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PAPER

On Generalized Feistel Structures Using the Diffusion Switching
Mechanism

Taizo SHIRAI†a), Member and Kiyomichi ARAKI††b), Fellow

SUMMARY To design secure blockciphers, estimating immunity
against differential attack and linear attack is essential. Recently, Diffu-
sion Switching Mechanism (DSM) is proposed as a design framework to
enhance the immunity of Feistel structure against differential attack and lin-
ear attack. In this paper, we give novel results on the effect of DSM on three
generalized Feistel structures, i.e. Type-I, Type-II and Nyberg’s structures.
We first show a method for roughly estimating lower bounds of a number
of active S-boxes in Type-I and Type-II structures using DSM. Then we
propose an improved search algorithm to find lower bounds for generalized
structures efficiently. Experimental results obtained by the improved algo-
rithm show that DSM raises lower bounds for all of the structures, and also
show that Nyberg’s structure has the slowest diffusion effect among them
when SP-type F-functions are used.
key words: blockcipher, diffusion switching mechanism, generalized feistel
structure

1. Introduction

One of the established techniques of designing secure cryp-
tographic primitives including blockciphers, streamciphers,
and hash functions makes use of moderate sized non-linear
functions, called S-boxes, and linear functions to propagate
the non-linearity [1]–[5]. Especially in designing secure
blockciphers, it is necessary to evaluate immunity of the ci-
pher in terms of differential attack and linear attack which
are known as general and powerful attacks for blockciphers
[6], [7]. A practical approach known so far in evaluation of
the immunity against these attacks is to estimate guaranteed
numbers of active S-boxes [1], [4], [8], [9].

There are two types of approaches to show the guaran-
teed numbers of active S-boxes for an underlying structure.
One shows a method for roughly estimating a lower bound
with proofs. It is a useful tool to grasp the strength of struc-
tures. However it is sometimes valid for only limited num-
bers of rounds. The other approach shows lower bounds by
search algorithms. The approach usually outputs detailed
results which are useful for designing actual ciphers, but
it needs considerable calculation cost to get the results for
large parameter sets. To make use of both advantages, find-
ing both results for the target structure are expected.

In the trend of the blockcipher design, the Feistel struc-
ture is one of the most popular and well-studied structures
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[2], [4], [10]. It is common that F-functions in the Feistel
structure employ S-boxes, thus the matter of counting ac-
tive S-boxes arises. The first theoretical research on find-
ing the lower bounds of active S-boxes for Feistel struc-
ture was done by Kanda [8]. In his work, a method for
roughly estimating a lower bound for Feistel structure with
SP-type F-function are shown. Then Aoki et al. showed ef-
ficient search algorithm [4] which outputs tighter and de-
tailed lower bounds for more rounds in the same structure.
The algorithm is obtained by modifying Matsui’s efficient
differential path search algorithm [11].

Moreover, generalized Feistel structures which treat
three or more data branches are known as alternative struc-
tures [12], [13]. Studies on these structures show that its
flexibility of accepting both various sized data blocks and
various sized F-functions is a desirable property to design
practical ciphers [14]–[17]. Wu et al. studied the number of
active S-boxes of generalized Feistel structure [18] in line
with Kanda’s result.

Recently, Shirai and Shibutani proposed a new prop-
erty of the Feistel structure [19]. They showed that if each
diffusion matrix in the SP-type F-function in conventional
Feistel structure is chosen from two or more distinct matri-
ces in a switching manner, the guaranteed number of active
S-boxes become larger than the case of using a single ma-
trix. The new design framework is called Diffusion Switch-
ing Mechanism (hereafter called DSM). The property is an-
alyzed further in detail, a method for roughly estimating a
lower bound is shown and reasonable search algorithms are
proposed [20], [21]. Furthermore, a new blockcipher using
one of the generalized Feistel structures adopting DSM was
proposed [22]. However finding proofs for lower bounds
and showing efficient search algorithms which can be ap-
plied to the generalized Feistel structures are still open.

In this paper we extend the above research to study
effects of DSM on three representative generalized Feistel
structures, which are known as Type-I, Type-II and Nyberg’s
structures [12], [13]. First, we show proofs of a method for
roughly estimating a lower bound of Type-I and Type-II gen-
eralized Feistel structures using DSM. The results indicate
that both structures have the same degree of increased esti-
mated active S-boxes per F-function. Also, these results for
both structures can be considered as natural extensions of
known results for conventional Feistel structures.

Moreover, we propose an improved search algorithm
to find tighter lower bounds for generalized structures by
introducing an additional branch-cutting technique. Using

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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the improved algorithm three generalized structures includ-
ing Nyberg’s structure are compared in a quantitative man-
ner. Experimental results for four branches cases reveal that
DSM raise the lower bound for all of these structures, and
also show that Nyberg’s structure doesn’t guarantee as many
active S-boxes as Type-I and Type-II structures. We expect
that the improved algorithm can be used for further analysis
of the variety of generalized Feistel structures.

This paper is organized as follows: in Sect. 2, defini-
tions for generalized Feistel structures are introduced. In
Sect. 3, previous work on DSM is explained. Then we give
proofs for a method for roughly estimating lower bounds of
Type-I and Type-II structures in Sect. 4. Sect. 5 describes
search algorithms and an improved technique, then evalu-
ates three structures. Finally Sect. 6 concludes this paper.

