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Neila BEN LAKHAL � Takashi KOBAYASHI � Haruo YOKOTAFENECIA: Failure Endurable Nested-transa
tion based Exe
utionof Composite Web Servi
es with In
orporated State Analysis
the date of re
eipt and a

eptan
e should be inserted laterAbstra
t Interest in the Web servi
es (WS) 
omposition(WSC) paradigm is in
reasing tremendously. A real shiftin distributed 
omputing history is expe
ted to o

ur whenthe dream of implementing Servi
e-Oriented Ar
hite
ture(SOA) is realized. However, there is a long way to go toa
hieve su
h an ambitious goal. In this paper, we support theidea that, when 
hallenging the WSC issue, the earlier thatthe inevitability of failures is re
ognized and proper failure-handling me
hanisms are de�ned, from the very early stageof the 
omposite WS (CWS) spe
i�
ation, the greater arethe 
han
es of a
hieving a signi�
ant gain in dependability.To formalize this vision, we present the FENECIA (FailureEndurable Nested-transa
tion based Exe
ution of Compos-ite Web servi
es with In
orporated state Analysis) frame-work. Our framework approa
hes the WSC issue from dif-ferent points of view to guarantee a high level of dependabil-ity. In parti
ular, it aims at being simultaneously a failure-handling-devoted CWS spe
i�
ation, exe
ution, and qual-ity of servi
e (QoS) assessment approa
h. In the �rst se
-tion of our framework, we fo
us on answering the need fora spe
i�
ation model tailored for the WS ar
hite
ture. Tothis end, we introdu
eWS-SAGAS, a new transa
tion model.WS-SAGAS introdu
es key 
on
epts that are not part of theWS ar
hite
ture pillars, namely, arbitrary nesting, state, vi-tality degree, and 
ompensation, to spe
ify failure-endurableCWS as a hierar
hy of re
ursively nested transa
tions. Inaddition, to de�ne the CWS exe
ution semanti
s, withoutsuffering from the hindran
e of an XML-based notation, wedes
ribe a textual notation that des
ribes a WSC in terms ofde�nition rules, 
omposability rules, and ordering rules, andNeila BEN LAKHALTokyo Institute of Te
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we introdu
e graphi
al and formal notations. These rulesprovide the solid foundation needed to formulate the exe
u-tion semanti
s of a CWS in terms of exe
ution 
orre
tnessveri�
ation dependen
ies. To ensure dependable exe
utionof the CWS, we present in the se
ond se
tion of FENECIAour ar
hite
ture THROWS, in whi
h the exe
ution 
ontrolof the resulting CWS is distributed among engines, dis
ov-ered dynami
ally, that 
ommuni
ate in a peer-to-peer fash-ion. A dependable exe
ution is guaranteed in THROWS bykeeping tra
k of the exe
ution progress of a CWS and byenfor
ing forward and ba
kward re
overy. We 
on
entratein the third se
tion of our approa
h on showing how the fail-ure 
onsideration is trivial in a
quiring more a

urate CWSQoS estimations. We propose a model that assesses severalQoS properties of CWS, whi
h are spe
i�ed as WS-SAGAStransa
tions and exe
uted in THROWS.We validate our pro-posal and show its feasibility and broad appli
ability by de-s
ribing an implemented prototype and a 
ase study.Keywords Web servi
es � 
omposition � dependability �failure � distributed exe
ution � transa
tion model � QoS1 Introdu
tionWith the 
urrent proliferation of Web servi
es (WS), a 
on-siderable shift is expe
ted to o

ur in the way distributed
omputing systems are integrated. The 
onventionally in-tegrated systems are foreseen to be gradually repla
ed inthe near future by distributed and loosely 
oupled servi
es-oriented systems. The key features that allow the WS te
h-nology to a

omplish su
h a shift are: a) It builds on a setof universally re
ognized XML standards, espe
iallyWSDL(Web Servi
e Des
ription Language) [1℄, SOAP (Simple Ob-je
t A

ess Proto
ol) [2℄, and UDDI (Uniform Des
riptionDis
overy and Integration) [3℄ to des
ribe, dis
over, and in-voke any type of servi
es in a networked environment. b) Ithas the potential to glue any systems together, no matter howdifferent they are. 
) It redu
es dependen
y among 
ompo-nents to obtain less fragile systems with in
reased respon-siveness and ability to be frequently modi�ed.



2 Neila BEN LAKHAL et al.One issue that is gaining notable momentum in the re-sear
h 
ommunity is WS 
omposition (WSC), whi
h is usedto 
reate what is 
alled value-added servi
es or 
ompos-ite Web servi
es (CWS) by taking a set of preexisting ele-mentary WS, typi
ally owned and managed by diverse enti-ties, and weaving them together to build more powerful andfeature-ri
h business pro
esses. An example of CWS is anappli
ation that books a �ight, rents a 
ar, and makes a hotelreservation to provide a 
omplete trip reservation pro
ess.There is a myriad of spe
i�
ations available for 
om-posing WS, exempli�ed by the emerging standards su
h asBPEL4WS (Business Pro
ess Exe
ution Language for WebServi
es) [4℄ and industrial solutions su
h as IBM's Emerg-ing Te
hnologies Toolkit ETTK [5℄ and Mi
rosoft's .Net[6℄. In addition, a
ademi
 resear
hers are making substan-tial resear
h efforts, working on a whole panoply of WSCstrategies in
luding dynami
 
omposition (e.g., eFlow [7,8℄), de
larative 
omposition (e.g., SELF-SERV [9,10℄), andsemanti
 
omposition (e.g., SHOP2 [11℄). A 
areful investi-gation of the major part of the available solutions for WSCreveals that only a very few 
ases are geared toward a dis-tributed environment, su
h as the SELF-SERV framework.However, all the other approa
hes, su
h as BPEL4WS andeFlow, only support the integration of WS into a 
entralizedmodel 
onsisting of dedi
ated 
entralized engine(s). Theyhave totally ignored the nature of theWS environment whereintera
tion follows a peer-to-peer model and where ea
h peerWS owner provides a set of servi
es that 
an be used to 
om-pose a CWS.The WSC te
hnology is still regarded as immature: it re-quires 
onsiderable development before rea
hing its apogee[12,13℄. In parti
ular, the WSC te
hnology has to over
omea major obsta
le�the widely re
ognized unreliability of theInternet�be
ause all the available WS rely heavily on theInternet to be deployed. Adding to the Internet unreliabilityis a whole set of 
hara
teristi
s of the modern 
omputing en-vironments (e.g., unpredi
tability, heterogeneity, autonomy,dynamism, 
omplexity, et
.) in whi
h the WS subsist, mak-ing the most unexpe
ted failure a normal part of any WS.Furthermore, with the assembly of several elementary WSinto a CWS to 
reate ri
her fun
tionalities, the failure fre-quen
y is more important than ever.In this paper we advo
ate that, when 
hallenging theWSC issue, the earlier we a

ept the inevitability of failuresand make available proper failure-handling me
hanisms�from the very early stage of the CWS design�the greaterare the 
han
es of a
hieving a signi�
ant gain in dependabil-ity. To formalize this vision, we propose FENECIA (FailureEndurable Nested-transa
tion based Exe
ution of Compos-ite web servi
es with In
orporated state Analysis), in whi
hwe ta
kle the WSC issue from different viewpoints to guar-antee a higher level of dependability. Our approa
h aimsat being, simultaneously, a failure-handling-devoted CWSspe
i�
ation, exe
ution, and QoS assessment approa
h. Ourframework is depi
ted in (Figure 7.1) and its 
ontributionsare threefold:

WS-SAGAS: a CWS spe
i�
ation model. The �rst se
-tion of our approa
h ta
kles the WSC issue from a differ-ent viewpoint: instead of trying to avoid failures, we a

epttheir inevitability and we propose a new CWS spe
i�
ationmodel that builds primarily on the transa
tion 
on
ept�widely re
ognized by the database 
ommunity as a strong
on
ept for enhan
ing reliability and availability [14℄. Spe
if-i
ally, we present a new transa
tion model that we nameWS-SAGAS [15�18℄ to 
apture the underpinning logi
 of theCWS in transa
tions. Our model is spe
i�
ally tailored to �tthe 
hara
teristi
s of the WS ar
hite
ture, thereby allowingto over
ome the 
onstraints imposed by the traditional trans-a
tion model [14℄. In parti
ular, WS-SAGAS spe
i�es theCWS as a hierar
hy of arbitrary nested transa
tions and in-trodu
es key features in
luding state 
apture, vitality degree,and 
ompensation me
hanisms. These me
hanisms are 
rit-i
al to inform of and re
over from any transient failure. Webuild on these 
on
epts to spe
ify failure-endurable CWSas a hierar
hy of re
ursively nested transa
tions. In addi-tion, to de�ne the CWS exe
ution semanti
s without suf-fering from the hindran
e of an XML-based notation, wedes
ribe a WSC in terms of De�nition Rules (DR), Compos-ability Rules (CR), and Ordering Rules (OR), and we intro-du
e graphi
al and formal notations. These rules provide thesolid foundation required to formulate the exe
ution seman-ti
s of a CWS in terms of exe
ution 
orre
tness veri�
ationdependen
ies.THROWS: a CWS exe
ution ar
hite
ture. In the se
ondse
tion of FENECIA, we propose a new ar
hite
ture, namedTHROWS (Transa
tion Hierar
hy for Route Organization ofWeb Servi
es), for a highly dependable distributed exe
u-tion of CWS. In THROWS [19,20℄, CWS exe
ution 
ontrolis hierar
hi
ally delegated among distributed engines; theseengines are dis
overed dynami
ally throughout the CWS ex-e
ution progress and they intera
t in a peer-to-peer fash-ion, thereby avoiding WS exe
ution dependen
e on a sin-gle authority, whi
h 
an 
onstitute a potential single point offailure. In THROWS, we a
hieve failure 
apture and re
ov-ery, and 
ontrol of long-running and parallel transa
tions byintrodu
ing two key 
on
epts: the Candidate Engines List(CEL) and the Current Exe
ution Progress (CEP).QoS estimation and analysis model. In the third se
tionof FENECIA, we fo
us on another issue related to the qual-itative aspe
t of CWS: we verify to what extent the failure-handling me
hanisms we propose are suf�
iently strong toa
hieve a signi�
ant gain in dependability. during exe
u-tion. We present a novel model that 
hara
terizes, estimates,and analyzes several QoS properties of dynami
ally exe-
uted CWS [21,17℄. In parti
ular, we estimate the reliabilityand the exe
ution time of the CWS. We 
on
entrate on oneimportant issue that has re
eived little attention to date, thatis, 
onsidering the potential failures reper
ussions on theCWS exe
ution performan
e estimates.We advo
ate that a
-
ounting for failures and their reper
ussions on the effe
tiveperforman
e of the CWS is parti
ularly required in the WSar
hite
ture, in view of the WS inherent tenden
y to fail rel-atively easily (
ompared to other 
omputing 
omponents).



FENECIA 3Contrary to most of the 
urrent approa
hes dealing withQoS estimations in the WS 
ontext, whi
h rely on the QoSinformation advertised by theWS providers, our model 
om-putes QoS estimates on the basis of the CWS exe
ution ob-servation.Approa
h validation. To 
he
k the feasibility of our ap-proa
h, we present a prototype that we implemented [18,22℄and that spe
i�es CWS as a hierar
hy of re
ursively nestedWS-SAGAS transa
tions and simulates their exe
ution inTHROWS ar
hite
ture. In addition, we report a 
ase studythat demonstrates the appli
ability of our proposal [21℄.By bringing together the se
tions des
ribed above: i) Webuild on the strength of the WS ar
hite
ture-enabling stan-dards. ii) We 
ombine a number of 
arefully sele
ted fea-tures: the transa
tion-based spe
i�
ation and exe
ution, thestate-guided exe
ution failure monitoring, the failure-awareQoS estimation, and the exe
ution observation-driven QoSanalysis. iii) Finally, we introdu
e the dedi
ated failure han-dling and re
overy strategy, and we provide a solid founda-tion for the FENECIA approa
h to be
ome a 
omprehen-sive methodology for the development of highly dependableCWS .The remainder of this paper is organized as follows. Se
-tion 2 des
ribes the type of failures we 
onsider in this pa-per. Se
tion 3 des
ribes the key requirements that a transa
-tion model for the WS 
ontext must satisfy. Se
tion 4 is anoverview of the evolution of the transa
tion 
on
ept. Se
-tion 5 des
ribes our WS-SAGAS transa
tion model. Se
-tion 6 des
ribes our ar
hite
ture, THROWS. Se
tion 7 intro-du
es our QoS model. Se
tion 8 des
ribes our validation and
he
ks the appli
ability of our proposal. Se
tion 9 des
ribesrelated work. Finally, Se
tion 10 
on
ludes our paper andgives a few tentative suggestions for future work.2 Fault ModelThe fault model and the failure modes we identi�ed wereinspired by a failure taxonomy for the parti
ular 
ase of WSar
hite
ture developed in [23℄, whi
h in turn is based on theseminal work of [24℄.A fault model is a model of the types of faults that 
ano

ur in a system while it is running. The widely re
ognizedspe
i�
ities of the modern IT environment in whi
h WSsubsist (e.g., heterogeneity, 
omplexity, and autonomy ofthe parti
ipating systems and of their underlying platforms,versatile 
ommuni
ations proto
ols and dynami
 manage-ment poli
ies, un
ertainties about system boundaries, et
.)make the system subje
t to all the 
lasses of faults 
atego-rized in [24℄. The 
lasses of faults of interest are physi
alfaults in
luding all fault 
lasses that affe
t hardware, inter-a
tion faults in
luding all external faults, and developmentfaults in
luding all fault 
lasses o

urring during develop-ment. However, in multitier CWS, whi
h span multiple in-tera
ting systems, intera
tion faults, whi
h o

ur during use,have the greatest impa
t. Examples of faults in this 
lass arelost/
orrupted messages, pro
ess 
rashes, and faults intro-

du
ed by updates. The intera
tion faults 
an be 
ategorizedas transient faults or permanent faults. We 
onsider perma-nent faults beyond the s
ope of this paper.2.1 Failure ModesA 
omplete understanding of possible failure modes helpsdetermine the me
hanisms for fault toleran
e. In this paper,we 
onsider failure modes en
ountered by the system users,spe
i�
ally timing-related failures where the time of arrival,or the duration of the information delivered, at the servi
edeviates from the expe
ted duration implemented by the sys-tem fun
tion. These failures are environment-related failuresand are asso
iated with WS 
rashes and timeouts; they are
ommonly 
hara
terized as silent failures be
ause the sys-tem servi
e is no longer available to users. At the 
omposi-tion level, spe
ial monitoring is required to handle these fail-ures. This 
lass of failure is handled by performing either aforward re
overy or a ba
kward re
overy without requiringany external intervention.The other 
ategory of failures en
ountered by systemusers is 
ontent-related failures, su
h as WS exe
ution ex-
eptions,WS programmed ex
eptions, ex
eptions propagatedfrom other parti
ipantWS, and fault messages re
eived fromSOAP 
alls to WS. We 
onsider 
ontent-related failures tobe beyond the s
ope of this paper; dealing with them is 
om-plex be
ause WS providers de�ne WS differently.3 A Transa
tion Model for WS Context: KeyRequirementsWe identify the key requirements that a transa
tion modelfor CWSmust satisfy. A number of 
ontributions have addeda transa
tional support for CWS su
h asWS-transa
tion [25℄and WS-CAF [26℄. Although available solutions are mostlyfor stati
ally 
omposed WS, we target a dynami
 CWS. Af-ter identifying the different requirements that a transa
tionmodel for dynami
 CWS must satisfy, we provide a state-of-the art summary of the 
on
ept of transa
tions in databasete
hnology to identify previously proposed 
on
epts that mayhelp to in
rease dependability.REQUIREMENT 1. A generi
 model that 
an 
ombine dif-ferent transa
tional semanti
s: WS interleaved in a CWStends to be hosted by different providers. It is most likelythat their providers are using non
ompliant transa
tion sup-ports (if they provide any). Moreover, it is not possible to
ompel theWS providers to make the same transa
tionmodelavailable. To this end, a transa
tion model for the WS 
on-text must be suf�
iently generi
 to a

ommodate differenttransa
tional semanti
s in the same model. Furthermore, itmust add the required transa
tional semanti
s to the WS, ifthey do not exist. BPEL [4℄ is a typi
al example of a WSCspe
i�
ation that de�nes only one type of transa
tional se-manti
 for all the WS interleaved in the same CWS.



4 Neila BEN LAKHAL et al.The sagas model [27℄ was used to de�ne the requiredtransa
tional support for stati
 CWS in BPEL. In BPEL, theonly way to handle a failure is by 
ompensation; the 
asewhere it is impossible or unne
essary to de�ne a 
ompen-sator for a parti
ular saga is not addressed. It is true that fail-ure atomi
ity is guaranteed be
ause if any a
tivity fails theoverall pro
ess is 
ompensated. However, we argue that thesupport of other transa
tional behaviors in the same modelimproves the 
han
es of CWS exe
ution 
ompleting su
-
essfully. Other required transa
tional behaviors in this situ-ation are: (i) envisaging alternative me
hanisms to 
ompen-sation if 
ompensation is not an option; (ii) having re
ourseto 
ompensation only as a last resort, when there is no meansof saving some part of the pro
ess progress; (iii) in
ludingidempotent tasks that need no 
ompensation.REQUIREMENT 2. A model that 
an support different inter-a
tion patterns: The logi
 underpinning business pro
essestends to be versatile and semanti
ally varying. Consequently,in the same transa
tion, we may have to or
hestrate elemen-tary WS in different ways and in line with different 
ontrol�ow patterns (e.g., join, split, syn
hronize, et
.). However,a major part of the proposed transa
tion models only sup-ports a 
on
urrent or sequential intera
tion within a trans-a
tion. To over
ome this limitation, the Work�ow 
ommu-nity 
ontributions are of interest. In parti
ular, well-knownWork�ow Patterns are those proposed in the seminal work[28℄. This 
olle
tion of patterns has been used to evaluate thefun
tionality of 
ommer
ial produ
ts and standards support-ing the development of pro
ess-oriented appli
ations (e.g.,the METEOR proje
t [29℄ and BPEL [4℄). This work servesas a reliable starting point for de�ning the required aggrega-tion patterns.REQUIREMENT 3. A model that 
an guarantee the best mat
hbetween WS and CWS 
omponents: A well-known 
hara
-teristi
 of theWS realm is its unpredi
tability; this 
hara
ter-isti
 is not part of the equation in either theWork�ow area ortransa
tion models. Both are designed for a 
omputing en-vironment where modi�
ations are very rare. Moreover, thedifferent 
omponents, for either a transa
tion (subtransa
-tions) or tasks for Work�ows, are prede�ned, whi
h totallyeliminates unpredi
tability.Returning to the WS 
ontext, unpredi
tability introdu
esa high probability of failure when WS are stati
ally or
hes-trated. To over
ome this limitation, it is required to de�neseveral alternative WS for the same 
omponent so that ifthe exe
ution using one fails, it 
an be reattempted usingothers. Moreover, as WS tends to provide basi
 fun
tionali-ties, it is very probable that one transa
tion as a whole 
an-not be satis�ed by one WS alone. This introdu
es anotherrequirement for 
omponent/transa
tion semanti
s, 
ompo-sition/de
omposition, to fa
ilitate and ensure that the bestmat
h is made. This requirement satisfa
tion is partially ad-dressed in this paper; for a full des
ription, refer to [18℄.

REQUIREMENT 4. A model that 
an guarantee 
orre
t anddependable exe
ution: Many spe
i�ed details of the CWSrelate to the de�ned exe
ution 
orre
tness restri
tion meth-ods. In parti
ular, we 
ite serializability [30℄, widely a

eptedas the 
ornerstone of database 
orre
tness, as unsuitable.Our justi�
ation is that serializability is very rigid and im-poses restri
tions that are not required (or feasible) in theWS 
ontext. For example, the shared resour
e 
ondition isnot satis�ed be
ause we are no longer dealing with transa
-tions to be serializable against only one database; the differ-ent pro
esses des
ribed as CWS are far more 
omplex thansimple write/read operations.Several proposals, su
h as quasiserializability for a mul-tidatabase environment [31℄, have proposed solutions that,although they relax the stri
t serializability 
ondition, stilltarget 
on
urren
y 
ontrol and database integrity 
ontrol.Nevertheless, for CWS, 
orre
tness means ensuring thatthe semanti
s of the CWS are 
orre
t against the pro
ess-prede�ned semanti
s (i.e., pro
ess logi
 and 
omponents or-ders). Therefore, serializable exe
ution is not required in thesame way as in a 
onventional database [32℄. An importantapproa
h, whi
h indeed was already used for ensuring 
or-re
t exe
ution of CWS, is by spe
ifying a set of A

eptableTerminal States (ATS) [33,34℄.This approa
h was initially proposed for transa
tionalWork�ow systems and later extended to CWS. In this ap-proa
h, designers have a 
ru
ial role in determining whi
his the 
orre
t exe
ution, in terms of ATS. We argue that ATSis a powerful approa
h that �ts well for CWS with a 
entral-ized and stati
 exe
ution, as in [34℄. However, for a dynami
and distributed exe
ution, ATS is insuf�
ient as there is no
entral entity that is responsible for verifying that the exe
u-tion veri�es, or violates, the prede�ned ATS. Moreover, ATSonly veri�es termination dependen
y and, even if the differ-ent 
omponents of a CWS terminate in states in
luded intheir ATS, there is no guarantee, or means of proving, theirexe
ution order 
orre
t. We require spe
ial me
hanisms toenfor
e that the exe
ution order of the 
omponents of a CWSdoes not deviate from the pres
ribed order.4 Transa
tion Con
ept: State of the ArtWe highlight features of several transa
tion models that areinteresting for dependability enhan
ement. We explain forea
h feature/model why it 
an or 
annot be integrated in atransa
tion model tailored for CWS.4.1 Traditional Transa
tion ModelThis model is undoubtedly the pre
ursor of all the transa
-tion models that have been proposed. It refers to a transa
-tion endowed with the ACID (Atomi
ity, Consisten
y, Isola-tion, and Durability) properties [35℄. With these properties,ea
h transa
tion is guaranteed to enfor
e failure atomi
ityand serializability as a 
orre
tness 
riterion. Ea
h transa
-tion has a �at stru
ture.



FENECIA 5Although the effe
tiveness of the traditional transa
tionmodel in 
onventional database appli
ations, where transa
-tions are generally simple and of short duration, is irrefutable,the unsuitability of its stri
t ACID properties for the WS
ontext is 
lear. Maintaining stri
t isolation and serializabil-ity 
auses a la
k of fun
tionality, �exibility, and performan
e.This pre
ludes the possibility of intertransa
tion 
ooperationand long-running transa
tions.4.2 Advan
ed Transa
tion ModelsSeveral advan
ed transa
tion models have been proposedin response to the in�exibility of the traditional transa
tionmodel (refer to [14℄ for a 
omprehensive des
ription of someof these). We investigated the appli
ability of some of thesemodels that inherently allow transa
tion 
omposition (stru
-turing) �an essential feature for a model for CWS�and en-
ompass 
on
epts with re
ognized 
ontributions in enhan
-ing dependability but not yet part of the WS ar
hite
ture.The nested-transa
tionmodel [36℄, whi
h uses a serializ-able 
orre
tness 
riterion, made a signi�
ant 
ontribution tothe database 
ommunity by: (i) extending the �at transa
tionstru
ture to a multilevel stru
ture; (ii) introdu
ing the 
on-
ept of 
ontingent and nonvital subtransa
tions; and (iii) al-lowing a higher degree of intratransa
tion parallelism. All ofthese 
on
epts are of 
onsiderable relevan
e to WS ar
hite
-ture be
ause, �rst, the 
on
urrent exe
ution of transa
tion isan essential feature. Se
ond, 
ontingent subtransa
tions areeasily realizable be
ause WS that share the same fun
tion-alities are numerous; 
onsiderable resear
h effort is dire
tedtoward a
hieving this issue. Third, de�nition of nonvital sub-transa
tions is essential to in
rease availability.To deal with the problem of long-lived transa
tion faults,the 
on
ept of 
ompensation was �rst introdu
ed in the sagasmodel [27℄. A saga 
onsists of a set of ACID subtransa
-tions with a prede�ned order of exe
ution and a set of 
om-pensating subtransa
tions. If a long-lived transa
tion fails,it 
an be aborted and rolled ba
k, and then retried. How-ever, if a saga as a whole be
omes irre
overable and has toabort, appropriate 
ompensations are run to 
ompensate forthe 
ompleted parts of the transa
tion (ba
kward re
overy),that is, semanti
ally undoing the effe
ts of the failed parts.The other possibility in re
overy is a forward re
overy, thatis, the system needs to retry the same failed transa
tion parts.The 
ompensation ingredient here is of parti
ular interestbe
ause it 
an realize a �exible fault-handling approa
h�ahighly desirable 
hara
teristi
 in the WS 
ontext, in view ofits high failure tenden
y. However, the restri
tion imposedby sagas that ea
h subtransa
tion must be su

essfully 
om-pensatable 
annot always be ful�lled. Therefore, alternativeme
hanisms for non
ompensatable tasks are required.The nested-sagas transa
tion model has been proposedas an extension to the sagas model [37℄. It treats 
ommu-ni
ation between transa
tion steps as an essential feature in

the WS 
ontext. Ea
h saga spe
i�es input and output ports,bound at run time to mailboxes (i.e., queue of messages).Communi
ation is a
hieved using three different 
lasses ofprede�ned 
ommands: Bind, Send, and Re
eive.The Flex transa
tion model was designed to allow more�exibility in transa
tion pro
essing [33,38℄. A �exible trans-a
tion is spe
i�ed by de�ning a set of subtransa
tions, a setof intratransa
tion exe
ution dependen
ies, and a set of a
-
eptable terminal states (ATS) de�ning the 
onditions forthe su

ess of the �exible transa
tion. The Flex transa
tionmodel goals are very similar to our goals be
ause it tar-gets a multidatabase system, whi
h 
an be assimilated toa spe
ial 
ase of the WS environment where the parti
i-pating systems are prede�ned and 
annot dynami
ally dis-appear without prior noti
e. In parti
ular, the way a �ex-ible transa
tion is de�ned makes it the best 
andidate forCWS, as it allows the designer to spe
ify a set of fun
tion-ally equivalent subtransa
tions, ea
h of whi
h, when 
om-pleted, a

omplishes the task. Moreover, the 
ontribution ofthe state and the intratransa
tion exe
ution dependen
ies as-so
iated with ea
h transa
tion 
an over
ome the statelessWS and provide �exible atomi
ity and isolation, espe
iallyif the subtransa
tions support some form of 
ompensation.It is also suitable for 
ontrolling and tra
king the exe
utionprogress in a distributed environment.While these advan
ed models differ in various forms,they all share the same line of thinking: the stri
t ACIDproperties support is no longer a viable solution for a non-traditional database environment. In this sense, they exploitappli
ation-spe
i�
 semanti
s to de�ne nonserializable 
or-re
tness 
riteria to spe
ify and 
onstrain the behavior of thetransa
tion 
omponents and their intera
tions. As well asthese transa
tion models, many others were also proposedfor databases (e.g., 
ooperative SEE transa
tions [14℄, DOMtransa
tions [14℄, et
.) or by the Work�ow resear
h 
ommu-nity. We limited our study to these models be
ause they areat the base of many others that were proposed later.5 WS-SAGAS Transa
tion ModelWe propose to adopt features of interest from the transa
-tion models des
ribed above and to build on them to makeour transa
tion model suf�
iently ri
h to support any CWSunderpinning logi
 and to provide it with the required me
h-anisms to guarantee a dependable spe
i�
ation of dynami
CWS exe
uted in a peer-to-peer environment.Spe
i�
ally, we inherit the arbitrary nesting of transa
-tions, the forward re
overy with exe
ution retrial, the ba
k-ward re
overy ensured with 
ompensation me
hanism, thevitality degree, the state, theWork�ow-like aggregation pat-terns, and the intratransa
tion exe
ution dependen
ies toensure 
orre
t exe
ution.
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Fig. 4.1 WS-SAGAS transa
tion model: graphi
al notation Gi of a pro
ess Pi des
ribed as a hierar
hy of re
ursively nested WS-SAGAS5.1 General AssumptionsASSUMPTION 1. We assume we are dealing with businesspro
esses that may need to 
ombine various transa
tionalbehaviors. That is, a pro
ess puts together different a
tivi-ties: several are idempotent and need not be undone (e.g.,displaying order information), several 
an be easily undoneor 
ompensated for (e.g., adding produ
ts to an order), andseveral others 
annot be (automati
ally) undone be
ause theymark a de
ision, 
ommonly 
alled non
ompensatable (e.g.,
he
king out and ordering).ASSUMPTION 2. We assume that there is no dependen
ybetween su

essive invo
ations of the sele
ted WS, if thedynami
 WS dis
overy and sele
tion leads to sele
ting thesame WS,

ASSUMPTION 3. We assume the pro
ess of 
andidateWS dis
overy, sele
tion, and mapping, and that veri�
ationthat a 
ertain 
andidate WS and a 
ertain 
omponent froma CWS are semanti
ally equivalent 
an be performed auto-mati
ally. A very a
tive area of resear
h is measuring thesemanti
 and synta
ti
 similarity between WS to ensure thebest mat
h 
an be done. We 
onsider this issue beyond thes
ope of this paper, as we 
an apply any of the available pro-posals.ASSUMPTION 4. We assume the system designers havea 
omprehensive des
ription of the business rules buried inthe pro
ess-underpinning logi
 and they 
an use these ruleswithout ambiguity to dis
ern the different transa
tional be-haviors and their s
ope (i.e., a CWS, a 
omponent from aCWS, an aggregation of 
omponents, et
.).
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ription of WS-SAGAS Model Salient FeaturesOur model introdu
es the following features to spe
ify theunderpinning logi
 of a pro
ess (e.g., virtual travel agen
y),as a fault-tolerant and dynami
ally exe
uted CWS against apeer-to-peer environment:5.2.1 Pro
ess, Transa
tion, and ElementTo allow a dynami
 pro
ess 
omposition, instead of spe
i-fying the underpinning logi
 of a pro
ess using a set of pre-existing WS woven together into a stati
 CWS, we intro-du
e the 
on
ept of an Element�represented by a re
tanglein (Figure 4.1)�and use it as a unit in the 
omposition ofa pro
ess as a hierar
hy of re
ursively nested WS-SAGAStransa
tions.The same element 
an be simultaneously a 
omponentfrom a WS-SAGAS and a parent of other elements in an-other WS-SAGAS. Therefore, it is 
alled a 
omposite ele-ment and we represent it as a blue re
tangle. Alternatively,an atomi
 element is only embedded in a WS-SAGAS andis represented as a white re
tangle.On exe
uting a pro
ess, WS are dynami
ally dis
overed,and 
andidates are sele
ted and mapped either to the differ-ent elements or to WS-SAGAS, 
onsidering the WS avail-ability. In this paper we limit the WS sele
tion and mappingto the atomi
 elements. However, our approa
h supports themapping to entireWS-SAGAS. This issue is detailed in [18℄.The 
ontrol �ow between the different elements spe
i�es theordering relation between the different elements and is rep-resented by dire
ted edges. Finally, the data �ow spe
i�eshow the data produ
ed by an element are transferred to an-other element and are represented by the mapping betweenthe different input and output boxes; we do not 
onsider thisissue in this paper and we will address it in our future work.More pre
isely, we adopt the following notation of a pro-
ess, illustrated also by (Figure 4.1):Pi[ni;mi℄ :WS-SAGASi (ni;1 elements) (nesting level 1)`WS-SAGASi:a (ni;2 elements) (nesting level 2)` :::`WS-SAGASi:a:�:b (ni;p elements) (nesting level p)` :::`WS-SAGASi:a:�:b:�:
 (ni;mi elements)(nesting levelmi)(5.1)A pro
ess (denoted Pi) is assumed to have a unique identi-�er i as a subs
ript, where i ranges over the set of naturalnumbers � to designate different pro
esses. Ea
h pro
ess isassumed to have ni elements distributed over mi nesting lev-els. In the hierar
hy of WS-SAGAS forming the pro
ess, wedenote the uppermost WS-SAGAS WS-SAGASi. Note thatwe keep the same subs
ript for the 
orresponding pro
ess.Note also that WS-SAGASi is the only WS-SAGAS in thehierar
hy that has no parent.

