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Preface :

This dissertation reports on the unified tfeatmeﬁt of decomposition
theory from the general systems theoretical point of view. The theory Ly
was intrdduced in 1960's by M.D.Mesarovic, Y. Takahara and others. Since
it is based on formalization, it has the following pay-offs 2) 13
1) formalizing a connected family of concepts is one way to bring out
their meaning in an explicit fashion ;

2) formalization results in the standardization of terminology and the
methods of conceptual analysis for Various branches of science ;

3) the generality provided by formalization enables us to determine the
essential feautures of theories ;

4) formalization provides a degree of objectivity which is impossible
without formalization ;

5) formalization makes_clear exactly what is being assumed, and thus is
a safeguard against ad hoc and post hoc verbalization ;

6) formalization enables one to determine what the minimal assumption
are which a theory requires.

The interest of this dissertation is strictly in the algebraic
aspects of decomposition theory. Applications and philosophical impli-
cations are not included.

It will be seen that the essential feauture of decomposition is
how to find a class of congruence relations with an appropriate property.
Universal Algebra gives this insight and it seems &o be natural to consi-
der a system as an algebra for the development of systems theory.

Initially, the problem was introduced by Professor Y.Takahara, who is

my supervisor, and I have concentrated on this problem over the yeapys in—-—-. . _



the doctor course of Tokyo Institute of Technology. I express my heartfelt
thanks tovProfessor Y.Takahara. In my academic years in Europe, I could’
proceed the study in a good situation. I appréciate for much discussions
my polish cpllegues, Dr.I.Sierocki, DrfW.Jacak and Dr.J.Hajdul, and
austrian collegues,Dr.H.Kellermayr and Dr.G.Straka. Especially, I greatly
appreciate Professor J;Jaron of Technical University of Wroélaw and
Professor F.Pichler of Linz Univefsity who were helpful aﬁd gave me much
insights. Finally, I tﬁank to Professor B.Nakano, Dr.H.Ikeshoji,

Dr.K.Kijima and all my collegues of our group.
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Part 0 : Preliminaries
1. Introduction

In systems engineering, we often have to treat a complicated system.
One of the most useful and popuiar method for investigating é complicated‘
system is aecomposition method. That is, we decompose a complicated system.
into simple systems and synthgsize a system by those'simple systems so
that it is connected to the original system in an appropriaté'relation.
Since the synthesized system is simpler, we can easily investigate the
original system by the synthesized system according to the relation.

Before considering what problems are important in décomposition theory,

we introduce the following concepts 3).a global system is an object of

decomposition and we denote it by S « X X Y. A complex system over

a class of component systems § = { Sili € T } is a subset of II'S and
we denote it by S, that is, S ¢ II S. Those concepts are precisely defined
in section 2.2. We often identify a complex system S as an input—output
system 8 < X x Y, .
where X=D(8)= { [x4l1 e 111 (A[y1l1 & TD((Ix4l1 € 1,05l e T1) € 8) }
and Y=R(S)= { [yili e T11(A[x3l1i € I11)(([x411 € I],[y |1 € 1I]) €8) } ,
respectively. The class of focused systems, that ié, the class of systems
which have some common property, is denoted by S.

The central problem in decomposition theory is how to find properties
of a global system S by investigating those of component systems
5= { Sili € I } when there is a relation between § and a complex

system S < II S. Among properties, we must consider systemic ones such




_.as stability and‘controllability. A problem how to fiﬁd a property of
" a function defined on a global system or a complex system when the func-
tion is induced by those of component systems must be also included as a
special case of this problem. Furthermore, as a converse of this problem,
we must also investigate what kind of global systems or complex systems
have a given property.

To solve these problems, the following problems afe fundaméntal in
decomposition theory.

1) Characterization of Interactions

A complex system 5 € X x Y over 8 = { S§3|i € I } is defined aé a éub—
set of H:§. If 8= II S, we can say that there is no interaction among
component systems in S, that is, S is a non—-interacted system. Generally
S is’a proper subset of II § because of the existence of interactioné
among component systems in S. The first step of characterization of
interactions has been made by Takahara and Nékanoa). However, in order
to classify complex systems according to their structures, we need more
‘detail characterization. Furthermore, it’is necessary to clarify the
difference of hierarchical systems from non~hierarchical ones.

2) Decomposition Problem

In this problem, we pay attention to;a'necessary and éufficient
condition under which a global system can be decomposed into a certain
compiex system.

Suppose that a global system ScX xYanda type of a complex
system are given. Let R be a binary relation on §, where S is an element
of S. Find a necessary and sufficient condition for constructing a complex

system S5 of the given type such that (§,S) e R.



By investigating a relationship between complex systems, we can also
solve a problem how to find a condition for decomposition of a global
system into a given complex system § < X X Y over S= { Sili £ I.} .

3) Property Preserving or Reflecting Decomposition

In this problem, we inveétigate preservation and reflection of
properties under some relations.

Suppose that a global system ScXxY and a complex system
8§ «X xY over 8= { 85|14 € I } are given. Let R be a binary relation
on S such that (§,S) ceRand P a property on S.

a) Property Preservation Problem | ' %

(i) What kind of properties can be preserved under R.

(ii) What kind of relations preserves a property P.

b) Property Reflection Problem

(1) What kind of properties can be reflected under R.

(ii) What kind of relations reflects a property P.
Furthermore, the following problem is also impoftant in Property Reflef

ction Problem

e R R

~ ~ )

(iii) Investigate a property of a function f defined on a global

~

system S or a function f defined on a complex system S over

s= { Sili € I } when (S,S) € R by using functions £; on 5, for i £ I,

where'f and

f are induced by f= { £5;]i € I } in an appropriate way.

The main goal of this dissertation is to construct the mathematical

foundations
and provide
oned above.

Mainly

for algebraic decomposition theory. We introduce some concepts

the mathematical basis in order to solve the problems menti-

we pay attention to decomposition problem of systems. Since

non—-interacted system, parallel connected system, cascade connected



system and feedback connected system are basic, we solve decomposition

, probleﬁ into these connections. In order to make concepts transparent
"some examples from Automata Theory and Linear Systems Theory are also
checked. Other two problems are also investigated for the further study.

The dissertation is organized as follows ;

Part 0 : Preliminaries

1. Introduction

2. Preliminaries

Part I : Comnections and Interactions

3. Connections

4. General Theory of Interactions

Part IT : Decomposition
5. Basic Scheme of Decomposition
6. Decomposition of Input-Output System

7. Different Forms of Decomposition

8. Decomposition of Functional System

9. Decomposition of Transition System

Part III : Property Reflecting Decomposition

10. Property Reflecting Decompsition

Part IV : Conclusions

11. Conclusions




In Part O, we first define the object of decomposition such as
input—-output systems, functional systems and transition systems and
consider the meaning of decomposition in Chapter 2. Since the approach
5ﬁﬁ;s mainly based on Universal Algebra, we introduce some universal algebraic
concepts in Ehat Chapter. Furthermore, we invéstigate some properties of
congruence relations, which will play a central role in decpmpositionf

In Part I, we define primary connections such as non—interacted con-
nection, parallel comnection, cascade connection and feedback connection

in Chapter 3. ‘And in Chapter 4, we construct the general characterization

theory of intercaétions.
Ianart II, we investigate a condition for decomposition. First,
we construct the basic schéme of decomposition in Chapter 5. becomposition
problem of input-output systems are investigated in Chapter 6. Other
types of decomposition are also taken into account in Chapter 7. While

in Chapter 8 and Chapter 9, we investigate decomposition prdblem of

functional systems and transition systems, respectively.

In Part III, we move our attention to property reflecting decompo-
sition in Chapter 10. A well-known example from Artificial Intelligence
is investigated to illustrate the usefulness of decomposition theory.

Finally, we make conclusions of this dissertation.



2. Preliminaries

In this chapter, we provide the mathematical preliminaries for the
dissertation. Since we develop the decomposition theory in the frame-
work of the mathematical general systems theory introduced by M.D.Mésarovic
and Y.Takaharal), we first review the concept of "system". Second we define v
systems in decomposition. Because our approach is mainly algebraic (univer;
salkalgebraic), some basic concepts in universal algebra are introduced
"4in section 2.3. It is an algebra with a group operation ( Q —group )

that is one of the basic units for decomposition. Therefore we next
introduce the concept of Q —group and investigate its property. Since

Wé recognize the basic idea of decomposition is to realize a system by
using a class ofkcongruence relations, we investigate some properties

of a class of congruence relations in section 2.5.

2.1 Basic Conceptsl)

As this dissertation is based on the mathematical general systems

theory. Let us first review the concept of "system”.

Definition 2.1.1  System

Let V = { Vili e T} be a class of non-void sets. Then we call a
subset S of II V, a system over.y_and V; is called the i~th object of

S. That is, we consider a system as a relation among objects.



‘When we give an input—output recognition to a system, we obtain an

input—-output systemn.

Definition 2.1.2 Input—Output System

A system § ¢ II V over V= { vili € T } is called an input-output
‘system if there is a partition of I, I = Iy U Iy such that § < X x Y,
where X=D(S) < II (Vili e I,) and Y=R(S) < II (Vifi € Iy). In this‘case, X is

refered to as the iﬁput set of S and Y the output set of S, respectively.

From now on, we assume D(s)= { x| Ay)((x,¥) € 8) } =X and
R(S)= { y1(3Ax)((x,y) € 8) } =Y in every input-output system S < X x Y.

The concept of an input~output system is very broad so that every

object of decomposition can be written as an input-output system.
An input—output system S ¢ X X Y is generally a relation, however,

it is easy to be handled and gives us much insight when S is a function

from X to Y.

Definition 2.1.3  Functional System

An input—output system S ¢ X X Y is called to be functional if

(V(x,y) € SY(V(x',y") € 8)( x=x" » y=y' ).

One of the most important system is a transition system. It is

known that every causal time system has a canonical representation

(%, 5O, where $= { ¢ _,:CxX_, »Clt,t' eTand t <t'}is the

e’ tt'
family of state transition functions and p = { p ¢:C XA >Blt € T } is
the family of output functions. A transition system is the dynamical

part of a canonical representation and defined as follows ;



 Definition 2.1.4 Transition System

An input—output system S ¢ X X Y is called a transition system if

“C‘= X = Y, and there is a nonvoid set U and a mapping ¢ :C x U » C such

‘rthat

(x,y) €5 « (Ju)( ¢ (x,u)=y).

In this case, we refer to C as the state set and U as the input set, respe-
o étively and the transition system is denoted by T = [U, C, ¢ ]:

We often consider U és (T xT) xX and ¢ (c,t,t",x)= ¢ ¢er{c,Xeer)-
The lattef expression is more familiar in the general systems theoryl).

So we denote a transition system as T=[X, C, ¢ ], where

X = { %¢er € Xperltyt" eTand £ < t' }and ¢ = { ¢ ¢p1:C X Xgger > C

Ixtt' £ Xtt' } .

2.2 Systems in Decomposition3)

Decomposition theory is, in other words, a theory of the relationship
between a real system and a model when a model consists of some component
systems. From now on, we refer to a global system as a real system and
a complex system as a model which consists of some component systems.

That is,

Definition 2.2.1 Global System

An input—output system is called a global system if it is an object

of the decomposition and we often denote it by S <X x¥.

~



Definition 2.2.2 Complex Systenm

A complex system S over a class of input—output systems S =
{sili eI } is a subset of the direct product of S satisfying pj(S)
= 53, where p;:S =+ 5 is the i-th projection defined by

pillsili ¢ I])=s; and S; is called the i-th component system of S.

We often identify S as an input—output system S « X x Y, where X = D(S)

= { [xil1 e T} @lyeli e IDUGxE,yIIE e I] €8) } e T (X3li e I) and

Y = R(S) = { [ygli e I} @I=xili € ID([(xg,y1)i e I] €8) } « T (¥3]i e I).

Definition 2.2.3 Modelling Morphism (Fig. 2.2.1)

Let § « X x ¥ and 8' < X' x Y' be input—output systems. Suppose that
hyi:X > X' and hy:Y > Y' are mappings. If (x,y) € S implies (hx(x),hy(y)) 3
€ S', the pair h =(hx,hy) is called a modelling morphism from § to §'. ﬁ
If there is a modelling morphism from S to 8', S' is called a model of §.
And when there is a modelling morphism from a global system to a complex
system (or from a complex system to a global system), we refer the situ-

ation as inductive modelling (or deductive modelling, respectively).

Among modelling morphisms, the following two types are important.
(a) hy and hy are injective;

(b) h is surjective as a mapping, that is,

h(s) = { (hg(x), hy(yNI(x,y) e 5 } = 8';
, where (a) is refered to as an injective modelling morphism and (b)
a surjective modelling morphism, respectively. If hy and hy are injective,
the image h(S) of h is generally a proper subsystem of S§', that is,
h(S) ¢ S'. Hence the model 8' contains much information than S.

While if h(S) = 8', the model can be considered as a simplified form of §S.



Fig. 2.2.1

Modelling Morphism

- 10 ~



Proposition 2.2.1

Let S € X x Y be a complex system over S= { S;li € I } . Then each

component system Sy € S is a surjective model of 'S.

'We can construct the categorys)’ﬁ) of input—output systems with

a modelling morphism7)’8).

Proposition 2.2.2

Let S be the class of all input-output systems. And Hom (S,S')
. MOD

= {h =(hg,hy):8 S'| h is a modelling morphism from S to 8' } . Let
the composition operation be defined by h' o h = (hx',hy') o (hx,hy)

= (hyx' * hyg, hy' . hy), where " « " is the juxtaposition of mappings.
Then MOD = [S, { Hom (S,5$')IS,8' €S } , o ] is a category and we call

MOD
it the category of systems in modelling.

The next propositions state the relationship among some important

types of morphisms in MOD.

Proposition 2.2.33)’7)

Let h =(hx,hy) be a modelling morphism from S to S§'. Then
(1) h is injective as a mapping if and only if h is a monomorphism.
(2) h is a monomorphism if h is an injective modelling morphism. The

converse does not hold.

(3) h is an injective modelling morphism if h is a section. The converse

does not hold.

(4) h is a section if h is an isomorphism. The converse does not hold.

- 11 -




Pfopdsition 2.2.43),7)

Let h =(Hx,hy)'be a modelling morphism; Then

’(1) h is an epimorphism if and oanly if both h; and hg are surjective.

(2) h is an epimorphism if h is a surjective modelling morphism. The con-
verse does not hold. | :

 (3) h is a surjective modelling morphism if h is a retraction. The con-
~verse does not hold.

(4) his a retraction if h is an isomorphism. The converse does not hold.

Proposition 2.2.57)’8)

h=(hj,h?) is an isomorphic modelling morphism (isomorphism) if

. -and only if it is a surjective and injective modelling morphism.
When there is an isomorphism from S to S', we denote it by § = S

In most cases of decomposition, we pay attention to modelling morphisms.

However, the following morphism is also of interest.

~Definition 2.2.4  Simulation Morphism (Fig. 2.2.2)

Let $ ¢ X x ¥ and S§' ¢ X' x Y' be input-output systems. Suppose that
hy:X > X' and hy:Y' + Y are mappings. If (x,y) ¢ S implies that there exists
y* £ ¥' such that (hx(x),y‘) £ 8' and hy(y')=y; the pair h® =(hx,hy)
is called a simulation morphism from S to S'. If there is a simulation
morphism h® from S to 8', S' is called a simulation model of S.

In order to distinguish a simulation morphism from a modeiling

norphism, we use the notation h® for a simulation morphism.

-12 - .



O 2

Simulation Morphism
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A relation between modelling morphisms and simulation morphisms will

pe given in Section 7.2.
When we take a simulation morphism as a morphism in MOD, we also obtain

a category.

i_frbposition 2.2.6
Let S be the class of all input—~output systems and Hom | (s,8")
= { hs'=(hx,hy)l h® is a simulation mbrphism from S to S' }§%¥1et
the composition operation be defined by
hS' o h® =(h,"shy") o (hy,h )=(h,' + hy,hy .,hy')’ where‘ " e " g
’the juxtaposition of mappings. Then SIM = (s, HomSIM(S,S')IS,S' €S}, ol

is a category and we call it the category of input—output systems

in simulation.

2.3 Universal Algebra

In this dissertation, we often use some concepts of universal algebra.

Let us first review the basic concepts in universal algebrag)slo).

Definition 2.3.1 (Universal) Algebra

A universal algebra or, briefly algebra A is a pair [Aj;F], where

A is a nonvoid set and F is a family of finitary operations on A.

5

- 14 -




Definition 2.3.2 Type

A type of algebras 1 is a sequence [no,n]_,...,nY s»+] 0of non—
negative integers, y < o( T ), where o( 7 ) is an ordinal, called the order
of v . For every y < o( © ) we have a symbol £ of n, ~ary operation.

Y Y

Definition 2.3.3 Algebra of Type <

An algebra of type 7 is a pair A=[A;F], where A is a nonvoid set
called the base set of A and for every y < o( 7 ), we realize ?} as
an n, -ary operation on A :(f& )p and F=[(T5)A,...,(f& psee1e

For notational convenience, we write f instead of (?& )A

Y

without any confusion.

Example : The set N of non-negative integers is a monoid N=[N; { O0,+ } 1,
where 0: { ¢ } » N is a nullary operation defined by 0( ¢ )=0 & N and
+ : N XN > N is a binary operation defined by + (m,n)=m + n.

The most important algebréic concepts are those of ‘subalgebras,

homomorphisms and congruence relations. Let us next review such concepts.

Definition 2.3.4 Subalgebra

Let A=[A;F] be an algebra of type <t and B a nonvoid subset of A.
B=[B;F] is called a subalgebra of A if and only if

(Vbo,...,VbnY -1 € B)(fY (bo,+-+sbyy —1) € B) for all y < o( 7 ).

The class of all subalgebras of A is denoted by Sub(A).

- 15 ~




inition 2.3.5 Homomorphisn
Let A=[A;F] and Ef[BgF] be algebras with type T . A mapping ¢ :A > B
_such that
b (£y (@gyeevsany =1))=fy (& (@g)y -5 & (any -1))
*for all y < o( 7 ) is called a homomqrphism from A to E,
If A =3B, ¢ is called an endoﬁorphism on A and the class of all
,éndomorphisms on A is denoted by End(A). |
And if a homomgrphism is bijective, it is called an isomorphism.