2. Target Structures

In this paper, we treat several types of generalized Feistel
structures. First of all, the definition of conventional Feis-
tel structure with n-bit data block, where n is even, is in-
troduced. Let P0, P1 be n/2-bit input words, let C0,C1 be
n/2-bit output words, and Fi(k, x) be a F-function of the i-th
round which takes k as an n/2-bit round key and x as an n/2-
bit input data. r denotes the number of total rounds. Then
Feistel structure is defined as:

Step 1. X0 ← P0, X1 ← P1

Step 2. For i = 1 to r do the following:
Step 2.1 X1 ← X1 ⊕ Fi(RKi, X0)
Step 2.2 tmp← X1, X1 ← X0, X0 ← tmp

Step 3. C0 ← X0, C1 ← X1

In the above, RKi (1 ≤ i ≤ r) are provided by a key
scheduling part which is not defined here. Without loss of
generality, a swap operation at the final round is included.

Then three generalized Feistel structures which operate
d data branches (d ≥ 2) are shown. Here, we call a class of
structures generalized Feistel if it is identical with the con-
ventional Feistel structure in case of d = 2. Our targets in
this study are “Type-I,”“Type-II” and “Nyberg’s” general-
ized Feistel structures. The first two structures are defined
by Zheng et al. [12], and the last one is defined by Nyberg
[13]. Several cryptographic properties of these generalized
structures are studied in [15], [17]. Definitions of these gen-
eralized structures are given in this section.

Let n be the integer d|n and P0, . . . , Pd−1 be n/d-bit
plaintext words, and let C0, . . . ,Cd−1 be n/d-bit ciphertext
words. Then Type-I generalized Feistel structure is defined
as:

Step 1. X0 ← P0, · · · , Xd−1 ← Pd−1

Step 2. For i = 1 to r do the following:
Step 2.1 X1 ← X1 ⊕ Fi(RKi, X0)
Step 2.2 tmp← Xd−1,

Xj ← Xj−1 ( for j = d − 1 to 1),
X0 ← tmp

Step 3. C0 ← X0, · · · ,Cd−1 ← Xd−1

Fig. 1 A round function of Type-I Feistel structure. (d = 8)

Fig. 2 A round function of Type-II Feistel structure. (d = 8)

Like conventional Feistel structure, Type-I structure calls a
single F-function per round, and the permutation way of data
branches is a rotation style. Figure 1 shows a round function
of the Type-I structure in case of d = 8.

Type-II structure uses a plural numbers of F-function
per round, and the number of branches d is even. Let
F j

i (x, y) be the j-th F-function from the left in the i-th round.
Type-II generalized Feistel structure is defined as follows.

Step 1. X0 ← P0, · · · , Xd−1 ← Pd−1

Step 2. For i = 1 to r do the following:
Step 2.1 For j = 0 to d/2 − 1 do the following:
Step 2.1.1 X2 j+1 ← X2 j+1 ⊕ F j

i (RK j
i , X2 j)

Step 2.2 tmp← Xd−1,
Xj ← Xj−1 ( for j = d − 1 to 1),
X0 ← tmp

Step 3. C0 ← X0, · · · ,Cd−1 ← Xd−1

The difference between Type-I and Type-II structures is the
number of F-functions per round, i.e. d/2 F-functions are
called in Type-II. Figure 2 shows a round function of the
Type-II structure in case of d = 8.

Lastly, using the same notion of F-functions for Type-
II, Nyberg’s generalized Feistel structure is defined as fol-
lows†.

Step 1. X0 ← P0, · · · , Xd−1 ← Pd−1

Step 2. For i = 1 to r do the following:
Step 2.1 For j = 0 to d/2 − 1 do the following:
Step 2.1.1 X2 j+1 ← X2 j+1 ⊕ F j

i (RK j
i , X2 j)

Step 2.2 tmp← X1,
X2 j+1 ← X2 j+3 ( for j = 0 to d/2 − 2)
Xd−1 ← Xd−2

X2 j ← X2 j−2 ( for j = d/2 − 1 to 1)
X0 ← tmp

Step 3. C0 ← X0, · · · ,Cd−1 ← Xd−1

The difference between Type-II and Nyberg’s is the

†Though several expressions are possible according to the po-
sitions and the directions of F-functions, we follow the definition
by Kim et al. [17].
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Fig. 3 A round function of Nyberg’s Feistel structure. (d = 8)

Fig. 4 F-function Fi
j.

permutation way of data branches. Nyberg’s structure em-
ploys a symmetric and a more complex style. Figure 3
shows a round function of Nyberg’s structure in case of
d = 8.

In this paper, we assume that the type of F-functions
used in these structures is the SP-type F-function which is
one of the popular F-functions [8]. Let l be the size of S-
boxes and let m be the dimension of a diffusion matrix, then
an SP-type F-function taking an lm-bit round key RK, input
data X and output data Y is defined as:

Step 1. T ← RK ⊕ X
Step 2. Let T = T0 | T1 | · · · | Tm−1, Ti ∈ {0, 1}l

Ti ← S (Ti) ( for i = 0 to m − 1)
Step 3. Let Y = Y0 | Y1 | · · · | Ym−1, Yi ∈ {0, 1}l

t(Y0, Y1, · · · , Ym−1) = M t(T0, T1, · · · , Tm−1)

where A|B denotes a concatenation of data A and B. S (·) de-
notes an l-bit bijective S-box and M denotes an non-singular
m × m matrix over a chosen field GF(2l). Hereafter Mi and
M j

i denotes diffusion matrices M used in F-functions Fi and
F j

i in generalized Feistel structures, respectively. Figure 4
shows an example of a SP-type F-function F j

i in case of
m = 4.