In (WS-SAGASi `WS-SAGASi:a), the symbol �`� indi-
ates thatWS-SAGASi is de�ned at the top of the subtrans-a
tionWS-SAGASi:a. That is, the parent element of the sub-transa
tionWS-SAGASi:a must be Ei:a, one of the elementsaggregated inWS-SAGASi.A hierar
hy of WS-SAGAS forming a pro
ess 
ontainsa parentWS-SAGAS, plus zero or more 
hildren; the 
hildren
an be atomi
 elements or 
omposite elements, parents ofother WS-SAGAS.We guarantee the uniqueness of an element identi�er bykeeping the identi�er of the subtransa
tion it appertains toand 
on
atenating it to a unique identi�er for the element.More formally, let Ei:a be one of the elements from the up-permost transa
tionWS-SAGASi and �i:a� its identi�er; �i�is the index of its parent WS-SAGAS.We emphasize that thenumber of �:00 in the identi�er indi
ates the nesting level, andthe last digit (i.e., a for Ei:a) indi
ates the order. We assumethat �a� is de�ned in [1::jWS-SAGASij℄ where jWS-SAGASijis the 
ardinality (i.e., the number of assembled elements)of the subtransa
tionWS-SAGASi and is equal to ni;1. Sim-ilarly, it is equal to ni;2 for WS-SAGASi:a forming the se
-ond nesting level, and equal to ni;mi for the nesting levelmi 
ontainingWS-SAGASi:a:�:b:�:
 . To generalize, we use inWS-SAGASi:a:�:b the symbol ��� to indi
ate that there existsa subtransa
tion that has as a parent the element Ei:a:�:b andthat 
omes in one of the nesting levels after nesting level 1,whi
h 
ontains the element Ei:a. In �i:a:� :b� the symbol ���is repla
ed to de�ne the WS-SAGAS a
tual identi�er. WeassumeWS-SAGASi:a:�:b is the nesting level p where p<miand mi 
orresponds to the last nesting level in Pi. We denotethe last subtransa
tion in the hierar
hy, whi
h 
orrespondsto the nesting level mi by WS-SAGASi:a:�:b:�:
 ; its �rst ele-ment is denoted Ei:a:�:b:�:
:1 and its last element is denotedEi:a:�:b:�:
:ni;mi .5.2.2 Vitality DegreeTo add �exibility to the way failures 
as
ade through a pro-
ess, depi
ted as a hierar
hy of WS-SAGAS transa
tions,we distinguish vital from nonvital elements. The vital-ity degree of an element is denoted by a supers
ript set to�v� for vital and to �v̄� for nonvital. The vitality degreeobeys these assumptions:� A vital element (denoted Evi:k) must be exe
uted su
-
essfully (i.e., it has to 
ommit) for its parent transa
tionto 
ommit.� A nonvital element (denoted E v̄i:k) may abort withoutpreventing its parent transa
tion from 
ommitting.� Aborting a vital elementEvi:k indu
es aborting the wholetransa
tion it appertains to if there is no alternative WSto retry it.� Aborting a nonvital elementE v̄i:k does not re�e
t on theexe
ution of the transa
tion it appertains to; the pro
ess
ould 
omplete su

essfully although not all its 
ompo-nent elements were 
ommitted. Doing so is expe
ted toin
rease availability and to de
rease the probability ofoverall pro
ess failure o

urring.
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ribe below the de�nition of the vitality degree of apro
ess Pi depi
ted as a hierar
hy of re
ursively nested WS-SAGAS transa
tions. In the remainder of this paper, an ele-ment's supers
ript is omitted and the notation (Ei:k) withoutspe
ifying the vitality degree is used for an element whennot relevant or interesting. The distin
tion between a vitalelement (Evi:k) and a nonvital element (E v̄i:k) is only givenwhen a spe
ial 
onsideration is required.5.2.3 Transa
tional BehaviorEvery atomi
 element Ei:k has a transa
tional behavior. Thetransa
tional behavior of an element is 
losely related to thenature of its fun
tional semanti
s and is determined prin
i-pally by the designers to des
ribe how the element failure
an be handled. The transa
tional behavior of an element
an be one of the transa
tional behaviors des
ribed below:� Compensatable: The fun
tional semanti
s of the ele-ment 
an be undone.� Non
ompensatable: The fun
tional semanti
s of theelement 
annot be undone (automati
ally) on
e done.Two other transa
tional behaviors are impli
itly supportedby our model: retriable and idempotent elements. Weassume all the vital elements are retriable with differ-ent semanti
ally equivalent WS and that the nonvital ele-ments are not retriable be
ause their ful�llment is optional.An idempotent element is one that has no effe
t (e.g., readoperation); we treat this as a 
ompensatable element thatis undone by running an empty 
ompensator.The 
hoi
e of potential 
andidate WS for a parti
ular el-ement must 
onsider the required transa
tional behavior forthat element. When an atomi
 element is 
ompensatable,we represent its 
ompensating element just below it with around-
ornered re
tangle (see Figure 4.1). Assume that theelement Ei:1 is 
ompensatable: we denote its 
ompensat-ing element E 0i:1. Similarly, a 
omposite element is 
om-pensated by the different elements aggregated in its 
orre-sponding WS-SAGAS: in (Equation 5.1), Ei:a is a 
ompositeelement represented by the subtransa
tionWS-SAGASi:a andit 
an be 
ompensated by 
ompensating WS-SAGASi:a. Wedes
ribe this in detail below.5.2.4 StateWe atta
h to ea
h atomi
 element from aWS-SAGAS trans-a
tion a state for the following reasons.(i) To de
ide how to advan
e a pro
ess exe
ution, (i.e., tode
ide whether to delegate the exe
ution 
ontrol to otherelement(s) or to resume it), it is essential to know theexe
ution progress of ea
h element separately.(ii) At a 
ertain point of the exe
ution of a pro
ess, the pre-spe
i�ed obje
tives may be a
hieved. In this 
ase, thepro
ess is 
onsidered to be su

essfully 
ompleted and
an be 
ommitted. Be
ause we 
onsider a distributedmodel, where there is no 
entral monitor that has allthe required information about the exe
ution progress,

we 
annot make a de
ision unless we atta
h a state toea
h element. We 
an then derive the 
urrent state of thewhole pro
ess. More importantly, we 
an dedu
e whetherthe exe
ution progress is 
orre
t against the pro
ess pre-spe
i�ed semanti
s and ordering.At any time, the state of every elementEi:k�denoted statei:k(in Figure 4.1)�keeps the same identi�er as the element it isatta
hed to. The state of an element is assumed to be ex
lu-sively in one of the six states de�ned below, if the elementis 
ompensatable (see Figure 5.1 (a) and (b)):1. Waiting: Ei:k is not yet submitted for exe
ution and isstill waiting for the exe
ution progress to rea
h its level.2. Exe
uting: Ei:k is effe
tively being exe
uted.3. Failed: Ei:k has en
ountered a failure.4. Aborted: Ei:k has re
eived a request to abort itself andhas obeyed it.5. Committed: Ei:k has su

essfully terminated and was
ommitted.6. Compensated: Ei:k has been 
ompensated for.If an element isnon
ompensatable, the set of states thatmodel the element's internal behavior is redu
ed to �ve statesby eliminating the 
ompensated state (see Figure 5.1 (
)and (d)). A vital element is assumed to be retriable,and there is therefore a dire
ted edge between the failedand exe
uting states in Figure 5.1, (a) and (
).For an element to transfer from one state to another, atransition 
ondition has to be evaluated. When it is veri�ed,several a
tions may be triggered. Of the different a
tions,one a
tion makes the state of the element 
hange from onestate to another.For a 
ompensatable element Ei:k, to transit from thestate waiting to the state exe
uting, we assume the veri-�ability of the 
ondition that indi
ates that at least one WSbearing the same semanti
 fun
tionalities as the element mustbe sele
ted. Only when the sele
tedWS is mapped to the el-ement does the element's state be
omes exe
uting.Depending on the allo
ated WS exe
ution progress andthe progress of other elements in the same WS-SAGAS, theexe
uting state 
an transit to aborted, if the WS exe
u-tion must be 
an
eled, or it 
an transit to either the 
ommittedor the failed states; this depends on whether the sele
tedWS a
hieved the element's obje
tives or not.Assume that the state of a 
ompensatable element wasset to failed. Subsequently, depending on the element's vi-tality degree, the pro
essing differs:a) When the element is vital, another 
andidate WSthat bears the same semanti
 fun
tionalities is sele
ted andthe exe
ution is retried with this new 
andidate by 
hangingthe element state ba
k to exe
uting; su

ess of exe
utionof the new WS means su

ess of the element and its state isset to 
ommitted. However, if an element is retried a num-ber of times with different WS and all the attempts are un-su

essful and it is no longer possible to retry the exe
ution,for any prede�ned reason, then the element's state remainsfailed, and a ba
kward re
overy is triggered.
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(d) State transition diagram of a 

non-vital non-compensatable element

(c) State transition diagram of a 

vital non-compensatable element
(b) State transition diagram of a 

non-vital compensatable element

(a) State transition diagram of a   

vital compensatable elementFig. 5.1 State transition diagram for elementsb) The other possible 
ase is when we have a nonvitalelement. If the �rst 
andidate WS exe
ution failed, the el-ement's state is set to Failed, no exe
ution retrial is at-tempted, and the exe
ution of the whole WS-SAGAS is re-sumed, as if the element was su

essful.The main differen
e in pro
essing a 
ompensatableand a non
ompensatable element be
omes 
lear when anelement is in the 
ommitted state and the exe
ution of an-other vital element from the same WS-SAGAS 
annot beretried so a ba
kward re
overy is ne
essary. In su
h a 
ase,all the 
ompensatable elements in the 
ommitted state are
ompensated and their state then be
omes 
ompensated.The 
ase of non
ompensatable elements in
luded ina WS-SAGAS requires spe
ial 
onsideration be
ause the is-sue of mixing 
ompensatable and non
ompensatable 
om-ponents in the same transa
tion is a dif�
ult problem.In [38℄, the authors introdu
ed a 
ommit proto
ol to en-sure the 
ompensatable 
omponents are 
ommitted beforethe 
ommitment of the non
ompensatable 
omponents.The global 
ommit/abort de
ision is determined by the out-
ome of the non
ompensatable 
omponents. If they abort,all of the 
ompensatable 
omponents are 
ompensated. Inour model, we extend this proto
ol and we use mainly thestate 
on
ept to allow the exe
ution of a hierar
hy of re
ur-sively nested WS-SAGAS more �exibly. A detailed dis
us-sion of this issue is in the following se
tion.5.2.5 Failure Re
overyThe WS-SAGAS de�nes a 
ompensating element for ea
helement, when possible. There are two 
hoi
es when an el-ement fails to 
ommit (e.g., allo
ated WS failure): the �rstis to attempt the element exe
ution retrial, whi
h is a vari-ant of the sagas forward re
overy. However, the differen
e isthat the same element is reattempted but with another WS.If the �rst 
hoi
e is not possible, then the se
ond 
hoi
e isba
kward re
overy, in whi
h the WS-SAGAS offers eitherto 
ompensate or to abort the elements to bring the overallCWS ba
k to a 
onsistent state. We elaborate on this pointin greater detail later in this se
tion.

5.2.6 WS-SAGAS NotationsAn investigation of most of the 
urrent CWS spe
i�
ationlanguages and approa
hes showed that there are three main
ategories of notations adopted to depi
t a CWS: (a) The�rst 
ategory uses an XML-based notation; BPEL [4℄ andWebTransa
t [39,40℄ are typi
al examples. (b) The se
ond
ategory opts for a graphi
al notation for more expressive-ness and to over
ome the 
omplexity of an XML-based no-tation; they typi
ally use a standardizedmodeling notation todes
ribe CWS. Examples are state 
harts and UMLmodels�a typi
al example is SELF-SERV [41℄�or they de�ne aproprietary notation, if the standard notations are not suf-�
iently ri
h to a

ommodate all the desired semanti
s oftheir approa
hes, e.g., eFlow [8℄. (
) The third 
ategory prefersformal notations su
h as p-
al
ulus or other pro
ess alge-bras be
ause of their 
on
iseness and power to analyze thesemanti
s and 
orre
tness of the model [42℄.In WS-SAGAS, we advo
ate the use of three notationsbe
ause we are strongly 
onvin
ed that one notation alone isinadequate to express all the semanti
s of an approa
h andmay not be suitable for different users. First, instead of anXML-based notation, we propose a textual notation that 
anbe used to generate automati
ally an XML-based notationof the CWS, when later implementing the system. Our tex-tual notation is mu
h less error prone, less 
omplex, morehuman readable, and more easily modi�able. The most im-portant feature of our notation is that we exploit it to spe
ifyand 
onstrain the behavior of the different elements in a pro-
ess and the intera
tions between them. In addition, to 
om-plement our textual notation and to de�ne a 
ommon solidfoundation for 
omparison with other formal approa
hes,we propose a formal notation. We also de�ne a proprietarygraphi
al notation and we use this to illustrate a runningexample, be
ause the standardized notations, su
h as UMLdiagrams, do not en
ompass all the semanti
s we requiredfor our model. Finally, to have a 
omprehensive notation ofa CWS, our three notations 
an be 
ombined or used sepa-rately.
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|| ) |Fig. 5.2 WS-SAGAS aggregation patterns5.2.7 WS-SAGAS Aggregation PatternsTo de�ne the aggregation patterns, we propose building onexisting work on Work�ow patterns and on an analysis ofexistingWork�ow languages reported in [28℄. The followingmotivated our 
hoi
e: a) Control �ow dependen
ies en
oun-tered in Work�ow modeling 
omply with the WS 
ontext,be
ause the situations they 
apture are also relevant in thisdomain. b) Existing languages for WSC, su
h as BPEL andBPML, were built on the basis of languages for Work�owmodeling [43℄; therefore, we have a 
ommon basis for 
om-paring our work with these approa
hes. 
) It is possible forour model to in
orporate different aggregation patterns intothe same stru
ture, whi
h was not allowed with advan
edtransa
tion models proposed previously. By in
orporatingthe transa
tion 
on
ept with the different aggregation pat-terns we enable a �exible and dependable WSC [18℄.The analysis of existing Work�ow languages allowed usto identify the relevant patterns ne
essary to model the logi
of any pro
ess, no matter what it is. We identi�ed eightpatterns: sequen
e, parallel, sele
tion, swit
h, rendezvous,

sele
tive merge, ex
lusive merge, and iterative (see Figure5.2) [17,18℄. In [28℄, the authors introdu
ed 20 patterns,but we limited our study to eight of these and we delib-erately ex
luded the others (su
h as the 
an
ellation pat-terns or the state-based patterns) be
ause those eight pat-terns, when 
ombined with the 
ompensation, the state, andthe vitality degree, are suf�
ient to express any pro
ess thatour approa
h 
an support. ExistingWork�ow languages pro-vided either a graphi
al notation or an XML-like notation ofthese patterns and, to the best of our knowledge, there is nostandard notation for su
h aggregation patterns. We have al-ready identi�ed the limitations of XML-like notation and de-s
ribed why we prefer to de�ne our textual notation.We 
on-tinue with the same line of thinking and propose a pro
essalgebrai
 approa
h to formalize the des
ription of our aggre-gation patterns. Instead of an informal notation, we proposeusing pro
ess algebras (PAs) be
ause we are dealing withaggregation patterns that have semanti
s and the 
orre
tnessof their semanti
s needs to be veri�ed. PA 
ontributions inthis dire
tion make them an interesting 
andidate.



FENECIA 115.3 WS-SAGAS NotationThe underpinning logi
 of a pro
ess Pi, depi
ted as a hier-ar
hy of re
ursively nested WS-SAGAS, is denoted by a 3-tuple hTi;Gi;Fii formed by a textual notation (Ti), a graph-i
al notation (Gi), and a formal notation (Fi).5.3.1 Des
ription of Textual Notation (Ti )A textual notation of a pro
ess Pi (denoted Ti) is formedwith three different sets of Rules identi�ed by the systemdesigners using the pro
ess logi
 des
ription: the set of Def-inition Rules (DR), the set of Composability Rules (CR), andthe set Ordering Rules (OR).The DR,CR, and OR share the same tuple-like notationbut their semanti
s differ be
ause: (i) Ea
hDR gives relevantinformation of an entity that either relates to the CWS spe
-i�
ation (e.g., a pro
ess, an element, a 
omponent, et
.) orintervenes in the CWS exe
ution (e.g., a WS, a 
oordinator,et
.). (ii) Ea
h CR spe
i�es the relation between the differ-ent entities de�ned by the different DR (i.e., how the entitiesare 
ombined, how the entities intera
t with ea
h other, et
.).(iii) Ea
h OR de�nes the 
ondition that the relation betweenthe different entities de�ned by the CR must verify (i.e., un-der whi
h 
ondition entities are 
ombined, under whi
h 
on-dition entities intera
t with ea
h other).We propose the following tuple-like generi
 notations tode�ne a DR, a CR, and an OR:DR(Entityu) :hAttribute1�; :::iDR(Entityv) :hAttribute2�; :::iDR(Entityw) :hAttribute3�;(Attribute4;Attribute5); :::iCR(Entityw)! hEntityu;EntityviOR(Entityw)! hEntityu op Entityvi ;where:� Attribute is the relevant information about an Entity.We de�ne the multipli
ity of ea
h attribute to indi
atethe Attribute o

urren
e number, that is, the number oftimes we may �nd the attribute; we de�ne four formsof an attribute's multipli
ity: i) The notation Attribute1�indi
ates that Entityu may de�ne zero or several valuesof Attribute1. ii) The notation Attribute2� indi
ates thatthe Entityv must de�ne at least one value of Attribute2.iii) The notation Attribute3� indi
ates that this attributeis optional and at most one value 
an be provided. iv) Anattribute name with nothing next to it similarly to the at-tribute Attribute4 indi
ates that one value only is to beprovided. v) Finally, Attribute4 and Attribute5 are asso-
iated and this is indi
ated by the parentheses.� CR(Entityw) indi
ates that Entityw de�nes a 
ompos-ability relation between Entityu and Entityv.� op is the 
ondition that the 
omposability relation be-tween Entityu and Entityv must de�ne.Spe
i�
ally, we de�ne DR to provide relevant informationabout three different entities: a pro
ess, a WS-SAGAS, and

an element. The set of CR identi�es the relation of 
om-posability between the different elements and WS-SAGAS(e.g., whi
h WS-SAGAS is 
omposed of/
omposing whi
hWS-SAGAS/elements). Finally, the set of OR identi�es theordering 
ondition that every relation of 
omposability be-tween the elements and pro
ess must verify.De�nition 5.1 (De�nition Rule of an Element )Let Ei:k be an Atomi
 element from WS-SAGASi. DR(Ei:k)is an ordered tuple that provides relevant information of anEi:k, namely its name, des
ription, state, vitality degree, trans-a
tional behavior, operation with its 
orresponding inputand output parameters, and itsQoS attributes.We added onlythose attributes we 
onsidered to be fundamental in 
ompos-ing WS; extending theDR expression with other attributes ispossible. We use the following notation of a DR of an ele-ment, whi
h is a spe
ialization of the generi
 DR notationfor an entity des
ribed above:DR(Ei:k) :hname;des
ription;behavior;state;type;vitality;(operation� (in�;out�));qos�i ;where:- name is the name of the element.- des
ription is a 
on
ise des
ription of the element'smain semanti
 fun
tionality.- behavior is the transa
tional behavior of the element.This attribute veri�es the 
ondition:DR(Ei:k):behavior 2 f
ompensatable;non-
ompensatableg :- state des
ribes the exe
ution progress of the element.- vitality is the vitality degree of the element. This at-tribute veri�es the 
ondition:DR(Ei:k):vitality2 fvital;nonvitalg :- type is the element granularity: an element that has no
hildren is atomi
. Otherwise the element is a parent ofa WS-SAGAS and its type is 
omposite.- operation� indi
ates that an element may de�ne sev-eral values of operation, but at least one.- in� and out� are the different input and output parame-ters of the element.- The different input and output parameters are asso
iatedwith their 
orresponding operation by using parenthe-ses; we may de�ne at least one operation, but input andoutput parameters are optional. For example, we mayhave (operation1(in1; in2;out1));(operation2()), for anelement with two operations, one of whi
h is a void fun
-tion that takes no argument.- qos� are the different QoS attributes of the element,whi
h are estimated when the element is exe
uted. Wedenote this by qos tuples of attributes; for example, wemay have qos�=< qos1;qos2;qos3 > to des
ribe an ele-ment where we are interested in three parti
ular QoS at-tributes: the exe
ution time, the reliability, and the 
ost.
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h atomi
 
ompensatable element Ei:k verifying(DR(Ei:k):behavior= Compensatable and DR(Ei:k):type=Atomi
), we de�ne a 
ompensating element (denoted E 0i:k).This element is invoked if a failure later in the exe
ution ofEi:k makes it ne
essary.The o

urren
e of element E 0i:k after element Ei:k restoresthe system to a state that is an a

eptable approximation ofits state before the start of the exe
ution. For every 
ompen-sating element, we may de�ne the de�nition rule of a 
om-pensating element (exa
tly DR(E 0i:k)), in the same way wede�ned it for an element.De�nition 5.2 (De�nition Rule of a WS-SAGAS)Let WS-SAGASi:a be a subtransa
tion formed by ni;2 ele-ments and having as a parent the 
omposite element Ei:afromWS-SAGASi (see Equation 5.1).DR(WS-SAGASi:a) is an ordered tuple that provides relevantinformation on WS-SAGASi, spe
i�
ally its name, des
rip-tion, state, vitality degree, transa
tional behavior, and QoSattributes. The values of several attributes are dedu
ed fromthe attributes in the 
omposing elements of the WS-SAGAS.DR(WS-SAGASi:a) :hname;des
ription;behavior�;state�;vitality;qos�i ;where:- name is the name identi�er of the WS-SAGAS.- des
ription� is a 
on
ise des
ription of theWS-SAGAS;it 
ombines the des
ription of the different elements thatappertain to this WS-SAGAS and veri�es:DR(WS-SAGASi:a): des
ription�ni;2[̀=1(DR(Ei:a:`):des
ription) :- state� des
ribes the exe
ution progress of the subtrans-a
tionWS-SAGASi:a It is an ni;2-tuple formed by the statesof the elements 
omposingWS-SAGASi:a:DR(WS-SAGASi:a):state�� ni;2[̀=1(DR(Ei:a:`):state) :We assume that only the state of the vital elements af-fe
ts the overall WS-SAGAS 
ommitment's de
ision. Inaddition, all the 
ompensatable elements must wait forthe non
ompensatable elements from the same sub-transa
tion (i.e., nesting level) to be able to 
ommit theirwork. By putting together these two assumptions, we 
anredu
e the state of a WS-SAGAS to the set of states ofthe elements that verify the 
onditions:DR(WS-SAGASi:a):state�� ni;2[̀=1(DR(Ei:a:`):state) with:DR(Ei:a:`):vitality= Vital andDR(Ei:a:`):behavior = Non
ompensatable :

- vitality is a redu
tion of a tuple formed by ni;2 vitalitydegrees, one for every atomi
 element aggregated inWS-SAGASi:a. We redu
e this ni;2-tuple to a one-valuetuple. If there is at least one vital element in a WS-SAGAS, the overall WS-SAGAS is vital. However, aWS-SAGAS is nonvital if all of its 
omposing ele-ments are nonvital. These requirements are formulatedbelow:� DR(WS-SAGASi:a):vitality= nonvital ifff8Ei:a:` 2WS-SAGASi:aj` 2 [1::ni;2℄g we have:(DR(Ei:a:`):vitality= nonvital).� DR(WS-SAGASi:a):vitality= vital ifff9Ei:a:` 2WS-SAGASi:aj` 2 [1::ni;2℄g that veri�es:(jDR(Ei:a:`):vitality= vital).- behavior� is a ni;2 tuple formed by the transa
tional be-haviors of the atomi
 elements inWS-SAGASi:a. Its ex-pression is:DR(WS-SAGASi:a):behavior�� ni;2[̀=1(DR(Ei:a:`):behavior) :- Finally, qos� are the different QoS attributes we 
on-sider; we derive these on the basis of the qos attributesof the elements that appertain to the WS-SAGAS. Wedes
ribe how below.De�nition 5.3 (Set of De�nition Rule of a Pro
ess)The set ofDR that de�nes a pro
ess Pi is derived below basedon the expression of a pro
ess in (Equation 5.1):DR(Pi)[ni;mi℄ �i:a:�:b:�:
[̀=i DR(WS-SAGAS`)i:a:�:b:�:
:ni;mi[¶=i:1 DR(E¶ )� �DR(WS-SAGASi) i:ni;1[¶=i:1DR(E¶ ))S (DR(WS-SAGASi:a) i:a:ni;2[¶=i:a:1DR(E¶ )) � � �S (DR(WS-SAGASi:a:�:b)i:a:�:b:ni;p[¶=i:a:�:b:1DR(E¶ )) � � �S (DR(WS-SAGASi:a:�:b:�:
)i:a:�:b:�:
:ni;mi[¶=i:a:�:b:�:
:1DR(E¶ )� :De�nition 5.4 (Composability Rule of a WS-SAGAS)The next step in our modeling approa
h is de�ning the Com-posability Rules (CR), essential in de�ning the nesting and
omposition dependen
y between the differentWS-SAGAS.A typi
al CR of a WS-SAGAS is the spe
ialization of theentity CR des
ribed above. Below we des
ribe the CR ofWS-SAGASi:a, the se
ond nesting level 
omposed of ni;2 el-ements:CR(WS-SAGASi:a)! hEi:a:1; � � � ;Ei:a:ni;2 i :



FENECIA 13De�nition 5.5 (Set of Composability Rules for a Pro
ess)We de�ne the set ofCR for the pro
ess shown in (Figure 4.1)and (Equation 5.1):CR(Pi)[ni;mi℄ � i:a:�:b:�:
[̀=i (CR(WS-SAGAS`))� CR(WS-SAGASi)S CR(WS-SAGASi:a) � � �S CR(WS-SAGASi:a:�:b) � � �S CR(WS-SAGASi:a:�:b:�:
) ;where:CR(WS-SAGASi)CR(WS-SAGASi:a):::CR(WS-SAGASi:a:�:b):::CR(WS-SAGASi:a:�:b:�:
)
! hEi:1; � � � ;Ei:a; � � � ;Ei:ni;1 i! hEi:a:1; � � � ;Ei:a:ni;2 i:::! hEi:a:�:b:1; � � � ;Ei:a:�:b:ni;p i:::! hEi:a:�:b:�:
:1 ; � � � ;Ei:a:�:b:�:
:ni;mi i :De�nition 5.6 (Ordering Rule of a WS-SAGAS)The step that 
omes after identifying the different CR is theOrdering Rules (OR) de�nition. The most important featureof this step is that ea
h rule builds on the pro
ess's prede-�ned semanti
s to de�ne and restri
t the exe
ution depen-den
ies between the different elements/WS-SAGAS form-ing a pro
ess (i.e., the 
orre
t exe
ution orders). For a WS-SAGAS, if no OR is expli
itly de�ned, then the order of thedifferent elements order is inter
hangeable. Below we de-s
ribe the OR ofWS-SAGASi:a representing the se
ond nest-ing level and 
omposed of ni;2 elements:OR(WS-SAGASi:a)! hEi:a:1 op � � �op Ei:a:ni;2 i :De�nition 5.7 (Set of Ordering Rules of a Pro
ess)We de�ne the different OR of the WS-SAGAS subtrans-a
tions nested in the pro
ess depi
ted in (Figure 4.1) and(Equation 5.1):OR(Pi)[ni;mi℄ � i:a:�:b:�:
[̀=i (OR(WS-SAGAS`))� OR(WS-SAGASi)S OR(WS-SAGASi:a) � � �S OR(WS-SAGASi:a:�:b) � � �S OR(WS-SAGASi:a:�:b:�:
) ;where:OR(WS-SAGASi)OR(WS-SAGASi:a):::OR(WS-SAGASi:a:�:b):::OR(WS-SAGASi:a:�:b:�:
)
!hEi:1 op � � �op Ei:ni;1 i!hEi:a:1 op � � �op Ei:a:ni;2 i:::!hEi:a:�:b:1 op � � �op Ei:a:�:b:ni;p i:::!hEi:a:�:b:�:
:1op � � �opEi:a:�:b:�:
:ni;mi i :

In the different OR, op stands for �operator� and it de-pends on the 
ontrol �ow that des
ribes the pro
ess in termsof elements and their exe
ution ordering through different
onstru
tors (e.g., sequen
e, 
hoi
e, parallelism, and syn-
hronization).Considering how business pro
ess logi
 tends often toinvolve 
omplex behaviors and 
apabilities, whi
h are stru
-tured in different ways, we need to enri
h WS-SAGAS witha set of 
onstru
tors that broadens its potential s
ope andmake it suf�
iently ri
h to sustain any business pro
ess, nomatter how 
omplex; this remains an ongoing problem in thearea of transa
tion models. The different �operators� are theeight different aggregation patterns we de�ned on the basisof the seminal work in [28℄. To �ll the gap 
aused by the ab-sen
e of a standard textual notation of the different patterns,we build on the formal notations and PAs.5.3.2 Des
ription of Formal Notation (Fi)PAs [44℄ are formal des
ription te
hniques to spe
ify soft-ware systems, parti
ularly those formed from 
on
urrent and
ommuni
ating 
omponents. Numerous PAs have been pro-posed; well-known PAs are Milner's Cal
ulus for Commu-ni
ating Systems (CCS) [45℄, Hoare's Communi
ating Se-quential Pro
esses (CSP) [46℄, and all their extensions, su
has the p-
al
ulus and LOTOS [44℄. These PAs de�ne typ-i
ally simple 
onstru
tions to des
ribe dynami
 behavior,
ompositional modeling, operational semanti
s, behavioralreasoning by model 
he
king, and pro
ess equivalen
e.PAs 
omply with the WSC issue be
ause they allow de-s
ription of formally dynami
 pro
esses. In addition, theirprede�ned 
onstru
ts are adequate to spe
ify CWS, due totheir inherent 
omposability property [42℄.There are a large number of existing PAs; the most ad-equate formalism 
an be determined based on the desiredexpressiveness orientation. The en
oding proposed in any ofthe PAs 
an be smoothly translated into any other standardPA.We 
hose to build on the Compensating CSP [47℄, a vari-ant of the CSP PA, be
ause it already supports 
ompensa-tion and reasoning for long-running transa
tions. The atomi
events of CSP are used to model the elements of a WS-SAGAS; several atomi
 elements 
an be 
ombined using theoperators provided by the CSP language to support sequen
-ing, 
hoi
e, and parallel 
omposition. In addition, to sup-port failed transa
tions, 
ompensation operators are inher-ited from the Compensating CSP. Finally, to allow more ad-van
ed 
ombinations to support other aggregation patternsthat WS-SAGAS requires to formalize the eight aggregationpatterns it de�ned but that CSP does not de�ne, we introdu
ea set of advan
ed aggregation operators.In formalizing WS-SAGAS, we des
ribe a syntax in thespirit of CSP de�ned by the following grammar in BNF-likenotation:
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PiFWS-SAGASi `WS-SAGASi:�WS-SAGASiF [Ei:k℄; [Ei:k+1℄j [Ei:k℄ jj [Ei:k+1℄j [Ei:k℄? [Ei:k+1℄j [Ei:k℄� ([Ei:k+1℄ jj [Ei:k+2℄)j [Ei:k℄ C ([Ei:k+1℄ jj [Ei:k+1℄)j ([Ei:k℄ jj [Ei:k+1℄)^[Ei:k+2℄j ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄j ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄j l [Ei:k℄[Ei:k℄F Evi:k�E 0vi:k j E v̄i:k�E 0i:kv̄

(nesting)(sequen
e)(parallel)(arbitrary ordering)(sele
tion)(fork/
hoi
e)(join)(sele
tive merge)(ex
lusive merge)(iteration)(
ompensating pair) :where:� Pi designates a pro
ess and we represent it as a hierar-
hy of re
ursively nested WS-SAGAS by adopting thenotation (WS-SAGASi `WS-SAGASi:�);� WS-SAGASi:� is the lowermost nested subtransa
tion and�i:�� is to be repla
ed by the subtransa
tion identi�er;� [Ei:k℄, [Ei:k+1℄, and [Ei:k+2℄ are elements fromWS-SAGASiwhere an element en
losed between �[� and �℄� 
an be a
ompensating pair of a vital or a nonvital element,if the element is de�ned as 
ompensatable;� [Ei:k℄and[Ei:k+1℄ represent the sequential 
onstru
tion that
ombines two elements: [Ei:k℄ is exe
uted �rst, and onlywhen [Ei:k℄ terminates su

essfully 
an [Ei:k℄ be exe
uted;� [Ei:k℄ jj [Ei:k+1℄ is a parallel 
omposition of two elements;� [Ei:k℄ ? [Ei:k+1℄ represents the operator for 
onstru
tingthe exe
ution of elements where the exe
ution order isarbitrary; it 
an be in parallel, sequentially, or a 
ombi-nation of these two;� [Ei:k℄�([Ei:k+1℄ jj [Ei:k+2℄) represents the sele
tive 
hoi
eof [Ei:k℄, whi
h sele
ts whi
hever of [Ei:k+1℄ and/or [Ei:k+2℄is to be enabled;� [Ei:k℄C ([Ei:k+1℄ jj [Ei:k+2℄) represents a parti
ular 
ase ofthe sele
tive 
hoi
e operator be
ause only one of [Ei:k+1℄and [Ei:k+1℄ is to be enabled;� ([Ei:k℄ jj [Ei:k+1℄)^[Ei:k+2℄ represents where the elements[Ei:k℄ and [Ei:k+1℄ are syn
hronized at a parti
ular ren-dezvous point and must wait for ea
h other to exe
utethe element that 
omes dire
tly after them;� ([Ei:k℄ ? [Ei:k+1℄)� [Ei:k+2℄ represents where [Ei:k℄ and[Ei:k+1℄ 
onverge but without syn
hronization at a par-ti
ular rendezvous point; the element that 
omes dire
tlyafter them (i.e., [Ei:k+2℄) is a
tivated every time either ofthese two elements rea
hes the rendezvous point;� ([Ei:k℄? [Ei:k+1℄)� [Ei:k+2℄ is a spe
ial 
ase of (([Ei:k℄?[Ei:k+1℄)� [Ei:k+2℄); the differen
e is that the �rst ele-ment that terminates its exe
ution a
tivates the exe
utionof [Ei:k+2℄;� l [Ei:k℄ is l iteration of [Ei:k℄.

