<table>
<thead>
<tr>
<th>Title</th>
<th>An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Fujiki Y, Yoshimoto K, Ohsumi Y.</td>
</tr>
<tr>
<td>Issue date</td>
<td>2007, 3</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://dx.doi.org/10.1104/pp.106.093864">http://dx.doi.org/10.1104/pp.106.093864</a></td>
</tr>
<tr>
<td>Note</td>
<td>このファイルは著者（最終）版です。</td>
</tr>
</tbody>
</table>

This file is author (final) version.
Running head: Dual functions of Arabidopsis ATG6/VPS30

Address correspondence to: Yoshinori Ohsumi, Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan, Tel. 81-564-55-7515; Fax. 81-564-55-7516; E-mail: yohsumi@nibb.ac.jp

Research area: Cell Biology
An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination

Yuki Fujiki, Kohki Yoshimoto and Yoshinori Ohsumi*

Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Footnotes;

1 This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

*Corresponding author; e-mail yohsumi@nibb.ac.jp; fax 81-564-55-7516.
Yeast Atg6/Vps30 is required for autophagy and the sorting of vacuolar hydrolases, such as carboxypeptidase Y. In higher eukaryotes, however, roles for \textit{ATG6/VPS30} homologs in vesicle sorting have remained obscure. Here, we show that \textit{AtATG6}, an Arabidopsis homolog of yeast \textit{ATG6/VPS30}, restored both autophagy and vacuolar sorting of carboxypeptidase Y in a yeast \textit{atg6/vps30} mutant. In Arabidopsis cells, green fluorescent protein-AtAtg6 protein localized to punctate structures and colocalized with AtAtg8, a marker protein of the pre-autophagosomal structure. Disruption of \textit{AtATG6} by T-DNA insertion resulted in male sterility that was confirmed by reciprocal crossing experiments. Microscopic analyses of \textit{AtATG6} heterozygous plants (\textit{AtATG6/atatg6}) crossed with the \textit{quartet} mutant revealed that \textit{AtATG6}-deficient pollen developed normally but did not germinate. Because other \textit{atatg} mutants are fertile, AtAtg6 likely mediates pollen germination in a manner independent of autophagy. We propose that Arabidopsis Atg6/Vps30 functions not only in autophagy, but also plays a pivotal role in pollen germination.
Autophagy is a bulk degradation mechanism by which cytoplasmic constituents are delivered to lytic compartments for degradation and recycling (Klionsky and Ohsumi, 1999; Ohsumi, 2001; Levine and Klionsky, 2004). The process involves sequestration of the cytoplasm into double-membrane vesicles called autophagosomes, which subsequently fuse with lysosomes or vacuoles. Genetic studies in yeast have identified a set of ATG (autophagy) genes involved in this process (Klionsky and Ohsumi, 1999; Ohsumi, 2001). Various Atg proteins reside on the pre-autophagosomal structure (PAS) from which autophagosomes originate (Suzuki et al., 2001). The molecular mechanisms underlying the formation of autophagosomes, however, have not yet been fully elucidated.

Most of the yeast Atg proteins are specifically engaged in autophagy and/or the cytoplasm-to-vacuole-targeting pathway, which is mechanistically similar to autophagy (Klionsky and Ohsumi, 1999; Levine and Klionsky, 2004). By contrast, ATG6 is allelic to the previously characterized VPS30 (vacuolar protein sorting), which is required for the vacuolar sorting of carboxypeptidase Y (CPY) (Seaman et al., 1997; Kametaka et al., 1998). ATG6/VPS30 is conserved in higher eukaryotes, and its ortholog (BECLIN 1) can restore autophagy in ATG6/VPS30-deficient yeast (Liang et al., 1999; Meléndez et al., 2003; Liu et al., 2005). Suppression of BECLIN 1 homologs blocked autophagy and disturbed various biological processes (Meléndez et al., 2003; Yu et al., 2004; Liu et al., 2005). On the other hand, the putative role of BECLIN 1 in membrane trafficking is controversial (Zeng et al., 2006).