~1If there is an isomorphism from A to B, we denote it by A = B.

Definition 2.3.6 Congruence Relation

Lei A=[A;F] be an algebra and O a binary relation on A. O is called
a cdngruence relation on A if it’is én equivalencé relation on A and
satigfies the substitﬁtion property (SP) H
“(SP) (Y y<o( = )(Vao,...,VanY -1 € A)(Vbo,...,VbnY -1 € A)
(2o © boy+»esany -1 @’bnY -1

> fY (ao,‘...,anY -1) © fY (bo,...,bnY -1))-

The class of all congruence relations on A is denoted by Con(é);

An important property of a congruence relation is that we can
construct a new algebra called,the quotient algebra.

Let A=[A;F] be an algebra and O a congruence relation on A. And.
let A/ ©={[a] 0 la € A} be the quotient set of A modulo © . For any
fY € F, define the corresponding operation by fY ([agl © ,...,[anY -11 © )'
=[fY (ao,...,anY -1)] © . Sincé O is a congruence relation on A,
a new operation f, defined above is well—definedf Then A / © =[A/ © ;F]

is an algebra of the same type as A and called the quotient algebra of A

- 16 -




modulo O .

2.4 Q -group o ’ o ;f};

In the previous section, we defined three classes ; Sub(A), End(A)
and Con(é) of an algebra A. Let us next investigate a relation among them.

Theorem 2.4,1

Let A=[Aj;F] be an algebra and Ker < End(A) X Con(A) defined by

(¢, ) eRer » 0= { (a,b) ¢ A2| & (a)= ¢ (b) } ; Then Ker is a mapping.

When we restrict our attention to the following algebra, we obtain

a remarkable relatlion among End(A), Con(A) and Sub(A).

Definition 2.4.1 Q —group

Let Ag=[A;Fg] be a group and Fy= { f , | w e @ } < End(Ag)-
Then A=[A;Fg U Fy] is called an Q —group.
For notational convenience, we express the group structure Fg
as { 0,-,+ } , where + is the binary operation, -~ the inverse operation

and O the unit.

Example 2.4.1

1) A group G=[G; { 1,—1, * } ] is of course an Q -group with’FU =4 .

2) A ring R=[R; { 0,4+ } U {1, «} ] can be considered as an Q -

group R=[R; { 0,-,+ } U Fyl, where Rg=[R; { 0,-,+ } ] is an abelian

group, Fy= { £4:R > Rlr € R } © End(Rg), fo(r')=r * r' and Fy is a monoid.
3) A vector space V=[V; { 0,-,+ } U Fy] can be considered as an Q -group

, where Fy= { £y :V > vi nedr}, fy (v)= A v (scalar product) and

- 17 -




Fg is a field.

he following subalgebras of an @ —group are important.

efinition 2.4.2 Q —Normal Subgroup

Let A=[A;Fg U Fy] be an Q -group. A subalgebra‘gf[B;FG U Fyl of A
is called an Q -normal subgroup if for any b ¢ B, any a ¢ A, a+ b+ (-a) € B

‘And the class of all Q —normal subgroups of an Q —group A is denoted by

ﬁSub(é) .

Proposition 2.4.1

Let A=[A;Fg U Fy] be an Q -group. Then NSub(A) < Sub(A). More-

~over the equality holds if the binary operation in Fg is commutative.
The reason why we consider Q —groups 1is that we can treat the
- concept of normal subgroups, ideals and linear subspaces in the unified

‘way. That is ;

Example 2.4.2

1) An Q ~normal subgroup of a group is equal to a normal subgroup.
2) Ad Q -normal subgroup of a ring is equal to an ideal.

3) An Q -normal subgroup of a vector space is equal to a subspace.

Remark : It is noted that an ideal I of a ring R is not generally a subring

of R. In our formulation, however, it is an @ -normal subgroup of R.

- 18 -




Theorem 2.4.2

Let A=[A;Fg U Fy] be a commutative Q —group and ¥ :Con(A) » Sub(A)

be defined by
v(0){a+ (-b)l(a,b) e 0} .
Then ¥ is bijective.

Let us next investigéte a property of the bijection ¥ .

Definition 2.4.3  Complementarity

Let By and Bp be Q —subgroup of an Q —group A=[A;Fg U Fy].
If By and By satisfy the following conditions, By and By are called to
be complementary. | |
1) By nBy= { 0 } , where O is the identity of Fg,
2) By + By= { by+bylby; € By and by € By } =A.

In this case, we denote it by (B3, Bp) & L (A).

Proposition 2.4.2

Let By and By be Q subgroups of a commutative Q —group A=[A;Fg U Fyl,
where the binary operation + in Fg is commutative. Suppose that (Bj,B2)
e 1 (A). Then for any a ¢ A, there is exactly one decomposition of a

such that a=byt+by, where by €& By and by & Bj.

The following theorem states the bijection ¥ from Con(A) to Sub(A) preserves

some structure when A is a commutative Q —group.
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ieorem 2.4.3
Let By and By be Q —subgroups of a commutative Q —group A=[A;Fg U Fyl,
Then (By, By) € L (A) if and only if O = { ¥ "1(B;), ¥ "1(By) }

is full and separating.

~ Theorem 2.4.4

G

Let A=[A;F, U F;] be an Q —-group and Ker’ < End(A) x NSub(A)
= G U = 2

~be defined by
( ¢ ,B) € Ker® o B={a Al ¢ (a)=0 } .
G

“Then Ker” is a mapping.

Theorem 2.4.5

Let A=[A;Fg U Fy] be a commutative Q —group. Then the following diagram

~-commutes ;

End(A)
KerG
Ker ¥ ™
Con(A) > Sub(A)
¥

2.5 Congruence Relation

A congruence relation on an algébra A=[A;F] is an equivalence relation
" on A with the substitution/property. It will be seen that the essential
point of decomposition is the existence of a class of congruence relations

10)

satisfying some conditions. The following properties are important

in decomposition.
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Definition 2.5.1 Separating

Let A=[A;F] be én algebra and O = {01,.0, SR a'classkof

congruence relations on A. If n o= IdA,.g;is called to be sepafating.

Definition 2.5.2 Fullll)

Let A=[A;F] be an algebra and 8 = { 0 1,..., 6 ;, } a class of
congruence relations on A. If ( ¢ 1 "o 10 43.4)00 i= A2 (1=2,...,n),

0 is called to be full.

Example : Let yf[Vn;F] be a vector space over V. Suppose that W, and W,y
are subspaces of V- and _‘11@&2 = V. Then (W1,W2) € 1L (V). In this case

the induced congruence relations = w..is equal to ¥ -1(Hi) and

o=A = Wwe Sy } is separating ;nd full. This fact will be used in
: decompositiin of i transition system in Chapter 9.

The following theorems show the importance of the above properties in

decomposition.

Theorem 2.5.1

Let A=[A;F] be an algebra and O = { 0 1,..., O 5 } a class of
congruence relations on A. Let a subalgebra B=[B;F] of the direct product
I (A/ © ili=1,...,n) be defined by B= { ([a] © 1,...,[a] © )la c A } .
Then there is an epimorphism from A to B. The subalgebra B=[B;F] of

(ITA® ili=1,...,n) is called the natural subdirect product of

{mA/ 6 41li=1,...,n } and denoted by A/ o.
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Let éﬁ[AjF] be an algebra and © = { © 1,..., © 5 } a class of

‘congruence relations on A. Then

if 0 is separating, A=Al 0B.

“Moreover,
if 0O is separating and full,
A/ © =T (A/ 0 4li=1,...,n), that is A =1 (4/ © zli=1,...,n).

Conversely, suppose that there is an isomorphism h from A to

I (Aili=1,...,n). Let © y= =, for i=l,...,n, where pj:A > Aj is defined

i
o h with the i-th projection pj': I (Ajli=1,...,n) » Aj4.

*

by pi=pi
'then_g = {0 4ili=1,...,n } is separating and full.

 Example : Let y;[vn;F] be a vector space over'V; Suppose that W; and W, are

subspaces of V such that El(:)ﬂz = V. Then the class 6 = { 0 1, © 9 }

of induced congruence relations is separating and full. Therefore by .

Theorem 2.5.2, V = V/Wy x V/Wy and since V/Wy = Wy and V/Wy = Wy,

- 92 -



Part I : Connections and Interactions

3. Connections

3.1 Comnnections of Input-Output Systems

In this section, connections of input—output systems such as parallel

D are represented

connection, cascade connection and feedback connection
as complex systems. At the beginning, we define a complex system that

has no interaction among component systems.

Definition 3.1.1  Non-Interacted System (Fig. 3.1.1)

A complex system S over S = { §1,57 } 1is called the non-inter—
acted system over S if § = §7 X S9. In this case, S is denoted by NI(S).
When S = II §, each S; can behave in § without interacting the other

component system. It is why S is called a non-interacted system.

Remark : NI can be considered as a binary operation on S such that

NI : § xS »8S, It is easily seen that NI can be extended to a finitary

on

operation such that NI : 8§~ = §.; NI(SI,...,Sn) =10 (Sili=1,2,...,n)

Mostly, complex systems are proper subset of II S. Because there are

some interactions among component systems. Let us now define three conne-

ctions of input—output systems as complex systems.
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Definition 3.1.2 Parallel Complex System (Fig. 3.1.2)

Let S1 & (X*1 x Z) x Y1 and S9 < (X*9 x Z) x Y9 be component systémé.
Let S <87 X 89 be defined by | '
(((x1,21),y1),((x2,22),y2)) € 8 « 1z = z3.
Then S satisfies pj(S) = S35 for i=1,2. Hence S is a complex system. We
call S the parallel complex system over § = { §1,S9 } and denote it
by P(S). It is noted that the paraliel complex system P(S) is uniquely
determined when input sets and output sets of component systems are spe-—

cified.

Remark : P can be considered as a partial binary operation on S such
that P : (S xS) > S, where D(P) = { (S1,52)|(32)(Ix*1)(IX*9)(D(S1)=X* x Z

& D(Sp)=X*y x Z) } .

When we pay attention to decomposition, the input-output behaviour

of a parallel complex system is of interest.

Definition 3.1.3 External Representation of Parallel Complex System

(Fig. 3.1.2 )
Let S © S X Sy be a parallel complex system, where Slbc (X*l XFZ)
x Yy and Sy < (X*9 x Z) X Yy. Let 8' c (X*; x Z x X*y) x (Y1 x ¥Y,) be defined
by
((x1,2,%2),(y1,¥2)) € 8" » ((x1,2),y1),((x2,2),y2)) € S.

Then S' is called the external representation of § and denoted by EX(P(S)).

The following propositions are useful in decomposition of an input-

output system into a parallel counnected system.
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Proposition 3.1.1

EX(P(S)) is an isomorphic model of P(S).

If there is a modelling (surjective, Injective or isomorphic
;gdelling) morphism from a global system to EX(P(S)), S is'called to be
parallel decomposable with respect to S. In this case, if § is not
specified, S is simply called to be parallel decomposable.

While in simulation; the following proposition holds.

Proposition 3.1.2

EX(P(S)) simulates P(S).

A cascade complex system is defined as follows.

Definition 3.1.4 = Cascade Complex System (Fig. 3.1.3)

Let 81 © X1 x (Y*¥) x Z) and Sp © (X*9 x Z) x Yy be component systems.
Let 8 ©S; x 89 be defined by
(e (71,2100, ((x2,22),52)) €5 = 21 =25 -
Then 8 satisfies pj(S)=S; for i=1,2. Hence S is a complex system.
We call it the cascade complex system over § = { S{,85 } and denote it
by C(S). It is also noted that the cascade complex system C(8) is uni-
quely determined when input sets and output sets of component systems

are specified.
Remark : C can be considered as a partial binary operation on S such
that ¢ : (§ x 5) » 5, where D(C)= { (51,52) |(32)(Ix*)(I*1)(R(S1)=¥* x Z

& D(Sp)=X*y x z) }
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Similar to a parallel complex system, the input—output behaviour of

a cascade complex system is noteworthy in decomposition.

Definition 3.1.5 External Representation of Cascade Complex Syste@ ) fﬁ?i
(Fig. 3.1.3) -
Let S © 83 X S be a cascade complex system, where S1 ¢ Xj x (Y*; x Z)
and Sy < (X*9 x Z) x Yg. Let §' < (X1 x X*9) x (Y*1 x Yy) be defined by
((x1,%9),(y1,¥2)) € 8' « (dz € 2)(((x1,(2,y1)),((x2,2),¥y2)) € S).

Then S' is called the external representation of S and denoted by EX(C(S)).

Proposition 3.1.3

EX(C(§))’is a surjective model of C(S).
A feedback complex system is defined as follows.

Definition 3.1.6 Feedback Complex System (Fig. 3.1.4)

Let S1 ¢ (X* x Zy) x (¥* x Zy) and §9 < Zy x Zyx be input—output
systems. Let § < §7 % S5 be defined by
(((stx)’(Y)zy)))(z'y,z'x)) €S
© zx=z'x and zy=z'y.
Then S satisfies p;(5)=5; for i=1,2. Hence S is a complex system.
We call S the feedback complex system over § = { 81,52 } and denote it
by F(S). It is also noted that the feedback complex system F(S) is unique-

ly determined when input sets and output sets of component systems are

specified.
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Remark : F can be considered as a partial binary operation on S such that
F:(S xS) > S, where D(F)= { (51,52) | (3x*)(3¥*)(D(S1)=X* x R(S;) and

R(S1)=Y* x D(S2) } .

Similar to a parallel and a cascade complex system, it is the input-’

output behaviour that is noteworthy in decomposition.

Definition 3.1.7 = External Representation of Feedback Complex-System

(Fig. 3.1.4)

Let 51 © (X* x Zyg) x (Y* x Zy) and §9 <« Zy~x Zy be input—output
systems and F(S) the feedback complex system over s = { 81,52 } .
Let §' é X% x Y* be defined by

(x,y) & 8" @ 2y £ 22y & 2(((Hy20) (¥529))5 (2gozgd) € §)e
Then S' is called the external representation of F(S) and denoted by

EX(F(S)).

Proposition 3.1.4

EX(F(S)) is a surjective model of F(S).

When we identify A x {¢} with A, We can consider EX as a unary
operation on g'such that
EX(5)=5' « 8'= { (x,y)1(J21)(J22)(((%,21),(y,22)) € S }
» where § < (X* x Z1) x (Y* x Zp). Therefore the claég'of focused
systems is a partial algebra [S; { P,C,F,EX } ].
In most cases of interest, a complex system can be regarded as

a finite combination of those operations such as P, C and F.
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3_2 Connections of Functional Systems

An input—cutput system S ¢ X x Y is called to be functional if

‘(x,y) and (x,y') € S imply y = y'. In this section, we pay attention to

basic connections of functional systems. Especially, it is the case where
_a functional system S:X + Y satisfies X = Y ,and X and Y are an Q —group A
=[A;Fg VU Fy] and S is an endomorphism on A that must be investigated.

Let us first define a modelling morphism of functional systems.

~]befinition 3.2.1 Modelling Morphism of Functional System

Let S:X > Y and $':X" » Y' be functional systems. Suppose that
"~ hg:X > X' and hy:Y >+ Y' are mappings. If the following diagram commutes,

h=(hx,hy) is called a modelling morphism from 8 to S'.

S
X > Y
hy ¥ ¥ hy
X' s Y
S'

This definition is essentially same as that of input—-output systems.

Proposition 3.2.1

Let S:X > Y and S':X' > Y' be input-output systems. Then h=(hx,hy)
is a modelling morphism from S to S' in the above sense if and only if

s0 is as between input—output systems.
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Definition 3.2.2 Category of Functional Systems

Let 8F= { 5:X » Y| S is a functional system } and Hom (s,8%)=
| MODF
{ h=(hx,hy):S > S'| h is a modelling morphism from S to S§' } . The

composition operation " o " is defined by the componentWise:juxtaposition. Ea

Then MODF =[sf, { Hom  (5,5')Is,5" € SF } , 0 ] is a category and
‘ MODF
called the category of functional systems.

Definition 3.2.3 Non-Interacted Comnection of Functional Systems

(Fig. 3.2.1)
Let 83:X3 + Y3 and S3:Xp > ¥y be functional systems. And let S:Xp X X9 .
> Yy X Y2 be defined by S(x3,x9)=(81(x1),52(x2)). Then S is called

the non-interacted connection of S$= {81,859 } .

Definition 3.2.4 Parallel Connection of Functional Systems

(Fig. 3.2.2)
Let S1:X > Y and $9:X > Y be functional systems. And let $:X =+
Y1 X szbe defined by S(x)=(Sl(x),Sz(x)). Then S is called the

parallel connection of S = { §1,Sy } and denoted by Pp(S).

Proposition 3.2.2

Pp(S) = EX(P(S))

Definition 3.2.5 Serial Connection of Functional Systemslz)

(Fig. 3.2.3)
Let S71:X > Z and S3:Z > Y be functional systems. And let $:X » Y
be defined by S(x)=S2(S1(x)). Then S is called the serial connection

of 8= { $1,S2 } and denoted by S = S1 » Sy.
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Remark : When X=Z=Y is an Q -group A=[A;Fg U Fy], the operation " « "

is exactly a binary operation on End(A). That is, -« :End(A) x End(A) > End(A).

Proposition 3.2.3

81 ¢ 59 = EX(C(§_)).

If both of X and Y are a commutative Q -group A = [A;Fg U Fy], parallel

connection of endomorphisms on A is given by

Definition 3.2.6

Parallel Connection of Endomorphismslz)

(Fig. 3.2.4)

Let S3:A > A and Sp:A + A be endomorphisms of a commutative Q —group
A = [AjFg U Fyl. And let S :A > A be defined by S(a) = S;(a) + Sy(a),
where + is the binary operation in Fg. Then S is also an endomorphism

of A and called the parallel connection of § = { 51,57 } and denoted

by S = S + Sg.

Remark : "+" is a binary operation on End(A), that is, +:End(A) x End(A)

»> End(A).

Proposition 3.2.4

Let 5= {-81,S2 } < End(A). Then Pp(8) is a surjective model of
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pefinition 3.2.7 Feedback Connection of Endomorphismslz)

(Fig.3.2.5)
Let S1:A > A and Sp:A > A be enddmdrphisms of a commutative Q -—-group
A;Fg U Fyl such that (I-SyS9) is an isomorphism, where I:é_+_é is
thé identity morphism. Let S:A > A be defined by S(a)=(I—Slsz)_ISl(a).