Using the above definitions, the block length n is now
determined by three parameters d, l and m. For example, a
typical block length n = 128 is obtained by any choice of
(d, l,m) = (2, 8, 8), (4, 8, 4) or (8, 4, 4).

3. Previous Work

Recently it is shown that if two or more distinct diffu-
sion matrices are used in conventional Feistel structure in a
switching manner, the guaranteed number of active S-boxes
is increased from that of a single matrix case [19]–[21]. The
design approach is called Diffusion Switching Mechanism
(DSM). To begin with, we give some definitions to review
the DSM.

Definition 1 (Bundle Weight): Let p and l be positive inte-
gers, and let x ∈ {0, 1}pl be a bit string also represented as a

Fig. 5 Concept of DSM.

vector x = (x0, x1, . . . , xp−1) ∈ {{0, 1}l}p where xi ∈ {0, 1}l,
then the bundle weight wl(x) is defined as wl(x) = #{i | 0 ≤
i ≤ p − 1, xi � 0l}, where #S denotes a number of elements
in the set S.

Definition 2 (Branch Number): Let p, q and l be positive
integers, and let P : {{0, 1}l}p → {{0, 1}l}q be a map-
ping. Then a branch number of P is defined as Bl(P) =
mina�0,a∈{{0,1}l}p {wl(a) + wl(P(a))}.

Basic concept of DSM is explained using Fig. 5. Let
M be a non-singular m × m matrix, and a, b ∈ {{0, 1}l}m
are m-dimensional vectors. The left side of Fig. 5 shows
that the two output vectors through the same matrix M are
XORed to the data line. Suppose that x and y are fixed for
0, what is the possible smallest sum of bundle weights of
wl(a) + wl(b)? In this case it is shown that wl(a) + wl(b) = 2
is a possible value because M(a + b) = 0 is realized by
a = b, wl(a) = 1 for any fixed M. However, if two different
matrices M1 and M2 are used as in the right side of Fig 5,
then wl(a) + wl(b) ≥ Bl([M1|M2]), where [A|B] denotes an
m × 2m matrix obtained by concatenating matrices A and B.
From Def. 2, Bl([M1|M2]) can be m + 1 at most, which is
optimal diffusion [1], [21]. If we put S-boxes just before the
matrices as an SP-type F-function, w(a)+w(b) is regarded as
the number of active S-boxes in this case. From this obser-
vation, the latter construction can guarantee larger number
of active S-boxes if the above conditions are satisfied. DSM
incorporates this property in the whole Feistel structure to
raise the lower bounds.

Then we give definitions of BD
1 , B

D
2 and BL

2 to show the
guaranteed number of differential active S-boxes for con-
ventional Feistel structure.

Definition 3:

BD
1 = min

1≤i≤r
(Bl(Mi)),

BD
2 = min

1≤i≤r−2
(Bl([Mi|Mi+2])).

BL
2 = min

1≤i≤r−2
(Bl([

t M−1
i |

t M−1
i+2])).

Note that BD
1 ≥ BD

2 because Bl(A) ≥ Bl(A|B) for any
matrices A and B. Using these definitions†, the following
theorem is obtained [20], [21].

†BD
3 is also defined in [21], but we focus on two matrices rela-

tion in this study.
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Theorem 1: Any 6 consecutive rounds in the Feistel struc-
ture using SP-type F-functions guarantee at least BD

1 + BD
2

differential active S-boxes and 2BL
2 linear active S-boxes.

Theorem 1 suggests a new design approach of Feis-
tel cipher. Consider designing a Feistel structure where
l = 8, m = 8, which treats a 128-bit block, then choose
two matrices A and B which satisfy Bl(A) = 9,Bl(B) = 9,
Bl([A|B]) = 9 and Bl([tA−1|tB−1]) = 9, i.e. A and B keep
an optimal branch number† with additional branch num-
ber conditions. Then A and B are set as Mi = A where
i mod 4 = 0 or 1, and Mi = B where i mod 4 = 2 or 3.
This setting results in BD

1 = BD
2 = BL

2 = 9, and the the-
orem immediately implies that any consecutive 6 rounds,
12 rounds, . . ., 6R rounds of the designed Feistel structure
guarantee at least 18, 36, . . ., 18R differential and linear ac-
tive S-boxes, respectively. Because the diffusion matrices
are used in switching manner, the design is called Diffusion
Switching Mechanism.

A series of works on DSM opened a new design ap-
proach of Feistel structure, but no theoretical results on gen-
eralized Feistel structures which use DSM were reported so
far. We study this issue, and several novel results of lower
bound of generalized structures are shown.

4. Lower Bounds of Type-I and Type-II Generalized
Feistel Structures

In this section proofs for a method for roughly estimat-
ing lower bounds for Type-I and Type-II generalized Feis-
tel structures are shown. Then we discuss these results by
comparing the obtained bounds for both structures.

4.1 Type-I Generalized Feistel Structure Using DSM

First, the DSM for conventional Feistel structure is trans-
formed for Type-I generalized Feistel structure. Recall that
in conventional Feistel structure, the relations of two matri-
ces Mi in Fi and Mi+2 in Fi+2 for all i play important roles
because the output of these two matrices are XORed to the
same data branch. Figure 6 shows the relationship between
these F-functions explicitly by using an untwisted style Feis-
tel structure in which each data branch is represented as a
vertical line.

Also, Type-I generalized Feistel structure can be illus-
trated as an untwisted form as in Fig. 7. The figure shows
that the relations of two matrices between Mi in Fi and Mi+d

in Fi+d for all i should be taken into account.
Therefore, the definitions of BD

1 , B
D
2 and BL

2 are modi-
fied as follows.