Many Atg proteins are conserved in plants, and reverse genetic studies have
demonstrated that Arabidopsis atg mutants are hypersensitive to nutrient starvation, as well as that atg plants exhibit accelerated senescence even under favorable growth conditions (reviewed in Thompson and Vierstra, 2005; Bassham et al., 2006). Here, we are interested in AtATG6, an Arabidopsis homolog of yeast ATG6/VPS30, because it is a unique autophagy gene that also participates in trafficking events in yeast. We first investigated whether AtATG6 was involved in autophagy and found that AtATG6 restored autophagy in atg6/vps30 yeast and that it localized in plant cells to a punctate structure containing Arabidopsis Atg8, a marker protein of the PAS (Suzuki et al., 2001). We also show that Arabidopsis Atg6/Vps30 partially complemented VPS function in atg6/vps30 mutant yeast. Several other Arabidopsis VPS homologs are required in pollen tubes (Hicks et al., 2004; Lobstein et al., 2004), as the polarized growth of pollen tubes requires membrane trafficking (Helper et al., 2001; Monteiro et al., 2005). We found that disruption of AtATG6/VPS30 resulted in male sterility because the mutant pollen did not germinate. By contrast, all previously characterized atatg mutants are fertile. Our results support the idea that Atg6/Vps30 in plants has distinct functions in addition to autophagy: vesicle trafficking and pollen germination.

RESULTS

Arabidopsis Atg6 Restores Autophagy and Vacuolar Protein Sorting in atg6/vps30 Mutant Yeast
To first investigate roles of Atg6/Vps30 in higher plants, we isolated a putative Arabidopsis homolog of ATG6/VPS30 (AtATG6) encoded by a single gene (At3g61710) in the Arabidopsis genome. The AtATG6-encoded protein shares 24% amino-acid identity with yeast Atg6/Vps30 (Seaman et al., 1997; Kametaka et al., 1998) and 31% identity with human Beclin 1 (Liang et al., 1999). Animal homologs of ATG6/VPS30 (BECLIN 1) restored autophagy but not CPY sorting in atg6/vps30 mutant yeast (Liang et al., 1999; Meléndez et al., 2003). To test whether AtATG6 is a functional homolog of ATG6/VPS30, we investigated whether AtAtg6 rescues defects of yeast atg6/vps30 in autophagy and the VPS pathway. AtATG6 cDNA containing the entire open reading frame (ORF) was fused with the yeast ATG6/VPS30 promoter in a low-copy-number plasmid (pRS416) and expressed in ATG6/VPS30-deficient yeast (strain BY4741). Wild-type yeast cells accumulated numerous autophagic bodies within vacuoles after 5 h of nutrient starvation, whereas no such vesicles were found in the vacuoles of atg6/vps30 yeast cells (Fig. 1A). Under these conditions, expression of AtATG6 allowed atg6/vps30 cells to accumulate autophagic bodies, albeit to a lesser extent than did wild-type cells (Fig. 1A).

We next measured the amount of intracellular and extracellular CPY protein to determine whether CPY was delivered into vacuoles or secreted. Wild-type or atg6/vps30 cells transformed with ATG6/VPS30 seemed to properly sort CPY into vacuoles, where CPY was processed to its mature form of 61 kDa (Fig. 1B, mCPY). In atg6/vps30 cells, on the other hand, missorted CPY was secreted (Fig. 1B, pCPY) and concomitantly lower quantities of mature CPY were detected in the intracellular
fraction (Fig. 1B, mCPY). In AtATG6-transformed atg6/vps30 cells, secretion of CPY was suppressed, suggesting that AtAtg6 restores vacuolar sorting of CPY in ATG6/VPS30-disrupted yeast.

**AtAtg6 Colocalizes with AtAtg8 at a Punctate Structure**

In yeast cells, green fluorescent protein (GFP)-tagged Atg6/Vps30, like other Atg proteins, partially localizes to the punctate structure called the PAS (Obara et al., 2006). To visualize AtAtg6 protein in plant cells, a GFP-AtAtg6 fusion protein was expressed in Arabidopsis protoplasts under the control of cauliflower mosaic virus 35S promoter. As shown in Fig. 2A, the fluorescent signal from GFP-AtAtg6 was distributed in the cytoplasm and to a single or a few bright dots. Similar dot-signals were observed when AtAtg6 was fused to the N terminus of GFP (AtAtg6-GFP, data not shown). Such punctation was not found in cells transformed with the empty vector (35S-GFP alone, Fig. 2A, see also supplemental Fig. S1B).