Then S is called the feedback connection of Sl and S5, and denoted by

: F is a partial binary operation on End(A), where D(F) =

{ (51,52)1(1-8189) is invertible } .
3.3  Connections of Transition Systems

'éf a causal system. One of the reasons why we investigate a transition
system is that it can be naturally described as an algebra,gﬁ b )=

[cs { ¢ tt'(_’xtt')yxtt' e X } ], where ¢ ttv(—,xttv);CA+ C is defined
by 6 per(=oxpe (@)= ¢ ppr(e,xppn)e

- A modelling morphiém’of transition systems needs rather strict

~condition than that of input—-output systems.

.Definition 3.3.2 Morphism of Transition Systen

Let T = [i, C,-E ] and T' = fi, C',-E '] be transition systems
with same input set X. If there is a mapping h from C to C' such that
the following diagram commutes for all x¢¢' € X,t < t', h is

called a morphism from T to T'. If h is bijective, it is called an iso-
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ﬁﬁorphism from T to T'.

o et
G x Xtt' g c
h+ +1Id ¥+ h

<«L' C' x Xtt' > C'
o "eet

‘Prdposition 3.3.1

Let T = [i',C,.E ] and T' = [E; C',‘S.'] be transition systems
whose input—output system representation are given by § €« C x C
and $' © C' x C'. And let h:C + C' be a morphism from T to T'. Then

h =(h;h) is a modelling morphism from S to S'.

!?foposition 3.3.2

Let T=[§; C, ¢ ] andVT'=[§; C', ¢ '] be transition systems. Then
h:C > C' is a morphism from T to T' if and only if h is a homomorphism
*from E(.E ) to_g(-g '), where C( E-)=[C; { ¢ tt'(“’xtt*)lxtt' € E_} ]

and _C_( E ')‘:[C'; ¢ 'tt'("",Xtt')IXtt' € Xtt' } ].
Let us next define connections of transition systems.

Definition 3.3.3 Parallel Connection of Transition Systems (Fig.3.3.1)

Let 'I‘1 = {i, cl,'E 1] and T2 = [i} cz,'E 2] be transition systems.
Let C = C1 % Co and ¢ = { ¢ e£?:C X Xgpt > Clxppr € Xegr } be defined by

1 2
(b ttl((cl’cz),xtt') = ( ¢ tt'(cl’xtt')) 4) tt'(cz’xtti))'
Then the resultant transition system T = [X, C, ¢ ] is called the

parallel connection of T = { T1,T2 } and denoted by Pp(T).
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position 3.3.3

s

Let T=f§, C,.E ] be the parallel connection of T1=[§; Cy» 6'1] and

=%, C,, @ 2] Then C( § )=C( 3 1) x €( $ ?), where C( ), C( 3 ') and

*C(‘E 2) are algebraic expressions of T, T1 and TZ’ respectively.

In this dissertation, we investigate serial connection of transition

'systems in the case where a transition system is a state automaton.

Definition 3.3.4 Serial Connection of State Automata (Fig.3.3.2)

Let Ty = [U, C1, 86 1] and Ty = [Cy x U, Cy, & 9] be state automata.
And let C=C; x Cy and & :C x U » C be defined by |

8 ((c1,¢9),u)=( 8 1(cy,u), & 9(cp,(cy,u))).

‘ Then the resultant state automaton T= [U, C, & ] is called the serial

connection of T = { Ty,Ty } and denoted by S7(T).

In contrast to parallel connection, unfortunately, we cannot express

. serial connection of transition systems in universal algebraic way
‘because component transition systems cannot be recognized as algebras

with the same type.
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General Theory of Interactionsé)

One of the main problems in decomposition theory is to characterize
teraction among component systems of a complex system. In the referen—
[4], two sorts of interaction concepts, which are’called the process
“{nteraction and the system interaction, have been proposed and it has
‘been shown that it is enough to consider them in order to characterize
ihteractiog of a complex system. The interaction concepts that have
‘been proposed in the reference [4], however, concérn only interactions
‘between one component subsystem and others. In other words, though it is
 sefu1 to clarify what kind of interactions a component system has, we
:neéd another concept when we pay attention to interaction between
 wo component systems.

Qur aim of this chapter is to define the interaction;structure
" of a complex system with which we can clarify what kind of iﬁteractions
,éécurs between two component systems of a complex system.
At the beginning, we define three kinds of interaction relation
~between tﬁo component systems of a complex system which naturally corre-
spond to the previous concepts of interactions, and show that they chara-
‘cterize interaction between two component systems.
Furhthermore we define the interaction structure of a complex system
,és a triple of the interaction relations and show that it is invariant

under a certain isomorphism.
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4.1 Basic Concepts

As notations, we use ' the following ones ;

X2 XgmD(s1)= { xl Ay ((x4,y1) € 81) 3

!w‘ﬁ

§é { Sili €1 } , where I= {’1;2,...,n }, a class of n COmpénent
systems

§F : sF= { Sy:Xy Yili € I}, a class of n functional component
systems

S : the class of all complex systems over n component systems

gf : the class of all functional complex systems over n component

systems

Pi=(pix,Piy) : Pi:S > Sj, the i~th projection defined by pillsili € 1])=s5.

pJ=(pr,pr) py:S > 11 (Sili € J), the J-projection defined by
py(isili € I])=[syli e J]

83 = Si=py/ {1} (8)

Sij * 51571/ (1,3} (S)

S*; : S%;:8; » P(Sy) defined by S*;(5;)= { s;l(si{,s;) € S } , where

P(S;) denotes the power set of S; and $*;(s;):X; > P(Y;) is

defined by S*;(5;)(xq)= { yil(xi,yi) e $*%;(s;) }

*,. + Q%,..:8. . i %, . . )= . i PR
S*j5 t S¥j4i84 > P(S;) defined by 8 1J(sJ) { sil(si,sJ) € p(i,3)(8) } A
S*ij(—) H S*ij(Sj):Xi > P(Yi) defined by S*ij(sj)(xi)= { Yi'(Xi,yi) 4 S*ij(sj)‘}

T,

i ¢ S*;:8; »> P(S;) defined by S*;(s;)= { s;l(s;,5;) € 5}
DS#*; DS*izgi + P(X{) defined by DS*1(§1)= { Xii(ayi)(((xi,yi),gi) £5) }
DS*ij : DS*ij:Sj +> P(X;) defined by DS*ij(sj)= { Xi!(ayi)(((xi,yi),sj) € P(i,j)(s)

Idy : Idy € I x I defined by (1,3) e Idy « i=j.
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Using the above notations, let us review the previous concepts of

interactions.

‘pefinition 4.1.1 Non-Interaction ( NI )

Let S < 1II S be a.eomplex system. If<§.= Sy x’gi, S; is called

tb have non-interaction ( briefly, NI ).

?Proposition 4.1.1

S= 11 8 if and only if Sj has NI for all i ¢ I.

If 5= IS, S is called a non-interacted system.

ﬁéfinition 4.1.2 Non—-Process Interaction ( NPI )

| Let S « II'S be a complex system. Let Ei, Ei' € gé and x; € X3 be
‘arbitrary. If x; € DSj*(s;) 0 DS*i(Ei') implies S*;(s3)(x{)=S*;(s1')(xy),
_then S; is called to have non—process interaction ( briéfly, NPi ).

- If S; has NPI for all i € I, S is called a non-process interacted syStem.

Definition 4}1.3 Strong Non-System Interaction ( SNSI )

Let 8§ < H_§ be a complex system. If DS*i(gi)=Xi holds for all g} € E},
Si is called to have strong non-system interaction ( briefly, SNSI ).
If Sj has SNSI for all 1 ¢ I, S is called a strongly non-system

interacted system.
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Definition 4.1.4 Weak Non-System Interaction  ( WNSI )
Let § < II' § be a complex system. iffX=Xi X ii, S; is called to have
weak non-system interaction ( briefly, WNSI ). If S; has WNSI for all

-1 €1, S is called a weakly non-system interacted system.

4.2 Interaction Relations

In this section, we define four types of interaction relation induced
by a complex system, which naturally correspond to the previous concepts
of interaction.

At the beginning, let us define the relation which represents that two

component systems are not interacted each other.

Definition 4.2.1 Non-Interaction Relation Induced by S ( NI(S) )

Let 8 < II 8§ be a complex system.'If for i # j p(i,j)(5)=si X 84,
S is called to be non—-interacted with §5 1n S and we express it by
(i,j) e NI(S). NI(S) is refered to as the non-interaction relation
induced by S. If (i,j) € NI(S) & 1 # j, Si is called to be interacted

with Sj in S.

_ Proposition 4.2.1

NI(S) = NI(S)™! for all S £ S.

Remark : The transitivity of NI(S), however, does not hold in genefal. That -
is, it happens that S; is non-interacted with 53 and so is S 4 with Sy,

but Si is interacted with Sice
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According to the previous definitioin, what S; is non-interacted

peans that § = S; X Sj.

p1 position 4.2.2

If § = S; xSy, (1,3) € NI(S) for all j eI- {1} .
"Remark : The converse, however, does not hold in general.
The process interaction relation is defined as follows.

‘Definition 4.2.2 = Process Interaction Relation Induced by S

Let S < II § be a complex system. Let i # j. If for any Sj,Sj’ £ Sj
;and any xj € Xj, Xj & DSj3%(sy) ﬂ‘DSij*(Sj') implies Sj3*(s3)(x3)

= Sij*(Sj')(Xi), then S is called to be non-process interacted

with Sj in S and we express it by (i,j) e NPI(S). NPI(S) is fefered to
' as the non-process interaction relation induced by S.

1f (1,3) = PI(S)=(NPI(S) u IdI)C, S; is called to be process inter-

acted with Sj in S and PI(S) is refered to as the process interaction

“relation induced by S.

Proposition 4.2.3

If Si has NPI in S, (i,j) € NPI(S) for all j e I- { i } .
Remark : The converse, however, does not hold in general.

According to the previous concepts of the system interaction, we define

the system interaction relation in two ways.
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Definition 4.2.3 Strong System Interaction Relation Induced by 8

Let S ¢ II S be a complex system. If for i # j, p(i’j)(X) =

s in

X3 x X3, 84 1s called to be weakly non-system interacted with §;

S and we express it by (i,j) € WNSI(S). WNSI(S) is refered to as the
weak non—s&stem interaction rélation induced by S. If (i,j) £ SSI(S)
=(WNSI(S) u IdI)q, S; is called to be strongly system interacted

with S5 in S and SSI(S) is refered to as the strong system interactioﬁ

relation induced by S.

If 83 is weakly noﬂ~system interacted with Sj in §, every péir of

inputs of S; and Sj is acceptable.

Proposition 4.2.4

WNSI(S) = WNSI(S)™! for all s ¢ S.

Remark : The transitivity of WNSI(S), however, does mot hold in general.
That is, it hapbens that 5§ is weakly non-system interacted with 5 and

so is Sj with 8y, but §; is strongly system interacted with 5.

Proposition 4.2.5

If S4 has WNSI in S, (di,j) € WNSI(S) for all j € I~ { i } . That is,

if 8; is strongly system interacted with some Sj, Sy has SSI.

Remark : The converse, however, does not hold in general.
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finition 4.2.4 Weak System Interaction Relation Induced by S

~Let S ¢ II S be a complex system. Leti # j. If DS 3%(s j)=X

olds for any s é Sj, 8i is called to‘be strongly non—-system interacted
with Sj in § and we express it by (i,j) € SNSI(S). SNSI(S) is refered
té as the strong non-system interaction relation induced by S. If

(i,3J) € WSI(S)=(SNSI(S) u IdI)C, S; is called to be weakly system
ﬁteracted with S5 in S and WSI(S) is refered to as the weak system

interaction relation induced by S.

- What SNSI(S) means is that if (i,j) e SNSI(S), every input of Sj is accep-

table whatever Sj behaves.

.?rbposition 4.2.6

If $; has SNSI in S, (i,3) € SNSI(S) for all j e I~ { 1 } . That is,
if S; is weakly system interacted with some Sj in 5§, S; has WSI.

ikRemark : The converse, however, does not hold in general.

4)

As shown in the reference’”, if S; has SNSI, then it also has WNSI.

" S8imilarly, SNSI(S) is a subset of WNSI(S).

V'Proposition 4.2.7

SNSI(S) < WNSI(S), or equivalently SSI(S) c WSI(S) for all S € S.
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We have now four kinds of interaction relations, that is, NI(S),
PI(S)(NPI(S),SSI(S)(WNSI(S)) and WSI(S)(SNSI(S)). They'are relations oﬁ
I induced by S, however, in other words, NI, PI, SST and WSI can‘be
considered as mappings from S into P(Iz).

Let us next investigate the properties of interaction relations.

Theorem 4.2.1

The following'statements hold for all complex éystem over § ..
1) WNSI(S) n NPI(S)™! < SNSI(S)

2)NI(S)=WNSI(S) n NPI(S)~! n NPI(S)=SNSI(S) n NPI(S).

The above theorem states that it is enough to consider the three
interaction relations, that is, NPI(S),WNSI(S),SNSI(S), when we pay
attention to interaétion between compoﬁent syétems of a complex system.
Therefore the triple [ PI(S), SSI(S), WSI(S)] characterizes the structure

of interactions of a complex system.

Definition 4.2.5 Interaction Structure of Complex System

IS(S) = [ PI(S), SSI(S), WSI(S) ] is called the interaction structure

of a complex system S.

Remark : IS can be considered as a mapping from § to P(12)3.

In Section 4.4, we will consider the meaning of the interaction structure

of a complex system.
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4.3 Property of Interaction Relations of Functional Complex Systems d

In systems theory, we often treat a functional complex system.

“An autonomous discrete time system whose state set is n~dimensional is

a typical example of such a system.

In this section, we investigate some properties of interaction
‘relations in the case of a functional complex system. It is obvious that
if every Sy € 8 is functional, so is any S ¢ S. the following proposi-

'tion states a weaker condition for S £ § to be functional.

?roposition 4.3.1

’ . Let S « 11 § be a complex system and F a subset of I2 that satisfies
IQﬁF) U R(F)=1. If P(i,j)(s) is functional for all (i,j) € F, S is functional.
- Conversely, if § = I § and § is functional, p(i,j)(sj is functional |

if i # 3.

When we restrict our attention to FC(S)= { (i,j) € T x Ilp(i,j)(s) is

functional } , the interaction relations have some disirable properties.

- Lemma 4.3.1
Let 8§ ¢ I S be a complex system. If (i,j) e SNSI(S) n FC(S), Sj is

“functional.
Lemma 4.3.2

Let S ¢ IS be a complex system. If S; is functional, (i,J) e NPI(S)

for all j e I- { i } .
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Therefore,

Proposition 4.3.1

SNSI(S) n FC(S) < NPI(S)™! for all § e §.

Theorem 4.3.1

WNSI(S) n NPI(S)™! n FC(S) = SNSI(S) n FC(S) for all S e §.

Since p(i’j)(s) is functional if both of Sj and Sj are functional,
(i,3) € FC(S) if i # j when we restrict our attention to a complex system -
over §?n' In this case, the interaction relations have some disirable

properties.

Proposition 4.3.2

NPI(S)=IdIC for all S ¢ g?.

Proposition 4.3.3

WNSI(S) < SNSI(S) for all S & sF.

Hence,

Theorem 4.3.2

NI(S)=SNSI(S)=WNSI(S) for all S ¢ SF.

Therefore if all component systems are functional, the weak system interaction
characterizes the interaction between two component systems of a complex

system.
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4 - -Interaction Structure

In section 4.2, we have defined the interaction structure of a complex

“tem S as a triple IS(S)=[PI(S),SSI(5),WSI(S)]. Let us now consider a
-elation between the interaction structure of S and a modelling morphism
rom S.

At the beginning, let us define the following category.

Proposition 4.4.1

’ Let 8§ ¢l S and S' ¢ I S' be complex systems. Let us define

,H;ﬁA (S,S') be Hom (S,8')= { I (hili e 1)IS:S » S'| (Vi & I)(hi:85 + Si'
/ g%'isomorphism g%'ggg) and T (hili € I)|S is an isomorphism in MOD } .
And let us define the composition operation as componentwise. Them

=[S, { Hbm(S,S‘)IS,S' €S 1}, o} ] is a subcategory of MOD and we

call it the category of complex systems with order n.

Let us now consider a relationship between interaction and isomor-

phisms.

;- Theorem 4.4.1

Let S < II S and §' < II §' be complex systems and II (hili e IT)iIs
:§ > S'" g Hom (S5,S'). Then
s
1) 84 has NI in § if and only if Si' has NI in S'
2) S4 has NPT in S if and only if S;' has NPI in S'
3) S{ has SNSI in S if and only if Sj' has SNSI in S'
"4) Si has WNSI in S if and only if Sj' has WNSI in §°

hold for all i e I.
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Sinse S is a non—interacted system (non-process interacted system,
strongly non-—system interacted system or weakly non-system interacted system)
if and only if S; has NI (NPI,SNSI or WNSI, respectively) for all 1 e I,

the following corollary is a direct consequence of Theorem 4.4.1.

oy 5L

P .

Corollary 4.4.1

Let S €IS and S' < II ' be complex systems, and II (hijli € 1)]s
S + 8' ¢ Hom (S,8'). Then
s
1) S is a non—interacted system if and only if so is S'.
2) S is non—process interacted system if and only if so is S'.

3) S is a strongly non-system interacted system if and only if so is S'.

4) S is a weakly non-system interacted system if and only if so is §'.

Let us now consider a relation between interaction structures

~and isomorphisms.

Theorem 4.4.2

Let S ¢l S and S' c Il §' be complex systems and II (hili e I)|s

:S + 8" € Hom (8,3'). Then IS(5) = IS(S').
CS

Therefore the interaction structure is invariant under a certain isomorphism.
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Part III : Decomposition
5. Basic Scheme of Decomposition
5.1 Quotient System

In decomposition, it is very natural to stress component systems
, simpler than a given global system. It is is, however, fairly difficult

to define the concept of "simplicity”. One of naturally accepted definitions
.yis'by using a surjective modelling morphism when it is the case of general
input—-output systems.