Definition 4:

IBD
1 = min

1≤i≤r
(Bl(Mi)),

IBD
2 = min

1≤i≤r−d
(Bl([Mi|Mi+d])).

IBL
2 = min

1≤i≤r−d
(Bl([

t M−1
i |

t M−1
i+d])).

Fig. 6 Feistel structure. (Untwisted form)

Fig. 7 Type-I generalized feistel structure. (d = 6, Untwisted)

The above definition directly implies IBD
1 ≥

IBD
2 .

Using this definitions, proven lower bound of differen-
tial and linear active S-boxes for Type-I structure are shown
in the following sections.

4.1.1 Differential Active S-Boxes in Type-I Structure

Recall that Xi and RKi are an input and a round-key of i-th F-
function Fi, respectively. Moreover we let Di be the number
of differential active S-boxes of Fi, where Di = wl(ΔXi), ΔXi

denotes a difference of Xi. If non-zero difference is input to
Type-I generalized Feistel structure, the following proper-
ties hold:

Property 1: There is at least one F-function which has at
least one active S-box in any consecutive d rounds, because
the invertibility of the structure assures the property.

Property 2: If Di = 0, then Di−d+1 = Di+1, and if Di �
0, then Di−d+1 + Di + Di+1 ≥ IBD

1 . This is implied by the
equation Fi(RKi, Xi) = Xi−d−1 ⊕ Xi+1.

†Also known as MDS matrices because it can be obtained from
the maximum distance separable (MDS) codes [23].
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Fig. 8 3d rounds of Type-I structure. (3-layer form)

Property 3: If Di � 0 or Di+d � 0, then Di−d+1+Di+Di+d+

Di+d+1 ≥ IBD
2 . This is implied by the equation Fi(Ki, Xi) ⊕

Fi+d(Ki+d, Xi+d) = Xi−d+1 ⊕ Xi+d+1.

These properties are also explained in [21]. Using the
above properties, we obtain the following theorem.

Theorem 2: Let d ≥ 3. Any consecutive 3d rounds of d-
branch Type-I generalized Feistel structure using SP-type
F-functions guarantee IBD

1 +
IBD

2 differential active S-boxes.

Proof: We consider that a consecutive 3d rounds which
starts from the a-th round, and the 3d consecutive rounds
are regarded as a three-layer form in which one layer con-
tain d consecutive rounds. Each layer starts from the a, a+d
and a + 2d-th rounds. Figure 8 shows this three-layer form,
and the region boxed by a dashed line in Fig. 7 shows the
three layers from i-th round for d = 6 case.

Property 1 guarantees at least one F-function which has
a non-zero difference in the 2nd layer. According to the
positions where non-zero differences exist in the 2nd layer,
two cases are separately considered in the following.

CASE 1 (A difference exist in the 2nd layer except the both
ends, i.e. Da+d = Da+2d−1 = 0.)
Pick a non-zero difference in the 2nd-layer, and let it be Dj

(a + d < j < a + 2d − 1). Then Property 2 and 3 imply,

Dj−d+1 + Dj + Dj+1 ≥ IBD
1 , (1)

Dj−d+1 + Dj + Dj+d + Dj+d+1 ≥ IBD
2 . (2)

In this case, the following three cases are considered:

1A If Dj+d−1 � 0, then Prop. 3 implies Dj−d + Dj−1 +

Dj+d−1 + Dj+d ≥ IBD
2 . By simply combining this and

(1) we get
∑a+3d−1

i=a Di ≥ IBD
1 +

IBD
2 in this case.

1B If Dj+1 � 0, then Prop. 2 implies Dj−d+2+Dj+1+Dj+2 ≥
IBD

1 . By combining it and (1) we get
∑a+3d−1

i=a Di ≥ 2 ×
IBD

1 in this case.
1C If Dj+d−1 = Dj+1 = 0, then the condition of Dj+d−1 = 0

and Prop. 2 imply Dj+d = Dj � 0. Then Dj+d � 0 and
Prop. 2 imply

Dj+1 + Dj+d + Dj+d+1 ≥ IBD
1 . (3)

Eq. (1) and (3) have an overlapping term Dj+1, but
we now know Dj+1 = 0. As a result, we obtain
∑a+3d−1

i=a Di ≥ 2 × IBD
1 .

CASE 2 (A non-zero difference only exist at either of both
of the edges in the 2nd layer, i.e. Dj = 0 (a + d + 1 ≤ j ≤

a + 2d − 2).)
In this situation, the following three cases are considered:

2A If Da+d � 0 and Da+2d−1 = 0, then Prop. 2 gives Da+2d =

Da+d � 0. Moreover, Prop. 2 gives Da+1 + Da+d +

Da+d+1 ≥ IBD
1 and Da+d+1 + Da+2d + Da+2d+1 ≥ IBD

1 .
There is an overlapping term Da+d+1, but we assumed
Da+d+1 = 0. Thus we obtain

∑a+3d−1
i=a Di ≥ 2 × IBD

1 in
this case.

2B If Da+d = 0 and Da+2d−1 � 0. Since Da+2d−2 = 0, Prop. 2
gives Da+d−1 = Da+2d−1 � 0. Thus, Prop. 2 gives Da +

Da+d−1 + Da+d ≥ IBD
1 . Also Da+2d−1 � 0 gives Da+d +

Da+2d−1 + Da+2d ≥ IBD
1 . There is an overlapping term

Da+d in these inequalities, but we assumed Da+d = 0.
Thus we obtain

∑a+3d−1
i=a Di ≥ 2 × IBD

1 in this case.
2C If Da+d � 0 and Da+2d−1 � 0, then the condition of

Da+d � 0 and Prop. 2 imply Da+1+Da+d+Da+d+1 ≥ IBD
2 .