We next attempted to determine the organelle to which AtAtg6 localized. Punctate localization of GFP-AtAtg6 was not influenced by brefeldin A (BFA) (Fig. 2B). Venus-tagged SYP31, SYP41, and SYP81 served as marker proteins for the Golgi, trans-Golgi network (TGN), and ER, respectively (Uemura et al., 2004), and each of these marker proteins showed intracellular distribution patterns that were clearly distinguished from that of AtAtg6 (Fig. 2, B and C, and data not shown). Bright dots of cyan fluorescent protein (CFP)-AtAtg6 also did not overlap with any of these organelle markers (Fig. 2C
and data not shown). In contrast, the PAS marker protein, GFP-AtAtg8, exhibited a punctate localization profile similar to that of GFP-AtAtg6 (Fig. 2A, see also supplemental Fig. S1). We then compared the localization of CFP-AtAtg6 with that of yellow fluorescent protein (YFP)-AtAtg8. Each fusion protein again exhibited clear enrichment in the punctate structure within the cytoplasm, and the coincidence of CFP and YFP signals on the bright dots (Fig. 2D, arrows, supplemental Fig. S2) suggested the colocalization of AtAtg6 with AtAtg8 in plant cells, similar to that shown in yeast cells (Obara et al., 2006).

**Deletion of AtATG6 Causes a Male Gametophytic Mutation**

To evaluate the functions of AtAtg6 in planta, we employed a reverse genetic approach. Our initial attempts to screen Arabidopsis mutants (two independent lines, SALK_051168 and _109281) harboring T-DNA insertions within the *AtATG6* gene identified no homozygous mutant lines. *AtATG6* heterozygous plants exhibited reduced *AtATG6* mRNA levels relative to wild-type plants (supplemental Fig. S3) but appeared normal in appearance. Each *AtATG6* heterozygous plant showed approximately a 1:1 segregation ratio for transmission of the T-DNA in the first selfing progeny (Table I). A Mendelian transmission ratio of 3:1 was rejected by a $\chi^2$ test ($P = 7.4 \times 10^{-25}; P = 3.6 \times 10^{-17}$). Embryos produced by selfing of *AtATG6/atatg6* plants grew normally, and no aborted seeds were found in the siliques. Therefore, failures of transmission of T-DNA to the progeny seemed to be due to defects in the gametes, not embryonic lethality.
Next, we performed crossing experiments to determine the gametophytes that were affected by *atg6*. When *AtATG6* heterozygous plants (background Columbia; the line SALK_051168 was used in the following experiments) were used as pollinators of wild-type plants (Wassilevskija was used to make it possible to confirm crossing by PCR), no T-DNA inserted progeny were obtained (Table I). This suggested the failure of transmission of *atg6* through the male gametophyte, which was statistically supported by a $\chi^2$ test ($P = 9.2 \times 10^{-9}$). In contrast, pollination of *AtATG6* heterozygous stigmas with wild-type pollen yielded progeny with a 1:1 segregation ratio of transmission of T-DNA (Table I). The observed ratio was nearly identical to the expected T-DNA transmission ratio of 1:1 through the female gametophyte ($\chi^2 = 0.44$, $P = 0.51$). Deletion of *AtATG6*, therefore, appeared to specifically influence male gametophytes but not to compromise the function of female reproductive structures.

**Pollen Lacking *AtATG6* Does Not Germinate**

To determine the biological basis of the male gametophytic mutant phenotype of *atatg6*, we performed microscopic analysis of *atatg6* pollen. Pollen grains from *AtATG6* heterozygous flowers were indistinguishable from wild-type pollen in shape and size (data not shown). However, the efficiency of the *in vitro* pollen germination of *AtATG6* heterozygous flowers (39.8 ± 1.4% of pollen grains germinated, $n = 977$) was lower than that of wild-type controls (76.7 ± 2.5%, $n = 1715$; for each genotype, standard errors for three independent experiments are shown) (Fig. 3A). Under these
conditions, pollen from other *atatg* mutants (*atatg4a4b-1* and *atatg2* were tested) germinated with efficiency similar to that of wild-type controls (data not shown).

We crossed *quartet1* (*qrt1*) mutant plants to *AtATG6/atatg6* plants to further address the role of AtAtg6 in pollen germination. The *qrt* mutation yielded four microspores derived from a single pollen mother cell that stay attached to one another for the duration of pollen development, which makes it easy to perform tetrad analyses (Preuss et al., 1994; McCormick, 2004). We expected that if AtAtg6 were essential for pollen germination, at most two pollen grains in each *AtATG6/atatg6/qrt/qrt* tetrad would germinate. This prediction was correct; only one or two pollen grains germinated from each *AtATG6/atatg6/qrt/qrt* tetrad, while up to four pollen germinated from each wild-type (*AtATG6/AtATG6/qrt/qrt*) tetrad (Fig. 3, B and C). Apparently, there were no severe defects in the elongation of germinated pollen tubes of *AtATG6/atatg6/qrt/qrt* tetrads (Fig. 3B and data not shown), possibly because only the pollen-carrying wild-type *AtATG6* could germinate. These results strongly suggested that *atatg6* mutant pollen fails to germinate.