As known‘in‘universal algebra, an algebra can be éimplified by a
non-trivial congruence relation. When we adopt it to the mathematical
"systems theory, at first we must impose a congruence relation to preserve
input—-output behaviour of a system. In order to simplify our discussion,
from now on, we only consider the case when an input-output system is

simply a set, that is a general input-output system.

3)

Definition 5.1.1 Input-Output Compatibility
Let § €< X XY be an input—oufput system. An equivalence relation R

on S is called to be input—output compatible if there are equivalence
relations Ry and Ry such that

(x,y) R (x',y') ¢ xRy x'" andy Ry y'.

In this case, a pair (RX,RY) is called to be an associated pair of equiva-

lence relations (briefly, an associated pair) with R.



It is easily seen that all equivalence relations on S are not

input-output compatible.

Since an input-output system is a set itself, we can define a quotient
set S/R of S modulo R. However, if we impose R to be input-output compatible,

‘the resultant system can also be considered as an input—-output system.

Definition 5.1.2 Quotient System (Fig.5.1.1)

Let 8§ ¢ X x Y be an input—output system and R an inpﬁt—output com—
patible equiValence relation on S. Suppose that (RX,RY) is an associated
pair with R. Let 8' < X/Ry x Y/Ry be defined by

([%]Ry, [71Ry) €8' = ([xIRy x [y]Ry) 0 S # ¢

Then S' is called a quotient system of S modulo R and denoted by S/R.

Proposition 5.1.1

Let § ¢« X x Y be a general input-output system and S/R its quotient

system modulo R. Then S/R is a surjective model of §.
Remark : If R # Id, S/R can be considered to be simpler than S.

It is important to note that a quotient system can be constructed

by a modelling morphism.

Propositiqn 5.1,23)
Let S € X xY and 8' ¢ X' xY' be inpdt*output systems, and
h=(hx,hy):s > S' a modelling morphism. Let =y on S be defined by
(x,5) = q(x",5") @ hyx(x)=hyg(x') and hy(y)=hy(y').

Then = p is an input—output compatible equivalence relation on S.
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The quotient system of S modulo =y, is denoted by S/h. Actually,

s/h= { ([X]hx’[YJhy)l(x;Y) eSS} .

Then we obtain an epi-mono factorization of S by a modelling-morphiSm.

s

Proposition 5.1.33)

Let S ¢ X xY and S' ¢ X' x Y' be general input-output systems,
and h=(hx,hy):S > §' a modelling morphism. Then the following diagram

commutes ;

h
S > St
N 5
s/h

, where 7w =( 4, = y) is a canonical projection-'and o =( ¢y, ¢ y)
is an embedding. Motreover, w is 3”9urjectiveimodelling morphism and

o is an injective modelling morphism.
The next proposition states the'relationship between a quotient system
of a global system and a component system of a complex system when there

is a modelling morphism from the global system to the complex system.

Propogition 5.1.4

~ -~

Let S cX x¥ be an input-output system and S c II.S a complex
system over § = { Sili € I } . Suppose that h=(hx,hy) is a modelling
morphism from S to S. Then Si is an injective model of §/pih,where
Pi=(Pix,Piy):S * Sj is the i-th projection of S. Moreover, if hvis a

sur jective modelling morphism, §/pih 285

S > S > Si
T A o
S/pih




Let §q = { 8/R"|i € T } be a class of quotient systems of S. The
next question is how to construct a complex system over §q which has

bme disirable relationship with S.

Definition 5.1.2  Canonical Complex System over Sq

Let S € X x Y be an input-output system and R = { Rlli ¢ 1}
‘a class of input-output compatible equivalence relations on S. Suppose
“that (in,Ryi) is an associated pair with Ri for i € I. Let
8" < 1 8/RY be defined by
(xR L1 e 11,00y IR 21 e 1]) e st
iiTx ’ ity
w0 (xRS e T) x 0 ([y IR e T)) 0 s £ o
swhere (in, Ryi) is ‘an-associated pair with R for all 1 € I. Then
8' 'is a complex system over §q = {8/R*1 € I } and called the canoni-

cal complex system over Sq denoted by S/R.
Then,

. Theorem 5.1.1

Let § €< X x Y be an input—output system and R = { RI,R2 } a class
of input-output compatible equivalence relations on S. Let R.= { Rxl,sz }

and R = { R 1,R 2 } , where (in,R i) is an associated pair with R1 for

y y
i=1,2. Then,

y y

(1) S[g_is‘a surjective model of S ;

1114

S/R 3

(2) if Rx and Ry are separating, S
(3) if R is full,and R, and By are separating, S/R = s/rl x S/RZ, that is,

S = 8/Ry x S/Ry.
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~As we will see, a quotient system is a candidate of a component system
when a complex system has no interaction between input of a component
‘'system and output of another. However, in cascade decomposition, ‘another

kind of concepts is required. It will be stated later.

i B - e

5.2 General Theory of Decomposition

We first consider a general condition for a global system to have
a complex system representation in inductive modelling. An input~output
system is called to be decomposable if it has a complex sysgem‘represen-
tation as its model. For notational convenience, we only discuss the
case where a complex system consists of two component systems. It is,

however, easy to extend it to the case of finite component systems.

Proposition 5.2.13)

Every input-output system is decomposable.

If we impose a modelling morphism to be injective,

Proposition 5.2.23)

A global system § c X x Y has a complex system representation

as its injective model if and only if there is a class R = { Rl,R2 } of

input-output compatible equivalence relations on S such that R = RXI,RX2 }

and Ry = { Ryl,Ryz } are separating, where (in,Ryi) is an associated

pair with Rl for i=1,2.
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While in surjective decomposition,

‘position 5.2.38)

<A global system S ¢X xY has a complex system representation

as its surjective model if and only if there is a class R = { Rl,R2 } of

hput—output compatible equivalence relations on S.

Finally, for isomorphic decomposition we obtain the following'proposi—

tion.

Propositio 5.2.4

~ ~

A global system ScX xY has a complex system representation

s its isomorphic model if and only if there is a class R = { rRL,R? } of

input~output compatible equivalnce relations on § such that R, = { Rxl,

“sz } and R, 2 } are separating, where (in,Ryi) is an asso-

y y
_ciated pair with RY for i=1,2.

= { Ryl,R

5.3 Modelling Morphisms between Complex Systems

In section 5.2, a complex system into which a given global system
was decomposed was not a pri ori given. When we have a class § = {s1,82 }
of component systems and afe required to represent the global system
by a complex system over §, we can easily find a decomposable condition
by theorems obtained before if we develope the relationship between
complex systems and modelling morphisms. So, we investigate the following

problem in this section ; Let S © S; x S and §' & S1' x S2' be complex




systems. If modelling morphisms ky=(kiy,k1y):S1 + S1' and kp=(kox,

kzy):sz > So' are given, how naturally can we construct a modelling

morphism from S to S' and what property does such a modelling morphism

have ?

Definition 5.3.1 Generated Modelling Morphism of Complex Systems

» Let S © 87 x 89 and §' © §1' X S3' be complex systems. Suppose that
k1=(k1x,k1y)3S1 > S1' and kp=(kpy,kpy):Sy > Sy' are modelling morphisus.
Let k1 x kplS=(kyy x koxID(S),kiy X kyyIR(S)), where kjy x ko, and
kly X k2y are usual products qf mappings. If kl X kzls is a modelling
morphism from § to 8', it is called a modelling morphism generated by

(k1,k2). From now on, whenever we write ki X kg|S with wmodelling morphisms

ki and kp, it denotes a modelling morphism from S.

Proposition 5.3.1

If S'=S1' x S2', k1 x k2|S is a modelling morphism for all S € 81 X Sg.

Proposition 5.3.2

The following diagram commutes for all S © S; x Sy and 8' < §1' x So';

ki x kols
S > s!
Pi ¥ \ pi'
Sl > Sl'
ky

, where kj X kp|S, kq and kp are modelling morphisms, and ?i and

t

pi' are i-th projections on S and on S', respectively.
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Most important modelling morphisms between complex systems are injective

, surjecticive and isomorphic ones.

£

J?rOposition 5.3.3 ’
If ky x k9lS is a surjective modelling morphism, so is k; for i=1,2.
Conversely, if S =51 x S99 and kj and k) are surjeétive'modelling morphisms,

‘then so is kl X kéIS.

‘Proposition 5.3.4

If kj and kp are injective modelling morphism, so is kj x kals for

all § 81 x §9.

‘Ptoposition 5.3.5

If k) and kp are isomorphisms and $=87 x Sj, then kj x kgl$S is also

an isomorphism.
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6. Decomposition of Input—Qutput System

6.1 Non—-Interacted Decomposition
In this section, we pay attention to a condition for non—~interacted
decomposition, that is, a condition under which a global system is

decomposable into a non—interacted system.

Proposition 6.1.1 (General Case)

A global system § <X xY has a non-interacted system as its model
if and only if there is a class of input—output compatible equivalence

relations R = { Rl,R2 } on §.

Proposition 6.1.2 (Surjective Case)s)

A global system ScXxy has a non—-interacted system as its sur-—
jective model if and only if there is a full class R= { R1,R2 } of equiva-

"~
lence relations on S.

Proposition 6.1.3 (Injective Case)

A global system § cX x Y has a non—interacted system as

its injective model if and only if there is a class R= { Ry,Rgp }

.. . oy _ 1 2 v = 1
of equivalence relations on S such that R= { R TSR } and Ey | Ry ,
Ry2 } are separating, where (in,Ryi) is an associated pair of equivalence

relations with Rl for i=1,2.
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Proposition 6.1.4 (Isomorphic Case)

A global system S < X x Y has a non—interacted system as its

~valnce relations on § such that R .= { Rxl,sz } and §y= { Ryl,Ry2 } are

~geparating,  where (in,Ryi) is an associated pair with Rl for i=1,2.

6.2 Parallel Decompositionls)

In this section, we investigate a condition for decomposition of
a global system into a parallel complex system.
At first, let us consider how to construct a parallel complex system

bby’quotient systems.

Definition 6.2.1 Decomposable Equivalence Relations

Let Rg,R1 and Ry be equivalence relations on a non-void set A.
. If there are equivalence relations R;' and Ry' such that
Ry = Rl' N Rq and Ry = Rz' N Ry,

Ri and Ry are called to be decomposable with R,.

Lemma 6.2.1

Let Ry be an equivalence relation on a non—-void set A and R
= { Ry,Ry }va class of equivalence relations on A satisfying R, = Ry N Rjp.

Then A/R, = A/R, where A/R= { ([alRy,[alR9)|a e A } .
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Definition 6.2.2 Parallel Connection of Quotient Systems

Let R= { Rl,R2 } be a class of input—output compatible -equivalence
relations on an input-output system S < X x Y. Suppése;that (in,Ryi)
is an associated pair with Ri for 1=1,2 such that Rxl and;sz are
decomposable with some R,, that is there aré equivalence”télatibns‘R'Xl
and R'x2 such that in = R'xi n R, for i=1,2. Then we can identify
s/R! with §', < /R * x X/R ) x Y/Ryi be Lemma 6.2.1, where
s'y={ (([x]R'Xi,[x]Rz),[y]Ryi)l(x;y) e S } . Therefore we can
define the barallel connection of S/R1 and S/RZ. The resultant parallel

complex system is denoted by‘P(S/Rl,S/RZ).

Lemma 6.2.2
Let R= { RI,R2 } be a class of input~output compatible equivalence
relations on an input-output system S < X X Y. Suppose that Rx1 and

sz are decomposable with Rz, where (in,R i) is an associated pair

y .
with Rl for i=1,2. Then S/R can be embedded in p(s/rl,s/r2).

Let us now consider a condition for parallel decomposition. If a
global system § ¢ X x Y has the external representation of a parallel
complex system as its model (surjective, injective or isomorphic model),
we say that § is parallel (surjectively, injectively or isomorphicly

parallel, respectively) decomposable.
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pa 6.2.3
Let R= { Rl, R2 } be a class of input—output compatible equivalence

1 2
and RX

relations on an input-output systems S < X x Y. Suppose that Rx
,a?e decomposable with R, where (in,Ryi) is an associated pair with Ri
or i=1,2. If R satisfies the following condition, p(s/rl,s/r%) = s/R.
(W(x1571),¥(x2,¥2) ¢ S)([X11R2=[X2]Rz > (Ax,y) €8)

(y) € (xIRE 0 IR x Iy IR 0 [y ) ns.

Remark : If R is full, R satisfies the condiiton.

Proposition 6.2.1 (General Case)
A global system § c X x § is parallel decomposable if and only if
“there is a class R= { Rl,R2 } of input—output compatible equivalence

1

‘relations on S such that R,~ and sz are decomposable with some R,

" where (in,Ryi) is an associated pair with Rl for i=1,2.

Proposition 6.2.2 (Surjective Case)

A global system § c X xY is surjectively parallel decomposéble
| if and only if there is a class R= { Rl,R2 } of equivalence relations oh
such that RX1 and sz are decomposable with some R, and R satisfies the
conditiop of Lemma 6.2.3, where (in,Ryi) is an associated pair with

RL for i=1,2.
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Proposition 6.2.3 (Injective Case)

A global system § c X x § is injectively parallel decomposable if

and only if there is a class R= { Rl,R2 } df equivalence relations on

§ such that R, 1 and R, 2 are decomposable with some R, where R, * Ryl)

is an associated pair with R for i=1 »2, and §x= q{ Rx ,Rx } and By= { Ry
y2 } are separatlng. k

Theoren 6.2.1 (Isomorphic Case)

~ C

A global system S © X x Y is isomorphicly parallel decomposable
if and only if there is a class R= { Rl,R2 } of equivalence relations

on S such that

2

(1) R 1 and R_" are decomposable with some R_ ;
b4 X "z

gy , g
)R~ {RR?} and R= { Ryl,Ry

(3) R satisfies the condition of Lemma 6.2.3.

} are separating ;

, Where (in, Ryi) is an associated pair with rRY for i=1,2.

Example 6.2.1 : Let T=[A,C, & ] be a state automaton and §’C C x C’

be defined by (c,ec") € S o (a ¢ A)( 8 (c,a)=c').’

Let us now consider to décompose § into a'parallel éonneétions df input—
output systems.'Suppose that there are equi&alence relations w | and = 9

on C such that w ; 0 wm 9=Id and

(V(c,cl'))(V(c,cz'))(33)((c,2) € S and (cl',g) €, and (cz';g) ET 5)e

Let Rl ¢ 5 x5 be defined by (cl,cl')Ri(cz,cz') - c1=c2 and (cy'ycq') em i);
Then R 1=Rx2=Id and obviously they are decomposable‘with Id. And R = {14}
and Ry= ={mw1, m9 } are separatlng. If (cl,cl ),(c2,¢c2") € S and c1=c9,
there is ¢)" such that c3” € [c1'] m 1 0 [ea'] = 2 and (cy,c2”) € S.

Therefore the condition 3) of Theorem 6.2.4 are satisfied. Consequently,
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‘we can decompose S into a parallel connection of input—output systems.

Actually, if we define §= { §3 < C x C/ m 1,582 C‘X ¢/ o } by
(cy[c'] m 4) €83

®  (Je" e [e'] m 1)((e,e") € 8),

“then (Id,hy) is an isomorphi®m from § to P(S), where hy:C >C/ = 1 X ¢/ = 9

- 1is defined by hy(c)=([c] T 1,[c] ®2).
It is noted that there is no assurance that Sj and S can be realized

by state automata because we do not take into account of the input.

7 6.3+ Cascade Decomposition16)

In this section, we investigate a condition for decomposition of

ba global system into a cascade complex system. In pafallel decomposition,
a parallelycomplexksystem and the external representation of it are iso—k
- morphic. However, it is not the case in cascade decomposition. Therefore
we cannot use the concept of quotient systems directly to cascade decomf

position. In cascade decomposition, we use the following concepts.

= Definition 6.3.1 Semi~Quotient Systems

Letbgf {RL,RZ2 } be a cléss of input-output compatible equivalence
relations on an input—output system S © X x Y. Suppose that (in, Ryi)
is an associated pair with Rl for i=1,2. Let aysubset S'1 < X/Rxl %
(t/R,} x'8) and §'y © (X/R,? x §) x Y/Ry® be defined by

(LxIR L, (IyIR L, (x',5'))) €87 » (x',y") € [xIR x [yIR,! n's
(IxIRZ, (x,y" ), [yIRD) € 8%y = (x',y") & [xIRZ x [yIR,? n 5.

Then S'{ and S'9 are called the first and second semi—quotient systems
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with modulo R! and Rz, respectively and denoted by S'1=FSQ(S;R1)

and S',=55Q(s;R%).

~Definition 6.3.2 Cascade Conmection of Semi—~Quotient Systems

iet R= { Ri,R2 } be a class of input-output compatible equivalence
relations on an input-output system § < X x Y. And let S' < FSQ(S;Rl) X
SSQ(S;R%) be defined by |
(xR Uy IRGY, 61,7100 (T3 IR, (g 3,00, [ 1R DY) & 87
* (x1,y1)=(x2,52)-
Then S' is called the cascade complex system over (FSQ(S;Rl),SSQ(S;Rz))
and denoted by C(FSQ(S;RI),SSQ(S;RZ)). And the external repfesen£ation

EX(C(FSQ(S;R'),55Q(S;R2))) 1s defined by

(L IR [ 1R DD, Ly IRy L [y 1Ry Z)) € EX(C(FsQ(s;RY),850(5;R2)))

" Aty e Ax IR 0 BpIRE) x ([y IR 0 [y,1R.2) 0 s

Proposition 6.3.1

EX(C(FSQ(S;RI),SSQ(S;RZ))) = S/R , where R= { RL,R% } .

Let us now consider a condition for cascade decomposition. If a
global system § ¢ X x Y has the external represeﬁtation of a cascade
complex system as its model (surjective, injective or isomorphic model);
we séy that § is cascade (surjectively, injectively or isomorphicly

cascade, respectively) decomposable.
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“Proposition 6.3.2 (General and Surjective Case)

A global system ScX xY is (surjectively) cascade decomposable
if and only if there is a class R= { R1,R2 } of input-output compatible

"~
“equivalence relations on S.

Proposition 6.3.3 (Injective and Isomorphic Case)

~

A global system S © X x Y is injectively (isomorphicly) cascade

decomposable if and only if there is a class R= { Rl,R2 } of input-

;koutput compatible equivcalence relations on § such that R~ { Rxl,R 2 }

X

~and Ey= { Ryl,R 2 } are separating, where (in,Ryi) is an associated

y

bair with Rl for i=1,2.