Moreover, Da+2d−1 and Prop. 3 imply Da + Da+d−1 +

Da+2d−1 + Da+2d ≥ IBD
2 . As a result we obtain

∑k+3n−1
i=k Di ≥ IBD

1 +
IBD

2 .

Combining all cases, we conclude that at least IBD
1 +

IBD
2

differential active S-boxes are guaranteed in 3d rounds of
Type-I structure. �

4.1.2 Linear Active S-Boxes in Type-I Structure

Similar to the differential case, we write a number of linear
active S-boxes for the i-th round as Li. Let ΓXi and ΓYi be
linear masks for input and output of Fi, respectively. If a
non-zero linear mask is input to Type-I generalized Feistel
structure, the following properties hold.

Property 4: There is at least one F-function which has at
least one linear active S-box in any consecutive d rounds due
to the invertibility of the structure.

Property 5: For any set of Li, Li+1 and Li+d satisfy:

• Li = Li+1 = Li+d = 0, or
• Li+Li+1+Li+d ≥ IBL

2 , where two of the terms are always
non-zero.

This is implied by the equation ΓXi+1 = ΓYi ⊕ ΓYi+d.

Using the above properties, we obtain,

Theorem 3: Let d ≥ 3. Any consecutive 3d rounds of d-
branch Type-I generalized Feistel structure using SP-type
F-functions guarantee at least 2 × IBL

2 linear active S-boxes.

Proof: Similar to the proof of Theorem 2, we show a guar-
anteed number of active S-boxes in consecutive 3d rounds
which starts from the a-th round.
CASE 1 (One or more non-zero linear mask exist in the sec-
ond layer except the left end, i.e. Lj � 0 (a + d + 1 ≤ j ≤
a + 2d − 1).)
Then Prop. 5 implies:

Lj−1 + Lj + Lj+d−1 ≥ IBL
2 , (4)

Lj + Lj+1 + Lj+d ≥ IBL
2 . (5)

In this situation, the following two cases are considered:
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1A If Lj−d � 0 or Lj−1 � 0, these conditions imply Lj−d−1 +

Lj−d + Lj−1 ≥ IBL
2 which do not contain any overlapped

term with (5). As a result we obtain
∑k+3n−1

i=k Li ≥ 2 ×
IBL

2 .
1B If Lj−d = Lj−1 = 0, from Prop. 5, Lj � 0 and Lj−d = 0

imply Lj−d+1 � 0. Then Lj−d+1 gives

Lj−d+1 + Lj−d+2 + Lj+1 ≥ IBL
2 . (6)

If d ≥ 4, (4) and (6) give
∑k+3n−1

i=k Li ≥ 2× IBL
2 . If d = 3,

Lj−1 in (4) and Lj−d+2 in (6) overlap. But we assumed
Lj−1 = 0, thus they also give

∑k+3n−1
i=k Li ≥ 2 × IBL

2 .

CASE 2 (A non-zero linear mask is found only at the left
end of the second layer, i.e., La+d � 0, Li = 0 (a + d + 1 ≤
j ≤ a + 2d − 1).)
Then Prop. 5 implies

La+d−1 + La+d + La+2d−1 ≥ IBL
2 , (7)

La+d + La+d+1 + La+2d ≥ IBL
2 . (8)

Since La+2d−1 = 0, (7) gives La+d−1 � 0. Then La+d−1 � 0
implies

La+d−2 + La+d−1 + La+2d−2 ≥ IBL
2 . (9)

If d ≥ 4, (8) and (9) give
∑k+3n−1

i=k Li ≥ 2 × IBL
2 . If d = 3,

La+d+1 in (8) and La+2d−2 in (9) overlap. But we assumed
La+4 = 0, then they also give

∑k+3n−1
i=k Li ≥ 2 × IBL

2 .
Combining all cases, we conclude that at least IBL

2 lin-
ear active S-boxes are guaranteed in 3d consecutive rounds
of Type-I structure. �

4.2 Type-II Generalized Feistel Structure Using DSM

Next, the DSM is applied to Type-II generalized Feistel
structure. Type-II structure where d = 6 is illustrated as
an untwisted form as in Fig. 9. To use the DSM, two matri-
ces between M j

i in F j
i and M j−1

i+2 in F j−1
i+2 for all possible i and

j should satisfy the DSM branch number conditions. Note
that the indices at the upper right of M and F are taken mod
d/2, i.e. d/2 = 0, and −1 = d/2 − 1.

According to the above observation, the definitions of
BD

1 , B
D
2 and BL

2 are modified as follows:

Definition 5:

IIBD
1 = min

1≤i≤r, 0≤ j<d/2
(Bl(M j

i )),

IIBD
2 = min

1≤i≤r−2, 0≤ j<d/2
(Bl([M j

i | M
j−1
i+2 ]),

IIBL
2 = min

1≤i≤r−2, 0≤ j<d/2
(Bl([

t(M j
i )−1 | t(M j−1

i+2 )−1])).

The above definition directly implies IIBD
1 ≥

IIBD
2 .