Despite the defects in pollen germination, transmission electron microscopy and environmental scanning electron microscopy (ESEM) showed that all four pollen grains in an *AtATG6/atatg6/qrt/qrt* tetrad were normal in appearance and indistinguishable from one another (Fig. 4). Each mutant pollen contains three normal nuclei: one vegetative and two sperm nuclei (Fig. 4F). We also stained pollen with aniline blue to investigate whether disorganization of cell wall composition (e.g. callose) was associated with failures of pollen germination (Johnson and McCormick, 2001). Each
pollen grain of an AtATG6/atatg6/qrt/qrt tetrad, even if not germinated, was able to perform local outgrowth of the pollen wall or the polarized deposition of callose in a manner similar to that of AtATG6/AtATG6/qrt/qrt pollen (Fig. 4, G and H). It was therefore likely that the polarity of the pollen germination site was determined normally in atatg6 pollen. Taken together, these results suggested that AtAtg6 is not essential for male meiosis or pollen development prior to germination.

**Expression of ATG6 in Arabidopsis**

We previously showed that the AtATG4 and AtATG8 genes were ubiquitously expressed in whole plants (Yoshimoto et al., 2004). Similarly, reverse transcriptase (RT)-PCR revealed that AtATG6 mRNA was expressed in all organs tested (Fig. 5A). Expression of AtATG6 mRNA was not upregulated during floral development (Fig. 5B). Likewise, POK/AtVPS52, another Arabidopsis VPS homolog implicated in pollen tube elongation (Lobstein et al., 2004), was expressed in different tissues and continuously expressed throughout pollen development (Lobstein et al., 2004, and Fig. 5B). These results suggest the occurrence of autophagy and vesicle trafficking in various tissues.

**DISCUSSION**

We have identified AtATG6 as a functional homolog of yeast ATG6/VPS30 and characterized its function in plants. First, a yeast complementation assay demonstrated
that expression of \textit{AtATG6} partially restored autophagy in \textit{atg6/vps30} yeast. Liu et al. (2005) recently showed that Arabidopsis \textit{BECLIN 1 (AtATG6)} rescued autophagy in \textit{atg6/vps30} yeast cells, in agreement with our results. However, it has thus far been unclear as to whether plant or mammal \textit{BECLIN1} homologs are effective in trafficking events, such as CPY sorting. In this article, we showed that expression of \textit{AtATG6} rescued \textit{atg6/vps30} yeast from the missorting of CPY protein. Although it has not been determined in plant cells how AtAtg6 regulates vesicular trafficking, we found that \textit{AtATG6}-deleted plants displayed a male gametophytic mutant phenotype, which was similarly exemplified by another \textit{atvps} mutant (see below). In contrast, none of the previously characterized \textit{atatg} mutants have exhibited male gametophytic defects. Taken together, our results raise the possibility that Arabidopsis Atg6/Vps30 may be involved in other biological pathways (e.g., vesicle trafficking) in addition to autophagy.

In Arabidopsis cells, GFP-AtAtg6 proteins were predominantly distributed throughout the cytoplasm, in accordance with biochemical studies identifying cytosolic Atg6/Vps30 in yeast cells (Seaman et al., 1997; Kihara et al., 2001b). In addition, recent microscopic observations revealed that Atg6/Vps30 is partially targeted to the punctate structure upon which the PAS marker protein Atg8 resides (Obara et al., 2006). As expected, CFP-AtAtg6 colocalized with YFP-AtAtg8 at the dot-like structures, which were reminiscent of the PAS. By contrast, in whole plants, GFP-AtAtg8 localize to many dot structures in each cell, some of which may represent autophagosomes (Yoshimoto et al., 2004). The appearance of autophagosomes might depend on cell type: an isolated cell, such as a yeast cell, contains only a few autophagosomes and Atg8
predominantly localizes at a single dot (PAS) rather than to autophagosomes (Suzuki et al., 2001), mimicking the punctate localization of AtAtg proteins in Arabidopsis suspension cells.

In addition to the PAS, yeast Atg6/Vps30 also resides at the endosome and on the vacuolar membrane (Obara et al., 2006), and mammalian Beclin 1 localizes to the TGN (Kihara et al., 2001a). Although the localization of AtAtg6 to endomembranes was not detected under our experimental conditions, we cannot exclude the possibility that plant Atg6/Vps30/Beclin1 may function in part through the endomembrane system to control vesicle trafficking.