5.3.3 Des
ription of Graphi
al Notation (Gi )Our proposed graphi
al notation of WS-SAGAS is shown in(Figure 5.2).5.4 WS-SAGAS Transa
tion Model: Exe
ution Semanti
sand Corre
tnessTo eliminate ambiguities, to allow analysis and further rea-soning regarding our transa
tion model, and to fa
ilitate its
omparison with other models, it is ne
essary to de�ne ourmodel operational semanti
s and 
orre
t exe
ution. Be
ausewe are 
onsidering a peer-to-peer exe
ution model, the useof stri
t serializability poses severe limitations that are un-a

eptable. The des
ription of a pro
ess in terms of DR,CR,and in parti
ular OR, partly 
ontributes to avoiding in
on-sisten
ies be
ause the different OR allow de�nition of the
orre
t 
ontrol �ow in a pro
ess.To ensure the semanti
s of ea
h element are respe
ted,when ea
h element exe
uted, in parti
ular its nesting, trans-a
tional behavior, and vitality degree, we build on the state
on
ept and de�ne several types of dependen
ies that musthold between the different elements 
ombined in the samepattern; we term these intrapattern dependen
ies. These de-penden
ies formulate the required 
onditions for a pattern to
ommit and des
ribe how failure re
overy is performed. Be-
ause every WS-SAGAS 
ombines elements following dif-ferent patterned operational semanti
s, to de�ne a 
orre
tWS-SAGAS on the basis of the different intrapattern depen-den
ies, we des
ribe another form of dependen
ies, 
alledintra-WS-SAGAS dependen
ies, that formulate the required
onditions for a WS-SAGAS to 
ommit and des
ribe howfailure re
overy is performed.Finally, we formulate the 
onditions for 
orre
t exe
u-tion of a pro
ess in terms of intrapro
ess dependen
ies bytaking as a basis the intra-WS-SAGAS dependen
ies formu-lated for ea
h WS-SAGAS appertaining to the hierar
hy ofWS-SAGAS in the pro
ess.5.4.1 WS-SAGAS Pattern Exe
ution Semanti
sLetWS-SAGASi:a be a subtransa
tion from a hierar
hy form-ing a pro
ess Pi (Equation 5.1). WS-SAGASi:a 
ombines a
olle
tion of elements de�ned in CR(WS-SAGASi:a). This
olle
tion of elements is equal to Si:a:ni;2`=i:a:1E`.We de�neWS-pattern as the set of possible patterns de-�ned by 
ombining the CSP-like notation and the Work�owpatterns:WS-pattern : fsequen
e(;); parallel(jj);arbitrary(?);sele
tion(�);swit
h(C); iterative(l );rendezvous(^);sele
tivemerge(�);ex
lusivemerge(�)g :The different patterns, with their de�ned operators, are usedto write the set of OR, as des
ribed above in this se
tion.



FENECIA 15Depending on the pattern's semanti
s, the operator of apattern 
an be pre�xed (�, C, l ), post�xed (^,�, and�),or in�xed (;, jj, and ?). We de�ne for ea
h pattern a s
opethat delimits the elements within the rea
h of that patternand that should verify its semanti
s.We assume in what follows that the s
ope of ea
h pat-tern in
ludes only atomi
 elements between Ei:a:k and Ei:a:l ,where the subs
ripts of these two elements verify k < l <ni;2. The end of one s
ope and the start of another is de
idedwhen a post�xed or a pre�xed operator is en
ountered in anOR. Overlapping of elements between 
onse
utive s
opesis allowed. The 
ase of 
omposite elements is 
onsideredbelow in the des
ription of the nesting semanti
s.We assume there is an entity that 
ontains the differentDR,CR, and OR of the entire pro
ess. On every exe
ution ofevery element of a pro
ess, the element's state in this entityis updated.The entity that 
ontains all this information is transferredbetween elements (i.e., an engine or an authority responsiblefor the exe
ution of the element) as the exe
ution pro
essadvan
es. We also assume that ea
h element keeps a 
opyof this entity until the end of the pro
ess instan
e exe
ution.Therefore, any element 
an know the set of elements that
ome after and before it.To des
ribe the patterns' semanti
s, we de�ne for ea
hpattern several types of dependen
ies that formulate the 
on-ditions that the elements in the pattern must satisfy to a
-tivate, 
ommit, interrupt, 
ompensate, or abort the patternexe
ution. The 
on
ept of dependen
ies is strongly relatedto the 
on
ept of state. We de�ne �ve types of dependen
y.Ea
h dependen
y is denoted by intrasupers
ript(pattern), wherethe supers
ript is repla
ed with an abbreviation of the typeof dependen
y and the pattern is de�ned inWS-pattern:� intraa
(pattern) is an intrapattern exe
ution a
tivationdependen
y and des
ribes the 
ondition(s) that must beveri�ed for the elements 
ombined in the pattern to startexe
ution.� intra
(pattern) is an intrapattern exe
ution 
ommitmentdependen
y that des
ribes the 
ondition(s) required forthe pattern to be su

essfully terminated.� intrai(pattern) is an intrapattern exe
ution interruptiondependen
y that des
ribes the 
ondition(s) where, if ver-i�ed, the exe
ution of the whole pattern is in a situationwhere forward re
overy is insuf�
ient to suppress a fail-ure and a ba
kward re
overy is required.When intrai(pattern) is valid, depending on the patternexe
ution progress and from its 
omposing elements, anintrapattern exe
ution 
ompensation dependen
y and/orintrapattern exe
ution aborting dependen
y is/are trig-gered.� intra
p(pattern) is an intrapattern exe
ution 
ompensa-tion dependen
y that formulates the 
ondition(s) that, ifveri�ed, ensure the 
onsisten
y of the exe
ution by trig-gering a 
ompensation me
hanism.� intraa(pattern) is an intrapattern exe
ution aborting de-penden
y that formulates the 
ondition(s) where, if veri-�ed, the 
onsisten
y of the exe
ution is ensured by abort-

ing the elements that have to be aborted in
luded in thepattern.SEQUENCE PATTERN ([Ei:a:k℄; :::; [Ei:a:k+ j℄)By Si:a:k+ j`=i:a:k E` (Figure 5.2 (a)) we denote a set of elementsaggregated in a sequen
e pattern. To ensure the 
orre
t ex-e
ution of a sequen
e, we assume that among Si:k+ j`=i:a:k E`,there must exist only one vital non
ompensatable ele-ment. Where more than one vital non
ompensatable el-ement is in
luded in the sequen
e, splitting the sequen
e intoseveral sequen
es is envisaged. Assuming that the vitalnon
ompensatable element in question is Evi:a:¶ , it mustverify the following 
onditions:�DR(Ei:a:¶ ):behavior = non-
ompensatable andDR(Ei:a:¶ ):vitality= vital :The a
tivation of the exe
ution of ea
h element requiresthe termination of ea
h dire
t prede
essor. More formally,letE` be an element verifying f`2 [i:a:k :: i:a:k+ j℄g; the ex-e
ution of E` requires the su

essful termination of its dire
tprede
essor, if it is vital (i.e.,DR(E v̀�1):state= Committed),and the termination of its prede
essor, even with a failure(i.e., DR(E v̀̄�1):state= Failed), if it is nonvital.The 
ommitment of the sequen
e of elements dependson Evi:a:¶ ; more formally, the intra
ommitment dependen
yof this pattern is spe
i�ed as:� intra
(sequen
e) veri�
ation requires that (CONDITIONS1) and (CONDITION S2) are valid:(CONDITION S1.) The sequen
e 
an attempt to 
ommitiff DR(Ei:a:¶ ):state= Committed.(CONDITION S2.) If the previous 
ondition is valid, thenthe sequen
e 
an be 
ommitted iff�8E`j` 2 [i:a:k :: i:a:k+ j℄ verifying: DR(E`):vitality=vital; we have: DR(E`):state = Committed:If the set of elements 
ombined in the sequen
e does not en-
ompass any vital non
ompensatable element, then theintra
ommitment dependen
y veri�
ation requires satisfa
-tion only of (CONDITION S2).If (CONDITION S2) is not veri�ed, that is:�9E`j` 2 [i:a:k :: i:a:k+ j℄ that veri�es: DR(E`):state=Failed and DR(E`):vitality= vital:then the two 
onditions we de�ne below, (CONDITION S3)and (CONDITION S4), are evaluated. Subsequently, a ba
k-ward re
overy is triggered in the same way whether a se-quen
e in
ludes a vital non
ompensatable element ornot.An extreme situation is when the set of elements 
om-bined in the sequen
e are 
ompensatable and nonvital;in su
h a 
ase, even if all the elements fail, the pattern intra-interruption dependen
y is dedu
ed and it has no effe
t onthe overall WS-SAGAS, be
ause a nonvital WS-SAGASsu

ess is not 
riti
al for the overall pro
ess 
ommitment.



16 Neila BEN LAKHAL et al.Assume that the element Evi:a:¶ was attempted a numberof times with different WS but none of those attempts wassu

essful; this me
hanism is a
tually a forward re
overywhere an element is reattempted with different WS. In this
ase, the element is assumed to have failed and a ba
kwardre
overy is triggered, whi
h implies the veri�
ation of theintrainterruption dependen
y of this sequen
e pattern; moreformally:� intrai(sequen
e) veri�
ation requires that (CONDITIONS3) is valid:(CONDITION S3.) The exe
ution of the sequen
e pat-tern is interrupted iff DR(Ei:a:¶ ):state = Failed isveri�ed.Depending on the exe
ution progress of all the other ele-ments in the sequen
e (i.e., Si:k+ j`=i:a:k E`�Ei:a:¶ ), the veri�
a-tion of intrai(sequen
e)may trigger an intrapattern 
ompen-sation dependen
y, an intrapattern aborting dependen
y, orboth. More formally:� intraa(sequen
e) denotes an intrapattern aborting depen-den
y in a pattern; it requires that intrai(sequen
e) wasveri�ed and that (CONDITION S4) is valid:(CONDITION S4.) The intrapattern aborting dependen
yholds and there are elements in the sequen
e that ver-ify:�9E`j` 2 [i:a:k :: i:k+ j℄we have :DR(E`):state=Exe
uting and DR(E`):vitality= vital:The veri�
ation of (CONDITION S4) implies that the valid-ity of intraa(sequen
e) and that all the elements that veri�ed(CONDITION S4) are aborted.� intra
p(sequen
e) denotes an intra
ompensation depen-den
y in a pattern; it requires that intrai(sequen
e) wasveri�ed and that (CONDITION S5) is valid:(CONDITION S5.) The intrapattern 
ompensation depen-den
y is satis�ed and there are elements in the se-quen
e that verify:�E` 2 j` 2 [i:a:k :: i:k+ j℄; we have: DR(E`):state=Committed and DR(E`):vitality= vital:The veri�
ation of (CONDITION S5) implies that the valid-ity of intra
p(sequen
e) is veri�ed and that all the elementsthat veri�ed (CONDITION S5) are 
ompensated for.To explain 
ompensation performan
e, assume that wehave the following sequen
e from WS-SAGASi:a; we notethat an element pla
ed between �[℄� is a
tually a 
ompensatableelement:sequen
e : [Evi:a:k℄; [Evi:a:k+1℄; :::;Evi:a:¶ ; :::; [Evi:a:k+ j℄The exe
ution of the different elements veri�es:�8Ei:a:`jk� ` < ¶ ;DR(E`):state= Committed and8Ei:a:`j¶ < `� k+ j;DR(E`):state= Exe
uting

When intra
p(sequen
e) is veri�ed, the sequen
e exe
utionis: [Evi:a:k;Evi:a:k+1; :::;Evi:a:¶ ; :::;Evi:a:k+ j; ::::;E 0vi:a:k+1;E 0vi:a:k℄We assume that the exe
ution of every 
ompensating ele-ment, su
h as E 0vi:a:k+1, is su

essful and does not fail. Its ex-e
ution is performed by exe
uting a previously mapped WSthat 
an reverse the effe
ts of the WS that was mapped toEvi:a:k+1. The failure of 
ompensation is 
onsidered beyondthe s
ope of this paper be
ause it remains an unresolved
omplex issue.PARALLEL PATTERN ([Ei:a:k℄;([Ei:a:k+1℄jj:::jj[Ei:a:k+ j℄)) isthe notation of this pattern. LetQ(Ei:a:k)su

 be the set of allthe elements that are dire
tly ordered after Ei:a:k and that arepresumed to be exe
uted 
on
urrently, and S (Ei:k)su

 be asubset that only 
ontains the subset of elements that is exe-
uted effe
tively. The 
ontent of S (Ei:k)su

 depends on theaggregation pattern semanti
s (Figure 5.2(b)). For a paral-lel pattern, all the elements inQ(Ei:a:k)su

 must be a
tivatedafter Ei:a:k. This means that:S (Ei:a:k)su

 =Q(Ei:a:k)su

.The a
tivation of the exe
ution of the elements in the setS (Ei:a:k)su

 requires that Ei:a:k su

essfully terminates itsexe
ution (i.e., DR(Evi:a:k):state =Committed), where it isvital. Otherwise, it may terminate in any other state, with-out affe
ting the exe
ution progress.Assume that the set S (Ei:a:k)su

 
ontains one or sev-eral vital non
ompensatable elements. For this patternto 
ommit, a spe
ial syn
hronization me
hanism needs to beadded to inform the different elements of the progress of theother vital non
ompensatable elements in the same pat-tern. The syn
hronization me
hanism must guarantee thateither all or none of the vital non
ompensatable ele-ments are 
ommitted.The 
ommitment of this pattern depends on the vitalnon
ompensatable elements' exe
ution progress.More formally, the intrapattern 
ommitment dependen
yintra
(parallel) is spe
i�ed as:� intra
(parallel) veri�
ation requires that (CONDITIONP1) and (CONDITION P2) are valid:(CONDITION P1.) The set of elements 
an attempt to
ommit iff8><>: f8Ei:a:¶ 2S (Ei:a:k)su

g verifying:DR(Ei:a:¶ ):behavior = non-
ompensatable andDR(Ei:a:`):vitality= vital; we have:DR(Ei:a:¶ ):state= Committed:(CONDITION P2.) If the previous 
ondition is valid, thenthe parallel pattern 
an be 
ommitted iff�8Ei:a:` 2S (Ei:a:k)su

 and DR(Ei:a:`):vitality= vital;we have: DR(Ei:a:`):state= Committed:



FENECIA 17If the set of elements S (Ei:a:k)su

 does not en
ompass anyvital non
ompensatable element, then the intrapattern
ommitment dependen
y veri�
ation requires only the sat-isfa
tion of (CONDITION P2).If (CONDITION P2) is not veri�ed, that is:�9Ei:a:` 2S (Ei:a:k)su

 verifying:DR(Evi:a:`):state= Failed;then the 
onditions, (CONDITION P3) and (CONDITIONP4), have to be evaluated, and subsequently, a ba
kward re-
overy is triggered 
orresponding to the de�nition below fora parallel pattern that 
ombines vital non
ompensatableelements.An extreme situation is when all the elements in the setS (Ei:a:k)su

 are nonvital.Even if all the elements fail, the intrapattern 
ommitmentdependen
y is dedu
ed and the failure of this WS-SAGAShas no effe
t on the overall pro
ess, as a nonvital WS-SAGAS su

ess is not 
ru
ial for the overall pro
ess 
om-mitment.Assume that one or more elements from the set of vitalnon
ompensatable elements were attempted a number oftimes with different WS but none of those attempts was su
-
essful. Similar to the sequen
e pattern, these elements areassumed to be failed and a ba
kward re
overy is triggered,whi
h implies the veri�
ation of the intrapattern interruptiondependen
y of this parallel pattern; formally:� intrai(parallel) veri�
ation requires that (CONDITIONP3) is valid:(CONDITION P3.) The exe
ution of the parallel patternis interrupted iff8<:9Evi:a:¶ 2S (Ei:a:k)su

 that veri�es:DR(Ei:a:¶ ):behavior = non-
ompensatable;we have: DR(Ei:a:¶ ):state= Failed:Depending on the exe
ution progress of all the other 
on
ur-rent elements 
ombined in the same pattern, the veri�
ationof intrai(parallel)may trigger an intrapattern 
ompensationdependen
y, an intrapattern aborting dependen
y, or both.Formally:� intraa(parallel) denotes an intrapattern aborting depen-den
y; it requires that intrai(parallel) was veri�ed andthat (CONDITION P4) is valid:(CONDITION P4.) The intrapattern aborting dependen
yholds and there are elements inS (Ei:a:k)su

 that ver-ify:�9Ei:a:`j 2S (Ei:a:k)su

 we have: DR(Ei:a:`):state=Exe
uting and DR(E`):vitality= vital:The veri�
ation of (CONDITION P4) implies the validity ofintraa(parallel). It entails that all the elements that veri�ed(CONDITION P4) are aborted.

� intra
p(parallel) denotes an intrapattern 
ompensationdependen
y; it requires that intrai(parallel)was veri�edand that (CONDITION P5) is valid:(Condition P5.) The intrapattern 
ompensation dependen
yholds and we have:8><>:9Ei:a:` 2S (Ei:a:k)su

 that verify:DR(Ei:a:`):behavior = 
ompensatable;DR(Ei:a:`):state= Committed, andDR(Ei:a:`):vitality= vital:The veri�
ation of (CONDITION P5) implies that the valid-ity of intra
p(parallel) is veri�ed and that all the elementsthat veri�ed (CONDITION P5) are 
ompensated for. We de-s
ribe below how 
ompensation is performed: Assume thatthe only vital non
ompensatable element is Evi:a:¶ and ithas failed. Assume also that:�8Ei:a:` 2S (Ei:a:k)su

�Ei:a:¶ , we have: DR(Ei:a:`):vitality= vital and DR(Ei:a:`):behavior = 
ompensatable:If the exe
ution progress of these elements veri�es:�8Ei:a:` 2S (Ei:a:k)su

�Ei:a:¶ , we have:DR(Ei:a:`):state= Committed:then, when intra
p(parallel) is veri�ed, the 
ompensationorder is:[Evi:a:k;((Evi:a:k+1jj:::Evi:a:¶ :::jjEvi:a:k+ j);(E 0vi:a:k+ j jj:::jjE 0vi:a:k+1))We assumed that Evi:a:k is vital and 
ompensatable. Weemphasize that this element 
an be nonvital; however, itmust be 
ompensatable. Otherwise, a ba
kward re
overywould not be possible, be
ause a non
ompensatable element'seffe
ts, on
e 
ommitted, 
annot be undone. If the underpin-ning pro
ess logi
 requires a parallel pattern with Ei:a:k non-
ompensatable, a plausible solution is to insert an idempo-tent between Ei:a:k and the set of elements to be exe
uted
on
urrently.SELECTION PATTERN ([Ei:a:k℄� ([Ei:a:k+1℄jj:::jj[Ei:a:k+ j℄)).This pattern is a spe
ial 
ase of the parallel pattern, whereat least one and at most all the elements from Q(Ei:a:k)su


ould be sele
ted. After exe
uting the element Ei:a:k, a sele
-tion 
ondition is evaluated to 
hoose from the set of its dire
tsu

essorsQ(Ei:a:k)su

. Building on the assumption of equalprobabilities for the different 
hoi
es, Ei:a:k 
an 
hoose fromP(Q(Ei:a:k)su

), the power set of Q(Ei:a:k)su

, whi
h is theset of all subsets ofQ(Ei:a:k)su

 (Figure 5.2(
)).The exe
ution 
ommitment, interruption, aborting, and
ompensation obey the same dependen
ies de�ned for theparallel pattern. The only differen
e is that the 
hosen set ofelements fromP(Q(Ei:a:k)su

) must verify the 
onditions:�S (Ei:a:k)su

 �Q(Ei:a:k)su

 and S (Ei:a:k)su

 , /0 :



18 Neila BEN LAKHAL et al.SWITCH PATTERN ([Ei:a:k℄ C ([Ei:a:k+1℄jj : : :jj[Ei:a:k+ j℄)).Similarly, this pattern is a spe
ialization of the Sele
tion pat-tern (see Figure 5.2(d)). It differs in that only one element
an be 
hosen from Q(Ei:a:k)su

, the set of elements that
omes dire
tly afterEi:a:k . Similarly, by de�ningS (Ei:a:k)su

as the subset 
hosen fromP(Q(Ei:k)su

), it must verify thefollowing 
onditions:�S (Ei:a:k)su

 �Q(Ei:a:k)su

; S (Ei:a:k)su

 , /0 andjS (Ei:a:k)su

j= 1 :The exe
ution 
ommitment, interruption, abortion, and
ompensation obey the same dependen
ies de�ned for theparallel pattern.RENDEZVOUS PATTERN (([Ei:a:k℄jj : : : jj[Ei:a:k+ j℄)^[Ei:a:l ℄).Assume thatQ(Ei:a:l)pre is the set of elements that are the di-re
t prede
essors of the element Ei:a:l . This pattern restri
tsthe 
ommitment of a set of elements exe
uted in parallelas follows: all the vital elements in Q(Ei:a:l)pre must be
ommitted for Ei:a:l to start exe
ution. Therefore, the ele-ment Ei:a:l a
tivation requires that the intra
(parallel) de-penden
y of the elements in Q(Ei:a:l)pre is veri�ed. Whenintra
(parallel) is veri�ed, Ei:a:l exe
ution starts.The 
ommitment of this pattern depends on Ei:a:l progress;the intrapattern 
ommitment dependen
y is formulated asfollows:� intra
(rendezvous) veri�
ation requires that (CONDITIONR1) is valid:(CONDITION R1.) The exe
ution 
ommitment 
an bededu
ed iff :�DR(Evi:a:l):state= 
ommitted orDR(Ei:a:l)v̄:state= failed;Assume that Ei:a:l is 
ompensatable and vital, and a fail-ure that 
ould not be resolved by a forward re
overy o
-
urred. In su
h a 
ase, a ba
kward re
overy must be trig-gered. A ba
kward re
overy me
hanism requires undoingthe effe
ts of all the elements in Q(Ei:a:l)pre. However, thismay not be possible in the 
ase where we have Q(Ei:a:l)preverifying the following 
ondition:�9E¶ 2Q(Ei:a:l)pre verifying:DR(E¶ ):behavior = non-
ompensatableIn this paper, we assume that in this pattern, Q(Ei:a:l)pre in-
ludes only 
ompensatable elements.SELECTIVE MERGE PATTERN (([Ei:a:k℄?:::?[Ei:a:k+ j℄)�[Ei:a:l ℄). Consider the 
ase where two or more elements 
ometogether but without syn
hronization. Assume no elementsare ever exe
uted in parallel (Figure 5.2(g)).LetQ(Ei:a:l)pre = fEi:a:k; :::;Ei:a:k+ jg be the set of all theelements that are the dire
t prede
essors of the elementEi:a:l .The exe
ution of Ei:a:l 
annot be a
tivated unless either ofthe elements appertaining toQ(Ei:a:l)pre has terminated.

On every element termination, Ei:a:l is a
tivated again.Let S (Ei::a:l )pre be the subset 
hosen from P(Q(Ei:a:l)pre)and let l = jS (Ei:a:l)prej. In this 
ase, l represents the up-per bound of the interval of time the element Ei:a:l 
an bea
tivated.As S (Ei:a:l)pre 
an 
ombine vital and nonvital ele-ments, the 
ondition for the a
tivation of the exe
ution ofEi:a:l varies be
ause a su

essful termination for a vitalelement is equivalent to a 
ommitment; nevertheless, for anonvital element it 
an be any other state. More formally:Assume that at least one of the elements inS (Ei:a:l)pre isvital, that is, the following 
ondition is veri�ed:f9E¶ 2S (Ei:a:l)prejDR(E¶ ):vitality= vitalgIf the above 
ondition is veri�ed, the a
tivation 
onditionfor Ei:a:l is veri�ed and its exe
ution is started every time thefollowing 
ondition is valid:�E¶ 2S (Ei:a:l)prejDR(E¶ ):vitality= vitalwe have: DR(E¶ ):state= 
ommitted :To ensure 
onsistent exe
ution, Ei:a:l needs to know the 
ar-dinality l ofS (Ei:a:l)pre. This 
an be dedu
ed by referring toOR's 
ontent. An in
remental 
ounter needs to be in
reasedon every a
tivation of Ei:a:l . When this 
ounter rea
hes l ,the pattern 
ommitment is veri�ed. The intrapattern 
om-mitment dependen
y is formulated as follows:� intra
(sele
tive merge) veri�
ation requires (CONDITIONSM1) to be valid:(CONDITION SM1.) The pattern 
ommitment 
an be de-du
ed iff :8<:DR(Evi:a:l):state= 
ommitted orDR(Ei:a:l)v̄:state= failed (i.e., be
ause Ei:a:l 
an be vitalor not); and the 
ounter rea
hed l :If (CONDITION SM1) is veri�ed, a ba
kward re
overy istriggered. The ba
kward re
overy in
ludes all the elementsin S (Ei:a:l)pre. Depending on their vitality degree and ex-e
ution progress, an intrapattern 
ompensation dependen
yand/or abortion dependen
y may be triggered, the same asthat de�ned for the previous parallel pattern. However, a
riti
al situation may o

ur when Ei:a:l is a
tivated l timesand some of these a
tivations fail and require a ba
kwardre
overy. In su
h a situation, in
onsisten
ies o

ur, espe-
ially if Ei:a:l is non
ompensatable. To deal with this situa-tion, we assume that Ei:a:l and all the elements inS (Ei:a:l)preare non
ompensatable and in the �rst failure of Ei:a:l , thewhole pattern failure is dedu
ed and a ba
kward re
overyis performed. Ei:a:l is 
ompensated �rst, then the differentelements in S (Ei:a:l)pre are either 
ompensated or aborted,in view of their exe
ution progress. This is performed underthe same 
onditions as formulated for the parallel pattern.



FENECIA 19EXCLUSIVEMERGE PATTERN (([Ei:a:k℄?:::?[Ei:a:k+ j℄)�[Ei:a:l ℄)) is a point in a WS-SAGAS where the exe
ution oftwo or more elements 
onverge but without syn
hroniza-tion (see Figure 5.2(f)). In 
ontrast to the sele
tive mergepattern, this pattern assumes that only one element is exe-
uted and its exe
ution su

ess triggers the dire
t su

essorEi:a:l only on
e.Q(Ei:a:l)pre 
ontains the elements within thes
ope of this pattern and is where any of them may triggerthe exe
ution of Ei:a:l ; we assume that all the elements fromQ(Ei:a:l)pre have the same probability of triggering the exe-
ution of Ei:a:l .A
tivation of the exe
ution of Ei:a:l requires the veri�
a-tion of either of the two following 
onditions:� Assume thatQ(Ei:a:l)pre 
ontains only vital elements:(CONDITION EM1.) The a
tivation of the exe
ution ofEi:a:l requires that only one vital element has been
ommitted and it is the �rst to be 
ommitted; moreformally:8<:9DR(Evi:a:`):state= 
ommitted and8Evi:a:¶ 2Q(Ei:a:l)pre�fEvi:a:`g, we have:DR(Evi:a:`):state , 
ommitted:� Assume thatQ(Ei:a:l)pre 
ontains only nonvital elements:(CONDITION EM2.) The a
tivation of the exe
ution ofEi:a:l requires that only one nonvital element hasterminated and it is the �rst to do so; more formally:8<:9DR(E v̄i:a:`):state2 f
ommitted,failed,aborted,
ompensatedg and 8E v̄i:a:¶ 2Q(Ei:a:l)pre�fE v̄i:a:`g;we have: DR(E v̄i:a:¶ ):state2 fexe
uting;waitingg:Upon satisfa
tion of either of the above 
onditions, the exe-
ution of Ei:a:l 
an be started. The 
ommitment of this pat-tern depends on Ei:a:l progress.� intra
(ex
lusive merge) veri�
ation requires that the fol-lowing 
ondition, (CONDITION EM1), is valid:(CONDITION EM1) The pattern 
ommitment 
an be de-du
ed iff :�DR(Evi:a:l):state= 
ommitted orDR(Ei:a:l)v̄:state= failed;If Ei:a:l is 
ompensatable and vital and a failure that 
an-not be handled using forward re
overy o

urs, the same as-sumption made for the rendezvous pattern applies for failurehandling.ITERATIVE PATTERN ([Ei:a:k℄;l [Ei:a:k+1℄) is a point in aWS-SAGAS exe
ution where the exe
ution of a parti
ularelement Ei:k+1 must be repeated l times (Figure 5.2(h)).The number of iterations depends on the pro
ess semanti
s.This pattern is a spe
ial 
ase of the sele
tive merge pattern;the only differen
e is when S (Ei:a:l)pre is a set that 
ontainsonly one element. It follows that the pro
essing is the sameas for the sele
tive merge pattern, if we repla
e Ei:a:k byS (Ei:a:l)pre and Ei:a:k+1 by Ei:a:l .