Using these definitions, proven lower bound of differ-
ential and linear active S-boxes for Type-II structure are
shown in the following:

Fig. 9 Type-II generalized Feistel structure. (d = 6, Untwisted)

4.2.1 Differential Active S-Boxes in Type-II Structure

Let X j
i ,K

j
i and Dj

i be an input, a round-key and a number of
differential active S-boxes in F j

i , respectively. If non-zero
difference is input to Type-II generalized Feistel structure,
we can use the following properties:

Property 6: There is at least one F-function which con-
tains at least one active S-box in any consecutive 2 rounds
due to the invertibility of the structure.

Property 7: If Dj
i = 0, then Dj+1

i−1 = Dj
i+1, and if Dj

i � 0,

then Dj
i +Dj+1

i−1 +Dj
i+1 ≥

IIBD
1 . This is implied by the equation

F j
i (K j

i , X
j
i ) = X j+1

i−1 ⊕ X j
i+1.

Property 8: If Dj
i � 0 or Dj−1

i+2 � 0, then Dj
i +Dj−1

i+2 +Dj+1
i−1 +

Dj−1
i+3 ≥

IIBD
2 . This is implied by the equation F j

i (K j
i , X

j
i ) ⊕

F j−1
i+2 (K j−1

i+2 , X
j−1
i+2 ) = X j+1

i−1 ⊕ X j−1
i+3 .

Using these properties, we obtain

Theorem 4: Let d ≥ 4. Any consecutive 6 rounds of d-
branch Type-II generalized Feistel Structure using SP-type
F-functions guarantee IIBD

1 +
IIBD

2 differential active S-boxes.

Proof: We consider 6 consecutive rounds that starts from
the a-th round. To make the proof easy to understand, we
put 3d F-functions in the 6 rounds into alternatively arranged
boxes as in Figure 10. The width of the boxes is d. F-
functions in the same round are found in the boxes in the
same row, and F-functions in the next rounds are found in
the next columns. The region boxed by a dashed line in
Fig. 9 shows the 6 rounds from i-th round for d = 4 case.

Prop. 6 guarantees at least one F-function which has a
non-zero difference in the 3rd or 4th rounds, i.e. (a + 2)-th
round or (a + 3)-th round.
CASE 1 (Any non-zero difference exists in the 3rd round,
i.e. Dj

a+2 � 0.)
Then Prop. 7 and 8 imply,
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Fig. 10 Type-II generalized Feistel structure. (Box form)

Dj
a+2 + Dj+1

a+1 + Dj
a+3 ≥

IIBD
1 , (10)

Dj
a+2 + Dj−1

a+4 + Dj+1
a+1 + Dj−1

a+5 ≥
IIBD

2 . (11)

1A If Dj−1
a+3 � 0, then Prop. 8 implies Dj

a+1 + Dj−1
a+3 + Dj+1

a +

Dj−1
a+4 ≥

IIBD
2 . By combining it and (10), we obtain

∑a+5
i=a

∑d/2−1
j=0 Dj

i ≥
IIBD

1 +
IIBD

2 .

1B If Dj
a+3 � 0, then Prop. 7 implies Dj

a+3 + Dj+1
a+2 + Dj

a+4 ≥
IIBD

1 . By combining (11), we obtain
∑a+5

i=a
∑d/2−1

j=0 Dj
i ≥

IIBD
1 +

IIBD
2 .

1C If Dj−1
a+3 = Dj

a+3 = 0, then the condition of Dj−1
a+3 = 0 and

Prop. 7 imply Dj−1
a+4 = Dj

a+2 � 0. Using the Prop. 7 for

Dj
a+4, we obtain

Dj−1
a+4 + Dj

a+3 + Dj−1
a+5 ≥

IIBD
1 . (12)

Eqs. (10) and (12) have an overlapping term Dj
a+3,

but we assumed Dj
a+3 = 0. As a result, we obtain

∑a+5
i=a

∑d/2−1
j=0 Dj

i ≥ 2 × IIBD
1 ≥

IIBD
1 +

IIBD
2 .

CASE 2 (Any non-zero difference exists in the 4th round.)
We can prove the same lowerbounds for this case as CASE
1 due to the symmetry of the structure. �

4.2.2 Linear Active S-Boxes in Type-II Structure

Similar to the differential case, we write a number of linear
active S-boxes for F j

i as Lj
i . If a non-zero linear mask is

input to Type-II generalized Feistel structure, we can use
the following properties:

Property 9: There is at least one F-function which con-
tains at least one linear active S-box in any consecutive 2
rounds due to the invertibility of the structure.

Property 10: For any set of Lj
i , L

j
i+1 and Lj−1

i+2 satisfy:

• Lj
i = Lj

i+1 = Lj−1
i+2 = 0, or

• Lj
i + Lj

i+1 + Lj−1
i+2 ≥

IIBL
2 , where two of the terms are

always non-zero.

Using the above properties, we show the following the-
orem.

Theorem 5: Let d ≥ 4. Any consecutive 6 rounds of d-
branch Type-II generalized Feistel structure using SP-type
F-functions guarantee at least 2× IIBL

2 linear active S-boxes.

Proof: Similar to Theorem 4, we prove that a guaranteed
number of active S-boxes in 6 consecutive rounds which
starts from the a-th round.
Prop. 9 guarantees at least one F-function which has non-
zero linear mask in the 3rd or 4th rounds, i.e. (a + 2)-th
round or (a + 3)-th round.
CASE 1 (Any non-zero linear mask exists in the 3rd round,
i.e. Lj

a+2 � 0.)