Precise molecular mechanisms by which Atg6/Vps30/Beclin1 proteins regulate autophagosome formation have not yet been described in any organisms. In yeast, Atg6/Vps30 associates with Vps34, a phosphatidylinositol 3-kinase (PI3-kinase) (Kihara et al., 2001b). Recent studies have suggested that targeting of Atg6/Vps30 and Vps34 to the PAS is critical for subsequent autophagosome formation (Obara et al., 2006). Vps34 may be recruited to the PAS by Atg14, a connector protein that binds Vps34 and Atg6/Vps30, and then phosphatidlylinositol-3 phosphate (PI3-P) produced by PI3-kinase at the PAS could subsequently recruit other proteins involved in autophagosome formation (Obara et al., 2006). Atg6/Vps30 seems indispensable for Atg14 function, because Atg14 is unstable in atg6/vps30 yeast cells (Kihara et al., 2001b). Although no ATG14 homologs have been found in plants or animals, it is tempting to speculate that AtAtg6 may interact with an unidentified PI3-kinase regulatory protein(s) that would direct the specificity of PI3-kinase activity toward
autophagosome formation, possibly by recruiting the PI3-kinase complex to the putative PAS in Arabidopsis cells.

A number of Arabidopsis atg mutants have been isolated thus far, each of which has exhibited retarded growth under nutrient starvation and accelerated senescence even under nutrient-rich conditions (Thompson and Vierstra, 2005; Bassham et al., 2006). Similarly, virus-induced gene silencing of tobacco autophagy genes, including a BECLIN 1/ATG6 homolog (NbATG6), enhanced yellowing of leaves under environmental stress, such as pathogen attack or dark-induced senescence (Liu et al., 2005). In this particular gene silencing system, no difference was apparent between the phenotypes of NbATG6- and other NbATG-silenced plants. In contrast, we assumed that the atg6/vps30 mutant would reveal more severe phenotypes than do other atg mutants, as yeast Atg6/Vps30 mediates various biological pathways, including autophagy. Accordingly, of the atatg plants examined thus far, only atatg6 mutants exhibited pollen tube germination abnormalities. This phenotype was not ascribed to autophagy because none of the atatg mutants (except atatg6) has exhibited male gametophytic defects (Thompson and Vierstra, 2005; Bassham et al., 2006; and this study). As described above, this finding supports our hypothesis that AtAtg6/Vps30 may have an autophagy-independent role(s) responsible for pollen germination.

The compelling question, then, is how AtAtg6 mediates pollen germination. Extensive studies have identified several key components for pollen tube growth; one of these is vesicular trafficking (Helper et al., 2001; Monteiro et al., 2005). The tip of the pollen tube contains numerous vesicles that could provide precursor materials for the
rapidly expanding cell wall of the growing cells. Arabidopsis VPS homologs, including VCL1 (VPS16) and POK (VPS52), seem to play roles in germinating pollen tubes (Hicks et al., 2004; Lobstein et al., 2004). Similarly, it is possible that AtATG6/VPS30 may be involved in the trafficking machinery that is crucial for pollen tube elongation.

Another possible explanation is that AtAtg6-mediated PI3-kinase signaling might be involved in pollen germination, as PI3-P is known to act as a second messenger and modulate a variety of cellular activities in plants (Meijer and Munnik, 2003). Previous studies described roles of another phosphoinositide, phosphatidylinositol 4,5-bisphosphate, during cytoskeletal organization and membrane trafficking, which may regulate the cell elongation of root hairs and of pollen tubes (Kost et al., 1999; Vincent et al., 2005). To our knowledge, however, the involvement of PI3-P in pollen tube germination has not been reported. AtATG6-disrupted pollen, which completely lacks AtATG6 but is still viable, would serve as a useful system to further investigate the molecular mechanisms underlying PI3-kinase-regulated polarized cell growth.