5.4.2 WS-SAGAS Patterns Corre
t Stru
turingWe de�ne a set of aggregation patterns that 
ombines a 
ol-le
tion of elements in different ways. A WS-SAGAS is de-�ned by 
onne
ting a number of patterns in order to satisfya parti
ular business rule logi
. Putting together differentpatterns permits the de�nition of a wide range of pro
ess-underpinning semanti
s. However, some of these pattern 
om-binations may lead to in
onsisten
ies in the 
ontrol �ow. Toavoid this, we need to differentiate the permissible pattern
ombinations from the pattern 
ombinations that may 
ausein
onsisten
ies. Moreover, we need to de�ne the 
orre
t or-der of 
ombination. To this end, be
ause the pro
ess logi
is en
ompassed in the different OR it de�nes, we need tode�ne the permissible 
ombinations that we use to say if anOR is 
orre
t or if it has 
onsisten
y 
on�i
ts.Let pattern1 and pattern2 be two patterns to be de�nedin WSpattern and that have overlapping s
opes (i.e., they
ome one after the other and have overlapping s
ope of el-ements); to obtain a 
orre
tly stru
tured WS-SAGAS, thedesigner must observe several restri
tions:� If pattern1 = parallel, then pattern2 
an be either arendezvous pattern or a sele
tive merge pattern.� If pattern1 = swit
h, then pattern2 
an be only an ex-
lusive merge pattern.� If pattern1 = sele
tion, then pattern2 
an be either asele
tive merge pattern or an ex
lusive merge pattern.5.4.3 WS-SAGAS Subtransa
tions Exe
ution Semanti
sEvery WS-SAGAS forms a 
olle
tion of elements assem-bled following different aggregation patterns. Therefore, theexe
ution of the WS-SAGAS depends on the exe
ution ofthe different patterns it 
omposes. We formulate the exe-
ution semanti
s of a WS-SAGAS in terms of intra-WS-SAGAS dependen
ies and we de�ne four types of dependen-
ies. LetWS-SAGASi:a be a subtransa
tion and patterni:a itsordered set of patterns des
ribed by OR(WS-SAGASi:a). Letpatterni:a1 be the �rst pattern in patterni:a, and patterni:atthe last pattern.intraa
(WS SAGASi:a) is an intra-WS-SAGAS a
tivationdependen
y. It pla
es 
onditions on the different intrapat-tern dependen
ies formulated for the different patterns inpatterni:a. Let patterni:a1 and patterni:a2 be two 
onse
u-tive patterns from WS-SAGASi:a. For patterni:a2 exe
utionto be a
tivated, patterni:a1 must have terminated its exe
u-tion. We do not restri
t the termination to a su

essful 
om-mitment be
ause a pattern 
an be a 
olle
tion of nonvitalelements.intra
(WS-SAGASi:a) is an intra-WS-SAGAS 
ommitmentdependen
y. It pla
es 
onditions on the different intrapat-tern dependen
ies formulated for the different patterns inpatterni:a. A WS-SAGAS 
an 
ommit if all the patterns that
ontain at least one vital element are 
ommitted.More for-mally, intra
(WS-SAGASi:a) is valid iff :�8patterni:a` 2 patterni:a where 9Evi:a:¶ 2 patterni:a`;we have: intra
(patterni:a`) is veri�ed.



20 Neila BEN LAKHAL et al.If any of the patterns in WS-SAGASi:a that 
ontain at leastone vital element were interrupted by a failure and a ba
k-ward re
overy was triggered, then the WS-SAGAS failure isdedu
ed. More formally, intrai(WS-SAGASi:a) is valid iff�9patterni:a` 2 patterni:a where 9Evi:a:¶ 2 patterni:a` ;we have: intrai(patterni:a`) is veri�ed:Assume that patterni:a1 and patterni:a2 are two 
onse
utivepatterns fromWS-SAGASi:a, and patterni:a2 is verifying theabove 
ondition. Therefore, intrai(WS SAGASi:a) is veri�edand it requires that all the patterns in patterni:a have to re-
over.Every pattern a
tivates impli
itly the intrapattern inter-ruption dependen
y of its prede
essor when its own intra-pattern interruption dependen
y is veri�ed and terminated.This is ensured by every su

essive pattern having overlap-ping s
opes.5.4.4 WS-SAGAS Nesting Semanti
sIn the des
ription of all the patterns semanti
s, we assumedthat all the elements were atomi
. However, we have de-�ned our pro
ess with multinesting levels where an element
an be at the same time part of one WS-SAGAS and par-ent of another WS-SAGAS. The element Ei:a is in
luded inWS-SAGASi and therefore it is regarded as atomi
 elementsin the same nesting level, that is, f8E` 2CR(WS-SAGASi)�fEi:agg, E` does not know that Ei:a is 
omposite. That is, ifthe exe
ution progress of the elements inWS-SAGASi rea
hesthe 
omposite element Ei:a the exe
ution ofWS-SAGASi:ais triggered. However, for the other elements inWS-SAGASi,we assume that the exe
ution delegation is totally transpar-ent in the sense that the other elements in WS-SAGASi areonly waiting for the exe
ution of the element Ei:a.On the other hand, Ei:a is the parent of the subtransa
-tionWS-SAGASi:a. Consequently, the 
ommitment of Ei:a inWS-SAGASi is equivalent to the intra
(WS-SAGASi:a). There-fore, in the intra
ommitment dependen
y of every patternthat has Ei:a in its s
ope, we have to repla
e the 
ondition:�DR(Ei:a):state= 
ommitted� by�intra
(WS-SAGASi:a) is veri�ed�. Similarly, all the intra-interruption, intra
ompensation, and intra-abortion depen-den
ies for ea
h pattern, in
luding a 
omposite elementwithin its s
ope, should be revised likewise.In the same way, another form of exe
ution dependen
yis required to guarantee that the nesting relation betweenthe WS-SAGAS forming a pro
ess is respe
ted. We intro-du
e another form of dependen
y, inter-WS-SAGAS nestingdependen
y to ensure that 
ommitment of WS-SAGASi de-pends on WS-SAGASi:a and that failures of WS-SAGASi:ashould also be 
as
aded toWS-SAGASi. More formally:Let WS-SAGAS` and WS-SAGAS¶ be two subtransa
-tions in Pi (i.e., ` and ¶ are de�ned in [i::i:a: � :b: � :
℄).There is an inter-WS-SAGAS nesting dependen
y betweenWS-SAGAS` andWS-SAGAS¶ , we note:intern(WS-SAGAS`;WS-SAGAS¶ ) iff:f9E¶ 2CR(WS-SAGAS`)j DR(E¶ ):type= 
ompositeg.

5.4.5 Pro
ess Exe
ution Semanti
sWe assume a peer-to-peer exe
ution model of a pro
ess Pidepi
ted as a hierar
hy of re
ursively nested WS-SAGAS,whi
h in turn are 
olle
tions of aggregated elements. We de-note a pro
ess exe
ution instan
e by Pxi where x is ranging in[1::a℄ and a designates the number of invo
ations of the pro-
ess. The exe
ution of a pro
ess instan
e assumes a dynami
WS dis
overy and 
andidate sele
tion. For ea
h pro
ess ex-e
ution instan
e, we have a set of DR, a set of OR, and a setof CR : DR(Pxi )[ni;mi℄, CR(Pxi )[ni;mi℄, and CR(Pxi )[ni;mi℄.A su

essful termination of a pro
ess exe
ution instan
eis rea
hed when all the vital WS-SAGAS forming the hi-erar
hy are su

essfully 
ommitted and that the invo
ationorder of the 
olle
tion of elements forming the hierar
hy ofWS-SAGAS is 
orre
t against the pres
ribed order. Moreformally, the following 
onditions are satis�ed:� inter
(Pxi ) is veri�ed and� OR(Pxi )[ni;mi℄ respe
ted the same pres
ribed order de-�ned in OR(Pi)[ni;mi℄.intra
(Pxi ) is an intrapro
ess 
ommitment dependen
y. It puts
onditions on the different intra-WS-SAGAS dependen
iesformulated for the differentWS-SAGAS in Pi. A pro
ess 
an
ommit if all the vital WS-SAGAS are 
ommitted. Moreformally, intra
(Pxi ) is valid iff:�8WS-SAGAS` 2 Pi verifying DR(WS-SAGAS`):vitality=vital; we have: intra
(WS-SAGAS`) is veri�ed:If any of the vital WS-SAGAS in Pi were interrupted bya failure and a ba
kward re
overy was triggered, then thewhole WS-SAGAS failure is dedu
ed. A failure is 
as
adedup and down the hierar
hy. More formally, intrai(Pi) is validiff:�9WS-SAGAS` 2 Pi verifying DR(WS-SAGAS`):vitality=vital; we have: intra
(WS-SAGAS`):5.5 Illustrative ExampleWe spe
ify the trip reservation pro
ess P1 using our de�nedtextual, graphi
al, and formal notations. The travel itineraryreservation pro
ess P1[n1;m1℄ is des
ribed as a hierar
hy ofWS-SAGAS 
omposed of n1 = 6 elements distributed overm2 = 2 nesting levels. The �rst level is WS-SAGAS1 that
ombines n1;1 elements: a trip information registration (Ev1:1),a �ight-booking element (Ev1:2), a hotel reservation element(Ev1:3), and a 
ar rental element (E v̄1:4). The se
ond nestinglevel isWS-SAGAS1:3 that has as a parent Ev1:3 that 
ombinesn1;2 elements: a reserve room element (Ev1:3:1) and a reserverestaurant element (E v̄1:3:2). To ea
h atomi
 element, a 
om-pensating element is de�ned: Ev01:1 is the 
ompensating ele-ment of Ev1:1, Ev01:2 is the 
ompensating element of Ev1:2, Ev01:3:1is the 
ompensating element of Ev1:3:1, E v̄01:3:2 is the 
ompen-sating element of E v̄1:3:2, and E v̄01:4 is the 
ompensating ele-ment of E v̄1:4.
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Fig. 5.3 WS-SAGAS graphi
al notation: example of a trip reservationpro
essWe assume that a potential user of the pro
ess has to pro-vide his desired destination, his desired departure and returndates, and his name. As QoS attributes, we assume that weare only interested in knowing the exe
ution time and thereliability.5.5.1 Textual Notation: T1The textual notation of P1 is formed by the triplet 
ombiningthe list of DR, the list of CR, and the list of OR, as des
ribedbelow.De�nition Rules:DR(P1)[n1;m1℄ � 1:3[̀=1DR(WS-SAGAS`) 1:3:2[¶=1:1DR(E¶ )� �DR(WS-SAGAS1) 1:4[¶=1:1DR(E¶ )�[�DR(WS-SAGAS1:3) 1:3:2[¶=1:3:1DR(E¶ )� :

DR(WS-SAGAS1) :hname = WS-SAGAS1;des
ription= 1:4[¶=1:1DR(E¶ :des
ription);state= 1:4[¶=1:1DR(E¶ :state);vitality = vital;behavior = 1:4[¶=1:1DR(E¶ :behavior)i :DR(Ev1:1) :hname= E1:1;des
ription= travelinformation;type= atomi
;state= Waiting;vitality= vital;operation1((in1 = destination;in2 = depart; in3 = return; in4 = name);(out1 = destination;out2 = depart;out3 = return;out4 = name));qos1 = reliability;qos2 = exe
utionTimei :Composability Rules:CR(P1)[n1;m1℄ �CR(WS-SAGAS1)[CR(WS-SAGAS1:3) :CR(WS-SAGAS1)! hEv1:1;Ev1:2;Ev1:3;E v̄1:4iCR(WS-SAGAS1:3)! hEv1:3:1;E v̄1:3:2i :Ordering Rules:OR(P1)[n1;m1℄ �OR(WS-SAGAS1)[OR(WS-SAGAS1:3) :OR(WS-SAGAS1)! hEv1:1;(Ev1:2jjEv1:3)^E v̄1:4iOR(WS-SAGAS1:3)! hEv1:3:1;E v̄1:3:2i :5.5.2 Graphi
al Notation: G1(Figure 5.3) is an illustrative example of how a trip reserva-tion pro
ess P1 is spe
i�ed using the WS-SAGAS transa
-tion model graphi
al notation.5.5.3 Formal Notation:F1The formal notation of the pro
ess P1 is des
ribed belowusing the syntax, in the spirit of CPS, that we de�ned:P1 =WS-SAGAS1 `WS-SAGAS1:3WS-SAGAS1 = [Ev1:1℄;([Ev1:2℄jj[Ev1:3℄^[E v̄1:4℄)= (Ev1:1�Ev01:1);(((Ev1:2�Ev01:2)jjEv1:3)^(E v̄1:4�E v̄01:4))WS-SAGAS1:3 = [Ev1:3:1℄; [E v̄1:3:2℄= (Ev1:3:1�Ev01:3:1);(E v̄1:3:2�E v̄01:3:2) :
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hite
ture6.1 MotivationsThe FENECIA approa
h de�ned the WS-SAGAS model todes
ribe how a business pro
ess is spe
i�ed. However, theWS-SAGAS remains only a spe
i�
ation be
ause it dealtonly with modeling and did not 
onsider the evident need ofa CWS ena
tment model to have a 
omprehensivemethodol-ogy that ta
kles the WSC issue from all its different aspe
ts.To this end, in the FENECIA approa
h, we investigated theissue of CWS exe
ution.Typi
ally, a CWS 
an be organized in either a 
entral-ized or a distributed fashion. We refer to the exe
ution modeas 
entralized when a single 
oordinator or engine, su
h asthe BPWS4J engine, exe
utes a CWS developed, for exam-ple using BPEL4WS [4℄. In 
ontrast to a distributed modelwhere data are transferred dire
tly between two points, in a
entralized model all data must go through the 
oordinator.The 
oordinator may thereby be
ome a performan
e bottle-ne
k and 
onstitute a single point of failure. In addition, al-lowing a large amount of irrelevant data to traverse the 
oor-dinator may overload the network and 
ause poor s
alabilityand signi�
ant performan
e degradation.To 
ope with the revealed inadequa
y of the exe
ution ofCWS with a 
entralized 
ontrol in FENECIA, we opted fora distributed model and we present THROWS ar
hite
ture,whi
h is an a
ronym for a Transa
tion Hierar
hy for RouteOrganization of Web Servi
es, where the 
omposition exe-
ution 
ontrol is distributed [19℄ over multiple engines, ea
hallo
ated to an element from a pro
ess depi
ted as a hierar-
hy of re
ursively nested WS-SAGAS transa
tions. Ratherthan 
ommuni
ating through a 
entral authority, the engines
ommuni
ate dire
tly with ea
h other to transfer data anddelegate exe
ution 
ontrol when required.6.2 General Assumptions and Des
ription of THROWSAr
hite
tureIn THROWS ar
hite
ture, the exe
ution 
ontrol of a pro
essPi depi
ted as hierar
hy of re
ursively nestedWS-SAGAS isallo
ated to dynami
ally dis
overed engines. To ensure highavailability of distributed exe
ution of the CWS, we makeavailable on ea
h engine side the following information: theCEL (Candidate Engines List) and the CEP (Current Exe
u-tion Progress).In THROWS, for ea
h atomi
 element Ei:k from a sub-transa
tionWS-SAGASi, a CEL is generated by sear
hing forWS that have 
apabilities satisfying the element Ei:k fun
-tionalities. To ea
h dis
overed WS, an engine is allo
ated,and together, they are stored as a 
ouple, engine-ws, in theCEL of the elementEi:k, denoted asCEL(Ei:k). That is,CEL(Ei:k)is an ordered set of engine-ws 
ouples, and every time anelement is to be exe
uted, CEL(Ei:k) is generated and anengine-ws 
ouple is allo
ated. When allo
ated to exe
ute aparti
ular element Ei:k, the engine exe
utes the WS it 
on-

trols and that provides the required fun
tionalities from theelement Ei:k. Therefore, the engine is responsible of the in-vo
ation, exe
ution and 
ompletion, failure information, andre
overy of Ei:k.An engine allo
ated to an element Ei:k is denoted as epi:kand it 
ontrols a WS denoted as wspi:k, where the subs
ript�i:k� is kept the same as the element to whi
h it is allo
atedand the supers
ript �p� is a unique identi�er ranging over[1::jCEL(Ei:k)j℄, with jCEL(Ei:k)j the 
ardinality of CEL.We assume that there are two types of engines. The �rsttype of engine is allo
ated to atomi
 elements and is re-sponsible for the invo
ation, exe
ution and 
ompletion, fail-ure information, and re
overy; we 
all this type engine ex-e
utor and we denote it as eepi:k. The se
ond type of enginesis responsible for 
omposite elements. An engine allo
atedto a 
omposite element 
ontrols an overall WS-SAGAS;we 
all this the engine 
oordinator and we denote it as e
pi:a.Assume that for a parti
ular value q of p in eepi:k, the en-gine eeqi:k 
ommitted su

essfully the element Ei:k. Then, insu
h a s
enario, the engine eeqi:k is responsible for generatingthe CEL of the dire
t su

essors of the element it 
ontrols;this is how the exe
ution progresses in THROWS. However,if the engine fails, then a forward re
overy 
an be attemptedif there are other engines in theCEL; otherwise, a ba
kwardre
overy is triggered.TheCEP, using the state 
on
ept de�ned inWS-SAGASand with every element being updated with every state 
hange,allows for information about failures to be 
olle
ted and theba
kward re
overy me
hanism to be realized, as des
ribedin WS-SAGAS. On the other hand, the CEL allows an in-
rease in the 
han
es for the exe
ution of a CWS 
ommitby realizing the forward re
overy me
hanism, des
ribed inWS-SAGAS. In the future, both the CEL and CEP, be
auseof their 
ontents, 
an serve as a solid base for investigatingand analyzing the reasons for failures that have o

urred ifthey are stored in a history that 
olle
ts the exe
ution logs ofdifferent CWS.To return to the engine 
oordinator, assume that Ei:a is a
omposite element from the pro
ess des
ribed by (Equa-tion 5.1). When the exe
ution progress rea
hes Ei:a, an en-gine e
pi:a is allo
ated to Ei:a. Be
ause Ei:a is the parent of thesubtransa
tionWS-SAGASi:a, the engine e
pi:a has to initiatethe exe
ution ofWS-SAGASi:a.The parti
ularity of e
pi:a�as engine 
oordinator�is thatit has no unique WS under its 
ontrol; therefore, it does notinvoke any WS. Instead, it has to generate the CEL of the�rst element in WS-SAGASi:a, that is, CEL of Ei:a:1. Then,an engine eepi:a:1 is sele
ted and the exe
ution pro
eeds untilit rea
hes the last element inWS-SAGASi:a; we assume thiselement is Ei:a:ni;2 and it is allo
ated to an engine eei:a:ni;2 .This engine, when it terminates the exe
ution of the element,returns exe
ution 
ontrol to the engine parent of the entiresubtransa
tion WS-SAGASi:a, that is, to the engine 
oordi-nator e
pi:a. The engine 
oordinator e
pi:a resumes exe
utiontermination of element Ei:a by updating the state of Ei:a inline with the overall state ofWS-SAGASi:a.
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ribe the 
oordination between engine 
oordina-tor and engine exe
utor below in this se
tion.In des
ribing our exe
ution ar
hite
ture, we only 
on-sider the 
ase where all the elements in a pro
ess Pi are
ompensatable. The 
ase of a pro
ess that in
ludes oneor more non
ompensatable elements is addressed in ourfuture work.In sear
hing for WS that mat
h an element's fun
tion-alities, we assume only simple mat
hing based on the ele-ment's prede�ned operations in its DR and the WS des
rip-tion in
luded in its WSDL.We 
onsider only simpli�ed 
on-ditions that 
an be developed in a future work. We assumethat we 
an determine easily and automati
ally whether aWS and an element are semanti
ally equivalent. To date, as-sessing the similarity of WS to a
hieve the best mat
h is ana
tive area of resear
h. We 
an apply one of the availableproposals ranging from keyword-based methods to ontolo-gies and reasoning algorithm-enri
hed methods. We 
on-sider the applied WS dis
overy and sele
tion methods be-yond the s
ope of this paper.De�nition 6.1 (Engine Exe
utor (eepi:k)) An engine exe
u-tor eepi:k is allo
ated to 
ontrol the exe
ution of a WSWSpi:kthat provides 
apabilities satisfying the fun
tionalities of aparti
ular atomi
 element Ei:k from aWS-SAGASi.Be
ause an engine is an entity that relates to the CWSexe
ution, we de�ne it using the following spe
ialization ofthe generi
 DR introdu
ed in the pre
eding se
tion:DR(eepi:k) = hname;des
ription;wsdlLink;e
pi ;(operation� (in�;out�))�i ;where:- name is ne
essary to identify the engine exe
utor;- des
ription is a 
on
ise des
ription of the 
apabilitiesof the WS 
ontrolled by the engine eepi:k;- wsdlLink is the lo
ation of the WSDL of the WS 
on-trolled by the engine eepi:k;- (operation�(in�;out�)) are the different operations thata parti
ularWSWSpi:k 
an provide with their 
orrespond-ing input and output parameters;- every �rst and last engine exe
utor 
ontrolling the �rstand last element in a subtransa
tion, respe
tively, mustknow the engine 
oordinator that 
ontrols the subtrans-a
tion they relate to.This is required be
ause theWS-SAGAS exe
ution startsby re
eiving the 
ontrol from the engine 
oordinator, andwhen the exe
ution of the last element terminates, thiselement has to inform the 
oordinator of its terminationand of its exe
ution results. However, be
ause a WS-SAGAS exe
ution may be subje
t to failure and inter-rupted before rea
hing the last element, ideally we mustmake this information available in all the elements. Morepre
isely, in (Equation 5.1), assume that e
pi is the engine
oordinator that initiated the exe
ution of the subtrans-a
tion and that was allo
atedWS-SAGASi; then, in everyengine exe
utor 
ontrolling an element fromWS-SAGASi,we have the information e
pi made available.

De�nition 6.2 (Engine Coordinator (e
pi:a)) An engine 
o-ordinator (denoted e
pi:a) is allo
ated to 
ontrol the exe
utionprogress of a 
omposite element Ei:a aggregated in a sub-transa
tionWS-SAGASi and the parent of another subtrans-a
tionWS-SAGASi:a. Be
ause an engine is an entity that re-lates to the CWS exe
ution, we de�ne it using the followingspe
ialization of the generi
 DR introdu
ed in the pre
edingse
tion:DR(e
pi:a) = hname;des
ription;CR(WS-SAGASi:a)i ;where:- name is ne
essary to identify the engine 
oordinator;- des
ription is a 
on
ise des
ription of the fun
tionali-ties of the engine e
pi:a. It veri�es:DR(e
pi:a):des
ription�DR(WS-SAGASi:a):des
ription- CR(WS-SAGASi:a) has the same 
ontent asCR spe
i�edin the pre
eding se
tions. This 
ontent is required for theengine 
oordinator to know the elements it is responsiblefor invoking. In parti
ular, as des
ribed above, e
pi:a hasto generate theCEL of the �rst element inWS-SAGASi:a;therefore, it requires full knowledge ofCR(WS-SAGASi:a).De�nition 6.3 ( The Candidate Engine List of an Atomi
Element (CEL(Ei:k))) For ea
h atomi
 element Ei:k fromWS-SAGASi we de�ne CEL as the list of 
andidate enginespotentially enabled to exe
ute Ei:k (i.e., they 
ontrol the ex-e
ution of WS providing the same semanti
s as Ei:k). Gen-erating CEL is the responsibility of the dire
t prede
essorof the element, that is, when the exe
ution of Ei:k by a 
er-tain engine eeqi:k is 
ommitted. Then, the engine exe
utoreeqi:k must allo
ate the exe
ution 
ontrol to another engine toprogress the pro
ess exe
ution by generating the CEL of itsdire
t su

essor; we assume it generates CEL(Ei:k+1), andthen it sele
ts an engine eepi:k+1 and delegates the exe
ution
ontrol to that engine.Depending on the element it 
ontrols (i.e., order in theWS-SAGAS's OR), an engine may have to generate onlyone CEL, many CELs, or it may not have to generate any.In addition, generating the CEL of a parti
ular elementmight be the responsibility of only one engine, or it mightbe the responsibility of several engines. We show in whatfollows that distinguishing one 
ase from another dependson the 
ontent of OR(WS-SAGASi):1. (Ei:k op (Ei:k+1 op Ei:k+2 op : : : op Ei:k+ j)) where everypre�xed operator veri�es op 2 fjj;�;Cg: In this 
ase, theengine responsible for exe
uting the element Ei:k on �n-ishing su

essfully Ei:k has to generate the CELs of allthe elements in S (Ei:k)su

 (the subset of elements 
ho-sen for exe
ution from all the dire
t su

essors of Ei:k).If we assume that eeqi:k is the engine that was allo
ated toEi:k and has 
ommitted it, then the generatedCELs of allthe elements in S (Ei:k)su

 is denoted CEL(S (Ei:k)su

),and the set of the sele
ted engines (ea
h for ea
h elementfrom S (Ei:k)su

 is denotedS (eqi:k)su

;



24 Neila BEN LAKHAL et al.2. ((Ei:kopEi:k+1 op Ei:k+2 op : : :op Ei:k+ j) op Ei:l) whereevery post�xed operator veri�es op 2 f^;�;�g : Inthis 
ase,CEL(Ei:l) is generated by the engine(s) respon-sible for exe
uting the element(s) in S (Ei:l)pre (the sub-set of elements being exe
uted from all the dire
t prede-
essors of Ei:l ); if we assume eepi:l to be the engine se-le
ted to exe
ute Ei:l , then this set of engines is denotedS (eepi:l)pre;3. As de�ned in (Equation 5.1), Ei:ni;1 is the last element inthis WS-SAGAS and does not have to generate anyCEL.We use the following notation for CEL(Ei:k):CEL(Ei:k) = �DR(ee1i:k);DR(ee2i:k); :::;DR(eeqi:k); :::� ;(6.1)where:� the number of dis
overed engines in CEL(Ei:k) is vari-able and depends on WS availability.� DR(eeqi:k) is assumed to be theDR of the engine exe
utorthat was allo
ated to Ei:k and was su

essful in its exe-
ution. Every time the exe
ution of an element Ei:k fails,it is allo
ated a new engine from the CEL(Ei:k), de�nedwith DR(eepi:k) and p 2 [1::jCEL(Ei:k)j℄.Be
ause ea
h nonvital element has to be attemptedonly on
e, the 
ardinality of the different CELs of all thenonvital elements fromWS-SAGASi must verify the 
on-dition:f8E v̄i:kjE v̄i:k 2WS-SAGASi : jCEL(E v̄i:k)j= 1gHowever, be
ause the su

essful 
ommitment of all the vitalelements is essential, the probability of their su

ess must bein
reased by generatingCELs verifying the 
ondition:f8Evi:kjEvi:k 2WS-SAGASi : jCEL(Evi:k)j> 1gIt is possible that throughout the exe
ution of the differentinstan
es of the same element, an engine generates a CELthat 
ontains multiple 
andidate engines and that in almostall exe
ution instan
es, the element exe
ution was 
ommit-ted by the �rst allo
ated engine.Consequently, the time spent in generating theCEL 
on-stitutes an overhead. It is required to determine for ea
helement the most suitable value of the 
ardinality of CEL,whi
h allows the element to be su

essfully terminated, butin addition, avoids the risk of having to trigger a re
overyonly be
ause there is no available 
andidate engine. This 
anbe possible by 
onsidering and analyzing the exe
ution his-tory of the different elements.De�nition 6.4 ( The Repli
a Engines List of a CompositeElement (REL(Ei:a))) The REL of a 
omposite element isde�ned in the same way as an atomi
 element. However,it does not require any WS dis
overy or sele
tion. The maindifferen
e is that an REL 
ontains the repli
as from the sameengine 
oordinator. That is, assume a 
omposite elementEi:a is the parent of a WS-SAGASi:a in Pi. When the exe-
ution 
ontrol rea
hes Ei:a, instead of generating aCEL, be-
ause this element is 
omposite it makes its prede
essor(s)

generate REL(Ei:a), whi
h is a list of repli
a engines. Thisavoids failure, be
ause if one of the engines in REL(Ei:a)fails, another engine takes 
harge of the exe
ution instead ofthe failed engine. The information in the different engines is
ontinuously updated to avoid having any obsolete informa-tion. Moreover, any update/information that rea
hes any ofthe repli
a engine 
oordinators in REL(Ei:a) is transparentlybroad
ast to all the others. We use the following notation forREL(Ei:a):REL(Ei:a) = �DR(e
1i:a);DR(e
2i:a); :::;DR(e
qi:a); :::� (6.2)where:� the number of repli
a engines in REL(Ei:a) is variableand depends on the designer's judgment;� DR(e
qi:a) is assumed to be the DR of the repli
a en-gine 
oordinator that was allo
ated to Ei:a, whi
h wasnot subje
t to a failure, and whi
h 
ontains the last up-dated information 
on
erning the exe
ution progress ofWS-SAGASi:a.De�nition 6.5 (The Current Exe
ution Progress (CEP))We de�ne the 
on
ept ofCEP to keep tra
k of the exe
utionprogress of a pro
ess, depi
ted as a hierar
hy of re
ursivelynested WS-SAGAS. When an engine exe
utor eepi:k exe
utesan atomi
 element Ei:k, every 
hange in that element's statehas to be re�e
ted on the 
opy of the CEP, stored lo
allyon the engine exe
utor eepi:k side. The CEP 
ontent is madeavailable on ea
h engine (exe
utor and 
oordinator).On every engine exe
utor, only one type of CEP 
opy isavailable. Consider the pro
ess depi
ted in (Equation 5.1),where a 
opy ofCEP ofWS-SAGASi, whi
h is stored on theengine exe
utor eepi:k, is formulated as:CEP(WS-SAGASi;eepi:k) :��!DR(Ei:1) op � � �op �!DR(Ei:k) op� � �op �!DR(Ei:a) op � � �op �!DR(Ei:ni;1)� ;where:� �!DR(Ei:k) is de�ned as the A
tive DR of the element Ei:k:it is equal to the DR of the element Ei:k to whi
h an at-tribute engine is added, indi
ating the name of the 
ur-rently allo
ated engine to the element; this notation isused to indi
ate that the element Ei:k is allo
ated to en-gine eepi:k. The last value of the attribute engine is thevalue of the engine that either 
ommitted the element orfailed to 
ommit it.� initially, the attribute �!DR(Ei:k):engine is set to null inall the elements' a
tive DR in CEP.� Ei:1 and Ei:ni;1 are, respe
tively, the �rst and the last ele-ment of the subtransa
tionWS-SAGASi.� op is the operator that 
onne
ts the different elementwith op 2 fjj; ; ;?;C;^;�;�;�g . Depending on the
onsidered operator, it 
an be pre�xed (e.g., l , C, and �),post�xed (e.g.,^,�, and�), or in�xed (e.g.,jj and ;).
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Fig. 6.1 WS-SAGAS transa
tion model exe
ution in THROWS ar
hite
ture: 
ontrol delegation and CEP ex
hange between engine 
oordinatorand engine exe
utorBe
ause we 
onsider a hierar
hy of nested WS-SAGAS, wehave different CEP expressions, one for every nesting level.More pre
isely, 
onsider the pro
ess in (Equation 5.1). Pi isformed with mi nesting levels. Therefore we have mi differ-ent CEP, one for ea
h WS-SAGAS.Be
ause we 
onsider a peer-to-peer exe
ution model, theonly 
onne
tion point between two subtransa
tions in two
onse
utive nesting levels, su
h as WS-SAGASi in nestinglevel 1 and WS-SAGASi:a in level 2, is the engine 
oordi-nator responsible for the 
omposite element Ei:a, parent ofWS-SAGASi:a and part of WS-SAGASi. The important roleof an engine 
oordinator be
omes apparent here be
ause ev-ery engine exe
utor is the 
onne
tion point level and 
onsti-tutes, similar to the bridge that delegates the exe
ution 
on-trol from one level to another.Assume that the engine 
oordinator e
pi:a was allo
atedto the 
omposite element Ei:a from WS-SAGASi. On beingallo
ated to exe
ute the element Ei:a, this engine re
eivesa 
opy of CEP(WS-SAGASi;eepi:a�1) from its dire
t prede-
essor (i.e., assume it is an engine eepi:a�1 allo
ated to anelement Ei:a�1).Be
ause Ei:a is 
omposite, the engine 
oordinator e
pi:ahas to initiate the exe
ution of WS-SAGASi:a; therefore, ithas to generate a CEL of Ei:a:1 and must provide it with the
opy of CEP(WS-SAGASi:a;e
pi:a). Therefore, on e
pi:a, wehave two CEPs: the �rst is CEP(WS-SAGASi;eepi:a�1) andthe se
ond is CEP(WS-SAGASi:a;e
pi:a). In this way we 
anstart the exe
ution of another nested level. The 
ontent ofCEP(WS-SAGASi:a;e
pi:a) is des
ribed in the same way asCEP(WS-SAGASi;eepi:a�1).