From Prop. 10, we obtain Lj
a+1+Lj

a+2+Lj−1
a+3 ≥

IIBL
2 . Assume

that each term in the inequality is non-zero, we can say

• Lj
a + Lj

a+1 + Lj−1
a+2 ≥

IIBL
2

• Lj+1
a + Lj+1

a+1 + Lj
a+2 ≥

IIBL
2

• L j−1
a+3 + Lj−1

a+4 + Lj−2
a+5 ≥

IIBL
2

Note that these three terms under consideration are empha-
sized in a bold type, and there is no overlapped term in the
above three inequalities. Prop. 10 implies that at least two of
the three terms are non-zero, therefore two of the above in-
equalities are valid. As a result, we obtain

∑a+5
i=a
∑d/2−1

j=0 Lj
i ≥

2 × IIBL
2

CASE 2 (Any non-zero linear mask exists in the 4th round.)
Similarly, we can prove the same lower bounds for this case
as CASE 1 due to the symmetry of the structure. �

4.3 Discussion

The lower bounds shown in this section can be used as use-
ful tools to measure strength of designed primitives using
either generalized structure. Especially, due to the fact that
Theorem 2 and 3 for Type-I structure are valid for d ≥ 3
and Theorem 4 and 5 for Type-II structure are valid for
d ≥ 4, these results can be regarded as natural extensions
of the results for conventional Feistel structure where d = 2
[21]. Moreover, the theorems imply that Type-I and Type-
II structures guarantee the same degree of immunity per F-
function against differential attack and linear attack when
using DSM. Thus these results do not imply explicit supe-
riority or inferiority between these structures with regard to
the number of guaranteed active S-boxes per F-function.

5. Computational Evaluation

In this section we show the other approach to show lower
bounds of generalized Feistel structures. We improve a
known search algorithm to fit to generalized Feistel struc-
tures [19]. Then we compare the three generalized Feistel
structures using guaranteed numbers of active S-boxes ob-
tained by the improved search algorithm.

5.1 Basic Search Algorithm

The basic search algorithm counting active S-boxes is in-
troduced in [19]. First, we explain the basic concept of the
algorithm for Type-I generalized structure as an example.
To find lower bounds for r-round Type-I Feistel structure,

1. For each candidate in all possible combinations of
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Table 1 Basic search algorithm.

INPUT: R (a number of rounds), ST R (target structure)
OUTPUT: a guaranteed number of active S-boxes for ST R

Main:
Step 1. Set global variable LB = ∞
Step 2. Call Func(1)
Step 3. Output LB

Func(x)
Step 4. If x = NFR + 1 do the following:

If LB >
∑NFR

p=1 Dp, LB←
∑NFR

p=1 Dp.
Step 5. If x � NFR + 1. For j = 0 to m do the following:

SetDx = j and check whether all properties
for the target structure are satisfied or not.
If check is OK, call Func(x + 1)

weight values Di (or Li), (0 ≤ Di ≤ m, 1 ≤ i ≤ r)
do:

• Check inconsistency between given Dis (or Lis)
determined by branch number conditions. If they
are inconsistent, discard the candidate, else calcu-
late and store a sum of Dis (1 ≤ i ≤ r).

2. Output the smallest sum value as the lower bound of
the target structure.

Properties shown in Sect. 4.1 are used to rule out wrong
combinations of weight values. For example, in the proper-
ties of Type-I Feistel structure, letting IBD

2 = 5 and Di � 0,
then the case of Di−d+1 + Di + Di+1 < 5 is always judged as
wrong for any i.

An actual search algorithm is a little sophisticated and
is as follows. Let ST R be an R-round generalized structure
to be evaluated, and NFi be a total number of F-functions in
the first i rounds of ST R. Then we define alias names of F-
functions F1,F2, · · · ,FNFR as Fi = Fi in Type-I generalized
Feistel structure, and Fdi+ j = F j

i for Type-II and Nyberg’s
generalized Feistel structures. Moreover, Di and Li denote
numbers of differential and linear active S-boxes for Fi, re-
spectively. The basic algorithm to find the lower bounds of
active S-boxes is defined as in Table 1.

In the above Func(x) is a recursive function call. In
Step 5. the properties for checking the consistency of Dis
should be appropriately selected according to the type of
structures described in the previous sections. To find lower
bounds of linear active S-boxes,Di is replaced with Li, and
applied properties are changed for linear masks.

We confirmed that this algorithm works well for only
small sized parameters. Our experimental result shows that
even searching for 16-round Type-I Feistel structures m = 4,
d = 4 requires more than one day. This huge calculation cost
may sometimes be an obstacle to estimate the wide range of
generalized Feistel structures.

5.2 Improved Search Algorithm

We speed up the basic algorithm by introducing an addi-
tional branch cutting technique. The improved algorithm is

Table 2 Improved search algorithm.

INPUT: R (a number of rounds), ST R (target structure)
OUTPUT: a guaranteed number of active S-boxes for ST R

Main:
Step 1. Set global variable LBi = ∞ (1 ≤ i ≤ R)
Step 2. For i = 1 to R do the following:

Call Func(1, i)
Step 3. Output LBR

Func(x, r)
Step 4. If x = NFr + 1 do the following:

If LBr >
∑NFr

p=1 Dp, LBr ←
∑NFr

p=1 Dp.
Step 5. If x � NFr + 1. For j = 0 to m do the following:

SetDx = j and check whether all properties
for the target structure are satisfied or not.
If the check is OK do the following:

Step 5.1. If x � {NFk |1 ≤ k ≤ r − 1}
Call Func(x + 1, r).