Finally, despite its inhibitory effect(s) on pollen germination, the atatg6 mutation affected neither the functions of female gametophytes nor the viability of pollen, suggesting that AtAtg6 is not essential for growth of germ cells. Nevertheless, this does not necessarily exclude the possibility that the disruption of AtATG6 drastically affects various developmental processes in plants. For instance, if atatg6 homozygous plants were available, their early embryonic development would be severely damaged, as shown in AtVPS34-suppressed transgenic Arabidopsis (Welters et al., 1994). In animals, suppression of BECLIN 1 affected dauer development (Meléndez et al., 2003) and cell
death (Yu et al., 2004). Suppression of AtATG6 by antisense- or RNAi techniques would unveil another unanticipated physiological significance of ATG6/VPS30/BECLIN1 genes, in addition to the AtATG6-mediated pollen-germination.
MATERIALS AND METHODS

Complementation of Yeast Mutants

An ORF of Arabidopsis ATG6 (At3g61710, Arabidopsis Information Resource (http://www.arabidopsis.org)) was fused with the 5' flanking sequence (-816 to -1 relative to the initiation codon) of yeast ATG6/VPS30 in the pRS416 vector. A genomic fragment of yeast ATG6/VPS30 (-952 to +2,325) (Kametaka et al., 1998) was inserted into pRS416 as a control. Wild-type yeast (Saccharomyces cerevisiae strain BY4741) and an atg6/vps30 deletion mutant (Y2132) (Giaever et al., 2002) were then transformed with these plasmids.

For autophagy complementation experiments, cells were grown at 30°C to mid-log stage (OD$_{600}$ of 1.0 to 1.5) in synthetic media (0.67% (w/v) yeast nitrogen base without amino acids and ammonium) supplemented with 2% (w/v) glucose, 0.5% (w/v) ammonium sulphate, 0.5% (w/v) casamino acid, and 0.002% (w/v) Trp. Cells were then collected, washed, and incubated for another 5 h in the synthetic media in the presence of 1 mM phenylmethylsulfonyl fluoride (PMSF). Accumulation of autophagic bodies was observed using a differential interference contrast microscope (IX81, Olympus, Tokyo, Japan).
For VPS complementation, cells under 5 h of nitrogen starvation were collected by centrifugation and used to prepare intracellular extracts, while the supernatant was collected as the extracellular fraction. Preparation of cell extracts and immunoblot analyses were performed as described previously (Hamasaki et al., 2005).

**Plant Materials**

Wild-type *Arabidopsis thaliana* (strain Columbia) plants were grown at 22°C with 16 h light and 8 h dark photoperiods. Two distinct T-DNA insertion lines of *AtATG6* (SALK_051168 and _109281) were generated by the SALK Institute, and *AtATG6* heterozygous plants were identified by PCR. The primer 5'-TGGTTTCACGTAGTGCCCATCG-3’ was designed for the T-DNA sequence, and others were used for *AtATG6* (see below). *AtATG6* heterozygous plants (SALK_051168) were crossed with *quartet* mutant plants (*qrtl*-2, Arabidopsis Biological Resource Center, CS8846).

The Arabidopsis suspension-cultured cells were maintained as described (Ueda et al., 2001).

**Subcellular Localization of AtAtg6 Protein Fused with GFP Derivatives**
The ORF of \emph{AtATG6} or \emph{AtATG8a} (Yoshimoto et al., 2004) was fused to the C terminus of EGFP in the pEKS-CL plasmid (Carnegie Institution of Washington, Stanford, CA). The ORFs of \emph{AtATG6} and \emph{AtATG8i} were C-terminally fused to ECFP or EYFP (p2CGW7 and p2YGW7, Karimi et al., 2005) using Gateway technology (Invitrogen, Carlsbad, CA). Venus-tagged SYP31, SYP41, and SYP81 were used as the Golgi, TGN, and ER marker proteins, respectively (Uemura et al., 2004). Transient expression of fluorescence proteins in Arabidopsis suspension cells was performed as described in Ueda et al. (2001). BFA treatment was performed as previously described (Uemura et al., 2004). Cells were observed using epifluorescence microscope (Olympus IX81).

**Microscopic Observation of Pollen**

Pollen grains were germinated in the dark at 22°C on an agar plate containing 0.6% agar, 13.5% sucrose, 30 \(\mu\)g ml\(^{-1}\) myo-inositol, 0.4 mM boric acid, 10 mM CaCl\(_2\), and 1 mM KCl.

The sections of mature pollen were observed using a JEM-2000EX transmission electron microscope (JEOL, Tokyo, Japan) as described by Yoshimoto et al. (2004).

Pollen was observed in the chamber of an ESEM (PHILIPS XL30, FEI Electron Optics, Eindhoven, the Netherlands) at 2°C under 650 to 660 Pa of pressure with an
acceleration voltage of 15 kV. Images were processed using Adobe Photoshop 6.0
(Adobe Systems, San Jose, CA).