When the exe
ution of WS-SAGASi:a terminates, e
pi:ahas to resume exe
ution 
ontrol. On re
eiving a 
opy ofCEP(WS-SAGASi:a;eepi:a:ni;2), it dedu
es its own state on thebasis of the exe
ution progress of the whole WS-SAGASand has to generate aCEL for Ei:a+1�its dire
t su

essor inWS-SAGASi�sele
t an engine, and allo
ate exe
ution 
on-trol to it; assume the allo
ated engine is eei:a+1, if Ei:a+1 isatomi
. In this 
ase, engine e
pi:a sends to eei:a+1 a 
opy ofCEP(WS-SAGASi;e
pi:a) (see Figure 6.1).6.3 Collaboration between Peer Engines and Web Servi
esTo exe
ute a WS-SAGAS, the engines in THROWS ar
hi-te
ture 
ommuni
ate by the different messages that we de-�ne. All the messages are sent in a peer-to-peer fashion, thatis, from the sour
e to the destination without going throughany 
entral entity, as they would for 
entralized exe
ution.Consequently, performan
e bottlene
ks should de
rease.In what follows, the distin
tion between an engine ex-e
utor or 
oordinator is only made when the pro
essing dif-fers.6.3.1 Conversation between Peer Engines:Messages ex
hanged between peer engines 
ontain:(i) The 
urrent exe
ution progress (CEP): After an engineis 
hosen to be in 
harge of a parti
ular element, it has tobe informed of the CEP 
ontent (last-updated version).



26 Neila BEN LAKHAL et al.To guarantee that the ne
essary information for any po-tential re
overy is still available, we assume that theCEP
ontent is preserved in the side of every engine until theend of all the WS-SAGAS exe
utions.Therefore, even if a message sent between two engines isdis
arded or does not rea
h its destination for any reason(e.g., network broken, time out), it is possible to submit itagain. We note that CEP 
ontains the exe
ution 
ontext(e.g., input/output variables, servi
es invo
ation results)ne
essary for ea
h WS invo
ation.(ii) The exe
ution start signal, abortion request, and 
om-pensation request: Thesemessages enable a syn
hronizedtransa
tional exe
ution of CWS. However, they are notsuf�
ient. We also need spe
ial syn
hronization mes-sages to 
ontrol delegation of the exe
ution 
ontrol be-tween engines to prevent ra
e 
onditions o

urring, andimproper 
ontrol �ow signals may be triggered, leadingto possible in
onsisten
ies.Considering that in our ar
hite
ture, we are 
onstrained by adistributed and loosely 
oupled environment, the distributedtwo-phase 
ommit proto
ol (2PC) 
annot apply, be
ause theAtomi
ity property and the lo
king me
hanisms on whi
h itis founded are not required and a 
entral monitor's existen
eis undesirable.There are a number of proposed proto
ols for distributedand loosely 
oupled environments, in
luding BTP [48℄, WS-transa
tion [25℄ with WS-
oordination [49℄, and WS-CAF[26℄. Not all the available WS support the same proto
ol,so instead of using any of these proto
ols, for �exibilityin THROWS ar
hite
ture we introdu
ed the predelegationphase, the syn
hronization phase, the peer-engines waitingperiod, and the engine-ws waiting period:� The predelegation phase: During this phase, a �rst entity(one or more engines) agrees that it will release exe
u-tion 
ontrol while a se
ond entity (one or more engines)agrees that it is ready to a

ept delegation of the 
on-trol. This phase is ne
essary at the beginning of ea
h el-ement exe
ution. Introdu
ing su
h a phase redu
es thepotential for 
an
ellations (e.g., engine not ready) andimproves the probability of su

essfully 
ompleting the
omposite WS exe
ution. The �rst entity sends a 
ontroldelegation request and it is assumed to re
eive a 
ontroldelegation agreement from the se
ond entity.� The syn
hronization phase: This phase follows dire
tlyafter the predelegation phase where one or more ele-ments has to be exe
uted in parallel. To ensure this, dif-ferent engines, on re
eiving a start signal propagated bytheir dire
t 
ommon prede
essor, start the exe
ution si-multaneously.� Peer engines waiting period: This is the estimated periodof time, after whi
h the engine does not re
eive any 
on-�rmation or agreement, so the message for 
ontrol del-egation ignores that engine and 
hooses another enginefrom the CEL as a new 
andidate for 
ontrol delegation;then, the predelegation phase is repeated.� Engine-web servi
e waiting period: It is most likely thatan engine exe
utor 
ontrolling a WS, for an unknown
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ompensatable ele-ment exe
uted in THROWS ar
hite
turereason (e.g., failure) does not re
eive a response messagefrom the WS for a time; in some 
ases, the waiting time,as an answer time may even tend to be in�nite, whi
his una

eptable. To avoid this, a similar situation to theabove o

urs. We de�ne this as the engine-ws waitingperiod. It avoids the engine exe
utor waiting eternallyfor an answer that may never 
ome: if the WS fails to re-spond after the engine-ws waiting period has elapsed andno information was re
eived of the exe
ution progressof the WS, then the engine exe
utor must 
onsider itselffailed and a re
overy must be triggered.6.3.2 Conversation between an Engine Exe
utor and a WS:The different messages that are used to 
ommuni
ate be-tween an engine exe
utor and a WS are de�ned a

ordingto the WS exe
ution progress and they are 
hie�y of twoforms:� The engine exe
utor sends a noti�
ation of exe
utionstart to ask the WS it 
ontrols to start exe
uting. At thesame time it provides the WS with the ne
essary inputdata for its exe
ution.� When a WS �nishes exe
uting, it noti�es the engine ex-e
utor of its own exe
ution results. In this 
ase also, theengine-ws waiting period, whi
h has to be estimated, isessential to avoid the engine exe
utor �nding itself eter-nally waiting for an answer that may not arrive. There-fore, after the engine-ws waiting period has elapsed, theengine exe
utor has to be informed of the WS exe
u-tion's progress. If no answer is re
eived, it implies thatthe WS has failed.



FENECIA 276.4 Des
ription of THROWS Ar
hite
ture Fun
tionalityThe WS-SAGAS transa
tion model supports the spe
i�
a-tion of a pro
ess in different ways following different de-�ned aggregation patterns. For these different patterns, weneed to des
ribe how they are to be exe
uted. In the fol-lowing, we show how the state and vitality degree 
on
eptsplay a 
ru
ial role in determining how the exe
ution is toprogress, and espe
ially, in distinguishing su

essful fromfaulty situations, in informing of failures, and in re
overingfrom failures. In des
ribing the fun
tioning of THROWS ar-
hite
ture, we mostly des
ribe sequential and parallel WS-SAGAS. Other patterns 
an be dedu
ed in the same way, be-
ause we have de�ned the exe
ution semanti
s of ea
h pat-tern in detail in the previous se
tion. (Figure 6.2) shows thedifferent transition rules that THROWS de�nes to make anatomi
 
ompensatable element's state 
hange from onestate to another. The diagram is for vital and nonvitalelements.6.4.1 Initiating the Exe
ution of a Pro
ess PiThe entire pro
ess Pi exe
ution is initiated by an engine 
o-ordinator e
pi . To ensure that it does not 
onstitute a singlepoint of failure, we assume that we have REL(Pi), a repli
aengine 
oordinator list that 
ontains several repli
as of e
pi .A pro
ess running on a server side is responsible for tak-ing a user request for a parti
ular pro
ess and for 
reatingREL(Pi), and starting the exe
ution with one of the repli
aengine 
oordinators; we assume here that it is e
pi . More pre-
isely, below is the 
ontent of REL(Pi):REL(Pi) = �DR(e
1i ); � � � ;DR(e
pi ); � � � ;DR(e
qi ); � � �� :(6.3)Every repli
a in REL(Pi) 
ontains the CEP of the over-all pro
ess and the CEP of the WS-SAGAS for whi
h theengine 
oordinator is responsible. That is, in e
pi we haveboth, CEP(Pi;e
pi ) and CEP(WS-SAGASi;e
pi ); CEP(Pi) isformed as follows:CEP(Pi;e
pi ) :CEP(WS-SAGASi;eepi:1)[CEP(WS-SAGASi:a;eepi:a:1):::[CEP(WS-SAGASi:a:�:b;eepi:a:�:b:1):::[CEP(WS-SAGASi:a:�:b:�:
 ;eepi:a:�:b:�:
:1) :CEP(Pi;e
pi ) means that the CEP 
opy is stored on enginee
pi . Similarly, CEP(WS-SAGASi:a;eepi:a:1) is stored on en-gine eepi:a:1,CEP(WS-SAGASi:a:�:b;eepi:a:�:b:1) is stored on en-gine eepi:a:�:b:1 , et
 (see Figure 6.1).The engine 
oordinator initiates the pro
ess exe
ution bystarting the exe
ution of the WS-SAGAS at the �rst nesting

level, that is, WS-SAGASi. The �rst step is to generate theCEL of the element appearing �rst in the �rst pattern; in the
ase ofWS-SAGASi, CEL(Ei:l) is generated, an engine is al-lo
ated, the predelegation phase is performed, and a 
opy ofCEP(WS-SAGASi;e
pi ) is passed to eepi:1 and the exe
utionof the WS-SAGAS starts.We des
ribe below the internal fun
tioning of a WS-SAGAS: the exe
ution of patterns that only 
ontain atomi
elements. Then, we des
ribe how the exe
ution is delegatedbetween different nesting levels.6.4.2 Sequen
e Pattern Exe
ution ([Ei:k℄; [Ei:k+1℄)We des
ribe the general exe
ution model of a sequen
e pat-tern aggregating only 
ompensatable atomi
 elements.We assume that an engine exe
utor eepi:k has been allo
atedto the element Ei:k. Depending on the exe
ution progress,different s
enarios may o

ur:1. Element Ei:k 
ommitment: In this s
enario we assumethat the exe
ution of wspi:k 
ontrolled by eepi:k was su
-
essful. The su

essful exe
ution must be re�e
ted onthe CEP 
ontent (to 
omply with our proposed notationof an engine that uses p to designate any engine and qto designate an engine that was su

essful, we use eeqi:kinstead of eepi:k). Therefore, the engine eeqi:k has to updatethe lo
ally stored 
opy of CEP; spe
i�
ally, the state ofthe element is to be modi�ed as follows:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state := Committed :The exe
ution results are used to update the output pa-rameters of the element:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):operation:out :=DR(eeqi:k):operation:out :Afterwards, the engine exe
utor has to delegate exe
u-tion 
ontrol. To this end, it generates CEL(Ei:k+1) and
hooses an engine exe
utor to whi
h it must delegate theexe
ution 
ontrol; we assume here that the engine eepi:k+1was allo
ated to exe
ute Ei:k+1. We note that the exe
u-tion of Ei:k+1 by eepi:k+1 is the exe
ution of a WS wspi:k+1
ontrolled by eepi:k+1. The WS wspi:k+1 to be mapped toEi:k+1 must satisfy the following three 
onditions:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):des
ription=CEL(Ei:k+1):DR(eepi:k+1):des
ription :(the fun
tionalities of the element meet the WS 
apabilities)CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):operation:in=CEL(Ei:k+1):DR(eepi:k+1):operation:in :(the input parameters of the element and of the WS are 
ompliant)CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):operation:out =CEL(Ei:k+1):DR(eepi:k+1):operation:out :(the output parameters of the element and of the WS are 
ompliant)



28 Neila BEN LAKHAL et al.On
e these 
onditions are satis�ed, the two engines starta predelegation phase in whi
h one engine agrees to del-egating 
ontrol while the other agrees to having 
ontroldelegated to it. When eeqi:k re
eives the agreement noti�-
ation from eepi:k+1, it �nalizes the delegation by updat-ing and sending theCEP 
ontent to the allo
ated engine:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):engine := eepi:k+1 :We emphasize that whether or not Ei:k was vital doesnot affe
t the fun
tioning of the engine for a su

essfulexe
ution.2. Vital Element Evi:k+1 Failure: We assume that ex
eptionalbehavior (e.g., unavailable, timed out, error message) ofthe WS wspi:k+1 pre
luded the engine eepi:k+1 from su
-
essfully 
ommitting the element Evi:k+1. Consequently,the elementEvi:k+1 exe
ution attempt by the engine eepi:k+1is 
onsidered to have failed and the following steps mustbe performed to re
over to a 
onsistent state, be
ause theelement's su

ess is 
ru
ial for the overall subtransa
tionsu

ess. First, the engine eepi:k+1 has to update its lo
allystored 
opy of CEP with the latest progress in exe
utionas follows:CEP(WS-SAGASi;eepi:k+1):�!DR(Evi:k+1):state := Failed :Se
ond, a 
opy of the lo
ally storedCEP is sent as a fail-ure noti�
ationmessage to the engine responsible for theexe
ution of the prede
essor of Evi:k+1, that is, to engineeeqi:k, so that it takes 
harge of the failure re
overy pro-
ess. Depending on the 
ardinality ofCEL(Evi:k+1) eithera forward re
overy (i.e., trying to advan
e the exe
utionpro
ess with an attempt at an exe
ution retrial) or a ba
k-ward re
overy (i.e., to re
over the CWS to a 
onsistentstate) is to be performed by eeqi:k.3. Vital Element Evi:k+1 Forward Re
overy: After being no-ti�ed of Evi:k+1 exe
ution failure by eepi:k+1 (i.e., re
eiv-ing a 
opy of CEP in whi
h the element Evi:k+1 state wasset to Failed), the engine eeqi:k 
he
ks the 
ardinalityof CEL(Evi:k+1) to determine whether trying a forwardre
overy, by allo
ating another engine in order to reat-tempt the exe
ution of Evi:k+1, is feasible or not.When (jCEL(Evi:k+1)j , 0) is veri�ed, it means that otherWS satisfying the element Evi:k+1 required fun
tionalitiesare available. Therefore, exe
ution retrial is possible: theengine eeqi:k sear
hes for the engine ranked next to eepi:k+1in CEL(Evi:k+1); here we assume it is the engine eep+1i:k+1.This engine is allo
ated to reattempt the exe
ution of theelement Evi:k+1; the lo
ally stored 
ontent of CEP in eeqi:kis updated as follows:CEP(Pi;eeqi:k):�!DR(Ei:k+1):engine := eep+1i:k+1 :Subsequently, a predelegation has again been performedwith the new engine eep+1i:k+1, the CEP 
ontent, with therequired 
ontext data for effe
tively starting the exe
u-tion, is 
ommuni
ated.

4. Vital Element Evi:k+1 Ba
kward Re
overy: If it happensthat (jCEL(Evi:k+1)j = 0), the exe
ution retrial is impos-sible and a ba
kward re
overy is ne
essary. To this end,all the other elements from the same WS-SAGAS thatare ordered before Evi:k+1 and have already 
ommitted are
ompensated for, that is, all the vital and nonvital el-ements that verify the following 
onditions:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:`j`2[1::k℄):state=Committed ;are 
ompensated for by exe
uting for ea
h element its
ompensating element. We emphasize that a 
ompensa-tion me
hanism is triggered by a 
ompensation requestpropagated for all the engines of the elements that verifythe above 
ondition. In addition, we note that the 
om-pensation request propagation is handled as des
ribedbelow.5. Element Ei:k Compensation: On re
eiving a 
ompensa-tion request, an engine �rst 
he
ks if it has any prede
es-sor to whi
h it must, similarly, propagate a 
ompensationrequest. Se
ond, it has to 
ompensate the exe
ution ofthe element for whi
h it is responsible.That is, if we 
onsider the 
ase of the engine eeqi:k, re-sponsible for the element Ei:k (appli
able to the 
ase ofvital and nonvital), the engine eeqi:k sear
hes for aWS that satis�es the fun
tionalities of E 0i:k, the 
ompen-sating element of Ei:k.Here, we assume that a WS wsq0i:k was dis
overed. Theengine eeqi:k exe
utes the WS wsq0i:k. On 
ompleting wsq0i:kexe
ution, eeqi:k updates CEP and propagates it with the
ompensation request to the engines 
on
erned:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state:=Compensated :The engine that �nds that it has no prede
essor engine ispresumably the engine responsible for the �rst elementEi:1. This engine exe
utor has only to 
ompensate the el-ement Ei:1. Finally, the overall WS-SAGAS of this levelfailure is 
al
ulated. The engine exe
utor eeqi:p, responsi-ble for the element Ei:1, after 
ompensating the elementEi:1 must propagate the failure information up the hierar-
hy to perform a ba
kward re
overy in other terminatedWS-SAGAS. To this end, it sends its last updated 
opy ofCEP(WS-SAGASi;eeqi:1) to the engine 
oordinator 
on-trolling the element parent of the WS-SAGASi. In this
ase, it propagates the 
opy to e
qi . We des
ribe belowin this se
tion how an engine 
oordinator handles thisfailure information.6. Nonvital Element E v̄i:k+1 Failure: Assume that the dire
tsu

essor of E v̄i:k is the nonvital element E v̄i:k+1. In this
ase, even if the engine eepi:k+1 allo
ated to E v̄i:k fails, it isnot ne
essary to attempt a re
overy be
ause its su

ess isoptional. However, the engine eepi:k+1 
ontinues the exe-
ution as if the element was 
ommitted by updating theCEP and performing the 
ontrol predelegation phase asusual.
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ution (Ei:k;(Ei:k+1jj:::jjEi:k+ j))Themain differen
e with the exe
ution of a sequen
e ofWS-SAGAS is that the engine allo
ated to the element Ei:k�weassume here it is engine eeqi:k�on �nishing exe
uting Ei:khas to generate the CEL of the set of elements to be exe-
uted in parallel, that is, the elements from Ei:k+1 to Ei:k+ j ,as noted aboveS (Ei:k)su

. Similarly, eeqi:k generatesCEL forall the elements in S (Ei:k)su

. If we assume that the CELgeneration and the engine allo
ation steps were done, wehave the CEP updated as follows:CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+1):engine := eepi:k+1CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+2):engine := eepi:k+2:::CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k+ j):engine := eepi:k+ j :Be
ause starting the exe
ution of the elements pertainingtoS (Ei:k)su

 must be syn
hronized, a syn
hronization phasehas to be introdu
ed.The syn
hronization phase 
omes dire
tly after the pre-delegation phase �nishes. It aims at ensuring that the en-gine eeqi:k, after re
eiving the delegation agreements from theother, different engines, simultaneously propagates a startsignal. In addition, be
ause a signi�
ant delay in re
eivingthe delegation agreement messages 
an seriously 
ompro-mise the CWS exe
ution, we use the peer-engine waitingperiod, as already spe
i�ed. After it has elapsed without re-
eiving the a
knowledgment message from one of the en-gines, eeqi:k must sele
t another 
andidate engine. When theelements in S (Ei:k)su

 are being exe
uted, three situationsare most likely to o

ur:1. Simultaneous Commitment of all the Vital Elements: Allthe vital elements inS (Ei:k)su

 have been su

essfully
ommitted, that is, they verify the following 
ondition:�8Evi:` j Evi:` 2S (Ei:k)su

 and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;ee1i:`):�!DR(Ei:`):state= Committed :If the above 
ondition is veri�ed, �rst, all the engines
ontrolling the elements verifying the above 
onditionhave to ex
hange 
opies of their lo
ally storedCEP 
on-tents. At the end of this update, all the engines 
ontrol-ling vital elements in S (Ei:k)su

 have the same 
opyof CEP.Se
ond, depending on the pattern used to make the dif-ferent elements in S (Ei:k)su

 
onverge to a single point,a set of elements from S (Ei:k)su

 has to generate theCEL(s) for the element(s) that 
omes dire
tly after them.If we assume that Ei:l is the 
ommon su

essor, then theelements in S (Ei:k)su

 have to 
ooperate in generatingtheCEL(Ei:l) by taking the union of the differentCEL(s)generated by ea
h of their engines.Finally, we note that only the results of the exe
ution ofthe vital elements were 
onsidered be
ause the othernonvital elements' su

ess or failure does not affe
tthe others' progress.

2. Failure of one or more vital elements: One or morevital elements in S (Ei:k)su

 verify the following 
on-dition:�9Evi:` j Evi:` 2S (Ei:k)su

 and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eepi:`):�!DR(Ei:`):state= Failed :If a similar situation o

urs, then the failed engine(s) hasto inform its dire
t prede
essor, here eeqi:k, of the fail-ure(s). As des
ribed above, eeqi:k tries to perform a fail-ure re
overy. The main differen
es reside in that, �rst,the failed engine(s) also have to inform the 
on
urrentengines 
ontrolling the other elements to avoid 
ompro-mising the subtransa
tion exe
ution by making the oth-ers wait forever.Se
ond, if a ba
kward re
overy is ne
essary, it is mostlikely that the exe
ution of one or several elements fromS (Ei:k)su

 is still in progress. As a result, the 
ompensa-tion me
hanism des
ribed above is not appli
able.It is essential to abort all the elements that verify the fol-lowing 
ondition by stopping their exe
ution:�9Evi:` j Evi:` 2S (Ei:k)su

 and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;ee1i:`):�!DR(Ei:`):state= Exe
uting :To abort all the elements that verify the above 
ondition,eeqi:k has to propagate an abort request to all their allo-
ated engines. Ea
h engine that re
eives an abort requestresponds by immediately stopping its exe
ution and up-dating its lo
ally stored CEP 
opy, then sends it to eeqi:k.After all the different engines have properly handled there
eived abort request, the CEP 
ontent stored on eeqi:kside is:�9Evi:` j Evi:` 2S (Ei:k)su

 and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:`):state= Aborted :3. One or more vital elements are still exe
uting whilethe others have already 
ommitted: At least one vitalelement inS (Ei:k)su

 veri�es the following 
ondition:�8Evi:` j Evi:` 2S (Ei:k)su

 and ` 2 [k+1::k+ j℄ :CEP(WS-SAGASi;eeqi:`):�!DR(Ei:`):state= Exe
uting :In this 
ase, two s
enarios are possible:� S
enario 1: The engine(s) responsible for the 
om-mitted element(s) informs, as des
ribed above, the
on
urrent engine(s) of their 
ommitment(s) and gen-erates theCEL of the su

essor(s), if they exist. How-ever, they wait for the termination of the element(s)that is/are still being exe
uted to agree on the CELand to 
hoose the engine to allo
ate to the su

es-sor(s), so that a predelegation phase is performed toeffe
tively start exe
uting the su

essor(s).� S
enario 2: The 
ommitted elements' engines informthe 
on
urrent engines of their 
ommitment and en-ter a latent state while waiting for the remaining un-�nished elements' 
ommitment.
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omparison of the two s
enarios shows that in (S
e-nario 1) the time spent by the 
on
urrent engines in gen-erating the CEL(s) of the su

essor(s) et
 
an be mean-ingless if one of the still exe
uting engines fails. On theother hand, if all the remaining elements were 
ommit-ted, then the time spent in a latent state by the differentengines in (S
enario 1) is an overhead.6.4.4 Exe
ution Control Delegation between an EngineExe
utor and an Engine CoordinatorAssume that Ei:a is a 
omposite element fromWS-SAGASi.If the exe
ution progress ofWS-SAGASi rea
hes the elementEi:a, that is, the element Ei:a�1 terminates its exe
ution then,eeqi:a�1 has to delegate the exe
ution 
ontrol as des
ribedabove.The parti
ularity here is that when eeqi:a�1 
he
ks for aprede
essor, the CEP 
ontent reveals that the next elementto be exe
uted is Ei:a and it is 
omposite. Consequently,the engine exe
utor eeqi:a�1 generates an REL not a CEL,the generated REL being REL(Ei:a). Then, an engine 
oor-dinator is sele
ted; let this engine be e
pi:a. The exe
utionofWS-SAGASi is suspended waiting for the element Ei:a tobe exe
uted by e
pi:a. As des
ribed at the beginning of thisse
tion, e
pi:a starts exe
ution ofWS-SAGASi:a in exa
tly thesame way as the engine 
oordinator e
pi starts the exe
utionofWS-SAGASi.6.4.5 Exe
ution Termination of a WS-SAGAS Transa
tionAssume that the exe
ution ofWS-SAGASi:a was terminatedand the exe
ution rea
hed the last element Ei:a:ni;2 , whi
hwas exe
uted by the engine exe
utor eeqi:a:ni;2 . eeqi:a:ni;2 
he
ksthe lo
ally storedCEP,CEP(WS-SAGASi:a;eeqi:a:ni:2 ), for el-ements not yet exe
uted. The result is that all the elementsinWS-SAGASi:a have �nished already.Therefore, it has to inform the engine 
oordinator re-sponsible for the parent element of WS-SAGASi:a that theexe
ution was terminated. To this end, it sends a 
opy ofCEP(WS-SAGASi:a;eeqi:a:ni:2 ) to the engine e
pi:a.The engine e
pi:a dedu
es the elementEi:a's state from there
eived CEP(WS-SAGASi:a;eeqi:a:ni:2 ). More pre
isely, as-sume we dedu
ed from CEP(WS-SAGASi:a;eeqi:a:ni:2 ):statethat:DR(WS-SAGASi:a):state = 
ommitted, then e
pi:a updatesthe state of the element Ei:a in CEP(WS-SAGASi;e
pi:a) asfollows:CEP(WS-SAGASi;e
pi:a):DR(Ei:a):state := 
ommittedThen, the exe
ution is 
ontinued as des
ribed above.6.4.6 Exe
ution Termination of a Pro
essOn every termination of a WS-SAGAS, the last engine re-sponsible for the last element in the subtransa
tion �nal-

izes the exe
ution in the way des
ribed above. Every WS-SAGAS termination is 
as
aded up in the hierar
hy until theuppermost level 
ontrolled by the engine 
oordinator e
pi isrea
hed. Then, this engine �nalizes the overall pro
ess ex-e
ution by requesting from every other engine 
oordinatorthe last updated 
opy of the CEP of the subtransa
tion forwhi
h it was responsible.When all the 
opies have been 
olle
ted, the lo
ally stored
opy of the overall pro
ess CEP is updated and pro
ess ter-mination is dedu
ed.6.4.7 Interruption of the Exe
ution of a WS-SAGAS with aFailureAssume that the exe
ution ofWS-SAGASi:a was interruptedby a failure of one of its 
onstituent vital elements andthat the forward re
overy me
hanism was unable to over-
ome the failure. As a last resort, a ba
kward re
overy is per-formed as des
ribed in the exe
ution of a sequen
e/parallelpattern.When the failuremessage (i.e.,CEP(WS-SAGASi:a), withthe state of one element set to failed), rea
hes the engineresponsible for the �rst element in WS-SAGASi:a�in this
ase this engine is eeqi:a:1�this element performs a ba
k-ward re
overy for the element it 
ontrols and propagates thefailure information up in the hierar
hy. All it has to do isto send the updated 
opy of CEP(WS-SAGASi:a;eeqi:a:1) tothe parent of the engine 
oordinator 
ontrolling the parentof WS-SAGASi:a. In this 
ase, a 
opy rea
hes e
pi:a and, be-
ause it 
he
ks the CEP 
ontent, a failure is dedu
ed. Sub-sequently, a ba
kward re
overy is triggered: e
pi:a initiates aba
kward re
overy inWS-SAGASi by 
hanging the state ofthe element Ei:a as follows:CEP(WS-SAGASi;e
pi:a):DR(Ei:a):state := failed:The failure of Ei:a is handled in the same way as des
ribedabove by 
ompensating all the 
ommitted elements in thetransa
tionWS-SAGASi and aborting the other elements stillexe
uting. When the failure message rea
hes the uppermostlevel, that is, the engine e
pi , this engine propagates the fail-ure down the hierar
hy to all the WS-SAGAS that were ter-minated before the WS-SAGASi:a failure (i.e., all the WS-SAGAS lower in the hierar
hy must also be re
overed).7 Composite Web Servi
es QoS Modeling and AnalysisWe des
ribe the third part of the FENECIA approa
h: as-sessing the QoS of CWS depi
ted as WS-SAGAS and ex-e
uted following THROWS ar
hite
ture. Our 
hief aims inde�ning a QoS model are that, �rst, it allows veri�
ationof the des
ribed CWS as WS-SAGAS are reliably servingtheir purpose, when exe
uted, by a
hieving a high level ofdependability. Se
ond, it allows greater improvement of thequality of exe
ution in the future by favoring the more re-liable WS and dis
arding the WS that are most likely to bethe stage failures.