‘Example : Let T=[A,C, 6 ] be a state automaton and S c C xC be
defined as in the previous example. Let us consier to decompose S

‘ iﬁto a cascade connection of input-output systems. Suppoée that there
. are equivalence relations w 1 and ® 2 on C such that = 1 n = 2=Id.
Let R} be defined as in the previous example. Then all conditions of
-Proposition 6.3.3 are satisfied. Therefore we can decompose S intq a
serial connection of input—-output systems. Actually if we define

= {8y «Cx(¢/ ny1 x8),82 «<(Cx8S) xC/ n by | |

(e, ([c'] m 1,(c1,c1")) € Sy

« c=c1 and [c'] ®m 1=[c1'] =1

and ((e,(en,¢2")),[c'] m2) € 8y

# c=cg and [c'] ® 9=[c2'] 7 9,

then (Id,hy) is an isombrphism, where hy:C > C/ mq1 xC/ no is defined as

in the previous example. If we define Sy' < C x C/ = 1 by

(c,[e'] m1) €81 #S(c) nfc']l wq #9¢

- 72 -




and S3' < (C xC/ m1) xC/ =9 by

((e,fe1] m1),0e2] mg) €8y @ S(e) eyl my 0 fep] ® o # ¢,
this type of decomposition is more familiar in serial decomposition
offstatevagtomata. It is also noted that theré is no assurance tha; S1
and Sg caﬁ‘gé realized ﬁy state automata because we do not take into

account of the input.
6.4  Feedback Decomposition

In this section, we investigate a condition for decomposition of
a global system into a feedback connection of input-output systems.

Let us first consider a feedback transformable type.

Definition 6.4.1 Feedback Transformable Type

Let 5 <« X x Y be an input-output system. Let S' c (X x S) x (Y x §)
be defined by
(&, (x",5")),(y,(x",5"))) e 8'
© EY)=E,Y D)=y,
Then §' is called the feedback transformable type»of S and denoted by

FT(S) and the external representation of Fp(S) is defined by

EX(Fp(s))= { G,y I3,y ) EAE", y" N, (', y")), (7, (x",3"))) € Fp(S) } -

Proposition 6.4.1

Every input—output system S ¢ X x Y is feedback decomposable.

Actually, S = EX(FT(S))).

- 73 -



7. Different Forms of Decomposition

7.1 Deductive Modelling

In sectibn 5.1, we introduced the concept of quotient systeﬁsQ
‘However, more broad concept is required in deductive modelling. An‘input-
jgﬁtput system S € X x Y is a set itself and so we can define a covering C
 of S, that is ¢ € C, C < P(S) and U C=S. Let us now extend the concept of
~“quotient systems by using a covering.

Most important covering of an input—output system § < X x Y is what

reflects the input—output behaviour of §.

Definition 7.1.1 Input—Qutput Compatible System Covéring3)
Let S ¢ X x Y be an input-output system and C = { C 5 | XeA }
a covering of S. C is called to be input—output compatible if there
. _ o = B
_ are coverings C,= {c, "l aenr_ }and Cy= { Cy | BeaA g } of X and Y,

respectively such that

y
((cy @ xc, Pyns=c, #¢).

c,ec « (3¢ ° e C)(C, Bec)

In this case, the pair (CX,Cy) is called an associated pair of coverings

(briefly, an associated pair) with C.

Similar to Definition 2.5.1, we define the property of separating-

ness of a class of coverings.
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Definition 7.1.2  Separating

A class C = { Cl,..,Cn } of coverings of a non-void set A is called
to be separating if (y(cl « li=1l,...,n) ¢ I C)(Va € A)(Va' e A)

((a,a') e n (ct a li=1,...,n) » a=a'), where cl= { Ci . | aeA i} .

Let us next extend the concept of quotient systems to the case of

coverings.

Definition 7.1.3 Quasi-Quotient System

Let 8 «X x'Y be an input-output system. Suppose that C is an input—

output compatible covering of S, where (Cx,Cy) is an associated pair.

Let §' <« Cy x Cy be defined by
a- B | BN o . :
¢ ¢, Pres C, xcy3 nsecC.
Then 3' is called a quasi~quotient system of S modulo C and denoted by

s/c.
It is noted that a quotient system is also a quasi-quotient system.
The next proposition tells us how to construct an input—output compatible

covering.

Proposition 7.1.1

Let § < H_§_be.a complex system over S= { Sy|li ¢ T } . Then
i_ -1 -1 . -
ct= { (Pyy (x;) x Piy (y;)) 0 Sl(xi,yi) e S, } 1is an input-—output
compatible system covering of S for all i e I, where;pi=(pix,piy) is the

i~th projection on S.
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Let S.= { s/clli e I } be a class of quasi-quotient systems. Then

e can naturally extend the concept of a canonical complex system over S..

‘Definition 7.1.4 Canonical Complex System over S.

Let S ¢ X x Y be a.general input-output system and C = {cili e 1}
‘a class of input-output compatible coverings of S. Let S' < II S, be
lefined by

(tet o, 14 e1], [c,t g 11 e1)) &8

- i i
(nc X ncy B)ns¢¢.

rThen 8" is called the canonical complex system over S, and denoted by

s/C.

In the deductive modelling, we use quasi-quotient systems instead

of quotient systems in decomposition. It is, however, difficult to find
a general condition in this case. We just mention about surjective

decomposition.

Theorenm 7.1.13)

~

If a global system § < X xYis a sur jective model of
a complex system S ¢ X x Y, there is a class C = { Cl,C2 } of input=-output
compatible coverings of S.

Conversely, if there is a class C = { Cl,C2 } of input—output compa-
tible coverings of S and C, =1 Cxl,sz } and gy = { Cyl,Cy2 } are
separating, where (Cxi,Cyi) is an associated pair with Ci for i=1,2,

~

then S €« X x Y is a surjecive model of a complex system.

- 76 -




‘Example 7.1.1 : Let T=[A,C, § ] be a state automaton and S c C x C be

defined as in Example 6.2.1. It is known that if there is a covering
= {C 4l aeI } of Csuch that (V)Y « )T B )ae A (C o ,a) c C 3 ),

“then there are state automata T1; and Ty such that T can be realized by

the serlal connection of Ty and Tj. In thlS case, in order to construct
state automata, we use another covering P of C such that { C,P } is
separating. It is noted that the condition for C ensures that the resultant

input-output system can be realized by a state automaton.

7.2 Simulation
Since a simulation morphism is obtained by reversing the arrow of
output mapping hy of a modelling morphism h=(hx,hy), we naturally obtain

the following proposition.

Proposition 7.2.1

If a global system § <X x Y has a simulation model § c 81 X8y
» then there is a class C = { Cl,Czy} of input-output’compatible
coverings. Conversely, if there is a class R = { Rl,Rz’} of iﬁput—output
compatible equivalence relations satisfying that By = {R l, Rlz } is
separating,where (in,Ryi) is an associated pair with Ri, g is decompo-

sed into a complex system in simulation.

The category SIM of input-output systems with simulation morphisms
was introduced in Proposition 2.2.6. Let us next consider functors

from MOD to SIM and from SIM to MOD.
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Proposition 7.2.2 = | .
Let MOD and SIM be categories of input-output systems with modelling 1
morphisms and simulation morphisms, respectively. Let MOle and § _lﬂlb
be subcategories of MOD and SIM deflned by ‘ k
0b3(MOD1,)=0b (ST =03 (MOD)

Hom (8,8")= { h=(hyg,hy):S ~ s'| hy is bijective } < Hom (S,S")

MOD1 MOD
‘and Hom (5,8")= { hS=(h ,h ) S » 8| hy is bijective } < Hom  (S,S8').
, SIM1p SIM

Let Fyg:MODjp + SIMjp be defined by
Fys(S)=S for S e 0bj(MODyp)
FMS(h=(hx,hy))=(hx,hyf1), where hy‘l is the inverse of hy,
and Fgy:SIM1p, + MODyp be defined by

Fgu(S)=S for S £ 0bj(SIM1p)
S = -1 -1 s
FSM(h (hx’hy)) (hx’hy ), where hy is the inverse of hy.
Then Fyg and Fgy are functors. Morover, Fys o Fgm and Fgy o Fyg are identity

functors.

Therefore, we can transfer a decomposable condition in inductive modelling
into simulation by the functor Fyg in this case. Especially, in isomorphic
decomposition a decomposable condition that we investigated before is

also valid for simulation.
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Chapter 8 Decomposition of Functional Systems

In this chapter, we investigate a condition for decompositioﬁjof
a functional system. Since a functional system S:X > Y is an iﬁput—outpu;'
system S < X XY, the decomposability condition is directly derived
by theorems obtained in Chapter 6. It is, however, natural to require
a component system to be also functional, we iﬁpose ah équivalence relatioﬁ
to satisfy such a condition.

One of the important systems is an endomorphism on an Q -group
é?tA;FG U Fyl. The connection of endomorphisms on A was defined in Section
3.2. It will be seen that the decomﬁosability condition for an endomorphism

is a natural consequence of that of functional systems.

8.1  Functional Component System

Let § ¢ £ x ¥ be a functional system. If there are functional
systems S§31:Xj > Y1 and S$2:X2 * Y2 such that a functional complex system
over = { 51159 } is a model of §, we say § to be functionally
decomposable. In other words, S is called to be functionally decompo~
sable if there are functional systems S7:X1 +'Y1 and Sp:X9 » Y2 such that
the following diagram commutes for some functional complex system S:X > Y

» where 5 < 8y x 8,, and hxzﬁ + X and hy:§ + Y are mappings.

~ § -~
X =+ X
hgy ¥+ hy
X > Y
s
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The above condition is exactly same as that of input—output system.

Proposition 8.1.1

Let S:X > Y and S':X'" > Y' be functional systems. Suppose that
hy:X > X' and hy:Y > Y' are mappings. Then h=(hx,hy) is a modelling

morphism from S8 to S§' if and only if the following diagram commutes ;

g
X » Y
X' > Y
sl

Moreover, h=(hx,hy) is an isomorphism if and only if hy and hy are bije-

ctive, and the diagram commutes.

~

If a global system S c X x Y is functional, it is natural to
impose component systems to be functional. Therefore we need equivalence

relations which satisfy such a condition.

Proposition 8.1.2

Let 8:X 2> Y be a functional system. and R an input—output compatible
equivalence relation on S. Suppose that (RX,Ry) is an associated pair
with R. Then the quotient system S/R is functional if and only if

| (x,x'") e Ry > (5(x),S5(x")) ¢ Ry for all x,x' = X.

If an Input—output compatible equivalence relation satisfies the above

condition, it is called to be quotient functional.

In order to clarify our idea, we just investigate the case where
hy and hy are bijective, that is, isomorphic decomposition in the

following section.
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8.2 Non-Interacted Decomposition

The condition for non-intercated decomposition of a functional system

is directly derived by Proposition 6.1.4.

Theorem 8.2.1

A functional global system S:X > ¥ has a non~-interacted
functional system as its isomorphic model if and only if there is a full
class R = { RI,R2 } of input-output compatible and quotiént functional
equivalence relations on S such that R={ Rxl,Rx2 } and Re= {»RYI,RYZ:}

are separating, where (in,Ryi) is an associated pair with RL for i=1,2.

8.3 Parallel Decomposition

Parallel connection of functional systems was defined in Chapter 3.2.
We say a functional system S:X + Y is parallel decomposable if there are
a class of functional systems S= { Sj:Xj = Yi{|/i=1,2 } and a bijection h:Y + Y'

such that the following diagram commﬁtes,‘where Y'= { (S1(x),So=xNIx e X } .

S
X »> Y
Id ¢+ + h
X » 'Y
Pr(S)

- Since Pp(S) = EX(P(S)) by Proposition 3.2.2, the térm of parallel

decomposition of functional systems is exactly consistent with that of

input-output systems.
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The following theorem is a version of Proposition 6.2.4 for functional

case.

“Theorem 8.3.1

A functional global system §:X » ¥ is parallel decomposable
"if and only if there is a separating class of §y= { Ryl,Ry2 } of equiva-

lence relations on Y.

If functional systems are endomorphisms of an Q —group A=[A;Fg U Fy]
| , a parallel connection of them was defined as in Defini-

tion 3.2.6. In this case parallel connection of Sj:A > A and 52:A > A

is the sum S;+Sy induced by the binary operation + in Fg. We say an endo-—
morphism S:A > A to be parallel decomposable if there are endomorphisms

S1:A > A and S2:A » A such that S = 81 + 5).

We obtain the following theorem for parallel decomposition of an

endomorphism.

Theorem 8.3.2

Let S:A » A be an endomorphism on a commutative Q —group A=[A;Fg U Fy].

Then S8 is parallel decomposable if there is a full and separating class

of congruence relations on S(A). Conversely, i1f S is injective, there is

a full and separating class of congruence relations on S(A).
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xaﬁple : (Fig.8.3.1)
Examp &
4 Let A = R% and S:A > A be defined by
S((x,y))=(ax,by)
;ﬁhere a,b € A are non-zero elements. Let © j and © 9 be defined by
((%,¥),(x",¥')) € 0 1 « x=x'
((%,5),(x",7")) € © 9 & y=y'.
Then 0 = {01, ©9 } is a full and separating class of congruence
relations on S(A)=A. Let S3:A > A and Sy:A » A be defined by
S1(Cx,7)) € [S(GyN] 01 0 [0] © 2 and S5((x,y)) & [S(Cx,y)] 65 0 [0] 0
sthat is 51((x,y))=(ax,0) and S3((x,y))=(0,by). Then S1+52((x,y))=

(ax,0)+(0,by)=(ax,by)=8((x,y)) and hence S is parallel. decomposable.

8.4 Serial Decomposition

Serial comnection of functional systems was defined in Section 3.2.
However, it is difficult to find a general condition of a serial decompo-
sition of a functional system. So, in this section we restrict our atten-
tion to that of an endomorphism of an Q@ -group. We say an endomorphism
S:A > A to be serial decomposable if there are endomorphisms S1:A » A and
S9:A » A such that § = S7 * Sy. A sufficient condition for serial decompo-

sition of an endomorphism is given by the following theorem.

Theorem 8.4.1

Let S:A > A be an endomorphism on an Q -group A=[A;Fg U Fy]. If
there is a full and separating class of congruence relations © = { 0 1, 0 9 }

and one of them is also a congruence relation on A'=[A;Fs U Fy U { S } ], then
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S is serial decomposable.

Example : (Fig.8.4.1)
Let A=R% and $:A > A be defined by S((x,y))=(ax,by)-
Let © 1 and © 5 be definéd by
C((x,57),(x",y")) €01 & x=x'
((x,5),(x',3")) €0 5 » y=y'.
Then 8= { © 1, © 9 } is a full and separating class of congruence

relations on A and moreover, ((x,y),(x',y')) 0 9 implies

((ax,by),(ax',by')) € © 5. Therefore O 5 satisfies the condition.
Let 51:A > A and S3:A > A be defined by S1((x,y)) & [S((x,¥))] © 1 0 [(x,¥)] © 4
and $5((x,3)) € [S((x,3))] © 2 1 [(x,)] © 1, that s §1((x,y))=(ax,y)

and $20(x,7))=(x,by). Then 51 = $2((x,3))=52(S1(x,7)))=52((ax,7))

=(ax,by)=S((x,y)). Hence S is serial decomposable.

8.5 Feedback Decomposition of Endomorphisms

Feedback connection of endomorphisms of a commuﬁative Q —group
és[AgFG U Fy] was defined in Section 3;2. We say an endomorphism S:A +.§
to be feedback decomposable if there are endomorphisms S1:A > A and
Sy:A > A such that 8=5, + (I —Slsz)“l. A condition for feedback

decomposition of an endomorphism is given by the following theorem.
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Theorem 8.5.1

Let S:A + A be an endomorphism on a commutative Q —group é%{A;FG u Fyl.
Then S is feedback decomposable if there is a full and separating class €]
= {01, 09 } of congruence relafions on A such that
1) one of © ; is a congruence relation on A'=[A;Fg U Fpu{s1}1;
2) (Vb)(dta)((a,b) € 0 3 and (s(a),b) £ 6 2);

3) (Yb)(dta)((a,b) € O 2 and (S(a),b) € 0 1).
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Decomposition of Transition Systems

In this chapter, we investigate decomposition problem of transition
systems. A transition system, which was defined in chapter 3, is the
dynamical part of a dynamical system, however, it can be recognized as

an Q —group when the state space is also an Q —group. That is, if ¢

{'¢ tptiC X Xepr > Cle,t" e T and t < t' } is a transition system and
 C'is an Q -group C=[C;Fp U Fy], then ¢ can be understood as an Q -group
C( ¢ )=[C;Fg U Fy U Fpl, where Fp= { ¢ ppov(=,xpp1)iC > Clxppr & Xepr )
Since a transition system is an Q ~group in the sense above, decomposition
of a transition system just becomes that of an @ -group in coﬁtrast to

‘Chapter 8, where we studied decomposition of endomorphisms of an Q —group.
9.1 Parallel Decomposition
Parallel connection of transition systems was defined in Section 3.3.

Since a tramnsition system-g can be recognized as an input—output system

ScC xC

ws

(e,e') €8 o Ae)Et" ) xreer)( ¢ gt (e,xepr)=c")
, the decoméosability condition can be derived from theorems developed
in Chapter 6. It is, however, natural to require a component system to
be also realizable by’a transition system. In order to do this, our

universal algebraic approach is appropriate.
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Definition 9.1.1  Parallel Decomposability

~

Let T=[X, C, ¢ ] be a transition system, where X= {x e X

tt! tt"

t,t' eTand t <t' } and ¢ = { ¢ tt,:& x Xtt' > alt,t' eT, t <t}
If there exist transition systems T=[X, €y, ¢ 1] and T,=[X, C2;~¢ 2]

such that there is an isomorphism h from T to the parallel connection of

Ty and TZ’ T is called to be parallel decomposable.

A necessary and sufficient condition for parallel decbmposition of

a transition system is given by the following theorem.

Theorem 9.1.1
A transition system E-= { ¢ ceriC XX o > C } is parallel decompo—
sable if and only if there is a full and separating class 9 = { © 1> © 2 }

of congruence relations on G( % ), where EK'$ ) is defined above.