Staining of pollen with 4’, 6-diamidino-2-phenylindole (DAPI) or aniline blue was
performed as described previously (Regan and Moffatt, 1990; Shimizu and Okada,
2000).

**RT-PCR**

Arabidopsis plants were grown hydroponically for 4 to 5 weeks (Hanaoka et al.,
2002) and each organ was harvested. Flowers at different developmental stages were
collected as described by Gupta et al. (2002). RNA was extracted from each sample
using TRIzol reagent (GIBCO/BRL) and treated with DNase I. cDNA was synthesized
using ProSTAR First-Strand RT-PCR Kit (Stratagene, La Jolla, CA). The primers used
were:  

- **AtATG6**, 5’-GCTGAAGTAAACCATCAACTG-3’ and 5’-GTTACACATCGTATGGAGGAG-3’;
- **UBIQUITIN10** (**UBQ10**, At4g05320), 5’-GCAGATCTTTGTAAAGACTC-3’ and 5’-CCAAAGTGATAGTTTTCCCAG-3’;
- **POK** (At1g71270), 5’-GGTGTTAAGTGCACATTTTCGTG-3’ and 5’-TCACCAAAAGAAATCATCACAAAA-3’;
- **AtPTEN1** (At5g39400), 5’-ATGGGTCTCAAGCTCTCACG-3’ and 5’-ACCGTAAACAAGGTACGCCGA-3’.
Supplemental Data

The following materials are available in the online version of this manuscript.

**Figure S1.** Intracellular localization of AtAtg8 in Arabidopsis cells.

**Figure S2.** Colocalization of AtAtg6 and AtAtg8 proteins in Arabidopsis cells.

**Figure S3.** Reduced *AtATG6* mRNA levels in *AtATG6* heterozygous plants.

Supplemental figure legends

ACKNOWLEDGMENTS

We thank Dr. Hirokazu Tsukaya at the NIBB for helpful comments; Dr. Christiane Genetello (VIB-Ghent University) for the Gateway plasmids; Drs. Masaaki Umeda and Takashi Ueda (The University of Tokyo) for Arabidopsis suspension cells; Dr. Masa H. Sato (Kyoto Prefectural University) for Venus-SYP plasmids; and Ms. Masami Miwa, Rie Ichikawa, and Chieko Nanba for technical assistance. ESEM was performed at the NIBB Center for Analytical Instruments. Mutant seeds were obtained from ABRC.
LITERATURE CITED

Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K.
2–11

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A,
Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R,
KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U,
Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P,
Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P,
Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S,
Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke

homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant
Cell 14: 2495-2507
Hamasaki M, Noda T, Baba M, Ohsumi Y (2005) Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6: 56–65


Welters P, Takegawa K, Emr SD, Chrispeels MJ (1994) AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci USA 91: 11398–11402


FIGURE LEGENDS

**Figure 1.** Functional complementation by Arabidopsis *ATG6/VPS30* of autophagy and vacuolar protein sorting in a yeast *atg6/vps30* mutant. Arabidopsis *ATG6/VPS30* (*AtATG6*) gene was cloned in the low-copy-number plasmid pRS416 and expressed in *atg6/vps30* yeast cells. Yeast *ATG6/VPS30* (*ScATG6*) and the empty vector (pRS416) were used as controls. A, Cells grown to mid-log stage were collected, washed, and subsequently incubated for another 5 h in nutrient-free medium in the presence of 1 mM PMSF. Autophagic bodies accumulated within vacuoles (arrows). B, Intracellular or extracellular extracts were prepared from wild-type or *atg6/vps30* cells that were transformed with the empty vector (-), yeast (Sc)-, or Arabidopsis (At) *ATG6/VPS30*. Secreted CPY (pCPY) in the extracellular extracts and vacuolar-targeted CPY (mCPY) or alcohol dehydrogenase (ADH) in the intracellular extracts were detected by immunoblotting.

**Figure 2.** Intracellular localization of AtAtg6 in Arabidopsis cells. AtAtg proteins tagged with GFP derivatives were expressed in protoplasts prepared from Arabidopsis suspension cells. Protoplasts were incubated for 24 h in sucrose-free media. A, Localization of GFP-AtAtg6 (middle) and GFP-AtAtg8, a marker protein of the pre-autophagosomal structure (PAS) (right). The vector control (pEZS-CL) is shown at left. B, Effects of BFA on the localization of GFP-AtAtg6. Cells were incubated for 2 h in
the presence of 200 µM BFA. Venus-tagged SYP31 was used as a Golgi marker. C, CFP-AtAtg6 and Venus-tagged SYP41, a marker protein of TGN, were expressed together in Arabidopsis cells. Arrows indicate punctate signals of CFP-AtAtg6. D, Punctate colocalization (arrows) of CFP-AtAtg6 and YFP-AtAtg8.