FENECIA 31Moreover, we aim to use the QoS estimation and anal-ysis as a basis for improving the WS-SAGAS stru
ture. Tothis end, our model 
hara
terizes, estimates, and analyzesseveral QoS properties, namely the exe
ution time and thereliability [17,21℄, on the basis of the past exe
utions 
ol-le
ted in a history, and takes into 
onsideration the failurereper
ussions.7.1 PreliminariesWe give an overview of the QoS 
on
epts we are 
on
ernedwith be
ause the QoS 
on
ept in itself is broad. It has beenapplied to many areas and, depending on the area of appli-
ation, its de�nition varies.Some de�ne it as �a set of user-per
eivable attributes,whi
h des
ribe a servi
e and the way it is per
eived� [50,51℄. We are not 
on
erned with this form of QoS be
auseit has been widely addressed and was the subje
t of 
onsid-erable resear
h efforts in the area of WSC. Several studieshave fo
used on the dynami
 sele
tion of the provider [52�54℄ and on semanti
WS des
ription to improve the sele
tion[55℄. These studies are 
lassi�ed under the umbrella of max-imizing user satisfa
tion.A more appropriate de�nition of the QoS we treat in theFENECIA approa
h is �the system property that 
onsists ofa set of quality requirements on the 
olle
tive behavior ofone or more obje
ts, su
h as the information transfer rate,the laten
y, the system failure probability, et
.� [50,56℄. Thatis, this 
ategory of QoS assessment 
hie�y targets estimatinga number of QoS properties for later analysis by the systemdesigners to verify to what extent the CWS are ef�
ientlyserving their purpose during exe
ution (i.e., are the intro-du
ed fault-toleran
e me
hanisms working properly? Arethe sele
ted WS adequate?).7.2 MotivationThe issues guiding us toward introdu
ing su
h a model aresummarized below.� Most of the proposed approa
hes that address the esti-mation of the QoS issue, �rst, make use of either math-emati
al modeling or simulation tools [57�60℄. Se
ond,they typi
ally provide a global view of the range of vari-ation of the estimates of 
ertain properties of the CWS asa whole, or their estimates are only appli
able for stati
CWS, whi
h make them inappli
able for both THROWSandWS-SAGAS for dynami
 
omposition. However, pro-viding more detailed estimations, espe
ially in the 
aseof 
omplex CWS, is required more and more. To ful�llthis requirement, our QoS model for CWS is orientedtoward a
quiring more pra
ti
al and detailed estimatesof the QoS of ea
h element, and derives equivalent esti-mates for the overall CWS;

� Most of the 
urrent approa
hes dealing with QoS esti-mates in the WS 
ontext rely on the QoS information ad-vertised by the WS owners/providers, whi
h may be notup to date or subje
t to manipulation by the providers.To over
ome this limitation, we 
ompute the QoS esti-mations on the basis of the CWS exe
ution observation,where the observation results are 
olle
ted in a history. Indoing so, we believe that more a

urate estimates 
an bea
quired be
ause we do not rely on the providers' data.� A major part of the work done up until now 
onsid-ers only situations where the CWS do not fail. As a re-sult, the estimates obtained are very often regarded astoo optimisti
 be
ause they do not a

ount for any fail-ure (information, re
overy) and their reper
ussions. Inour model we a

ount for failures and their reper
us-sions on the effe
tive performan
es of the CWS be
ausethis is parti
ularly required in the WS ar
hite
ture, inview of the WS inherent tenden
y to fail relatively eas-ily (relative to other 
omputing 
omponents). Typi
al
auses of failure in
lude: non
ompliant WS 
hara
ter-isti
s (e.g., transa
tional supports, management poli
ies,a

ess rights) and obvious Internet limitations (e.g., la-ten
y, time-out, se
urity).� Finally, be
ause WS are generally stateless, tra
king thefailures and determining their lo
ations is almost impos-sible. To over
ome this limitation, the notion of state thatwe initially introdu
ed in WS-SAGAS is used. Introdu
-ing the state 
on
ept is expe
ted to 
ontribute in a
quir-ing more a

urate information on the lo
ation of failuresand to be used later to improve the CWS QoS.
7.3 Exe
ution Time Chara
terizationIn our QoS model, we �rst estimate the exe
ution time ofea
h atomi
 element Ei:k for a subtransa
tionWS-SAGASifrom a hierar
hy of nested WS-SAGAS forming a pro
essPi. Then, we des
ribe the derivation of the equivalent esti-mate for the entireWS-SAGASi and the entire pro
ess. OurQoS model builds heavily on the observation of the past in-vo
ations of the pro
ess and on 
olle
ting these observationsin a history. Be
ause the exe
ution follows the THROWSar
hite
ture, the history 
ontent is 
hie�y formed from thedifferent 
opies of CEP stored in the different engines' logsthat 
ooperated to exe
ute the whole pro
ess. By enfor
ingthe poli
y, all the 
opies of the differentCEPs stored lo
allyon the different engines must be kept until the end of ea
hpro
ess invo
ation; at the end we have information about thepro
ess life 
y
le and of all its 
onstituent elements. More-over, applying the same poli
y to all the different CELs 
anbe very interesting as ea
h CEL, in itself, is a history of theengine-ws 
ouples attempted. With both the CEP and theCEL 
ontents, tra
king failures' lo
ations and determina-tions of the engine-ws 
ouples that fail readily 
an, in thefuture, signi�
antly improve the quality of exe
ution.
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ution Time of an Atomi
 ElementBe
ause ea
h atomi
 element is mapped dynami
ally to aWS, we investigate �rst the issue of estimating the exe
utiontime of an elementary WS, whi
h has been addressed previ-ously on several o

asions. Spe
i�
ally, we refer to [60,57℄in whi
h the authors de�ned the exe
ution time taken by asingle WS invo
ation with the sum of the three following
onstituents:� The servi
e time S(WS) is the time that theWS takesto perform its task.� The message delay time M(WS) is determined by thesize of the message being transmitted/returned and theload on the network through whi
h the message is sent.� The waiting time W(WS) is the delay 
aused by theload on the system where the WS is deployed.This model does not 
omply with our approa
h be
ause wetarget a dynami
 and fault-tolerant exe
ution. However, theabove model is, �rst, only for CWS with one-to-one stati
WS-element mapping. Se
ond, it does not take into a

ountany eventual failure and how it may intervene in varying theperforman
es. These two reasons pre
lude it from being di-re
tly appli
able in the FENECIA approa
h, without furtherextensions.In 
hara
terizing the exe
ution time, we build on theabove model and introdu
e the Optimisti
 Exe
ution Timeand Probable Exe
ution Time where the former is limitedto the 
orre
t exe
ution situations and where the latter 
on-siders all the possible exe
ution situations (i.e., 
ommittedexe
ution, failed exe
ution, 
ompensated exe
ution, abortedexe
ution, et
.) of a fault-tolerant CWS. Distinguishing be-tween these two variants provides more a

urate estimatesto a

ount for the failure reper
ussions on the delivered per-forman
es.De�nition 7.1 (The Optimisti
 Exe
ution Time(opt))We de�ne theOptimisti
 Exe
ution Time (denoted T (Evi:k)opt ),as the time spent by the dynami
ally mapped engine exe
utor-WS 
ouple in exe
uting the vital element Evi:k. This de�-nition 
onsiders only the best 
ase where the exe
ution is
ommitted when Evi:k is mapped to the �rst-ranked 
oupleengine exe
utor-WS in the 
orresponding CEL.We note here that any atomi
 elementEvi:k 
an be mappedat runtime to more than one engine exe
utor-WS, at most ex-a
tly jCEL(Evi:k)j, the 
ardinality ofCEL(Evi:k), with [1::jCEL(Evi:k)j℄ranging over p, and every time the element Evi:k is to be exe-
uted it is allo
ated an engine exe
utor eepi:k (
ontrolling theWS wspi:k). If we assume that for a parti
ular value of p wenote q, Evi:k exe
utions by eeqi:k 
ommitted su

essfully, thenEvi:k was attempted by q engines from CEL(Evi:k) (q veri�es:q � jCEL(Evi:kj); in all these exe
ution attempts, (q�1) ex-e
utions were �nished by failures. That is, we 
an say thatEvi:k was retried q times, and that the qth exe
ution delegatedto the engine eeqi:k (
ontrolling the WS wsqi:k) was su

essful.We de�ne T (Evi:k)opt by the following equation(7.1) whereT (Evi:k)opt is the sum of the exe
ution time (exa
tly S(wsqi:k))�

the time taken by theWS to pro
ess its sequen
e of a
tivities�and of the laten
y (exa
tly L(eeqi:k;wsqi:k))�the time ne
es-sary to send a request and re
eive a response:T (Evi:k)opt = T (Evi:k;eeqi:k;wsqi:k) (7.1)= S(wsqi:k)+L(eeqi:k;wsqi:k)with: 1� q� jCEL(Evi:k)jIn the spe
ial 
ase of a nonvital element, the exe
utionis attempted only on
e; 
onsequently the equation (7.1) istransformed as follows:T (E v̄i:k)opt = T (E v̄i:k;ee1i:k;ws1i:k) (7.2)= S(ws1i:k)+L(ee1i:k;ws1i:k)with: jCEL(E v̄i:k)j= 1De�nition 7.2 (The Probable Exe
ution Time (prob))We de�ne the Probable Exe
ution Time(denoted T (Evi:k)prob)as the estimate of the time spent by an atomi
 element Evi:kin being exe
uted effe
tively, whi
h is equal to T (Evi:k)opt , towhi
h we add the time ne
essary for re
overing from fail-ures that the same instan
e of the WS-SAGAS as a wholehas en
ountered (see Equation (7.3)).T (Evi:k)prob = T (Evi:k)opt +RP(Evi:k)+R(Evi:k); (7.3)where:- T (Evi:k)opt is the time to exe
ute the WS wspi:k 
ontrolledby the engine exe
utor eepi:k. We note that p ranges over[1::jCEL(Evi:k)j℄ and that, for a parti
ular value q of p, theexe
ution of Evi:k was 
ommitted. Where Evi:k was retriedwith all the engines inCEL(Evi:k) and the exe
ution failedfor all of them, then T (Evi:k)opt is assumed to be equal to0 and T (Evi:k)prob is equal to the time spent in performinga forward re
overy by retrying Evi:k several times (exa
tlyjCEL(Evi:k)j times).- RP(Evi:k) is the time spent by Evi:k in informing of itsown failure or in being informed about others' failure.PR(Evi:k) is detailed more in the following de�nition.- R(Evi:k) is the total period of time spent in performinga forward re
overy every time the element Evi:k failed,to whi
h we add the time spent by Evi:k in performing aba
kward re
overy, if it happens that any of the elementsexe
uted in parallel with it, or the elements that 
omedire
tly after it fail. R(Evi:k) is 
onsidered in greater detailbelow.De�nition 7.3 (The Failure Re
overy Preparation Time)We de�ne the failure re
overy preparation time of an atomi
element (RP(Evi:k)) as the time ne
essary to notify of a fail-ure, or to send a re
overy (abort/
ompensation) request. Allthe messages are one-way SOAP messages that 
ontain thelast updated 
opy ofCEP. Depending on the failure lo
ation(i.e., the element itself or another element from the samepro
ess) and on the elements state and vitality degree, thede�ned expression of the failure re
overy preparation timevaries as follows:



FENECIA 33� In the �rst 
ase, Evi:k was 
ommitted by an engine ex-e
utor eeqi:k after being reattempted q� 1 times; on ev-ery failure by an allo
ated engine eepi:k, it has to informits dire
t prede
essor by sending a failure informationmessage to eqi:k�1 (i.e., it 
an be an engine exe
utor or
oordinator), thereby the notation I(eepi:k;eqi:k�1). If theelement is nonvital, performing a forward re
overy isnot required:Case 1: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Committed(element 
ommitted / WS-SAGAS 
ommitted)RP(Evi:k) = q�1åp=1 I(eepi:k;eqi:k�1) (vital)RP(E v̄i:k) = 0 (nonvital)� In the se
ond 
ase, Evi:k was 
ommitted by an engine ex-e
utor eeqi:k and was reattempted q� 1 times; however,the overall WS-SAGAS failed be
ause of the failure ofanother element that was exe
uted later in the pro
ess.If we assume the failed element to be Evi: j , with ( j > k)(handled in the same way whether it is 
omposite oratomi
), then the engine allo
ated to Evi:k re
eives a 
om-pensation request from the engine responsible for Evi: j(CR(epi: j;eeqi:k) is the time spent in ex
hanging su
h amessage):Case 2: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Compensated(element 
ommitted/WS-SAGAS failed)RP(Evi:k) = q�1åp=1 I(eepi:k;eqi:k�1)+CR(epi: j;eeqi:k) (vital)RP(E v̄i:k) =CR(epi: j;ee1i:k) (nonvital)� In the third 
ase, while the element Evi:k is being exe
utedby an engine exe
utor eeri:k (i.e., it was reattempted r�1times), the overall pro
ess failed be
ause of the failureof another element that was exe
uted later in this WS-SAGAS. If we assume the failed element to be Evi: j , withj > k, the engine allo
ated to Evi:k re
eives an abort re-quest from the engine responsible for Evi: j (the time spentin ex
hanging su
h a message is denoted AR(epi: j;eeri:k)):Case 3: :CEP(WS-SAGASi;eeri:k):�!DR(Ei:k):state=Aborted(element still exe
uting with eeri:k /pro
ess failed)RP(Evi:k) = r�1åp=1 I(eepi:k;eqi:k�1)+AR(epi: j;eeri:k) (vital)RP(E v̄i:k) = AR(epi: j;eeri:k) (nonvital)

� In the fourth 
ase, Evi:k was attempted by all the enginesin itsCEL (i.e., it was reattemptedCEL(Evi:k) times) but,unfortunately, it failed in all the retried times; therefore,the overall WS-SAGAS failure is dedu
ed.This 
ase is not appli
able to a nonvital element be-
ause its failure does not entail overall pro
ess failure:Case 4: :CEP(WS-SAGASi;eejCEL(Evi:k)ji:k ):�!DR(Evi:k):state=Failed(vital element failed/WS-SAGAS failed)RP(Evi:k) = jCEL(Evi:k)jåp=1 I(eepi:k;eqi:k�1)De�nition 7.4 (The Failure Re
overy Time)We de�ne the failure re
overy time(exa
tly R(Evi:k)) as thetime required for Evi:k to re
over from its own failures andfrom the failure of other elements. We note that an elementfailure 
an trigger at most the 
ardinality of itsCEL forwardre
overies; however, it 
an be subje
t to only one ba
kwardre
overy, triggered by another element. The expression ofR(Evi:k) is de�ned by the following equation:R(Evi:k) = å1�p�jCEL(Evi:k)jFor(Evi:k)+Ba
k(Evi:k) (7.4)For(Evi:k) = å1�p�jCEL(Evi:k)jT (Evi:k;eepi:k;wspi:k)Ba
k(Ei) = xor(Comp(Evi:k);Abort(Evi:k))� For(Evi:k) is the total time spent in retrying Evi:k by theother engine-ws 
ouple from CEL(Evi:k) every time theallo
ated engine fails to 
ommit Evi:k.� For(E v̄i:k) is always equal to 0 for a nonvital elementbe
ause its exe
ution is not retried even if it fails.� Ba
k(Evi:k): In a ba
kward re
overy, the me
hanism to beapplied depends on the 
omposition spe
i�
ation model;the more widely used te
hniques are rolling ba
k, abort-ing, and 
ompensation. In the FENECIA approa
h, theba
kward re
overy time is the time ne
essary to triggera ba
kward re
overy me
hanism by aborting all the el-ements still exe
uting and 
ompensating all the already
ommitted elements. Therefore, the entityBa
k(Evi:k) 
anbe equal to the Compensation time(Comp(Evi:k)) if an-other element from the same pro
ess that 
omes afterEvi:kfailed and triggered a ba
kward re
overy when Evi:k hadalready 
ommitted; alternatively, it is equal to the Aborttime(Abort(Evi:k)) if another element from the same pro-
ess that is exe
uted 
on
urrently with Evi:k failed andtriggered a ba
kward re
overy while Evi:k is still beingexe
uted.� Depending on lo
ation of the failure (of the element it-self or of other elements) and on the element's state andvitality degree, the de�ned expression of R(Evi:k) in Equa-tion (7.4) varies as follows:



34 Neila BEN LAKHAL et al.Case 1: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Committed(element 
ommitted / WS-SAGAS 
ommitted)R(Evi:k) = q�1åp=1For(Evi:k) = q�1åp=1T (Evi:k;eepi:k;wspi:k) (vital)R(E v̄i:k) = 0 (nonvital)Case 2: :CEP(WS-SAGASi;eeqi:k):�!DR(Ei:k):state=Compensated(element 
ommitted/WS-SAGAS failed)R(Evi:k) = q�1åp=1For(Evi:k)+Comp(Evi:k) (vital)R(E v̄i:k) = Ba
k(E v̄i:k) =Comp(E v̄i:k) (nonvital)Case 3: :CEP(WS-SAGASi;eeri:k):�!DR(Ei:k):state=Aborted(element still exe
uting with eeri:k /WS-SAGAS failed)R(Evi:k) = r�1åp=1For(Evi:k)+Abort(Evi:k) (vital)R(E v̄i:k) = Ba
k(E v̄i:k) = Abort(E v̄i:k)(nonvital)Case 4: :CEP(WS-SAGASi;eejCEL(Evi:k)ji:k ):�!DR(Evi:k):state= Failed(element failed/WS-SAGAS failed)R(Evi:k) = jCEL(Evi:k)jåp=1 For(Evi:k)7.3.2 The Exe
ution Time of a WS-SAGAS and of a Pro
essThe exe
ution time of a WS-SAGASWS-SAGASi is derivedfrom the estimates of the exe
ution time of the different ele-ments it 
ombines. Be
ause these elements might be or
hes-trated in different ways to stru
ture the CWS, we proposede�ning an expression that estimates the exe
ution time forea
h of the different aggregation patterns that WS-SAGASde�ned (see Table 7.1).Be
ause WS-SAGAS are re
ursively nested, the exe
u-tion time of the uppermost WS-SAGAS in the hierar
hy isequal to the exe
ution time of the entire pro
ess. The ex-pression to estimate the exe
ution time of a WS-SAGASWS-SAGASi is derived as follows:T (Pi)prob = T (WS-SAGASi)probT (WS-SAGASi )prob = T (WS-SAGASi:a)prob+( i:ni;1Õ`=i:1T (E`)probjDR(E`):type= atomi
) :

The expression Õ means that the exe
ution time is deriveda

ording to the aggregation pattern that 
onne
ts the differ-ent elements that we de�ned in (Table 7.1). By deriving theexe
ution time of every WS-SAGAS in the hierar
hy in thesame way as forWS-SAGASi:a, we 
an derive the expressionbelow for the exe
ution time of the whole pro
ess:T (Pi)prob =(i:a:�:b:�:
:ni;miÕ`=i:1 T (E`)probjDR(E`):type= atomi
) :We emphasize that the estimate of the exe
ution time�obtained by 
ombining the exe
ution time of the differentelements�does not in
lude the time spent in the 
oordi-nation/
onversation between peer-engines, that is, the timespent in the exe
ution 
ontrol delegation (predelegation phaseand syn
hronization phase) or the time spent in CEP 
om-muni
ation, that is, the time spent in propagating the syn-
hronization signals. Se
ond, it does not in
lude the timespent in generating the CEL=REL and the time spent in up-dating CEP. Any of these different times fall into the 
ate-gory of 
ontrol delegation time. We de�ne in what followshow the 
ontrol delegation time is estimated in our approa
h.In general, it 
an be in
orporated in: (i) the time taken by aone-way SOAP message, (ii) the time taken by a two-waysyn
hronous SOAP message (request/response), or (iii) thetime taken by an update/sear
h query.De�nition 7.5 (The Control Delegation Time)The 
ontrol delegation time is the time between the momentof termination of the exe
ution of one or many elements bya �rst entity (i.e., one or more engines) and the moment ofstarting the exe
ution of one or more elements by a se
ondentity (i.e., one or more engines). It typi
ally in
ludes thetime ne
essary to generate the CEL=REL and sele
t the en-gine(s), the time spent in the predelegation and syn
hroniza-tion phases, and the time spent in updating and 
ommuni
at-ing the CEP 
ontent.Depending on the WS-SAGAS OR, the 
ontrol delega-tion 
an be: (a) from one engine (exe
utor or 
oordinator)eqi:k to another engine (exe
utor or 
oordinator) epi:k+1 (i.e.,eqi:k and epi:k+1 
ontrol a sequen
e of elements) (see 
ase 1).(b) from one engine (exe
utor or 
oordinator) eqi:k to the setof enginesS (eqi:k)su

 allo
ated to 
ontrol the set of elementsS (Ei:k)su

 (see 
ase 2). (
) from many engines (exe
utor or
oordinator)S (epi:l)pre 
ontrolling the set of elementsS (Ei:l)preto the engine (exe
utor or 
oordinator) epi:l allo
ated to Ei:l(see 
ase 3). (d) from many engines (exe
utor or 
oordina-tor) to many engines (exe
utor or 
oordinator); this 
ase 
anbe dedu
ed by 
ombining the se
ond and third 
ases.Case 1 :( one engine / one engine)D(eqi:k;epi:k+1) =GS(eqi:k;CEL(Ei:k+1))+PC(eqi:k;epi:k+1) ;where:� D(eqi:k;epi:k+1) is the time to delegate the exe
ution 
on-trol between the engine eqi:k and engine epi:k+1;



FENECIA 35Pattern Notation Probable exe
ution timeSequen
e (Ei:k;Ei:k+1) T (Ei:k)prob+T (Ei:k+1)prob+D(eeqi:k;eepi:k+1)Parallel (Ei:k;(Ei:k+1jj:::jjEi:k+ j)) T (Ei:k)prob+ jmax`=1 (T (Ei:k+`)prob)+ jmax`=1 D(eeqi:k;eepi:k+`)Sele
tion (Ei:k � (Ei:k+1jjEi:k+2jj:::jjEi:k+ j)) T (Ei:k)prob+max(T (S (Ei:k)su

)prob)+max(D(eeqi:k;S (Ei:k)su

))Swit
h (Ei:k C (Ei:k+1jjEi:k+2jj : : : jjEi:k+ j)) T (Ei:k)prob+T (S (Ei:k)su

)prob+D(eeqi:k;S (eeqi:k)su

)Rendezvous ((Ei:kjjEi:k+1jj : : : jjEi:k+ j)^Ei:l) max(T (S (Ei:l)pre)prob)+T (Ei:l)prob+max(D(S (eepi:l)pre;eepi:l))Sele
tive merge ((Ei:k? ::: ?Ei:k+ j)� Ei:l) max(T (S (Ei:l)pre)prob)+ jS (Ei:l)prejT (Ei:l)prob+max(D(S (eepi:l)pre;eepi:l))Ex
lusive merge ((Ei:k? ::: ?Ei:k+ j)� Ei:l) T (S (Ei:l)pre)prob+T (Ei:l)prob+D(S (eepi:l)pre;eepi:l)Iterative (Ei:k;lEi:k+1) T (Ei:k)prob+lT (Ei:k+1)prob+D(eeqi:k;eepi:k+1)Table 7.1 The probable exe
ution time expressions of WS-SAGAS patterns� GS(eqi:k;CEL(Ei:k+1)) is the time spent in generating ei-ther CEL(Ei:k+1) or REL(Ei:k+1) and in sele
ting an en-gine, we assume that the sele
ted engine is epi:k+1;� PC(eqi:k;epi:k+1) is the predelegation phase duration andthe time spent in updating and 
ommuni
ating the CEP
ontent.Case 2 :( one engine / many engines)D(eqi:k;S (eqi:k)su

) = GS(eqi:k;CEL(S (Ei:k)su

))+PC(eqi:k;S (eqi:k)su

) :Case 3 :(many engines / one engine)D(S (epi:l)pre;epi:l) =GS(S (epi:l)pre;CEL(Ei:l))+PC(S (epi:l)pre;epi:l) :De�nition 7.6 (The Engine-WS Waiting Period)We de�ne the engine-ws Waiting Period to avoid the situa-tion where an engine epi:k allo
ated to an element Ei:k waitseternally for an answer from a WS wspi:k that might never
ome, if the WS fails to respond. After the engine-ws Wait-ing Period (exa
tlyW (epi:k;WSpi:k)) has elapsed and no infor-mation has been re
eived of the exe
ution progress of theWS wspi:k, then the engine epi:k must 
onsider itself failed anda re
overy has to be triggered. The question is how to deter-mineW (epi:k;wspi:k), in 
ase the element Ei:k) has not yet beenattempted.Usually, WS providers advertise the pro
essing time oftheir provided WS or offer methods to inquire about it. This
ould be used here to 
ompute an initial estimate of the en-tityW (epi:k;wspi:k). Later, when the element is invoked a num-ber of times,W (epi:k;wspi:k) 
an be estimated on the basis of

the observation results of these past invo
ations(a). In Equa-tion (7.5)), T (Ei:k)1opt is the Optimisti
 Exe
ution Time ofEi:k when invoked for the 1st time:W (epi:k;wspi:k) =max(T (Ei:k)1opt ; : : : ;T (Ei:k)aopt) : (7.5)7.4 Reliability Property Chara
terizationIn this se
tion, we des
ribe the QoS of a CWS in terms ofreliability. It is widely re
ognized that the way the reliabilityis de�ned and assessed is spe
i�
 to the domain 
onsideredbut, in general, the reliability 
on
ept is always kept some-how 
losely related to the system behavior and its failurehistory.In our approa
h, in 
hara
terizing the reliability dimen-sion, we introdu
e a new 
ategory of reliability, named re-liability tenden
y, that builds heavily on the state 
on
eptatta
hed to ea
h element from a pro
ess, depi
ted as a hi-erar
hy of nested WS-SAGAS. Our proposal was motivatedby the reliability and the state 
on
epts being very 
loselyrelated and that the element's 
ontribution to the overall pro-
ess reliability estimation varies from one state to another.To this end, we propose 
olle
ting the pro
ess past invo-
ation in a history (i.e., the different 
opies ofCEP stored inevery engine exe
ution log).Later, the 
olle
ted history is used to analyze thoroughlythe different elements' behavior when exe
uted by tra
kingtheir different states and by how and when they transit be-tween different states. To estimate the reliability tenden
y,the pro
ess exe
ution history is used to derive for ea
h ele-ment the element's Terminal States Set (TSS), the element'sState Tenden
y Set (STS), and the State Reliability Contribu-tion (SRC).



36 Neila BEN LAKHAL et al.De�nition 7.7 (The Terminal States Set (TSS))Ea
h atomi
 element Ei:k, after being invoked for exe
u-tion as a 
omponent from a subtransa
tionWS-SAGASi, hasa Terminal State (exa
tly TS(Ei:k)) with whi
h its invo
ationis terminated. If the element Ei:k is allo
ated to an engineexe
utor eepi:k, every progress in the element's exe
ution isre�e
ted on the lo
ally stored 
opy of CEP on the engine'seepi:k side by updating the attribute state in CEP of the ele-ment Ei:k. When the element's exe
ution is �nished, the ele-ment's TS is updated as follows:TS(Ei:k) :=CEP(WS-SAGASi;eepi:k):�!DR(Ei:k):state :After a invo
ations of the same pro
ess Pi, for ea
h ele-ment, a Terminal State Set (exa
tly TSS(Ei:k)) is formed.The TSS(Ei:k) is a set of 2-tuples where the o

urren
enumber of ea
h 2-tuple is asso
iated with ea
h terminal stateas a TS after a invo
ation of the element Ei:k. If we assumethat there are b possible TS, and ea
h TS TS(Ei:k)x is asso-
iated with a number of o

urren
es o

x, as x ranges over[1::b ℄, then TSS(Ei:k) is formulated as follows:TSS(Ei:k) = f(TS(Ei:k)1;o

1); :::;(TS(Ei:k)x;o

x); :::;(TS(Ei:k)b ;o

b )gwith: å1�x�b o

x = aThe 
ardinality of TSS(Ei:k) depends on the differentpossible TS of the element. In the FENECIA approa
h, a
ompensatable atomi
 element at a given moment 
an bein one of the following states:DR(Ei:k):state 2 fWaiting, Exe
uting, Failed, Aborted,Committed, CompensatedgAs we follow a transa
tional exe
ution, the Exe
uting state
annot be a TS; therefore, b veri�es:(b = 5) and the TS ofany element 
an only be in:TS(Ei:k)2 fWaiting,Failed,Aborted,Committed,CompensatedgTSS(Ei:k) is denoted as follows:TSS(Ei:k)=f(Waiting;o

1);(Failed;o

2);(Aborted;o

3);(Committed;o

4);(Compensated;o

5)gwith: 5åx=1o

x = aDe�nition 7.8 (The State Tenden
y Set (STS))After a invo
ations of an atomi
 element Ei:k, at least oneTerminal State (TS(Ei:k)) from the different possible TS tendsto have the largest o

urren
e number. We introdu
e the 
on-
ept of State Tenden
y Set (exa
tly STS(Ei:k)), as the set that
ontains the TS that has the largest o

urren
e number aftera invo
ations of an element.That is, STS(Ei:k)must verify the 
ondition STS(Ei:k)�TSS(Ei:k); that is, STS(Ei:k) is the set of TS tuples that arein
luded within the TSS TSS(Ei:k) of Ei:k and that has thelargest o

urren
e number, after a invo
ations of Ei:k.

De�nition 7.9 (The State ReliabilityContribution (SRC))We assume that from one TS to another, the 
ontribution toreliability differs: terminating the exe
ution of an atomi
element Ei:k in the Failed state negatively affe
ts the reli-ability, 
ontrary to the Committed state, whi
h would 
on-tribute positively by in
reasing the reliability. A

ordingly,we de�ne this 
on
ept as the State Reliability Contribution(exa
tly SRC) of a parti
ular TS. We assume that a transitionfrom one TS to another makes the SRC stronger if it is to-ward a state denoting exe
ution su

ess, and it is 
ontribut-ing negatively and making the SRC weaker if it is toward astate denoting a faulty exe
ution. The de�nition of the SRCof ea
h state depends greatly on the environment 
hara
ter-isti
s 
onsidered (e.g., number of TS, possible states, statestransitions, et
). Initially, the different SRC 
an be allo
ateda value based on the designer's judgment (i.e., when the de-signer wishes to emphasize the more error-prone elements, astronger SRC values to the faulty TS 
an be assigned). Typ-i
al values of the SRC of the TS of WS-SAGAS are as fol-lows:f(SRC(Waiting) = 0);(SRC(Failed) = -1);(SRC(Aborted) = -0.5);(SRC(Committed) = 1);(SRC(Compensated) = +0.5)gHowever, in some systems, making the human intervene tode�ne the different SRC may not be desirable be
ause thesystem is to be 
ompletely automated. In su
h a 
ase, mak-ing the system able to de�ne automati
ally the different SRCand to revise them when required is ne
essary. We will ad-dress this issue in future work.De�nition 7.10 (Element Reliability Tenden
y (RT))The 
on
ept of Reliability Tenden
y of an atomi
 elementEi:k (exa
tly RT (Ei:k)) is derived from its TSS and the dif-ferent SRC values, as shown in Equation (7.6).RT (Ei:k) = åTS(Ei:k)x2TSS(Ei:k)o

x:SRC(TS(Ei:k)x)jTSS(Ei:k)j (7.6)De�nition 7.11 (Pro
ess Reliability Tenden
y)Any pro
ess Pi depi
ted as a hierar
hy of nestedWS-SAGAS
an be formed by both vital and nonvital elements. Be-
ause the failure of a nonvital element is not handled inthe same way as the failure of a vital element and inves-tigating the reasons for failure of the nonvital elementsis se
ondary, we propose 
onsidering only the vital ele-ments to estimate the overall pro
ess RT and ignoring thenonvital elements.Therefore, the RT of a pro
ess Pi formed by ni elementswhere n0i elements are vital and distributed between minesting levels is estimated by the following formula:RT (Pi) = RT (WS-SAGASi)= i:a:�:b:�:
:ni;miå`=i:1 RT (E`)jDR(E`):vitality= vital/n0i :
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Fig. 7.1 FENECIA Framework8 FENECIA Framework ValidationBelow we des
ribe two axes of validation for our FENE-CIA framework models and artifa
ts. In the �rst part of ourvalidation, we present a prototype that provides an imple-mentation of our exe
ution ar
hite
ture's (THROWS) mainfun
tionalities. The prototype implementation is intended toshow that the failure re
overy-oriented features that THROWSar
hite
ture provides are feasible with the 
urrent WS te
h-nologies.In the se
ond part of our validation, we show the ap-pli
ability of our failure-aware QoS estimation and analysismodel. To this end, we provide a 
ase study of using ourmodel for a real-world example of CWS assembled usingJopera [61,62℄, a visual WSC tool.8.1 PrototypingAs in our prototype we target a fully automati
 WSC. Wehave to des
ribe the semanti
s of the models and elements ofour FENECIA framework in a 
learer and unambiguous waythat 
an be easily automated or transformed into any plat-form spe
i�
 
ode for automati
 exe
ution. In a
hieving this

target, we translate all the FENECIA models and elements(i.e., the textual notation of a WS-SAGAS, THROWS ar
hi-te
ture CEP, CEL, and REL 
on
epts, and QoS model at-tributes) into an XML-based language. Our proposed XML-based spe
i�
ation language is de�ned and expressed a
-
ording to a well-formed stru
ture, the XML S
hema de-s
ription (XSD). An XML-based des
ription of aWSC servesas an input to our prototype as we show below in this se
tion.The prototype implementation is heavily based on theJava programming language and on a set of WS enablingte
hnologies. In the remainder of this se
tion, we des
ribeour implementation and we sket
h a 
ase study and reporton its exe
ution. We used a simpli�ed version of the travelitinerary reservation s
enario des
ribed in the se
tions above,with only one nesting level (i.e., all elements are assumed tobe atomi
).8.1.1 Implementation Environment Choi
es andMotivationsOur prototype implements a logi
ally distributed prototypeof THROWS ar
hite
ture to exe
ute CWS spe
i�ed as WS-SAGAS and des
ribed using our XML-based language.