Let us next illustrate the meaning of Theorem 9.1.1 by some well-

known examples from Automata Theory and Linear System Theory.

Example 9.1.1 : Parallel Decomposition of Automaton}3)

"Let M=[A,B,C, &, A ] be é Mealy &ype automaton. Then M is non~
trivial parallel decomposable if and only if there exist two non-triviai
S.P. partitions w ] and 7 2 on C such that 1 n 1 9=Id."

The above statement is a well-known theoreﬁ by Hartmanis-Stearﬁs,‘where

S.P. partition means a partition 7w satisfying that

(VB & n )(3B' & = )(Va € A)( & (B,a) = B').
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Siﬁée a partitioin on C corresponds to an equivalence ralation on C,

is easily seen that the above condition for bartition is exactly same
aé the following condition ;

there ox@ two non-trivial equivalence relations n 31, m 9 on C

: sﬁch'that 1 N xwog =1Idand

(cye') ey > (Va e A)(( 6 (c,a), & (c',a)) e 4) i=1,2.

It is noted that the condition of an equivalence.relation to have subsitu—A
'tion property is exactly same as to require an equivalence relation to be
a congruence relation on [C; { & (-,a):C > Cla e A } , where 5 (=,a)

fC » C is defnied by & (~,a)(e)= & (c,a). Thereforebit is easily seen that
Theorem 9.1.1 is a generalization of Hartmanis-Stearns's one.

The essencial part of decomposition of an automaton M is how to
decompose the dynamical part of M. Then the focused dynamical system is

:a transition system T=[A,C, & ]. Since C is just a set, the algebraic
expression of T is an Q -group CC & )=[C; {6 (-,a)la € A } 1. Then by
Theorem 9.1.1, thg necegsary and sufficient conditiion for parallel
decomposition of T is the existence of full and separating claés'g = {
01, 62} of congruence’relations on C( 6 ). Since in Hartmanis-Stearns's
parallel decomposition, they considered a non-~trivial decomposition and
require a morphism to be only injective, let usvomit the condition of fullness
and require 0 1 and © 2 to be non—-trivial. Then we obtain the necessity
part of HartmaniSfStearns's Theorem.

Conversely, if an automaton is parallel decomposable, we can easily

construct a separating class © of congruence relations on C( 8 ).
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Example 9.1.2 : Modal Decomposition17) (Fig. 9.1.2)

Let a system be described by the following differential equation ;
z' = Az+ bx
, where z € C <R, A e R® * b ¢ R™ and x & R. Then if there are subspaces
W1 and Wy of C such that both of them are A-invariant aﬁd Wl(:)WZ =C, then

the system can be described by

il

z1 >A1 zy + bl X

z9 AZ z9 + bz X .

And the following diagram commutes ;

A
b C > c
—
X e ¥ + e
4
by x by C/W]_ X C/Wz > C/Wl X C/WZ
' Ay x Ay

» where e:C > C/Wy x C/Wy is defined by e(c)=([c] = wo [e]l =2y¢).
The above is called the modal decomposition in Linearlsystems Tﬁeory.
This fact can also be obtained as a corollary of Theofem 9.1.1.
Let ¢ ¢¢1:C X Xgpt > C be defined by
) tt.(ct,xtt.)#exp(A(t'—t))ct + f E'exp(A(t'— T )bxtt' d 17,

then the above system is a transition system T=[§}'C,'$ ] and its'algebfaicf
expression is C( ¢ )=[C;Fy v FT],‘where C=[C;Fy] is a vector space called
state space and Fr= { ¢.ttv(~,xttv):c > Clxger € Xppr and & < &' } .
Then by the theorem, if there is a full and separating class 0 = { 0 1,

© 9 } of congruence relations on CC ¢ ), € ¢ ) is parallel decomposable.
Suppose that there are A-invariant subspaces Wi and Wy of C such that
Wy @Wz = C. Since Wi is A—invariant, c & Wi implies

¢ ter(c,Xer) € Wy for all x¢pr € Xppr,t < t'. Because 4 eer{C,Xepr)

=exp(A(t'~t))ec + | E'exp(A(t'- T‘))bxtt'( T ) 3
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i S B 18)
=T A ¢ ,(t'"-t)e+ T AD f ¢ L'(£'- T )xt (T)d v e W, .
1=1 * i=1 £t ¢ t

Therefore Wi is also a subspace of ( ¢ ). Hence if we define © i
_y-l | , . - .
=y (Wi), 0 i is a congruence relation ingﬁ ¢ ). Since W1()
W2 = C, O is full and separating by Proposition 2.4.2 and Theorem
2.4.3. Therefore all conditions of Theorem 9.1.1 is satisfied. Hence
C( ¢ ) is parallel decomposable into c( ¢ 1) x C( ¢ 2),»where-$ i.

U0 een:0/ 03 XXppr >0/ 03 ) and ¢ 10 (lel © foxep)=l 6 pyile,

Xte')] © 4 for i=1,2.

9.2 Serial Decomposition

Hartmanis-Stearnsl3)

also studied serial decomposition of an automaton
M=[A,B,C, &6 , A ]. According to their theorem, a necessary and sufficient
condition for serial decomposition is the existence of a hontrivial
partition 7w with substitution’property on C.

In serial decomposition of a transition systen, unfprtunately, we
cannot use the universal algebraic aﬁproach. Because component systems
T1=[A, C1, & 1] and T2=[C1 x A, Cé, 8 2] cannot be representaed as algebras
of same type. It is, however, expected to be treated by the hetero-
geneous algebraic approachlg)’20)>21).

A necessary and sufficient condition for seriél decdmposition of
a dynamical system was given by Pichler and Ottendoerferzz). In their

paper, they extended Hartmanis-Stearns's Theorem by using the concept of

partition pair, which was originally introduced by Hartmanis—Stearnsl3).
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his chapter, we modify the concept of a partition pair as follows.

inition 9.2.1 Congruence Pair of Transition System

‘Let T=[§; C,.E ] be a transition system, where C is an Q —group.
uépQSe that © } and © 9 are congruence relations on C. Then the ordered
pair ( © 1, © ) is called a congruence pair of T if

(cye') €01 > (¢ gere,Xeer), ¢ tt'<c'3xtt')) €0 9

or all Xgpv € Xppr, £ <t
1t is noted that this condition is exactly similar to a condition that
( 01, ©2) is quotient functional congruence relation of ¢ e (—yXegr)

c > C.

Proposiotion 9.2.1

( 6, ©) is a congruence pair of T=[X, C, ¢ ] if and only if ©
is a congruence relation on C( % )=[C;Fp], where

Fp= { ¢ ¢ (=% ):C > Clxeer € Xeer].

Proposition 9.2.2

(1d, © ) is a congruence pair for any congruence relation © on C.
What a state automaton is serial decomposable means as follows.

Definition 9.2.3 Serial Decomposability

Let f=[A, 8, 6 ] be a state automaton. If there are state auto-
mata T1=[A, C1, 6 1] and Tp=[C; x A, Cg, 6 2] such that there is an iso-

morphism from C to C and the diagram commutes, where T=[A, C, & ]
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‘s th serial connection of T, and Ty, then f is called to be serial

decomposable to the serial connection of Ty and T,.

~

~ 6 o~ o . =
C xA > c
h+ +Id = +h
CxA > C
8

The following theorem is similar to that by Pichler and Ottendoerferzz).

Theorem 9.2.1

~

A state automaton f=[A,a, 6 ] is serial decomposable if and only
if there is a full and separating class © = { 0 1, 0 5 } of congruence
relations on C such that © 1 1s a congruence relation on C( & )=[C;

{ 86 ,:c>cClaeA } ], where & atC > C is defined by & 5(c)= 6 (c,a).

Example 9.2.1 : Let us consider the following serial decomposition ;

L]

"Let T=[A,C, & ] be a state automaton and C,G groups, ¢ :C > G a homomor-
phism satisfying
4= 6 (e > 68 (cyam 6B (e'ya)) for Ya e A,

Then T can be decomposed into the serial connection of staﬁe automata
T1=[A,C/E ¢ , 6 1] and T2=[C/E ¢ X AH ¢, 621, where E ¢ = { (a,b)| ¢ (a)
=¢(b) } andH 4= {al ¢ (a)=0 } ."

»In this decomposition,.the resultant mapping R:C/E’¢ Vx H ¢ C
is not an isomorphism but a\surjecti&e mapping; By Theorem 9.2.1, if 9
= { ©1, ©2 } is full and separéting and O 1 iS a congrﬁence relétion on

C( 8 ), T can be decomposed into the serial comnection of T1=[A,C/ 0 1, & 1]
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“"aﬁd To={C/ © 1 x A,C/ © 2, & 2]. It is noted that E ¢ dis a congruence
:'?keylation on C( 6 ). Since if O satisfies c/ 01 = ¥(o2) k,the condition
1s satisfied, we require that the normal subgroup H ¢ has a congruence
‘relation © 2 such that C/ © 9 =2 H ¢ » We can construct an isomorphism

h:C/E ¢ xH ¢ > C.
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Part III : Property Reflecting Decomposition

10. Property Reflecting Decomposition23)

In property reflecting decomposition, we investigate what properties
can be reflected under a certain morphiém. In thiskchapter, we pay atten-
tion to one of property reflecting decomposition problems and illustrate
it with a simple example from the Artificial Intelligence area. First,
we show a necessary and sufficient condition for decomposition of a
global system into a disjunctive‘complex system form, which is essentially
equal to a product of graphs. Next, we show that the value of Sprague-Grundy
Function-of a global system can be~ca1culétedwby those of component
systems of disjunctive complex system form when there is a strong
modelling morphism from the global system into the disjunctive complex
systen form. Finally, we illustrate the meaning of our theorem by using

a typical example from the Artificial Intelligence area24).

10.1 Disjunctive Complex System
Let us first define a disjunctive complex system.

Definition 10.1.1 Disjunctive Complex System

Let $= {S; <Xy x ¥4l1i € I, X4=Y; and Idgy < S; } be a class
: ‘ 4
of component systems. Let a subset §' < II S be defined by
([xili e 1],[y3li € I]) e 8

o (1 e I)(xy # yq and (Vi € I)(j#L » SRARE
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n' §' is called the disjunctive complex system over S and denoted by

= 'S)o

~In this chapter, we use a strong modelling morphism instead of

modelling morphism. It is defined as follows.

Définition 10.1.2  Strong Modelling Morphism
Let §$ <X XY and 8' < X' x Y' be input-output systems. Suppose

that there are mappings hy:X > X' and hytY = Y'. If the following diagram

S
X - > P(Y)
hy ¥ Vv hy*
X' > P(Y'")
S'

‘;kh=(hx,hy) is called a strong modelling morphism from S to S', where
~P(Y) and P(Y') denote the power set of Y and Y', respectively, and

S >R 3 8(0= (ylxy) €5 )

ST > P(Y') 3 S'(x")={ y'I(x',y") €8 }

hy*:P(Y) > P(Y') is defined by hy*(Y")= { hy(y)ly e Y" } for Y" e P(Y).
If hy and hy are injective, h is called an injective strong modelling

morphism. And if h is also a surjective modelling morphism, it is called

a surjective strong modelling morphism.

" Proposition 10.1.1

h=(hg,hy) is a strong modelling morphism from S < X x Y to S' ¢
X' x Y' if and only if h is a modellig morphism from S to S' and satisfies

the following condition ;

(hx(x),y") € 8' » (dy)((x,¥) & 5 and hy(y)=y')
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That is, a strong modelling morphism is a modelling morphism.

Lemma 10.1.1

Let h=(hx,hy) be a strong modelling morphism from S ¢ X X Y to S' ¢
X' xY' and let S € X x Y be an arbitrary subsystem of S, that is
§ C‘S, If Sl§=§, then hl§ is also a strong modelling morphism,

where S{X = { (x,y) ¢ S|lx ¢ X } and hl§=(hX|X,hle).

Lemﬁa,lO.l.Z

Let § <X x Y be the disjunctive complex system over
8= {85 X3 xYjli € T } . Then X= 11 (X3]1 ¢ I)= 1 (Y4li e I)=Y.
Moreover, the i-th projection pi=(pix,piy):s + 54 is a surjective strong

modelling morphism for all i ¢ I.

Let us now consider a necessary and sufficient condition for decom-
position of a global system into a disjunctive complex system under a strong

modelling morphism.

Lemma 10.1.3

Let S <X x Y and S' © X' x Y' be the disjunctive complex systems
over S= { §; < X4 xYyli € I } and §f= {83 eX3" xY3'lie1 },
respectively. Suppose that hi=(hix»hiy)‘si > 83" is a modelling morbhism
satisfying hjy=hjy for all i e I. Then I (hyli e I)|S is an injegtive
strong modelling morphism if and only if so is hy for all i ¢ I, where

M (hgli e DIS(Ixgli € T, 0y1l1 € TD=(Thyexy) |1 & 11, [hiy(y I € 1)) -
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mma 10.1.4

Lef 8/R= { S/RI]1 € T } be a class of quotient systems of S © X x Y,
here X=Y. Suppose that S[§.= DC(§/§)|2§S/§). Then the natural modelling
morphism 1=(1x»1y)‘5‘* S/R is a strong modelling morphisﬁ if and only

if the following condition holds ;

(P1) 1if (x,y) £ S and [X]in#[y]Ryi, then

| (V=" & X)([xIRI=[x" IR, > (By")((x',3") e 8 and [yIR=[y']R, "))

“for all i 1.

Lemma 10.1.5

Let S/R = { S/R1|1i € I } be a class of quotient systems of § ¢ X X Y,
‘where X=Y. Suppose that S/R = DC(S/R)ID(S/R). Then the inclusion from
S[g to DC(S/R) is a strong modelling morphism.

Then,

. Theorem 10.1.1

Let § € X x Y be a global system satisfying X=Y. And iet 5 = {
S5y < X4 x¥4li e I‘} be a class of component systems. Then there |
exists a strong modellingbmorphism h=(hx,hy) from §_to the disjunctive
complex system DC(S) over S satisfying hx=hy if and only if there is
a class of quotient systems §/§f { §/R1]i £ T } such that the following
-conditions hold ; | |

‘1) The canonical complex system §/g_is equal to the restriction of
the disjunctive complex system over éjﬁ_to the’domain of thé’disjunqtive
complex system over é[g to the domain of it, that is, §[§

= DC(S/R)ID(S/R).
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2) (P1)

3) There is an injective strong modelling morphism ki#(kix,kiy)
from S/ to §; for all i ¢ I, where kix=kiy'

Let us consider the sufficienéy of the cénditions. From the con=- |
dition 2), the natural modelling mofphism‘1=(lx,1y):§ > §[§ is’a strbng
modelling morphism. And the inclusion i=(ix,iy):§/§‘» DC(§/§) is also
a strong modelling morphism from the condition 1). From the condition 3)
and Lemma 10.1.3, Il (k|1 e I)IDC(S/R):DC(S/R) + DC(S) is also a strong
modelling morphism. Hence ( II (kili eI)»is+lisa strong modelling

morphism. These conditions are also necessary for the decomposition.

10.2  Relation between Decomposition to Disjunctive Complex System

and Sprague-Grundy Function

In Section 10.1, we have shown a necessary and sufficient condition
for decomposition of a global system into a disjuncéive complex system‘by
a strong modelling morphism. The rreason why the decombosition is impor-
tant stems from the fact that when we recognize a global syéteﬁ s as‘

a graph, we can calculate the value of Sprague-Grundy Funétion of §;
which determines the kernél of §, by those of component systems of
the disjunctiﬁe complex system.

In the reference[24], the similar fact has been proved in the alge~'
braic way. Howevef, we cannot directly apply it to our case because our>“
formulation is different from the reéference. We will modify the Sprague-—

Grundy Function so as to make it compatible with our formulation and
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will show that the same fact is also true im our formulation.

‘Definition 10.2.1 Sprague~Grundy Fuhction { SGF )

| Let S ¢ X x Y be an input-output system satisfying that X n Y # ¢ .
;if a‘mapping g:X U Y » N satisfies the following condition, we call g
~;'Sprague—Grundy Function (briefly, SGF) of S, where N = { 0,1,...,n,.. } .
1) (xy) €5 and xty > g()Fe(y) |

2) m < g(x) » (AY)((x,y) € S and g(y)=m)
The above definition is essentially same as that of the reference [24].-

,_Propoéition 10.2.1

SGF g of S is uniquely determined if S is progressively bounded.

The relation between SGF and a strong modelling morphism is given

by the following Lemma.

Lemma 10.2.1

Let S ¢« X xY and §' < X' x Y' be input-output systems satisfying
that X n Y#‘¢ and'X' ny'# @ . And let h=(hx,hy):S > 8' a strong
modelling morphism satisfying that

1) hglX n Y=hy|X n ¥

2) (x,y) € S and x#y > hx(X)fhy(Y)-

Suppose that g' is the SGF of S'. Then the SGF g of S is given by

g hy(x) x £ X

gX UY >N ; x
' g'hy(y) yeyY.
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In the reference [24], the similar fact is proved by using a "D-
morphism”. A strong modelling morphism can be considered as a systems

theoretical version of a D~morphism.

Let us next consider a relation between the value of SGF of a dis—
junctive complex system and those of component systems. The following

is a modification of the similar result of the reference [24].

" Lemma 10.2.2

Let 5=DC(S) be the disjunctive complex system over 5= { Si[i el1}.
Suppose that SGF g; of Sj is given for all i & I. Then the SGF g of

S €¢X xY is given by
g:X UY > N 3

[xili e 1] ".®%1(Xi) = 511D g2x2)@ -+ - @ gn(x)®- -
1 € .

, where(® is a binary operation on N defined by

m 3
c = a() b & ¢=73 Zici, where a = Ziai and b = Zlbi

1

M8
=]

¢i=0  aj=by, aj,bj andeg ¢ { 0,1 } .
Let us now prove that the value of SGF of a global system S can be

calculated by using those of component systems S; if there is a strong modelling

from § to the disjunctive complex system DC(S), where 5= { Sili eI}
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‘Theorem 10.2.1

Suppose that a global system § ¢ X x ¥ which satisfies X=Y

13 strong modelling morphism. Then if a subsystém S c ¥ x ¥ of S satisfies
that §l§=§, the SGF g of S is given by

g:X u Y

+

N

B1P 1 () x & X
iel :
X >

L]

@ g;p; 0, (%) X €
(g Py
.y where h=(hx,hy):§ +> 5 is a strong modelling morphism and hxéhy,

and pi=(pix,Piy):S *> Sj is the i-th projection of S.