Step 5.2. If x ∈ {NFk |1 ≤ k ≤ r − 1}
Let z be an integer satisfying x = NFz.
If
∑NFz

p=1 Dp + LBr−z ≤ LBr ,
call Func(x + 1, r).

shown in Table 2. The major difference between the ba-
sic and the improved algorithms is that the improved algo-
rithm makes the most of the information of lower bounds
for smaller rounds. The idea of using information of smaller
rounds is proposed by Matsui [11], but we used the idea in
a different manner.

At Step 5.2., if the total of a) the sum of determined
active S-boxes in the first z F-functions, and b) the known
lower bound for the rest of rounds, already exceeds c) tem-
porary lower bounds LBy of the current target number y, fur-
ther searches are aborted because this situation never gives a
better lower bound. The branch cutting with an early-abort
approach can significantly reduce the search effort. Our
implementation result shows that a search for 100-round
Type-I Feistel structures when m = 4, d = 4 can be ob-
tained within a few tens of seconds by the improved algo-
rithm. This improvement enables us to evaluate many types
of structures.

5.3 Experimental Results

By using the improved algorithm, we first compared the
lower bounds of Type-I, Type-II and Nyberg’s generalized
Feistel structure for both cases using and not using the DSM
technique. The chosen parameters for each structure are
m = 4, d = 4 and *BD

1 =
*BD

2 =
*BL

2 = 5. Tables 3 and
4 show the results of estimation for 40-round Type-I struc-
ture and 20-round Type-II and Nyberg’s structures, therefore
each structure contains 40 F-functions.

5.4 Discussion and Comparison

From the above, we confirmed that the all lower bounds ob-
tained by the search algorithm are larger than that obtained
by the rough estimation method described in the previous
section. For these parameters, the rough estimation meth-
ods implies 10, 20 and 30 active S-boxes for 12, 24 and
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Table 3 Estimation results.

Type-I Type-I
r none D L r none D L
1 0 0 0 21 19 21 24
2 0 0 0 22 19 22 25
3 0 0 0 23 20 25 28
4 1 1 1 24 24 26 29
5 1 1 1 25 24 27 31
6 1 1 1 26 25 28 32
7 2 2 5 27 25 31 34
8 6 6 6 28 26 32 35
9 6 6 6 29 27 34 36
10 7 7 10 30 31 36 38
11 7 8 11 31 32 36 38
12 8 11 13 32 34 37 38
13 9 12 15 33 35 39 41
14 13 15 16 34 35 40 42
15 14 16 17 35 36 41 43
16 16 16 18 36 36 41 45
17 17 17 20 37 37 42 47
18 17 20 20 38 37 45 49
19 18 20 20 39 38 46 50
20 18 21 23 40 42 47 52

none : Num. of diff. and linear active S-boxes w/o DSM
D : Num. of diff. active S-boxes with DSM
L: Num. of linear active S-boxes with DSM

Table 4 Estimation results.

Type-II Nyberg’s
r none D L r none D L
1 0 0 0 1 0 0 0
2 1 1 1 2 0 0 0
3 2 2 5 3 1 1 1
4 6 6 6 4 2 2 5
5 8 8 10 5 5 6 6
6 12 12 15 6 6 10 10
7 12 14 16 7 7 10 10
8 13 18 18 8 8 11 11
9 14 20 20 9 9 12 15
10 18 22 23 10 10 12 15
11 20 24 26 11 11 16 16
12 24 28 30 12 12 20 20
13 24 30 32 13 13 20 20
14 25 34 34 14 14 21 21
15 26 36 36 15 15 22 25
16 30 38 38 16 16 22 25
17 32 40 40 17 17 26 26
18 36 44 44 18 18 30 30
19 36 46 46 19 19 30 30
20 37 50 50 20 20 31 31

36 rounds of Type-I structure, and also for 6, 12 and 18
rounds of Type-II structure. In all cases, the search algo-
rithm outputs tighter lower bounds for the chosen param-
eters. This means that the method for roughly estimating
lower bounds does not always give tight bounds. Therefore
we expect improved results of the method which guarantees
tighter bounds in further research. Now we leave this prob-
lem open.

Also we see that the obtained results show the effect of
DSM in all three structures. Although we provide estimated
data only for the limited case in the table, we confirmed sim-
ilar results for the cases using other parameter sets.

Furthermore, it is shown that the guaranteed numbers
per F-function of active S-boxes of Nyberg’s Feistel struc-
ture are explicitly smaller than those of Type-I and Type-
II structures, and it is also shown that Type-I and Type-II
have the same level of immunity against differential attack
and linear attack which is already implied by proven lower
bounds in Sect. 4. The slower diffusion effect of Nyberg’s
structure is due to the fact that there is a 2-round iterative
differential (or linear) characteristic which contains only one
active s-boxes in a round in case d = 4. Similar iterative
characteristics are also found for other d. This implies that
that Nyberg’s generalized Feistel structure does not offer
better immunity against differential and linear attack than
Type-I and Type-II structure when SP-type F-functions are
used for them.

6. Conclusion

We have derived lower bounds of Type-I and Type-II gen-
eralized Feistel structures which use DSM technique. The
results showed that both structures have the same level of
numbers of estimated active S-boxes per an F-function,
which implies that Type-II structure is expected to hold
practical advantage over Type-I with regard to the process-
ing speed. Moreover, we showed an improved search algo-
rithm to find lower bounds efficiently, and the experimental
results revealed that DSM has explicit effect on all of these
structures. We also showed that Nyberg structure doesn’t
guarantee as many active S-boxes as Type-I and Type-II
structures when using SP-type F-functions.
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