38 Neila BEN LAKHAL et al.We have made extensive use of Java threads and of anumber of syn
hronization me
hanisms to allow the 
on
ur-rent exe
ution of engines. Although a physi
ally distributedprototype appears more suitable, the 
ir
umstan
es we 
itebelow pre
luded us from implementing su
h a system:� The 
urrent progress in WS ar
hite
ture in terms of se-manti
ally equivalent WS availability is very limited asthere are few UDDI registries in operation (maintainedby IBM, Mi
rosoft, et
.). Moreover, these registries arestill very small and most of their entries do not workor do not 
orrespond to any real servi
e. Furthermore,most of the UDDI registries in pla
e today are privateregistries operating inside 
ompanies or maintained by aset of 
ompanies privately. Therefore, they are not of useto us.� The 
urrent unpredi
tability of theWS environment, whi
hmakes WS appear and disappear on daily basis, makesthe dynami
 WS dis
overy pro
ess very likely to fail inall attempts. This may 
onsiderably impair our resultsand may even make exe
ution impossible.� Even if we assume that a wide range of WS equivalents,in terms of fun
tionalities, was provided, fully automati
and dynami
 WS dis
overy and sele
tion remains an un-resolved issue with very few solutions. Even large en-terprises agree that manual WS dis
overy and sele
tionremains the most ef�
ient approa
h and that automateddis
overy of WS requires a

urate des
riptions of thefun
tionality of WS and an approa
h to �ndingWS basedon the fun
tionality they provide. This remains infea-sible be
ause it is not possible for a servi
e 
lient tohave full knowledge of the exa
t form and meaning ofall the servi
e's WSDL in advan
e, and this for all theWS hosted on different providers.These 
onditions, and in parti
ular the last, have dire
ted our
hoi
e toward building our private UDDI registry and pub-lishing our own WS lo
ally in this registry. In building ourWS, we deliberately 
reated a WS that shares the same se-manti
s and syntax (as represented by their WSDL messagede�nitions); thereby, an automati
 WS dis
overy and sele
-tion 
an be performed su

essfully, the 
all to the servi
esu

eeds, and no unexpe
ted results 
an be returned. Ourprototype features the following fun
tionalities:� Of the eight different aggregation patterns we de�ned inWS-SAGAS, our prototype supports only three: the se-quen
e, parallel, and rendezvous patterns. Adding all thedifferent patterns to have a full-featured implementationis feasible.� In our prototype, we only 
onsider the 
ase of pro
essesformed by 
ompensatable elements alone.� In our prototype, we 
onsider a pro
ess with only onenesting level; therefore, we have only one engine 
oor-dinator that starts the overall pro
ess exe
ution and thatis responsible for terminating the pro
ess.
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Fig. 8.1 Simpli�ed 
on
eptual ar
hite
ture for our prototype modeledin UML with 
omponent diagram8.1.2 Des
ription of Implementation ToolsWe have made extensive use of the different APIs providedby Sun's JWSDP 1.2 (Java Web Servi
es Developer Pa
k)[63℄. Of the te
hnologies that JWSDP 
ontains, we have
hie�y used the Java API for XML Registries (JAXR) withthe Registry Server for building, deploying, and publishingthe WS we used. All the WS that we needed for our sys-tem were built and deployed in an XML registry that fol-lowed the UDDI spe
i�
ation (version 1.2). We used JAXRto a

ess this XML registry. To build the different WS, weused Java API for XML-based RPC (JAX-RPC). The WSinvo
ation and its 
ontext 
ommuni
ation is done impli
itlyusing syn
hronous SOAP messages over HTTP. Moreover,all the 
ommuni
ations between the different modules usedSOAP with Atta
hments API for Java (SAAJ). Dependingon the CWS exe
ution stage, the ex
hanged SOAPmessagesmay en
apsulate different forms of XML do
uments. ThoseXML do
uments were parsed using JAXP and manipulatedwith JDOM and DOM.8.1.3 Des
ription of Prototype ComponentsThe implementation featured 
omponents des
ribed in the
on
eptual ar
hite
turemodel of Figure 8.1. We implementedtwo main modules, the Web Servi
es Manager and the En-gine. Ea
h Engine en
apsulates two submodules, the CEPManager and the CEL Manager. Ea
h Manager has twomain fun
tions, an information update and retrieval fun
tionand a 
ommuni
ation fun
tion, that is, sending and re
eivingSOAP messages.THEWEB SERVICESMANAGER: This implements thedifferent fun
tions that relate to WS 
reation, deployment,and invo
ation. It 
onsists of the following three submod-ules: (1) the Servi
es Builder, whi
h 
hie�y uses JAX-RPCAPI and several other tools (e.g., ws
ompile, wsdeploy) togenerate the WS endpoints, their 
lients, and their WSDLdo
uments; (2) the Servi
es Deployer, whi
h deploys thebuilt WS in a Web 
ontainer (we used TOMCAT); (3) theServi
es Register, whi
h is responsible for registering thedifferent WS in our private UDDI registry.
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Fig. 8.2 Ex
erpt from the simpli�ed trip reservation pro
ess: differentelements' attributes with the values affe
tedTHE ENGINE: Our prototype implements two types ofengine: engine 
oordinator and engine exe
utor. The numberof instantiated engines depends on the number of elementsand the number of nesting levels of a pro
ess. The main dif-feren
e is that an engine 
oordinator is not responsible fora WS invo
ation. Both of the two forms of engines 
ontaintwo submodules, the CEL Manager and the CEP Manager,and the en
apsulated fun
tions are the same: (1) CEL man-ager: The main fun
tion of this 
omponent is to generatethe CEL of the next element(s) to be exe
uted. To this end, itsends a query with the element des
ription (available in thea
tive de�nition rule of the element in CEP) to the UDDIregistry to sear
h for WS with fun
tionalities mat
hing thedes
ription and whi
h are published in the registry. On re-
eiving a response to the dis
overy query, a new engine ex-e
utor is allo
ated and a new engine DR added to the CELfor ea
h WS dis
overed. This module is also used to sele
tan engine exe
utor from a CEL do
ument. (2) CEP Man-ager: This mainly updates and monitors the CEP do
umentstored on the engine to whi
h it appertains. Typi
ally, an up-date operation 
hanges an element's statewhen a new SOAPmessage is re
eived, for example, a message that tells thatthe WS exe
ution was su

essful.8.1.4 Detailed Des
ription of Typi
al Exe
ution Steps of aPro
ess in our PrototypeWe des
ribe the different steps of the exe
ution of a simpli-�ed version of the trip reservation pro
ess that we used inthe se
tions above.1. CUSTOMER REQUEST SUBMISSION. The exe
utionstarts when a 
ustomer inputs his request (the destination,the departure date, the return date, and his name). Submit-ting the request entails saving the entered values in the CEPdo
ument. The trip request is simulated by assigning a
tualvalues to the different �elds in the XML do
ument. (List-ing 8.2) is an ex
erpt from the initial CEP do
ument of thepro
ess de�ned in our XML language.
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Fig. 8.3 Ex
erpt from the messages output on the Java exe
ution 
on-sole to monitor the exe
ution progress. In this part, a WS dis
overy isperformed by querying the UDDI registry for WS to the element E1:1;two WS are found and their binding information is used to generate aCEL with two engine elements.ThisCEP do
ument is updated and handled by the differ-ent engines throughout the pro
ess exe
ution. By the end ofits exe
ution, the CEP do
ument 
ontains information aboutthe exe
ution su

ess (e.g., �ight booked, hotel ti
ket re-served, 
ar reserved) or failure (e.g., no available �ight).2. Element sele
tion and CEL generation The engine
oordinator e
11 runs on the server side. When it re
eives anew CEP do
ument it starts pro
essing by parsing the XMLdo
ument and sele
ting a 
urrent element, that is, the �rstelement to be exe
uted. In the CEP do
ument of Listing of(Figure 8.2), the �rst element is the elementID = �E 1:1�.The fun
tion of going through this CEP do
ument for sele
t-ing elements is atta
hed to the CEP Manager module.After an element is sele
ted, a CEL do
ument is gener-ated. This is the responsibility of the CEL Manager: whi
hre
eives, as input from the CEP Manager, a des
ription ofan element (here, des
ription = �trip information�).The des
ription is used to 
reate a query that is sent tothe UDDI registry for sear
hing WS that eventually meetthe des
ription provided.
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Fig. 8.4 Ex
erpt from the CEL of the element E 1:1 from the trip reser-vation pro
essWe show in (Listing 8.3) the progress of the exe
ution ofthis step in terms of messages output on the Java 
onsole.3. Web servi
es dis
overy and sele
tion To ensure in-teroperability of the engine (here 
onsidered as the JAXR
lient) and the UDDI registry implementation, the SOAPmessages that 
ontain the query (and its 
orresponding re-sults) are handled 
ompletely unseen using SAAJ. Sear
hingthe UDDI registry for WS results in a list of all the organi-zation(s) that 
ontain(s) WS we are interested in (i.e., theyhave 
apabilities that meet the fun
tionalities of the 
urrentelement E 1.1). When we query the UDDI registry, the re-sult is all the organizations with the name that 
ontains thestring trip.4. CEP generation The retrieved information, as a resultof the query, is parsed for details about the organization(s)and the servi
es it/they provide(s) and is used to generatethe CEL do
ument (refer to Listing 8.4) for the automat-i
ally generated CEL do
ument for the element E 1:1. Toea
h WS, an engine exe
utor is allo
ated, that is, a new en-gine exe
utor ID engineid is dynami
ally 
reated and storedin the CEL Do
ument 
oupled with the WS information asan engine de�nition rule (see Listing 8.4 and Listing 8.3 forthe CEL do
ument 
ontent).After terminating the CEL do
ument generation, a 
an-didate engine exe
utor is sele
ted and the CEP Manager up-dates the CEP do
ument. Here, the sele
ted engine exe
utoris engineExe
utorID = �ee 1:1�1�.5. CEP update and 
ontrol delegationWhen preparingthe ne
essary data for effe
tively allo
ating the exe
ution
ontrol to the engine exe
utor ee 1:1� 1, the CEP do
u-ment is en
apsulated and sent as a SOAP message. Simulta-neously, a new thread engine ee 1:1� 1 is 
reated, the re-
eived CEP do
ument is stored lo
ally, and a response issent ba
k to e
 1�1 notifying that the SOAP message wasre
eived and the exe
ution laun
hed.
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Fig. 8.5 Ex
erpt from the messages output on the Java exe
ution 
on-sole to monitor the exe
ution progress. In this part, the WS allo
atedto element E 1:1 and 
ontrolled by engine ee 1:1�1 is invoked and a�su

ess� messagereturned.6. Control delegation �nalization and WS invo
ationpreparation After re
eiving the exe
ution 
ontrol, the en-gine exe
utor ee1:1�1 updates in the CEP do
ument the stateof E 1:1 from Waiting to Exe
uting, and extra
ts from theCEP do
ument the values of the parameters with whi
h theWS will be invoked (see Listing 8.5).7. WS invo
ation The engine exe
utor invokes the WS
lient. The JAX-RPC runtime is responsible for re
eivingthis WS invo
ation message within the 
lient 
all and forpassing it to the WS endpoint. In addition, when the WS�nishes exe
uting, it passes the results to the JAX-RPC run-time. Likewise, the latter takes 
are of handing over theseresults to the CEP Manager.At this point, depending on the WS exe
ution progress,two s
enarios 
an o

ur: the WS failure or su

ess. Be
ausewe implemented the WS, their failure probability was low.The exe
ution often terminated with su

ess so to show howfailure handling is performed we for
ed WS failure (i.e.,fault inje
tion). In what follows, we �rst des
ribe the 
aseof a s
enario in whi
h the WS exe
ution was su

essful (seeListing 8.5).In this pro
ess instan
e exe
ution, theWS sends ba
k theresult of its exe
ution to the engine exe
utor, whi
h uses thisto update the CEP do
ument to add the WS exe
ution resultand to add the required 
hange in the exe
ution progress. Inthe 
ase of the engine exe
utor ee 1:1�1, the only updateis 
hanging the element E 1:1's state from Exe
uting toCommitted.The next step is to pro
eed with the exe
ution of thepro
ess as the 
urrent element exe
ution is 
ommitted. Tothis end, the engine exe
utor ee 1:1�1 �nds that there aretwo elements, elementID = �E 1:2� and �E 1:3�, that areassembled in a parallel aggregation pattern. The CEL do
-uments of these elements are generated and the engine ex-e
utor pro
esses as des
ribed above and allo
ates the en-gines exe
utors (ee 1:2� 1 and ee 1:3� 1), respe
tively.The CEP do
ument is updated with the new allo
ated en-gines (see Listing 8.6).
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Fig. 8.6 Ex
erpt from the simpli�ed trip reservation pro
ess: the exe-
ution progress 
an be monitored by the 
hange in the state. Here, the�rst element was exe
uted and 
ommitted su

essfully whereas the ex-e
ution of the two following elements is about to start as engines areallo
ated to both.The CEPManager 
omponent from the engine ee 1:3�1 sends the CEP do
ument to both of the new engines. Theexe
ution pro
ess start is almost the same as that des
ribedfor ee 1:1�1. The main differen
e is that that two elementselementID = �E 1:2� and elementID = �E 1:3� are as-sembled in a parallel pattern and they must wait for ea
hother as they are also assembled in a rendezvous pattern (seeListing 8.6). Consequently, we divided the exe
ution pro
essinto two phases; when every thread engine �nishes a phase,it informs the other engine. The �rst phase is dedi
ated to theWS invo
ation and the se
ond phase to preparing for 
ontroldelegation, in 
ase the WS invo
ation is su

essful.By the end of the exe
ution of both of the elements E 1:2and E 1:3, the engines ee 1:2� 1 and ee 1:3� 1 generatethe CEL do
ument of their su

essors (here elementID =�E 1:4�: ea
h engine generates CEL do
ument by itself andthe resulting CEL do
ument is a 
ombination of the two do
-uments. The engines ee 1:2� 1 and ee 1:3� 1 agree on
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Fig. 8.7 Ex
erpt from the simpli�ed trip reservation pro
ess: the exe-
ution progress 
an be monitored with the 
hange in the state. All threevital elements were exe
uted and 
ommitted su

essfully whereas theexe
ution of the last nonvital elements failed.the 
andidate engine to exe
ute the element elementID =�E 1:4� by merging their CEL do
uments and sele
ting anengine, ee 1:4� 1, to exe
ute it. Subsequently, ee 1:4� 1suspends ee 1:2� 1 and ee 1:3� 1, and pro
eeds with itsexe
ution.Up to this point in the 
urrent pro
ess exe
ution, all theelements exe
uted had a vitality degree attribute in the CEPdo
ument equal to vital. For that purpose, when they fail,their failure is 
riti
al and 
auses the whole WS-SAGAS towhi
h they appertain to fail, as des
ribed below in des
rib-ing a pro
ess instan
e that failed.If the WS atta
hed to ee 1:4� 1 fails while being ex-e
uted by ee 1:4� 1, then this implies that the failure ofE 1:4 is ignored and the entire WS-SAGAS exe
ution pro-
eeds, and the state of the element E 1:4 is set to Failed.As this element is the last element (i.e., parsing the lo-
ally storedCEP do
ument and looking for an elements 
hildfrom the same 
omposite WS returns an empty list), then thesu

ess of the entire WS-SAGAS and of the whole pro
essexample is dedu
ed by sending the lo
ally stored CEP do
-ument to the engine 
oordinator of the whole WS-SAGAS;here e
 1:1 re
eives the CEP do
ument en
apsulated in aSOAP message (see Listing 8.7 for an ex
erpt).
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Fig. 8.8 SOAP message en
apsulating a 
on�rmation message to in-di
ate that a CEP do
ument was delivered 
orre
tly
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Fig. 8.9 Ex
erpt from the simpli�ed trip reservation pro
ess. Here,all three vital elements were exe
uted and 
ommitted su

essfullywhereas the exe
ution of the last nonvital elements failed. The stateof the overall WS-SAGAS is dedu
ed on the basis of the state of thevital elements.8.1.5 Pro
ess Instan
e Exe
ution TerminationIn response to the re
eived CEP do
ument (see Listing 8.7for an ex
erpt), the engine 
oordinator e
 1:1 sends the SOAPmessage in (Listing 8.8) and resumes exe
ution 
ontrol.The engine 
oordinator e
 1:1 terminates the exe
utionof the pro
ess instan
e and dedu
es the overall pro
ess su
-
ess be
ause all the vital elements were 
ommitted. Thelast version of the CEP do
ument is then available on thisengine (see Listing 8.9 for an ex
erpt).8.1.6 Exe
ution of a Example Pro
ess with FailureHandlingThis pro
ess example was subje
t to a WS failure. Here,we intentionally modi�ed the 
ontent of the response of the
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Fig. 8.10 Ex
erpt from the simpli�ed trip reservation pro
ess; here the�rst element was exe
uted by the engine ee1:1�1 and a failure o

urred.�rst WS (i.e., re
eived response 
ontains �failure� instead of�su

ess�) 
andidate to element elementID = �E 1:2 in or-der to make the engine 
onsider the WS as failed. Thereby,the engine ee 1:1�1 needs to dedu
e its own failure and todelegate the exe
ution 
ontrol to the previous engine thread.For that, the 
urrent engine ee 1:1�1 updates the 
urrent el-ement elementID = �E 1:1� state to Failed and will 
om-muni
ate the CEP do
ument to its dire
t prede
essor. As itwas responsible for the very �rst element in the 
urrentlyexe
uted WS-SAGAS, it must inform the the engine 
oor-dinator e
 1:1 be
ause that is the engine that has 
ontroldelegated to it.Listing of Figure 8.10 is an ex
erpt from the CEP do
-ument that ee 1:1� 1 sends to e
 1:1. On re
eiving thisdo
ument in a SOAP message, e
 1:1 handles the failure byattempting a forward re
overy. First, the engine is updated(the element E 1:1 state is set to waiting), the engineidis set to null, and an attempt to sele
t another 
andidateengine from the CEL do
ument is performed.
8.1.7 Forward Re
overy in the Exe
ution of a Pro
essInstan
eBe
ause we have made available for ea
h element two 
an-didate engines, the engine 
oordinator e
 1:1, when parsingthe CEL do
ument of element E 1:1 des
ribed in Listing 8.4,�nds a se
ond 
andidate engine: engine ee 1:1� 2. It fol-lows that a forward re
overy is possible; e
 1:1 updates theCEP do
ument with the new sele
ted 
andidate engine andthe exe
ution is resumed with ee 1:1� 2 as des
ribed foree 1:1�1 (see Listing 8.11).
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Fig. 8.11 Ex
erpt from the simpli�ed trip reservation pro
ess; here,the �rst element was allo
ated to a new engine.8.2 QoS Model Appli
ability Veri�
ationThe previous se
tion fo
used on showing that our failurere
overy-devoted WSC spe
i�
ation and exe
ution strategyis feasible only to some extent with the 
urrent level of WSte
hnology. Our prototype 
ould not be used to validate ourQoS model unless spe
ial me
hanisms and modules, ded-i
ated to taking a log of ea
h pro
ess instan
e exe
utionin terms of exe
ution time and 
hange in state, need to beadded. We intend to add su
h modules in our future workby 
olle
ting the different CEP and CEL 
opies in a history.In this paper, to validate our QoS model, we use data gener-ated using JOpera [61℄ [62℄, a rapid 
omposition tool offer-ing a visual language and an exe
ution platform for buildingdistributed appli
ations from reusable servi
es with a CWSdepi
ting a quoting pro
ess. Our 
hoi
e of JOpera was in-�uen
ed by its pra
ti
ability and its similarity to our FENE-CIA approa
h in introdu
ing the state 
on
ept. However, theJOpera tool is for stati
 CWS with 
entralized exe
ution. Byusing JOpera, we simultaneously show our proposal's appli-
ability and give a foretaste of what it is like to use it withother systems.As a pro
ess instan
e is exe
uted in Jopera, the exe
utionprogress is expressed in terms of state. The exe
ution of aWS in Jopera, when the pro
ess is invoked for exe
ution,follows the state diagram of (Figure8.12(b)).8.2.1 Pro
ess Des
riptionWe 
onsider a pro
ess P2 that retrieves quotes in a desired
urren
y for a user-provided sto
k symbol. The pro
ess wede�ned 
ombines four WS that we sear
hed manually andwe used from xmethods.net [64℄. This pro
ess 
ombines fourvital elements. The �rst element quotes sto
k pri
es Ev2:1and the se
ond performs a 
urren
y 
onversion Ev2:2; these
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(a) pro
ess depi
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(b) state transition diagram from [61℄Fig. 8.12 Quoting pro
esstwo elements are invoked in a parallel WS-SAGAS patternand they join subsequently in a rendezvous pattern. A thirdelement Ev2:3 integrates the results obtained from the previ-ous two elements. Finally, a fourth element Ev2:1 
onverts thesto
k quote from Euro to the 
urren
y of any of the 12 Euro-parti
ipating 
ountries and ba
k. The quoting pro
ess P2 isdepi
ted using the WS-SAGAS graphi
al notation in (Fig-ure 8.12(a)). However, we are obliged to delegate exe
ution
ontrol to a 
entralized authority, whi
h is responsible forexe
ution and failure re
overy of all the elements and forthe WS dis
overy and mapping to the elements, whi
h isperformed stati
ally, be
ause this is how JOpera is built.



44 Neila BEN LAKHAL et al.
i
n
s
t
a
n
c
e
 
n
u
m
b
e
r
 #
1
 #
2
 #
3
 #
4
 #
5
 #
6
 #
7
 #
8
 #
9
 #
1
0
 #
1
1


1
.
1
0
2
 0
.
9
8
1
 2
.
5
4
4
 1
.
2
8
2
 1
.
0
3
1
 0
.
1
6
0
 0
.
9
0
2
 1
.
0
2
2
 1
.
0
0
1
 5
.
8
5
9
 3
1
.
4
2
5

1
.
2
0
2
 1
.
1
5
1
 2
.
5
6
4
 0
.
9
9
1
 1
.
1
8
2
 0
.
1
6
0
 1
.
1
7
2
 1
.
1
8
1
 9
.
7
0
4
 5
.
8
7
9
 3
1
.
3
9
5

1
.
2
2
2
 2
.
3
4
3
 2
.
1
0
4
 0
.
0
1
0
 2
0
.
9
0
0
 0
.
0
0
0
 0
.
0
1
0
 0
.
0
1
0
 0
.
0
0
0
 0
.
0
0
0
 0
.
0
0
0

2
.
3
1
3
 1
.
1
6
1
 6
.
3
0
9
 0
.
0
0
0
 0
.
0
0
0
 0
.
0
0
0
 2
.
5
9
2
 1
.
0
6
2
 0
.
0
0
0
 0
.
0
0
0
 0
.
0
0
0

4
.
7
3
7
 4
.
6
5
5
 1
0
.
9
7
7
 1
.
2
9
2
 2
2
.
0
8
2
 0
.
1
6
0
 3
.
7
7
4
 2
.
2
5
3
 9
.
7
0
4
 5
.
8
7
9
 3
1
.
4
2
5


v

1
.
2
E


v

2
SAGAS
-
WS


v

2
.
2
E


v

3
.
2
E


v

4
.
2
E
(a) The observed exe
ution time (se
.) of the four Web servi
es allo
ated to the elements and of the overall sto
k quoting pro
ess depi
tedas a WS-SAGAS
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(b) The observed terminal states of the four Web servi
es allo
ated to the elements and of the overall sto
k quoting pro
ess depi
ted as aWS-SAGASFig. 8.13 Results of quoting pro
ess exe
uted instan
es8.2.2 Pro
ess Exe
ution and Data Colle
tionWe invoked the sto
k quoting pro
ess 11 times (a = 11).The results from the invo
ations in terms of exe
ution timeand Terminal States, respe
tively, for ea
h element and forthe overall pro
ess are shown in (Figure 8.13) and (Fig-ure 8.14). The reasons for failures during the running of thepro
ess instan
es are: (i) The Internet 
onne
tion failed dur-ing the SOAPmessage roundtrip (e.g., instan
e ℄10). (ii) TheWS timed out be
ause of a network 
onne
tion failure (e.g.,instan
e ℄5). (iii) TheWS returned a failuremessage be
auseof data in
onsisten
y (e.g., instan
e ℄9).8.2.3 Exe
ution Time Estimation and AnalysisBefore stating our exe
ution time estimate analysis, note thatin Figure 8.13 if only the results of the �rst table are 
on-sidered the only information obtained is the exe
ution timerange of the different 
omponents. There is no way to tellwhether a failure took pla
e or the reasons behind the 
riti
alvariation in the exe
ution time between instan
e ℄6 instan
e℄11. However, even without further analysis, 
onsidering theexe
ution progress in terms of state helps to show that fail-ures have o

urred and helps estimate the 
omponent(s) thatis/are behind the failures (
ells highlighted in gray in the twotables in Figure 8.13).To analyze thoroughly the obtained data 
olle
ted fromexe
uting the sto
k quoting pro
ess listed in Figure 8.13(a),we 
onsider different s
enarios. The differentiation into s
e-narios allows us to emphasize the effe
ts of failures on theobserved exe
ution time. As shown in the two s
enarios 
on-

sidered, how the exe
ution time is estimated varies a

ord-ing to whether a failure has o

urred or not.SCENARIO 1. In this s
enario, we 
onsider the 
ase ofinstan
es where the pro
ess P2 exe
ution is terminated in theFinished state and where no failure o

urred; for example,see instan
e ℄1 in (Figure8.13). The following equation isde�ned on the basis of our proposed model to estimate theProbable Exe
ution Time ofWS-SAGAS2:T (P2)prob = ( 2:4Õ`=2:1T (E`)probjDR(E`):type= atomi
)= max(T (Ev2:1)prob;T (Ev2:2)prob)+T (Ev2:3)prob+T (Ev2:4)prob (8.1)For instan
e ℄1, the expression of 8.1 is transformed as fol-lows:T (P2)1prob = T (Ev2:2)1opt +T (Ev2:3)1opt +T (Ev2:4)1optNote that T (P2)1prob is used to designate the Probable Ex-e
ution Time of P2, when invoked. The symbol Õ was in-trodu
ed to indi
ate that the exe
ution time is derived a
-
ording to the aggregation pattern that 
onne
ts the differentelements that we de�ned. In addition, this symbol 
onsidersonly atomi
 elements, whi
h is the type for all the elementsin the sto
k quoting pro
ess.In addition, note that the entity 
ontrol delegation timein the estimation of the probable exe
ution time of a pro-
ess is ignored be
ause the JOpera tools provide no meansto inquire about it.
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ause no failure o

urred when instan
e ℄1 was exe-
uted, we have:T (Ev2:1)1opt = T (Ev2:1;ws12:1)1 RP(Ev2:1)1+R(Ev2:1)1 = 0T (Ev2:2)1opt = T (Ev2:2;ws12:2)1 RP(Ev2:2)1+R(Ev2:2)1 = 0T (Ev2:3)1opt = T (Ev2:3;ws12:3)1 RP(Ev2:3)1+R(Ev2:3)1 = 0T (Ev2:4)1opt = T (Ev2:4;ws12:4)1 RP(Ev2:4)1+R(Ev2:4)1 = 0This s
enario 
onsidered only the 
ase of pro
ess instan
eswith no failure; therefore, in our model the expression thatrelates to the failure re
overy time estimates are irrelevant.SCENARIO 2. In this s
enario, we 
onsidered the 
aseof one of the instan
es in whi
h a failure o

urred. The exe-
ution retrial of the failed element was not possible be
ausethere were no other availableWS to reattempt it. As a result,a ba
kward re
overy was ne
essary. In the following expres-sion, we followed the 
ase of instan
e ℄5 in whi
h the WSws12:3, allo
ated to Ev2:3, has failed. The expression of 8.1 istransformed as follows:T (P2)5prob =max(T (Ev2:1)5prob;T (Ev2:2)5prob)+T (Ev2:3)4prob+T (Ev2:4)5prob (8.2)Be
ause a failure o

urred when instan
e ℄5 was exe
utingthe element Ev2:3, we have:T (Ev2:1)5prob = T (Ev2:1;ws12:1)5+RP(Ev2:1)5+R(Ev2:1)5T (Ev2:2)5prob = T (Ev2:2;ws12:2)5+RP(Ev2:2)5+R(Ev2:2)5T (Ev2:3)5prob = T (Ev2:3;ws12:3)5+RP(Ev2:3)5T (Ev2:4)5prob = 0R(Ev2:1)5 = Ba
k(Ev2:1)5R(Ev2:2)5 = Ba
k(Ev2:2)58.2.4 Reliability Estimation and AnalysisFrom the results of the invo
ations of the quoting pro
ess(Figure8.13), we determined the TSS, STS, and RT of thedifferent elements of the 
omposition (see Figure 8.14).The estimates of the Reliability Tenden
y (RT ) of the dif-ferent elements are shown in (Figure 8.14).In determining these estimates, de�ning the different StateReliability Contributions (SRC) of ea
h Terminal State wasrequired. In this 
ase study, we allo
ated as initial values forthe Terminal States Finished, Failed, and Unrea
hablethe SRC of +1:0, �1:0 and +0:5, respe
tively. Our motiva-tion behind assuming su
h values is that, when a negativeSRC value is assumed, the variation in the overall reliabil-ity of the estimate 
an be more important. Therefore, that afailure is taking pla
e 
an be more readily highlighted by at-tra
ting the designer's attention to the element with the more
riti
al reliability estimate. To realize this, we atta
hed tothe Finished state a more neutral value, be
ause we aremore interested in failures; we atta
hed a negative value to

the SRC of the Failed state to make its effe
ts noti
ed veryqui
kly. In addition, we atta
hed to the Unrea
hable state amedian value be
ause in this 
ase the element exe
ution wasabout to start but it did not be
ause its a
tivation 
onditionwas not �red; therefore, it requires the designer's attentionto 
he
k why su
h a situation o

urred.Typi
al interpretations of these results are:� First, both Ev2:3 and Ev2:4 tend not to su

eed in their ex-e
utions in 9:1% of 
ases be
ause of their own failures(i.e., in 9:1% of 
ases their exe
utions terminate in theFailed state). For example, instan
e ℄5 and instan
e℄4 failed be
ause failures o

urred, respe
tively, at Ev2:3(ws12:3 failed to send ba
k its response and a time-out o
-
urred) and at Ev2:4 (a network failure prohibited ws12:4re
eiving its input).� Se
ond, the elements Ev2:3 and Ev2:4 tend not to start theirexe
utions and to terminate in the Unrea
hable state in36:4% and 45:5% of the total invo
ations, respe
tively.An element state is set to the Unrea
hable state whenthe 
ondition asso
iated with the start of its exe
ution isevaluated as false. In su
h a 
ase, its exe
ution is skipped[62℄. In the 
ase of Ev2:3 and Ev2:4, their 
onditions werenot �red be
ause their prede
essors failed (e.g., in in-stan
e ℄9, Ev2:2 failed).� Finally, elements Ev2:1 and Ev2:2 have a strong tenden
yto �nish in the Failed state: up to 27:3% for Ev2:1 and36:4% for Ev2:2. Their frequent failures 
ause overall 
om-position failure. Therefore, the reasons behind the fre-quent failures of Ev2:1 and Ev2:2 need to be investigated.Moreover, other WS bearing the same fun
tionalities asEv2:1 and Ev2:2 need to be sear
hed. Lastly, revising theCWS stru
ture (i.e., order of elements, invo
ation 
ondi-tions) has to be planned, if other 
andidate WS show noimprovements in the quality of exe
ution of the pro
ess.8.3 Validation Results Dis
ussionIn the introdu
tion to this paper, we advo
ate that perfe
tawareness of inevitability of failures in the WS 
ontext anda failure-handling-devoted 
omposite Web servi
es model-ing, exe
ution, and analysis strategy are required to realizea greater gain in dependability. In this se
tion, we have val-idated that 
laim. We have 
he
ked the appli
ability of ourproposed ideas and shown that they are feasible and 
an beimplemented using the available WS enabling te
hnologies(e.g., WSDL, UDDI, and SOAP), to a limited extent. In ourprototype, we only implemented part of the 
omplete FENE-CIA approa
h features be
ause a full-featured implementa-tion is dif�
ult to realize with the 
urrent state of WS te
h-nology, as des
ribed above. A full implementation requiresa more mature WS te
hnology, parti
ularly regarding dy-nami
 WS dis
overy and sele
tion, solutions that 
onsiderthe semanti
 and synta
ti
 aspe
t of WS are needed.
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Terminal States Set (TSS) State Tendency Set (STS) Reliability Tendency (RT)