An outline of the proof of this theorem is as follows ;

By Lemma 10.2.2, SGF g of DC(§) can be defined by those of S; as the
binary sum of g; and SGF é of § can be defined by the compositiéin of

h and g by Lemma 10.2.1.. Since h|S is also a strong modelling morphism

by Lemma 10.1.1, SGF § of 5 can be defined as the above form.

10.3 Example

Let us now illustrate éhe meaning of Theorem 10.2.1 by using the
"Stair Case” game‘which is also used>in the reference [24].

This game is a two-person game. Initially some sticks are placed
on stairs. A player who finally brings down the sticks onto the lowest
stair is the winner. Following the rule, one can bring any number of

sticks from exactly one stair down to the next lower stair.
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Let us consider the state transition of this game as a global system
S. Then 2ﬂ§)55(§) isrthe set of state and § © X x Y is defined
by ([mlk e N], [y |k e N]) e § -

“ (A'ky & N) (%o + Xko-1 = Yko + Yko-1 and Xiq > Yko
o and (Yk € N)(k # k, and k # ko-1 > Xp=yR))-.
This definition states that a move of this game is to Bring some sticks
on the kg-stair down the (ky-1)-stair for some ko € N.

Let us now pay attention to the even stairs and represent its move
by Sox = N x N. That is, ahy palr of non—negative integers is assumed to
be possible for the move on each even stair.kLet ué now constfuct the |
disjunctive complex systemkover S= { Soklk € N } . Let us define an equi-

valence relation E, on X =Y by

i
[xklk € N] Ej [xi'lk & N] & xy=x;’

~

and ﬁi on S by
(Ix Ik € N1, [y Ik € N]) By (Ix" Ik & N],[y' |k & N])

* Ixklk € N] By [x¢'lk € N] and [yrlk € N] By [yy'lk € N].
Then ﬁi is an input—output compatible equivalence relation for i £ N and
the quotient system is given by »

§/Eg= { (LIxlk € N1JEy,,[1y, Ik & N]1Ey)]
DIk e NIEyy * [lylk e NITEg) 0 8 # 0 )

Then it can'be easily shown that the conditions of Theorem 10.1.1 are
satisfied and hence S can be decomposed into the disjunctivé éomplex

system S$=DC(S) by a strong modelling morphism.
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Let us now calculate the value of SGF of a simple example. Suppose that

re are four stairs and initially one stick is on each even stair.

ot us represent the initial state by (0101). Ihen the tree of this game
s as shown in Fig.10.3.1 and § < X x Y satisfies 5=S|X. Let h=(hy,hy)

.§ + S be a strong modelling morphism whose existence is ensured by
the above discussion and pij=(pixsPiy):S > Si is the i-th projection.
;uppose that SGF gy of Sox is given for 1=1,2 (¥Fig.10.3.2). Then the value

of SGF é of S can be calculated by

R

gZQQXhX(X)(> 84P4x My (X) X E

g(x) = { i
8Py hy (7) (D 84P4 0y (¥) v ey

from Theorem 10.2.1.(:) in Fig.10.3.1 represents the value of SGF. Concern-

ing with the practical meaning of SGF, the reference [24] should be consulted.
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Fig. 10.3.1 S and h(S)
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(@13 a value of each SGF gi)

Fig. 10.3.2 p2kh(’sv) ( k=1,2 ) and Its SGF
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Part IV : Conclusions
11. Conclusions

Decomposition is a’useful“tool for inVestigating a complicated
system. After decomposition, we can get some information on a property
of a global system by those of component systems.

In this dissertation; we have constructed the mathemétical basis
for algebraic decomposition theory. In decomposition theory, the follow-
ing problems are fundamental.

1) Characterization of Interactions ;

2) Decomposition Problem ;

3) Property Preserving or Reflecting Decomposition.

We have pfovided the foundations to solve the above problems.

Systems of our concern in decomposition were general input—output
systems, functional systems and transition systems. Since the essential
point of decomposition is whether or not we can findla class of congru-
ence relations with a disirable proégrty. It was clarified that universal
algebraic approach is useful for this purpose.

In Part O, we have provided preliminaries for this dissertation. An
input-output system, a functional system and a transition system weré
precisely defined and some universal algebraic notions were introduced.

The first problem was investigated in Part I. It was ciérified that
the concepts of interactions such as the system interaction-and the process
intetéction are enough for‘charactérization of interactions. It seeﬁs,
however, that other concepts must be infroduced in order to distinguish

hierarchical systems from non-hierarchical one.
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Primary types of connections which are well-known in systems theory
~were also introduced in Part I. It seems that these connections are enough
when we consider connections of component systems of a non-hiefarchical
‘system. Intuitively, a complex system expressed by a signal flow diagram
can be decomposed into these connéctions of component systems.

The second problem was investigated in Part II. We mainly consider
the case where a global system has a complex system in modelling (inductive
‘modelling). By using universal algebraic approach, we introduced the
“concept of quotient systems. The essencial point of decomposition is, in
other words, whether or not it is poosible to find a class of quotient
systems of a global system by which we can construct a complex system with
a’given type. Though cascade and feedback decomposition of an input—output
systen was also investigated, it must be further developed in future.

Other forms of decomposition of an input-output system such as dedu-
’ ctive modelling and simulation were also considered in Part I.

For decomposition of a functional system, we mainly considered the
case where a functional system is an endomorphism of an Q -group.
In decomposition of é transition system, the main idea 1s that a tran-
sition system can be expressed as an Q —group. In contrast to decomposi-
tion of an endomorphism, decomposition of a transition system is considered
as that of a Q -group. It is, however, difficult to solve the serial
decomposition problems because component systems are algebras with diffe-
.rent ﬁypes in this case. It seems that heterogeneous algebraic approachlg)’zo)’21)
is useful for this type of decomposition.

The third problem was discussed in Part II1. We only investigated one
of pfoperty reflecting decomposition. The type of a complex system consi-

dered in this part is not so special and the method how to calculate SGF
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of a global system by those of component systems can be extended to
other property reflecting decomposition.

Whether or not a systemic property sﬁch as stability, controllability
can'beApreserved or reflected in decomposition must be‘investiéated inh
futuré. It seems that model theoretic approach is useful for this problem.

Consequently, the following problems remain to be solved;’

1) Formalize a hierarchical system and a non—hierarchical one ih
the framework developed)here. |

2) According to 1), show that priﬁary tYpes of connections such as
parallel, cascade and féedback connections are enough to realize a non-
hierarchical conplex system.

3) Develope a method for cascade and feedback decompdsiﬁion of a trah—
sition system by using heterogeneous algehraic approach.

4) Investigate property preserving and reflecting problemsyfor systemic
properties using model theoretic approach.

Adding that other types of decomposition problems in systems theory
must be of course investigated and formalized in the framework de&elqped

here.
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APPENDIX

..Proofs for Chapter 2

of of Proposition 2.2.1 : Since X ¢ II (Xili g I) and Y ¢'lI (Yiii e 1),

let pjg:X > X3 and Piy‘Y > Y; be the i-th projection on X and on
5 respectively. Then pi;=(pix,piy):s + 53 is a modelling mofphism

{for all i € I and moreover pi{' is a surjective modelling morphiém.

Because pi'(([x1]1 € I],[yili & I1))=(pix(lx;li e I]), piy([ysli € 11))

=(x{,y1)=pi([sili € I]) and pj is a surjective map from S to Sj

bﬁ~Definition 2.2.2, where si{=(xj,yi) for all i € I.

Q.E.D.

Proof of Proposition 2.2.2 : See the reference [1].

-Proof of Proposition 2.2.3, 2.2.4 : See the reference [3], [7].

Proof of Proposition 2.2.5 : See the reference [7], [8].

Proof of Proposition 2.2.6 : It is enough to check that the composition

]
. is well~defined. Let hs=(hx,hy) e Hom(S,S") and h® =(hX',hy') e Hom(S',8").

s'.  .s_ .
Then h™ "o h™=(h,’ hy, y

(x,y) € S, there is y' & R(8')=Y' such that (hy(x),y') € 8' and hy(y')=y.

hy * hy') by the definition. For any

And hence there is y" & R(S8")=S" such that (hy'(hy(x)),y")=

C(hy' ¢ he(x),¥") € 8" and hy'(y")=y'. Because h®' is also a simulation
1
morphism. Since hy(y')=y, hy . hy'(y")=hy(y')=y.‘Therefore h® o 1n®

is a simulation morphism.
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Hence SIM is a category.
Q.E.D.

Proofvof Theorem 2.4.1 : For any ¢ ¢ End(A), © is uniquely determined

by'Kef; Tﬁeféfdre it is enough to show that © Con(A). If is easily seen
that O is an equivalence relation. For ahy.fY € F, any (ao,bo),...,

(any ~1:bny -1) €0, & (£y (ag,--nraqp -1))=Ey (& (ag)seeny & (apy -1))
=f y (4 (b0)yeees & (b y =1)) = & (Fy (bgy-nn,byy —1))-
Therefore (£, (ab‘,...,anY _1);fY (bgsesvybpy -1)) €0 .
Hence O is a congruence relation and so ¢‘is a mapping.

Q.E.D.

Proof of Proposition 2.4.1 : It is obvious that NSub(A) < Sub(A) because

every Q -normal subgroup is an Q —subgroup. Let B be a. Q -subgroup of A.
For any b € B, any a € A, if the binary operation is commutative,

a+ b+ (-a)=a+ (-a)+ b=>b e B. Therefore B is an Q —normal sub~
group. Hence NSuB(é) = Sub(A) if it is the case. |

Q.E.D.

Proof of Theorem 2.4.2 : It is easily seen that ¥(0) is closed under éé
for all © e Con(A). For any f) ¢ Fy, any c=a-b ¢ (o) » £ (0)= ‘

£) (a=b)=fy (a)=fy (b). Since fj e End(Ag), (£x (a),£x (b)) € O .

Then £, (c) ¢ v(o) .  For any c=a-b V¥(0) , any a €A, ;+c+(-g)=;+a-b-;=
ata-(a+b). Since (4,2) € O and (a,b) £ O , (a+a,a+b) ¢ O . |

Then ;+c+(r;) € ¥(0) . Therefore ¥(0) ¢ Sub(A) and ¥ is well-defined.
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Let O @’.e Con(A) be © # ©” . Then wé can suppose that there
xists (a,b) € A x A such that (a,bj € 0 and (a,b) £ ©° without loss of
'eperality. If a~b € ¥(0) , there is (a',b') € © such that a'-b'=

fé b. Since (a,b)=(at+(-a'+a'),b+(~-b"+b"))=((a-a')ya',(b-b')+b') and
‘(a-a',b~b') £ 0, (a,b) € © , because O is a congruence relation. It
‘contradicts the assumption. Therefore a-b ¢ ¥(0) and ¥ is injective.
For any B e Sub(A), let © be defined by (a,b) € © » a=b £ B. Then
it is easily seen that ¥(©) =B. Hence Y is bijective.

Q.E.D.

roof of Proposition 2.4.2 : Suppose that there are two different decompo-

~sition of a e A such that a=by+by=by'+bp', where by, by' € By and bz,bz'
€ By. Then O=a—a=(bj+by)—(by'+by')=(bi—by'H(by-b2') & Bi+By. Therefore
‘by-by' is the inverse of (b1-by') and hence bp-bp'=-(by~b1') & By. Then
bo-by' € By N By and therefore‘bszz'. Similarly, by=by'. Hence a is

uniquely decomposed. ; Q.E.D.

...1 __1.
Proof of Theorem 2.4.3 : Let that V¥ (gl)é 6 1’ vy (§z)= © , and

';(El ,B9) € 1 (A). For any a,a' € A, there are by,by' € By and by,by" € By
such that a=bj+by and a=bj'+by'. Let c=by'+by. Then c—a=(by'+by)-(b1+by)
=by'~by € By. Therefore (a,c) € © 1. Similarly, (c,a') & © 5. Hence (a,a')

£©1 009, then ©={01, 09 } is full. Let (a,b) € 61 n 02 . Then
‘b-a € By N Bp. Hence a=b and therefore O is separating.

Conversely, suppose that © = { 0 1, © 9 } is full and separating.

Since By= ¥ ( © 1) and By= ¥ ( © 2) are normal subalgebras of A, 0 ¢ By
N Byp. If there is a £ By n By, (3,0) €071 NOy. Since @ is

separating, a=0. Hence By N B9= { O } . For any a € A, let bj e [a] © 2
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n[0] ©1 and by € [a] © 1 n [0] © 5. Since © is full and separating,
such by and by exist. Then b; & By, by & By, a~(br+b2)=(a—b1)+bz € By

and a—(br+b2)=(a—b2)+b1 € By. Therefore a—(by+bj) € By n By

and hence a=b1+b2. o
| Q.E.D.

Let ¢ € End(A). Then it is easily seen that

.
-

Proof of Theorem 2.4.4
KerG( ¢ ) is closed under FG. For any fk € Fy, any a € KerG( ¢ ),

¢ (£ (@))=f ( ¢ (a))=fy (0)=0, because fa € End(Ag). Therefore
'KerG( ¢ ) is a subalgebra of A. For any b ¢ Kerc('¢ ), any a € A, & (atb+(-a))

= ¢ (ax+ ¢ (b)~ ¢ (a)= ¢ (a)- ¢ (a)=0. Therefore KerG( ¢ ) is‘a normal

subalgebra of A and Ker® is a mapping of End(A) to NSub(A).
Q.E.D.

: For any ¢ € End(A), ¥ Ker( ¢ )= { a~b|(a,b) ¢

Proof of Theorem 2.4.5 :
Ker ¢ } = { a-b|l ¢ (a)= ¢ (b) } , while KerG( ¢ )= { al ¢ (a)=0 } .

Since for any a-b e ¥ Ker( ¢ ), ¢ (a=b)= ¢ (a)~ ¢ (b)=0, therefore a-b

€ KerG( ¢ ) and ¥ Ker (¢)c KerG( ¢ ). And for any a ¢ Ker® b, ¢ (a)=o= ¢ (0).
Then a=a-0 & ¥ Ker( ¢ ). Then Ker® ¢ c ¥ Ker ¢ . Hence KerC ¢ =¥ Ker ¢ .
' Q.E.D.

Proof of Theorem 2.5.1 : See the reference [9].

Proof of Theorem 2.5.2 : See the referencek[10].
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proofs for Chapter 3

proof of Proposition 3.1.1 : Let 8= { S1,S2 } , where S3 < (X1* x Z) x Y

and S © (Xp* x Z) x Y. Let h=(hyg,hy) be defined by
- hy: D(B(S)) » D(EX(R(S)))
hy((x1,2),(x2,2))=(x1,2,%2) '

: R(P(S5)) > R(EX(P(S))) ; identity.

7Then obviously, h=(hx,hy) is a modelling morphism. Moreover, it is an iso-

~morphism in MOD. , Q.E.D.

Proof of Proposition 3.1.2 : Let S= { S9,S3 } , where Sy ¢ (X3* x Z) x Yy

f;nd S9 © (X9* x Z) x Yp. Let hy be defined as in the proof of Proposition
;3.1.1 and hy;g(EX(P(§))) + R(P(S)) the identity. Then for any
(((x1,2)5(x252))5 (71,52)) € B(S), (¥1,72) € R(EX(R(S))) and
(hx((xl,z),(xz,z)),(yl,yz)) e EX(P(S8)). Therefore h® is a simulation
morphism from P(S) to EX(P(S)).

Q.E.D.

Proof of Proposition 3.1.3 : Let S= { S1,S9 } , where S1 < X1 x (Y1* x Z)

and Sg9 < (Xp* % Z) X Yp. Let h=(hx,hy) be defined by

hetXp X (Xo% x Z) > X3 x Xo¥* 5 hx(xl,(xz,z))=(xi,x2)
and hy:(Y1* x 2) x Y3 > Y1* x Y3 5 hy((y1,2),y2)=(y1,y2)-
For any (((x1,(y1,2)),((x2,2),¥2)) € C(8), h((xy,(x2,2)),((y1,2),¥2))
=((x1,%x2),(y¥1,¥2)) € EX(C(S)).Therefore h=(hx,hy) is a modelling mor-—
phism from C(S) to EX(C(S)). It is easily seen that h(C(58))=EX(C(8))-

Hence EX(C(S)) is a surjective model of C(8)). ‘
Q.E.D.
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Proof of Proposition 3.1.4 : Let S = { S3, S» } , where §1 ¢ (X* x Zx) x

(Y* x Zy) and S9 < Z

y X Zyxe Let h=(hx,hy) be defined by

hy:(X* x Zy) x Zy » X*

y
hy( (X, 25),29)=x
hy:s(Y% X Zy) X Zy > Y*
hy((752y),22)=y-
For any (((x,zx),(y,zy),(2y,2x)) € F(S), h(((x,zx),(y,zy-)),(zy,?x))
=(x,5) € EX(F($)). Therefore h=(hy,h,) is a modelling morphism from F(S)
to EX(F(S)). It is easily seen that h(F($))=EX(F(S)). Hence EX(F(S)) is

a surjective model of F(S).

Q.E.D.

Proof of Proposition 3.2.1 : Let h=(hx,hy):S + 8" be a'modelling mor-

phism in the sense of Definition 3.2.1. Then for any (x,y) € S,vhys(x)
=5'hy(x). Therefore (hx(x),hy(s(x)))=(hx(x),hy(y)) € 8'. Hence it is
also a modelling morphism from S to S' as between input—output systems.
Conversely, suppose that h=(hx,hy) is a modelling morphism from
S ¢X xY to 8" ¢X' x Y'. For any x € X, there is y & Y such that
(x,y) ¢ S..Since h=(hx,hy)~is a modeiling morphism, (hx(x),hy(y)) £ S'.
And since 8' is functional, S'hx(x)=hy(y)=hy3(x). Therefore h is also
a modelling morphism in the sense of Definition 3.2.1.

