

