(E2.1,WS 2.1) {(Finished,72.7%), (Failed,27.3%), (Unreachable,0%)} {(Finished,72.7%)} (72.7%*1+27.3%*(-1)+0%*0.5)/3=15.1%

(E2.2,WS 2.2) {(Finished,63.6%), (Failed,36.4%), (Unreachable,0%)} {(Finished,63.6%)} 9.1%

(E2.3,WS 2.3) {(Finished,54.5%), (Failed,9.1%), (Unreachable,36.4%)} {(Finished,54.5%)} 21.2%

(E2.4,WS 2.4) {(Finished,45.5%), (Failed,9.1%), (Unreachable,45.5%)} {(Finished,45.5%), (Unreachable,45.5%)} 19.7%

 Reliability tendency(RT(CWS2)) 16.3%

v

v

v

v

1

1

1

1Fig. 8.14 Quoting pro
ess: TSS, STS, and RTIn parti
ular, in this prototype implementation, we haveshown that the different me
hanisms de�ned byWS-SAGASare feasible. Spe
i�
ally, by des
ribing a pro
ess in termsof elements and by removing any exe
ution-related details,su
h as binding ea
h element to only one WS, a higher de-pendability level 
an be a
hieved by realizing forward re-
overy. This 
annot be said of other available WSC lan-guages, notably BPEL where when a fault o

urs at one stat-i
ally boundWS; BPEL pro
esses handle the fault by a 
om-pensation handler invoked to 
ompensate for the faulty a
-tivity. Although BPEL adds some reliability support, de
lar-ing a pro
ess failed should nevertheless be the last resortand envisaging forward re
overy with dynami
 WS dis
ov-ery and binding is more promising; otherwise, the WS ar
hi-te
ture offering the possibility of swit
hing easily from oneprovider to another is useless.In our prototype des
ription, we have also shown howthe WS-SAGAS pro
ess de�nitions and, in parti
ular, theway ea
h DR en
apsulates information about an element 
anbe used as the pro
ess exe
ution runs for dynami
 WS dis-
overy and mapping. The des
ription of an element and itsoperation provided with its parameters is used to 
reate aquery that is sent to WS registries for sear
hing WS thateventually meet the des
ription. We emphasize that our de-s
ribed method for element-WS mat
hmaking is intention-ally simpli�ed be
ause we 
onsider WS dis
overy and se-le
tion issues beyond the s
ope of this paper. Assessing thesimilarity of WS to a
hieve the best mat
h is an a
tive areaof resear
h, so we may apply one of the available propos-als, su
h as the keyword-based methods and ontologies andreasoning algorithm enri
hed methods. Therefore, the pro-
ess exe
ution 
an transparently resume without interruptionand, even when a dynami
ally mapped WS fails, instead ofstopping the overall exe
ution, as in BPEL, a forward re-
overy 
an be transparently attempted by automati
ally al-lo
ating another WS. In addition, equivalently to BPEL, ourmodel supports ba
kward re
overy be
ause a 
ompensatingelement is provided to ea
h element.In addition, we have also shown the broad s
ope of theappli
ability of our QoS model and that our failure-awareQoS analysis approa
h, with the state in
orporation, 
an pro-vide step-by-step information about the exe
ution progress,

whi
h 
an help to tra
k the lo
ation of failures and explainthe reasons for failures.In many of the available WSC languages, exempli�edby BPEL, mapping between WS and partners is set when apro
ess is invoked, and this mapping is �xed for all the ex-e
utions. As the pro
ess runs, there is no means of knowingthe exe
ution progress, be
ause WS are generally statelessand BPEL provides only a 
orrelation-based stateful inter-a
tion that only allows identifying instan
es. Another me
h-anism is required to identify the progress of the intera
tingparts as the pro
ess runs, and to derive the pro
ess instan
esprogress. This is exa
tly the 
ru
ial role of the state 
on
eptintrodu
ed in our proposal. Tra
king the exe
ution progressby keeping a log of all the CEPs, whi
h are updated on ev-ery 
hange in any of the element states, provides a step-by-step exe
ution progress of all the pro
ess instan
es thatwe 
an analyze to investigate failures' reasons or lo
ations.We have shown how this 
an be done when we applied ourstate-guided failure analysis approa
h to data 
olle
ted us-ing Jopera.Finally, the 
ase study allowed us to show that in esti-mating the exe
ution time, 
onsidering all the possible exe-
ution situations and building on the state 
on
ept 
an helpdesigners to a
quire detailed data about the failure lo
ationand 
auses more easily, without having to use any 
omplexmodeling formalisms. Moreover, the data derived from theexe
ution history (i.e., state tenden
y sets, terminal statesset) are more pra
ti
al and straightforward be
ause no simu-lation systems are required for analysis. On the basis of su
hdata, system designers 
an more readily lo
ate error-prone
omponent(s), reasons for failure 
an be more easily inves-tigated, and eventually, the pro
ess overall stru
ture 
an bealtered to improve performan
e, if required. However, in ourproposal, to rea
h its full potential, we need to use a morerobust real-time monitoring tool that 
an, besides measuringand 
olle
ting the total response time of a pro
ess invo
a-tion, distinguish between a faulty and a su

essful invo
a-tion, measure separately the SOAP messages roundtrip timeand the WS exe
ution time, and measure the 
ontrol delega-tion time. Several WS monitoring tools are already availablebut, to the best of our knowledge, they are only for elemen-tary WS or for stati
ally 
omposed WS; the 
ase of dynam-i
ally exe
uted 
omposite WS has not yet been 
onsidered.
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ussion9.1 WSC Approa
hesA number of alternative approa
hes have been suggestedby several authors to aggregate individual WS to produ
ea new CWS, enabled even to en
apsulate the underpinninglogi
 of 
omplex business pro
esses. However, large parts ofthe available solutions are oriented toward 
omparing the se-manti
s of the interleaved servi
es and 
he
king their ports'
ompatibility.The most important feature that distinguishes our ap-proa
h from others is that we 
onsidered the dependabilityissue in all the different stages of the WSC pro
ess, that is,from the spe
i�
ation, to the exe
ution, to the QoS assess-ment.TheWSC platform StarWSCoP (StarWeb Servi
es Com-position Platform) [65℄ is very 
losely related to our workand it follows a similar approa
h to ours be
ause it fo
useson dynami
 
omposition. It provides a servi
e exe
ution in-formation library that stores tra
e information of CWS ex-e
ution; in our approa
h, this library is equivalent to thehistory that 
olle
ts the observed exe
ution progress of theCWS instan
es (i.e., the 
opies of CEP).Another similarity with our approa
h is that in StarWS-CoP, the authors developed the notion of a wrapper for ea
hWS, whi
h is very similar to the engine notion, be
ause it isalso used to a
t as a proxy of the WS; others 
ommuni
atewith the wrapper instead of the WS. The wrapper initiates,freezes, and 
ontinues the WS a

ording to the requests sentby the requester. However, the wrapper does not have anyprede�ned me
hanism to handle potential failures su
h asthose we de�ned in our approa
h, where ea
h engine, beside
onversing with the WS it wraps, also 
ommuni
ates withdifferent engines in a peer-to-peer fashion to progress theexe
ution and to handle failures, whi
h is 
ompletely absentin the StarWSCoP approa
h. Furthermore, ea
h wrapper im-plements different managers to deal with the se
urity, trans-port, and data type mismat
h issues. We re
ognize that se-
urity is a very important dependability attribute, espe
iallyin the 
ontext of WS. However, be
ause the te
hniques forse
urity assessment are still rudimentary in the WS ar
hite
-ture, se
urity is not addressed in this paper. Considering theexe
ution aspe
t, our approa
h is more s
alable than Star-WSCoP be
ause exe
ution 
ontrol in StarWSCoP is allo-
ated to a 
entralized engine whereas in our approa
h it isdistributed among different engines to avoid the possibilityof bottlene
ks and of having a single point of failure.For QoS estimation and analysis, the StarWSCoP ap-proa
h estimates real-time QoS metri
s of the CWS by ex-tending WSDL to support QoS metri
s, su
h as 
ost, time,and reliability. The de�ned QoS metri
s are very simplisti

ompared to ours: they do not 
onsider the reper
ussions offailures and the authors do not state how reliability is esti-mated. In addition, the real-time QoS estimations are usedto 
he
k if a parti
ular CWS �ts the user's prede�ned QoSrequirements, whi
h means that StarWSCoP targets user sat-

isfa
tion. However, our approa
h is oriented more towardallowing the system designers to assess the system quality,analyze it, and eventually produ
e some improvements.Similarly, we also 
onsider two other approa
hes wherethe CWS is 
reated dynami
ally by des
ribing the fun
tion-alities of interest that 
omponents should have without ref-eren
ing any spe
i�
 WS. The �rst is eFlow, a platform de-veloped by HP [7,8℄; the se
ond approa
h is SELF-SERV, aframework developed by the University of New South Wales[41,10,9℄. In the eFlow platform, the de�nition of a servi
enode en
loses a servi
e sele
tion rule written in a parti
ularquery language. When invoking the servi
e node, the ruleis exe
uted to sele
t a spe
i�
 servi
e. Con
erning SELF-SERV, it exploits the 
on
ept of servi
e 
ommunity, a 
on-tainer of alternative servi
es. At runtime, a 
ommunity del-egates any requests it re
eives to one of its 
urrent mem-bers. The eFlow platform 
ontrasts with our approa
h be-
ause it works with a 
entralized s
heduler. As with star-WSCoP, it may suffer from s
alability problems and no QoSmodel is expli
itly supported. On the other hand, SELF-SERV uses an approa
h similar to ours: a distributed exe
u-tion system where 
oordinators (i.e., software 
omponentshosted by WS providers) may 
ontrol a set of WS, ratherthan only one. Although the SELF-SERV strategy avoidshaving a single point of failure, to exe
ute a CWS the dif-ferent 
oordinators need to manage routing tables, stati
allygenerated from the 
oordinators' pre
ondition and post
on-dition states transition tables; a large amount of data needsto be ex
hanged among 
oordinators. Doing so may eas-ily provoke failures of the 
oordinators be
ause of bottle-ne
ks. To the best of our knowledge, the SELF-SERV strat-egy does not provide any me
hanisms for handling similarsituations. On the other hand, in our approa
h, the CEP 
on-
ept, equivalent to the 
oordinators' routing tables in SELF-SERV, allows a dynami
 de
ision of the exe
ution 
ontroldelegation of the engines based on the CWS different 
om-ponents exe
ution states; however, the advantage is that aminimal amount of data is ex
hanged, 
ompared with SELF-SERV. Furthermore, an engine is allo
ated only if it is ingood 
ondition. Moreover, exe
ution retrial and 
ompensa-tion me
hanisms are provided in 
ase of failure, whi
h 
an-not be said of SELF-SERV. Note that the notion of 
om-munity in SELF-SERV differs greatly from the notion ofCEL in our approa
h be
ause there is no de�ned poli
y tohandle the 
ase where one or more 
omponent servi
es thatform a 
ommunity fail. Therefore, 
onsidering extending the
omposition model to integrate transa
tional semanti
s, as inour approa
h, is very interesting for SELF-SERV. However,an unresolved issue remains and needs to be addressed forour approa
h/SELF-SERV: how to de
ide on the size of the
ommunity/CEL to in
rease the 
han
es of su

essful exe-
ution. Here, the idea of using the history of past exe
utionsof a CWS 
an be used to dynami
ally optimize an ongoingexe
ution�a

ording to a given set of parameters, su
h astime, pri
e, and QoS�and to de
ide the suitable number ofCELs available in view of the su

ess per
entage of the dif-ferent WS invoked in the different CWS instan
es.



48 Neila BEN LAKHAL et al.One of the most profound features that is of great impor-tan
e for designing and developing dependable 
ompositeservi
es is transa
tion support. WS are well known for beingautonomous, heterogeneous units, where ea
h WS providerhas its own management poli
ies; su
h 
hara
teristi
s makeimplementing CWS with a transa
tion support more dif�-
ult, but essential. Very few proposals 
ontain transa
tionsupport in their 
omposition. [39,40℄ introdu
es a frame-work 
alled WebTransa
t, whi
h provides the ne
essary in-frastru
ture to build reliable CWS.WebTransa
t is 
omposed of a multilayered framework.It uses WSDL to des
ribe the WS fun
tionalities and addsa Web Servi
es Transa
tion Language (WSTL) on top ofWSDL, enhan
ing it with fun
tionalities fa
ilitating 
om-posite WS by des
ribing transa
tion support for a WS. As inour approa
h, WebTransa
t de�nes different types of trans-a
tion behavior. However, it supports 
ompensation and re-triability behaviors and introdu
es virtual-
ompensatable be-havior for operations whose underlying system supports 2PCand pivot behavior for the operations, whi
h are neither 
om-pensatable nor retriable.However, the main differen
es between our approa
h andWebTransa
t are, �rst, the WS are stati
ally integrated inWebTransa
t by the developer who plays the role of WS in-tegrator. However, this is not a �exible method of WS inte-gration. Se
ond, the WebTransa
t framework is mainly forintegrating WS that have (and expose) their own lo
al trans-a
tion support; however, this 
ondition is not always veri�-able be
ause not all WS have transa
tion support and pre-sumably, if they do, not all are 
ompliant with ea
h other,or are limited only to the above suggested transa
tion sup-port of WebTransa
t. This is what made us 
onsider 
om-pletely ignoring transa
tion support that the different WSmay provide and to de
ide to offer/append at a higher levelthe same transa
tion support at the 
omposition WS levelinstead. Currently in our approa
h, WS-SAGAS supports
ompensatable, non
ompensatable, retriable, vital, and non-vital behaviors. Finally, our approa
h 
an 
omplement theWebTransa
t framework be
ause our QoS model 
an be veryimportant in auditing and analyzing the WS exe
ution to im-prove the quality and ef�
ien
y of the mediator servi
e 
om-position given that QoS assessment is not yet addressed inWebtransa
t.In [66℄, an approa
h to sele
ting servi
es based on theirsemanti
s as well as their quality, as judged by users, isproposed. To this end, a query language based on DAMLthat a

ommodates several essential query and manipulationtemplates is developed. The users'/providers' estimations ofthe QoS may be in
orre
t and/or biased by the users' subje
-tivity. In our approa
h, we do not rely on the users'/providers'QoS rating; instead, designers observe the CWS exe
utionand 
olle
t the exe
ution results in a history to use later as abasis to estimate the QoS properties.In [67,58℄, the authors introdu
e a QoS-aware middle-ware for CWS. They fo
us on a dynami
 and quality-drivenapproa
h to sele
t 
omponent servi
es for a 
omposite ser-vi
e. Multiple QoS 
riteria, su
h as pri
e, exe
ution time,

and reliability, are 
onsidered. They propose a global plan-ning approa
h to optimize the overall QoS using linear pro-gramming te
hniques. Their approa
h is effe
tive with re-spe
t to rea
hing QoS optimality. However, their 
omplexWork�ow patterns, su
h as using bran
hing and frequentloop iterations, seems to make their approa
h less ef�
ientand in
reasingly 
omplex for business pro
esses. Further-more, potential failure reper
ussions on the global QoS havenot been 
onsidered. Moreover, reliability is mapped dire
tlyto the reliability of ea
hWS individual. Reliability is de�nedas the probability that a request to a parti
ular WS re
eivesa 
orre
t response within a maximum expe
ted time frame.This method of 
hara
terizing the reliability is not extend-able to dynami
ally assembled CWS.Similarly to our approa
h, the authors of [68,57,69,70℄have proposed building new CWS that are QoS-optimizedand have either de�ned their own QoS models or been in-spired by other models. However, all these approa
hes areonly appli
able for stati
ally aggregated CWS. In addition,the authors of [57,59,69,70℄ have investigated different QoSdimensions, su
h as time, 
ost, reliability, and �delity. How-ever, they have not 
onsidered how the different states andeffe
ts of failure 
ause the QoS estimates vary. To 
hara
ter-ize the reliability dimension, their proposed models are de-rived from a more general work [59℄, in whi
h the dis
rete-time stable reliability model proposed in [71℄ is followed todes
ribe the reliability of tasks in the Work�ow 
ontext:R(t) = 1� (system failure rate+pro
ess failure rate) :This equation is only appli
able for stati
 CWS as it onlygives a global idea of the reliability estimates of a 
ompo-nent. Our approa
h for reliability estimation goes further be-
ause it obtains more detailed estimates with the possibilityof knowing what 
omponent(s) was/were behind the 
onsid-erable variation in the overall reliability estimates and thereason (i.e., failure).9.2 Standards and Commer
ial PlatformsWS are be
oming an important part of mainstream IT. Ev-ery day, it seems, a new a
ronym is introdu
ed and addedto the mass of a
ronyms ranging from SOAP to UDDI toWSDL. Moreover, ongoing massive standardization effortsseek to enable CWS; these in
lude, among others, businesspro
ess modeling languages su
h as WSCI, WSFL (WebServi
es Flow Language), and, most re
ently, BPEL4WS[4℄, whi
h have been developed to model CWS. Of these,only BPEL4WS 
onsiders failure handling but it offers onlylimited support be
ause it introdu
es fault handlers to spe
-ify the a
tions to be taken when a WS exe
ution fails. How-ever, these fault handlers are de�ned in a way similar to theex
eption-handling te
hniques exploited in programming lan-guages. Moreover, the handlers are dedi
ated to trying to re-
over from the effe
ts of the failed servi
e but they do notattempt to investigate the 
auses behind the failure, as we doin our approa
h.
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h as BTP [48℄,the WS-Transa
tion [25℄ proposed by IBM, and WS-TXM(from WS-CAF framework) [26℄ by Sun de�ne models tosupport transa
tions between loosely 
oupled systems in theWS 
ontext. They de�ne models for 
entralized and peer-to-peer transa
tions, whi
h support a two-phase 
oordina-tion of WS. These standards build on extended transa
tionalmodels to spe
ify how different WS are 
oordinated. Thedifferent entities have to agree a priori on the transa
tionmodel. Consequently, they inherit the advan
ed transa
tionalmodels' la
k of fun
tionality and performan
e when usedin appli
ations that involve dynami
 
omposition of hetero-geneous servi
es in a peer-to-peer 
ontext [72℄. Hierar
hi-
al QoS Markup Language (HQML), Web Ontology Lan-guage (OWL-S), and Web Servi
e Level Agreement lan-guage (WSLA) are examples of spe
i�
ations that have ad-dressed the need for a QoS model.The 
ommon point of these spe
i�
ations is that they de-s
ribe the QoS of WS. For example, DAML-S has in
luded
onstru
ts that spe
ify several QoS parameters, namely, thequality rating and the degree of quality. However, these spe
-i�
ations have not supplied any pre
ise 
hara
terization ofthe different parameters and they are only suitable for WSand not for 
ompositions.Finally, examples of 
ommer
ial platforms that deal withWS automation in
lude Mi
rosoft's .NET and BizTalk toolsand IBM's WebSphere. These appli
ations provide supportfor SOAP, WSDL, and UDDI 
onne
tivity. However, to thebest of our knowledge, they provide little or no support forCWS.9.3 Conventional Composite SystemsMaking several entities work in tandem to rea
h a 
om-mon goal is not a new 
hallenge in itself, be
ause it hasbeen widely addressed for de
ades in several areas, in
lud-ing Work�ow management systems, software engineering,and arti�
ial intelligen
e. Many argue that when 
onsider-ing CWS, it is important to take into a

ount, and use expe-rien
e and knowledge from, these 
losely related areas [73,43℄, be
ause the main differen
e is that 
omposition in WSar
hite
ture 
hie�y aims at taking XML-based standards andthe Internet as starting points to rea
h the same goal. In thedifferent parts of our approa
h, we promote the same ideabe
ause we were inspired by several works in related areas,spe
i�
ally in the area of Work�ow te
hnology and softwareengineering.In de�ning the different aggregation patterns for the CWSspe
i�
ation model, we 
hose to build on Work�ow patternsto de�ne the different WS-SAGAS aggregation patterns be-
ause the typi
al 
ontrol �ow dependen
ies en
ountered inWork�ow modeling arguably apply as well in the 
ontextof CWS, be
ause the situations they 
apture are noti
eablysimilar. In [43℄, the authors showed that the Work�ow pat-terns apply to existing CWS languages su
h as BPEL4WSand BPML. Our approa
h builds on the state 
on
ept that

was used well in the 
ontext of software engineering to de-�ne QoS models, where many mathemati
al te
hniques havebeen developed. The models that are 
losely related to ourapproa
h are the stru
tural models of reliability [74℄ and theMarkov reward models [75℄, whi
h form the basis of all per-formability models. In the former, a state diagram that de-pi
ts the system behavior is used.Based onMarkov 
hain properties, the transition betweenstates is assumed to be a Markov pro
ess. This means thatthe 
omponents to be exe
uted in the next state depend onlyon the 
omponents of the 
urrent state and the 
omponentsof the next state do not depend on the history of the 
urrentstate. In the latter, the system is assumed to be modeled as aMarkov pro
ess with a �nite state spa
e, and a reward rate(performan
e measure) is asso
iated with ea
h state.Our approa
h 
omplements thesemodels be
ause we usethe state 
on
ept to de�ne in the same way the behaviorof the different 
omponents in terms of transition betweendifferent states; we augment this by making the state 
on-
ept play an important role in enhan
ing failure informa-tion, de�ning the QoS estimates, and analyzing the QoS esti-mates. On the other hand, our approa
h differs in its simpli
-ity from these proposals and from other te
hniques proposedin [76,77℄, whi
h are supported by underlying modeling for-malisms (e.g., blo
k diagrams, Markov 
hains, Petri-nets,logi
s, et
.), be
ause the a
quired estimates are easily ana-lyzed, whi
h is not the 
ase of the te
hniques above, widelyknown for requiring 
onsiderable expertise and effort. Veryoften, the designers are not eager to build su
h models be-
ause of their inherent 
omplexity. Finally, the models ob-tained are not straightforward to interpret so further simula-tions have to be performed.10 Con
lusionsIn this paper, we introdu
e FENECIA, our framework forCWS spe
i�
ation, exe
ution, and QoS assessment. Our ap-proa
h puts forward the view that WS/CWS failures are notex
eptional situations, as often 
laimed, but takes a radi
allydifferent view by a

epting that failures are inevitable forany WS/CWS. In addition, our approa
h emphasizes thatwhen earlier failures are taken into 
onsideration, by de�n-ing in advan
e proper failure-handling me
hanisms, thereare greater 
han
es of seeing a CWS perform with greaterdependability. To a
hieve this vision, our work's main 
on-tributions are summarized below.First is the 
onstru
tion of WS-SAGAS, whi
h providesthe framework required to build a transa
tion model spe
if-i
ally tailored to �t the 
hara
teristi
s of the WS ar
hite
-ture, thereby allowing movement away from the 
onstraintsimposed by the traditional transa
tion model. WS-SAGASinherited several interesting features from previously pro-posed transa
tion models, spe
i�
ally, arbitrary nesting, re-laxed ACID properties, state, vitality degree, forward andba
kward re
overy, and 
ompensation.
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on
epts, whi
h were adaptedfrom 
onventional 
omposite systems, need to be
ome partof the WS ar
hite
ture pillars to provide major 
ontributionsin dependability enhan
ement.We also show how our model provided a powerful 
on-stru
t for extending other approa
hes to support WSC moreexpressively, with an in
reasing level of �exibility and de-pendability, by de�ning a textual notation that is as free aspossible from programming 
onstru
ts and as expli
it as pos-sible. This would allow it to be easily understood and up-dated, whi
h 
annot be said of the syntax of other exist-ing proposals, whi
h are heavily based on XML. Further-more, our textual notation that des
ribes a CWS in termsof de�nition rules (DR), 
omposability rules (CR), and or-dering rules (OR) is parti
ularly useful for us to de�ne ourtransa
tion model operational semanti
s and 
orre
t exe
u-tions. Be
ause we 
onsider a peer-to-peer exe
ution model,the use of stri
t serializability, adopted in traditional trans-a
tion models, is inadequate. The des
ription of a pro
essin term of DR, CR, and in parti
ular, OR, 
ontributes partlyto avoiding in
onsisten
ies, be
ause the different OR allowde�nition of the 
orre
t 
ontrol �ow in a pro
ess. To ensurethe semanti
s of ea
h element are respe
ted when it is ex-e
uted, parti
ularly the nesting, transa
tional behavior, andvitality degree, we build on the state 
on
ept and we de�neseveral forms of dependen
y that must hold between the dif-ferent elements 
ombined in the same pattern, the sameWS-SAGAS, and in the same pro
ess; we 
all these intrapatterndependen
ies, intra-WS-SAGAS dependen
ies, and intrapro-
ess dependen
ies.We have atta
hed a graphi
al syntax to our model toexploit the per
eptual 
apabilities of designers by allowingthem to 
apture themodels at different levels of detail, whereasother solutions either de�ne no graphi
al notation or advo-
ate the use of state-
harts for ease of use, although they maynot allow expression of all their models' semanti
s.From WS-SAGAS for WSC dependable spe
i�
ation asa hierar
hy of re
ursively nested transa
tions 
omes our se
-ond 
ontribution toward de�ning an exe
ution environmentthat supports the abstra
t 
on
epts suggested byWS-SAGAS,whi
h we named THROWS ar
hite
ture. The exe
ution ofWSC, depi
ted asWS-SAGAS, is made possible by the 
on-�uen
e of several novel ideas. First, most existing WSC sys-tems only support the integration of WS in a 
entralizedmodel, 
onsisting of dedi
ated 
entralized engine(s). Theyhave totally ignored the inherent nature of the WS environ-ment where intera
tion follows a peer-to-peer model andwhere ea
h peer WS owner provides a set of servi
es that
omprise CWS. We take a radi
al approa
h and proposean ar
hite
ture where the exe
ution 
ontrol is hierar
hi
allydelegated to distributed engines dis
overed dynami
ally. Ex-e
uting the CWS in a distributed fashion allows us to avoidhaving a single point of failure and to split the messages thatthe 
entral authority is required to manage among the dis-tributed engines.In addition, be
ause WS are in essen
e loosely 
oupled,integrating them into a CWS makes the system reliability

and availability a 
riti
al issue. To deal with this issue, wepropose generating the CEL dynami
ally, where a list of dy-nami
ally dis
overed WS-engine 
ouples is ranked. More-over, the CEL 
on
ept allows the exe
ution retrial with al-ternative 
andidates. Be
ause CEL are dynami
ally gener-ated, engine sequen
es of invo
ation 
annot be known be-forehand. Here, we propose the CEP 
on
ept so that the exe-
ution 
ontrol delegation between engines 
an be performedby keeping tra
k of the exe
ution progress.We also introdu
e a model to assess the QoS of CWS. Inour model, rather than relying on the QoS information adver-tised by the different WS providers (whi
h may be not up todate), we estimate the QoS properties on the basis of CWSexe
ution observations, whi
h are 
olle
ted in a history that
onsists of the different 
opies of CEP and its different up-dated 
opies. Se
ond, we 
onfer paramount importan
e tothe failure reper
ussions on the CWS performan
es; in fa
t,not only were 
orre
t exe
ution instan
es examined to esti-mate the QoS and later analyze it, but also our model wasoriented toward 
onsidering the system in all of its possiblestates (e.g., 
orre
t, faulty, re
overable, exe
utions). By do-ing so, we intend to make our model 
apable of re�e
ting thereal state of the typi
al 
ase of CWS, with their inherent ten-den
y to fail rather easily 
ompared with others. Third, weuse the 
on
ept of element state, initially introdu
ed in WS-SAGAS, so that the more error-prone elements 
an be morereadily lo
ated. Finally, our model does not use any 
omplexmodeling te
hniques, thus making it dire
tly usable withoutrequiring a dif�
ult learning 
urve.Our method illustrates how 
onferring paramount impor-tan
e to failure reper
ussions on the CWS performan
es 
anturn the observed failures throughout a pro
ess exe
ution
y
le from a dif�
ulty to a bene�t. We demonstrate in our
ase study how the history of exe
ution of faulty pro
ess in-stan
es 
an serve as solid basis for analyzing the robustnessof fault-toleran
e me
hanisms by tra
king failures to �ndthe most error-prone element in a pro
ess. We also showhow su
h observations are used to restru
ture the pro
essde�nition to a
hieve better quality of exe
ution and how our�exible pro
ess de�nition in terms of DR, CR, and OR sup-port su
h a method.We demonstrate that the abstra
t 
on
epts and artifa
tsde�ned by FENECIA 
an be implemented to some extent ina prototype in the 
ontext of a resear
h proje
t. While ourprototype implementation suffers from te
hnologi
al limi-tations, it does demonstrate that our proposal is within therealm of feasibility. The possibility of implementing a fully�edged implementation of this work will depend greatly onthe evolution speed of the servi
e industry and resear
h.The FENECIA approa
h proposal allows us to realizethat basi
 
on
epts that exist in 
onventional 
omposite sys-tems, namely the element state and, more generally, the 
om-ponent behavior, need to be made available for WS as they
an assist greatly in obtaining information about the exe
u-tion and in adding improvements. Moreover, in 
onventional
omposite systems, where the same 
omponents are 
on-ne
ted, only stati
 
omposition strategies were available.
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ontext, throughout the different partsof our approa
h, we show that su
h a solution is not viable,and a dynami
 
omposition strategy is far more preferable.However, to realize fully a dynami
 
omposition strategy,mu
h remains to be done in the WS ar
hite
ture be
ause itstill suffers signi�
antly from being heavily based on the In-ternet.In the 
ase of some business pro
esses where failuresare not permissible (e.g., banking), effe
tive realization ofthe FENECIA vision, besides making the failure re
overyme
hanism possible, requires proper failure avoidan
e me
h-anisms, whi
h may 
onstitute an interesting extension to ourpresent work. In addition, at present the CWS exe
ution inFENECIA is done independently by different engines, wherethe engines are volatile (i.e., on ea
h CWS invo
ation, newCEL are built to avoid using WS that are no longer avail-able or obsolete). Making the different engines nonvolatileand assigning QoS attributes to the different engines to esti-mate their performan
e 
an lead to a more optimized exe
u-tion, be
ause the more reliable engines are sele
ted. Later, amore elaborate model of 
ollaboration between the differentengines 
an be developed. Finally, be
ause there is a widerange of toolkits supporting WS development, another inter-esting resear
h dire
tion will be �nalizing the implemented
on�guration of WS-SAGAS for THROWS, experimentallymeasuring its performan
e, and 
omparing it with others.A
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