**Figure 3.** Pollen germination efficiency of AtATG6/atatg6 heterozygotes. A, *In vitro* pollen germination of the AtATG6/atatg6 heterozygous mutant (right) and the wild-type control (left). B, *In vitro* pollen germination of AtATG6/atatg6/qrt/qrt (right) and AtATG6/AtATG6/qrt/qrt (left). C, Frequency (%) of wild-type (AtATG6/AtATG6/qrt/qrt, open bars) and heterozygous mutant (AtATG6/atatg6/qrt/qrt, closed bars, n > 500) tetrads with zero to four pollen tubes. The values shown represent the means of three different experiments (±SD).

**Figure 4.** The morphology of AtATG6/atatg6/qrt/qrt pollen grains. A, Transmission electron micrograph of an AtATG6/atatg6/qrt/qrt tetrad. The pollen grains (#1, 2, and 3) are enlarged in (B, C, and D), respectively. The fourth pollen grain is out of focus. Bars, 5 µm in (A) and 2 µm in (B to D). E, ESEM image of the AtATG6/atatg6/qrt/qrt tetrad. Bar, 10 µm. F, DAPI staining of the AtATG6/atatg6/qrt/qrt tetrad. G and H, Aniline blue staining of tetrads from AtATG6/AtATG6/qrt/qrt (G) and AtATG6/atatg6/qrt/qrt (H) plants. Note that the fourth pollen grain in (H) is out of focus. In both cases, more than three pollen grains in each tetrad either germinated or exhibited polarized accumulation.
of callose (arrow heads).

**Figure 5.** Expression of *AtATG6* in Arabidopsis. RT-PCR analyses of *AtATG6* mRNA levels in various organs (A) and during floral development (B). A, Each organ was collected from plants grown hydroponically for 4 to 5 weeks. R, roots; L, leaves; S, stems; F, fruits; I, inflorescences. B, Flowers at different stages of development (Gupta et al., 2002) and leaves were collected from plants grown in soil for 5 to 6 weeks. 1, leaves; 2, small green buds; 3, large green buds; 4, white buds; 5, opening flowers; 6, opened flowers; 7, leaf mRNA (prior to RT). *AtATG6* and *POK/VPS52* cDNAs were amplified with 25 cycles of PCR. *AtPTEN1*, a pollen specific cDNA (Gupta et al., 2002), was amplified with 27 cycles of PCR. UBQ10 cDNA was amplified with 20 cycles.
Table I. Genetic transmission analysis of atg6 mutations

Numbers of progeny containing T-DNAs (atg6-1, Salk_051168; atg6-2, Salk_109281) were counted using PCR and actual transmission efficiency (TE, the number of T-DNA-containing progeny/total number of seedlings x 100) was calculated. The $\chi^2$ value is shown for the predicted ratio of 3:1 (self crosses) or 1:1 (reciprocal crosses).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Numbers</th>
<th>TE (%)</th>
<th>$\chi^2$ (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{ATG6}/\text{atg6-1}$ (selfed)</td>
<td>131</td>
<td>142</td>
<td>48.0</td>
</tr>
<tr>
<td>$\chi^2 (7.4 \times 10^{-3})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ATG6}/\text{atg6-2}$ (selfed)</td>
<td>33</td>
<td>36</td>
<td>47.8</td>
</tr>
<tr>
<td>$\chi^2 (3.6 \times 10^{-17})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ATG6}/\text{atg6-1} \times \text{Ws}$</td>
<td>0</td>
<td>33</td>
<td>0.0</td>
</tr>
<tr>
<td>$\chi^2 (9.2 \times 10^{-6})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{Ws} \times \text{ATG6}/\text{atg6-1}$</td>
<td>16</td>
<td>20</td>
<td>44.4</td>
</tr>
<tr>
<td>$\chi^2 (0.51)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure A shows images of WT and atg6 cells, with and without the addition of ScATG6 or AtATG6.

Figure B presents a gel showing protein expression levels of pCPY, mCPY, and ADH under different conditions.
A  WT          AtATG6/atatg6

B  qrt/qrt    AtATG6/atatg6/qrt/qrt

C

<table>
<thead>
<tr>
<th>Number of tubes per tetrad</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>