Q.E.D.
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oof of Proposition 3.2.2 : Let S= { §31,S2 } , where S3:X > ¥ and $3:X » Y3

e functional systems. Then Pp(S)= { (x,(51(x),82x)NIx € X } and

1t

{C 0 ,%x ¢),(51(x),82(x))Ix € X } , where we identify X

%

X. Then Pp(S) = EX(P(S))-

. - Q.E.D.

proof of Proposition 3.2.3 : Let § { $7,59 } , where S3:X > Z and 83:Z > ¥

4re functional systems. Then Sl‘° So= { (%,8981(x))[x € X } and EX(C(S))

{(x, ¢ )50 ¢ ,8251(x))|x € X } , where we identify X9* x Z and Y1* x Z

with {6} x Z. Then Sy * Sy % EX(C(S)).
' _ Q.E.D.

‘Proof of Proposition 3.2.4 : Let S= { 831,52 } , where $1,52 ¢ End(A).

‘Then S1+Sp= { (x,81(x)1¥S2(x)))Ix ¢ A } and Pp(8)= { (x,(81(x),S2x)Nx e A } .
‘Let h=(hg,hy) be defined by
hytA > A 3 identity
hy:gﬂPF(g)) + R(S1+83)
hy(Sl(x),Sz(x))=81(x)+82(x).
“Then h(Pp(§))=S;+S). Hence h is a surjective modelling morphism .

Q.E.D.

Proof of Proposition 3.3.1 : For any (c,c'’) é S, there is u ¢ U such that

o (cyu)=c'. Since h:C > C' is a morphism from T to T', ¢ '(h(ec),u)
=h ¢ (c,u)=h{c'). Therefore (h(c),h(c')) & S'. Hence h=(h,h) is a
modelling morphism from S to S'.

Q.E.D.
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Proof of Proposition 3.3.2 : Suppose that h:Cv+ C' is a morphism from T

to T'. For any ¢ € C, any x¢¢' € Xgpt, h ¢ tf'(—,xtt')(c)=h ) tﬁ'(c,xtt')
= ¢ "eer(h(e),xeet)= ¢ et (=X )(h(c)). Therefore h is a homohorphism
fromFE('$ ) to_g(-a 'y, .

Conversely, if h is a homomorphism from <( % ) to c( %",

ho¢ epr(e,Xept)=h ¢ et (=, %ppr)(e)= ¢ "rer (=sXept )(h(e))= ¢ 'ttv(h(c),xttv).

Therefore h is a morphism from T to T'. , T QUE DY

Proof 6f Proposition 3.3f3 : By definitiop, it is ditectly shown that
EK.E )=[Cy x CZ3FT]; where for any ¢ ¢ev(—,xX¢pr) € Fop,

¢ per(=>Xger):Cp %X €y > €1 X Cp is defined by ¢ ¢t (=,x¢e?)(cy,c2)
=( ¢ tt'l("xtt')(ci)’ b tt'z(-’xtt')(cz))‘ Therefore

c 9)=c( o1y x c( ¢ 2). |  QE.D.
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Proofs for Chapter 4

oof of Proposition 4.1.1 : Suppose that S= II S. Let (si,8{) € S§ X S;

ﬁeiarbi;rary. Then s; e S; and s{ € II (Sjlj e I- { i } ). Therefore

(si,51) € I S = S. Hence S; has Ni. | |
Conversely, suppose that S has NI, that is, §=5; x S}, for all i ¢ I.
Létk[sili £ I] € I S be arbitrary. Then there exists Ei € gi such that |
(sl;gl) € S. Since (si,pP1~ {‘1,2 } (gl)) € §é, (s1,82,P1- { 1,2 } (Ei)) é
’2 X'§2=S.JContinueing this process, we finally get [sili e 1I] €8

Bééause I is finite. Q.E.D.

‘?roof of Proposition 4.2.1 : Suppose that (i,j) € NI(S). Then p(i,j)(S)
’=Si X 83 by the definition and hence p(j’i)(s)=Sj %X Si. Therefore (i,J)
e NI(8)"! and so NI(8) < NI(S)~l. Similarly NI(S)! « NI(S). Hence -

: NI(S)=NI(S)‘1. Q.E.D.

Proof of ?ropoSition 4.2.2 : Suppose that S=§; x S;. Then it is obvious

| that p(i,j)(S) €83 x 853 for any j € I~ { i } . Therefore it is enough to
1show that §3 x S5 < p(i’j)(S). For any (Si,Sj) € 84 x S5, there exists
's; € S¢ such that pj(gi)=sj. Therefore there exists s=(sj,s;) € S such
that p(i,j)(s)i(si,Sj). Hence 8§ X 84 < p(i;j)(s)'and 81 X sj=p(i,j)(s)

- 120 -




Proof of Proposition 4.2.3 : Suppose that S4 has NPI. Let sy>»83" € 53

be arbitrary and xj € DSlj*(s y n DSlj*(sj ). Then there exists ¥j,
yi' € Yj and g&j,_gij' €-§ij such that ((x§,¥i), Sj,sij) ] andv((Xi,Yi'),
sy :313 'y £ §. Let. 5i= (sJ,siJ) and sy Y=(s ' ,siJ '). Then %4 € DSl*(sl)
n DSl*(si ). Since Sj has NPI, Sl*(si)(xi)-si*(sl')(xi) Therefore yi ﬁ**?
£ Si*(gi')(xi) and yi' € S-*(si)(xi). Hence yq € Sij*(Sj )(xl)’and
yi' € SiJ*(sJ)(xl) Therefore SiJ*(sJ)(xi)—SiJ*(sJ )(x4)-

Hence (i,j) € NPI(S). » , . Q.E.D.

Proof of Proposition 4.2.4 : Let (i,3) & WNSI(S). Then p(i,j)(x)=xi x Xg-
Therefore p, . ;+(X)=X, X X, and hence (i,3) ¢ wNSI(8) }. Similarly,
(3,1 k| i

WNSI(S) ! c WNSI(S). Hence WNSI(S) }=WNSI(S). Q.E.D.

Proof of Proposition 4.2.5 : Suppose that S; has WNSI in S. Then X=X; X Xj.

Let (xi,xj) e X3 x Xy be arbitrary. Since Xj € X4 there exists xj € X4
such that pj(gi)=Xj. Therefore (Xisxj)=P(i,j)(Xi;§i) e p(i,j)(X). Hence
Xj X3¢ p(i’j)(X). Since it is obvious that p(i’j)(X) c Xj x X3,
p(1,§)(¥)=Ky x Xj. It follows that (i,1) e WNSI(S) for all j e I- { i } -

Q‘.E .D.

Proof of Proposition 4.2.6 : Suppose that S; has SNSI in S. Then Dsi*tgi)
=X; for any sj € 5j. Let s 3 S; and xj € X4 be arbitrary. Then there

exists s € S such that pj(s)=sj- Since Si has SNSI, %j € DSi*(p1- { 1} (8))
=DSij*(sj). Hence Dsij*(sj)=xi and~(i,j) € SNSI(S)f

Q.E.D.
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. Let (i,3) ¢ gNSI(S)- Then DSij*(Sj)=Xi for

;% X3 be arbitrary: Then there ex1sts

i gince (i, € gNSTI(S), *i © DS 3 JEEE

Then there exists~yi e Y3 and Sij such that ((xl,yl) sj,sij) £ Se. There—
(X) and hence (i,3) € WNSTI(S)- Q.E.D-

£ 1) Let (1,5) € WNST() pr(S)‘l. Let s.=(xj,yj),
o show that DSij*(sJ)

proof of Theorel 4.2.1

\

'=(Xj Y3 ') € 53 1 pe arbitrarye 1t is enough ©
=Dsij*(33') pecause any xi € ¥4 should be an element of DSij (SJ)
for some Sj € 53' Let Xi € DSlJ*(sJ) and Xi € DSij*(sj Yo
),83) € p(i,j)(s)

ch that ((Xi7i
(s). since P(1, $HE)RL % X3»

"),(xj',yj ")) € 9(1,3)(8)

¢ NPI(S) >

Then there exists yi-¥i' € Yq su

and ((x1' y1'),83") £ P
there exists Yi"rYj" guch that (25,91
Then Xj' . DS *((Xl’yln)) a Dsji*(cxi"yi'))' gince (i,j)
) e e, NG Therefore ¥i © DSij*((Xi'Yj'))’Dsii*(sj"‘

((Xi_',}’i"),(}{j' ay:‘
') gimilarly, DSlJ

*(s3) © DS §*(s ®(sy") © Dsij*(sj).

Hence DS i3

' fence (i, € gNSI(S)-
2)-(i): NL(G) © WNSI(S) 0 WL T ° NPI(S)
Let (i,3 € NI(S) and 1et (xl,xj) g X3 ¥ X3 be arbitrary- Then there

exists ¥i ¢ y; and Y3 e Y3 such that (%1,Y1) & g4 and (xj,yj) € 85
((Xi,Yi),(Xjan)) e p(i, N Therefore (%15%3)

gince P(i, j)(S)=Si % 59

)(X) and hencé (1,1 € WNSL(S)-

€ DSij*(Sj)

e P(i,]
)) Let us next show that (1, j) € NPI(S) Suppose rhat ¥i
n DSij*(Sj') for arbitrary elements s4>5] € 53 Let vi € SlJ*(sJ)(xi)
be arbitrary- Then ((Xi’yi) sj') £ 951 % s-=p(i,-)(3). Therefore ¥i £
imilarlys Sij*(Sj')(Xi)

*(sq V(x-S
Yo Therefore NI(S)

*(s ) (x1) < $ij

) and hence Sii*
‘)(xl)"513*(sj)(xl

Sij*(Sj')(Xi

cs13%(83 ) (x1) and hence s13%(s3
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c NPI(S). Since NI(S)=NI(S)™! and NI(S) < NPI(S), NI(S) < NPI(S) 1.
2-(i1) : WNSI(S) n NPI(S)™! n NPI(S) < SNSI(S) n NPI(S)
It is obvious from 1) in this theorem. |
2-(iii) : SNSI(S) n NPI(S) < NI(S) ’
Suppose that (i,3) ¢ SNSi(S) N -NPI(S). it is enough to showfﬁhat.
Si X S3 < p(q,j)(S) because p(j, §)(8) < 53 x Sj holds by the definition.
LEt((Xi’Yi)’(Xj’Yj)) €83 x84 be arbitréry. Then there'exiéts (gj',yji)
€ Sj such that ((xi,yi),(ij',yj')) € p(i,j)(s). And there existé yi" & Y3
such that ((xi,yi"),(xj,yj)) e‘p(i’j)(s) because (i,j) € SNSI(S). Then
Xq € DSij*((xj',yj')) n DSij*((xj,yj)). Since (i,j) e NPI(S), fi € Sij*

((x5,¥§))(x1). Therefore ((x1,51),(x§,7{)) € S X S5 Q.E.D.

Proof of Proposition 4.3.1 : Let F be a relation on I satisfying D(F)

u BKF)=I- Let (Ix4li e I],[yili € 1]), (Ixili e I,[yi'li e I]) e 8.
let k1=1. Since kj € I=D(F) U BKF), there exists j] £ I such thét
(kp,3p) € F v FhL Since ((xg,%51) (epsy 1)) € P(k1,31)(8) and ((xq,x41),
(yk1'>y31' D) € P(k1,j1)(8), and P(kl;jl)(s) or P(jl,kl)(s) is functiqnalé
Yk1=Yk1' and‘yj1=yj1'. Let kg = min[I~ { ky,j; } ]. Similarly, we can find
j2 € I such that yy9=yro' and yj2=yj2'. Continueing this process, we can
show that S is functional because D(F) U R(F)=I. '

Conversely, if S= I § and S is functional, S is fﬁnctionai for all

i € I. Since P(i,j)(s) is functional if S and §4 are functional, p(i_j)

(S) is functional for i # j. , Q.E.D.

- 123 -




Proof of Lemma 4.3.1 : Let (i,j) & SNSI(S) N FC(S). Suppose that (Xj,Yj),

(x4,73') & 84. Sinse (i,j) e SNSI(S), DS 4*((x4,53))=D81 j*((x3,7;'))=Xy-
Therefore there exists (xi,v1{),(x¥i,¥{') € Sj such that ((xi;yi),(xj,yj))
€ P(1,1)(S) and ((x4,y1'),(x4,55')) € pc,)(S)- Since (1,3) € FC(S),

(y1»y3)=(yi",y3"). It follows that S; is functional.
Q.-E.D.

-

~ Proof of Lemma 4.3.2 : Let Sj be functional. Suppose that xj € DSjj*(sj)

n DSij*(sj') for any sj,sj' € Sj. Since §; is functional, Si(xi)=

S13%(s3)(x1)=515%(s3')(x1). Hence (i,j) e NPI(S).

Q.E.D.

Proof of Proposition 4.3.1 : Let (i,j) e SNSI(S) n FC(S). Then Sy is

functional by Lemma 4.3.1. Therefore (i,j) ¢ NPI(S)—l'by Lemma 4.3.2.

Q.E.D.

Proof of Theorem 4.3.1 : Since WNSI(S) n NPI(S)™! c SNSI(S) by Theorem

4.2.1, WUNSI(S) n NPI(S)'—1 N FC(S) < SNSI(S) n FC(S). And by Proposition
4.2.7 and Proposition 4.3.1, SNSI(S) n FC(S) € WNSI(S) n NPI(S)™! n FC(S).
Hence WNSI(S) n NPI(S)™! n FC(S)=SNSI(S) n FC(S).

Q-E.D.

Proof of Proposition 4.3.2 : It is directly from Lemma 4.3.2.

Proof of Proposition 4.3.3 : Since NPI(S)_1=(IdIC)_1=IdIC by Proposition

4.3.2, WNSI(S)=WNSI(S) n IdIC=WNSI(S) n NPI(S) T SNSI(S) by Theorem

4.2.1. Q.E.D.
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Proof of Theorem 4.3.2 : NI(S)=SNSI(S) n NPI(S)=SNSI(S) by Theorem 4.2.1

and Proposition 4.3.2. And SNSI(S)=WNSI(S) by Proposition 4.2.7 and Pro-
position 4.3.3.

Q.E,‘D'

Proof of Proposition 4.4.1 : At first, let us show that CS; is a cate-

gory; By the definition of the composition, the composition operation
is well-defined and admits associativity. Let Idg = II (Idgili skI)lS,
where § < II (Sili € I) and Idgj is the identity morphism of S in
MOD. Then Idg is an identity morphism. Hence CS is a category

and it is obvious that it is a subcategory of MOD.

Q.E.D.

Proof of Theorem 4.4.1 :

1) Si.has NI in S if and only if S; has SNSI and NPI®) . Therefore it is

directly from 2) and 3)..

2) Suppose that S, has NPI in S. Let E"l, Eﬂ'z €5," and %x,' £ X,' be
i i i i i i
arbitrary. Suppose that x,' ¢ DSi'*(Ek'l) n DSi'*(Ei'z). Then there exist’

yi'l, yi'2 e Y;' such that ((xi',yi'l),gk'l) € 8' and ((xi',yi'z),gg'z)’e St.

1 1 -1 '
’yi)ssi)ss’

i

Since 1I (hili e I)|S is an isomofphism, there exist ((x;
and ((xiz,yiz),gkz) € S such that II (hili £ I)((xil,yil),gkl)
=((xg"y3"Dysy ') and T (hy 1t e DOy 25 =00y Ly 2,550 D).

Since hi=(hix’hiy) is an isomorphism, hix is injectiveB) Therefore

p:4 1=x-2. Letvx-=x»1. Then x; € DSo*(s-l) n DS *(s-z) and hence
i i i~ i i i i i

Si*(sil)(xi)=5i*(siz)(xi) because S; has NPI.

Therefore yil € Si*(ézz)(xi) and hence y'i1 £ Si'*(gﬁiz)(x'i). Similarly,

S’i*(STiz)(X'i) C-S'i*(s"—il)(x'i)- Hence S'i has NPI.
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Conversely, suppose that S'i has NPI in S'. Let E&l, §£2 s,§i and
x. € X, be arbitrary. Suppose that x, € DS-*(STi) n DS *(5—2) Then
i i i i i i i’

- there exist yil, yi2 € Yi such that,((xi,yi),gkl) € S‘and ((xi,yiz),gkz)

€ S. Since II (hili € I)|S is a modelling morphism, (hi(xi,yil),ﬁk(gkl))

€ S' and (hi(xi,yiz),hi(siz)) e S', where h;= II (hjlj g I- { i} )lsi.
' — 1 = = 2 1y
t k( L
Therefore h,_(x,) € DS' *(h,(s;")) n DS'; (hi(si )) and hence hiy(yi )
—_2 . '
% ' . .
e 8’ *(h, (sy ))(hix(xi)) because S', has NPI. Since II (hill e I)Is is

surjective; there exists ((§_,§,),§:) £ S such that (h.(§ ,; ),
i17il v s A §

Ei(gi))=(hi(xi’yi)’ E&(giz))' Then (xi’yi)=(xi’yil) and §£=§£2~

because II (hili g I)|S is an isomorphism. Therefore yi1 € Si*(giz)(xi)
» -1 —2 . —2,,
and hence Si*(si )(Xi) c Si*(si )(Xi)' Similarly, Si*(siz)(xi) c

Si*(gi})(xi). Hence 8, has NPI in S.

3) Suppose that S, has SNSI in S. Let Ei'l, gi’z

1 2 ‘ 1 -
] 1 T 1
»S; € S;' such that (si »85

€ §£' be arbitrary. Then

'1) e 8' and (si'z,gi'z)

1

there exists S;

€ 8'. Since 1I (hili e 1)|s is surjective, there exist (si ,Eil) e S and

(siz, ggz) g S such that 1L (hili £ I)(sil,g-il)=(si
+2
1 b

1

'l—(].
84 ) and

I (hy |4 e T)(s;%,5;%)=(s 1y

_.'2 . =
i 55 ). Since S has SNSI, DSy (si

— 2
= *
DS, (si )5

Suppose that xi' £ DSi'*(Ewil). Then there exists x, € X; such that

Xy E DSi*(gkl) and hix(xi)=xi' because 11 (hili e I)IS is an isomorphism.

—_ 2 — o1 -~ P
Then xi' 3 DSi'*(si' ) and hence DSi'*(si' ) DSi'*(si'z). Similarly,

— 42 tors 11 vo tare— 1l — 42
1% 1 % 1 . * t Ly t % 1
DSi (si ) © DSi (si ). Therefore DSi (si ) DSi (si ) and hence

S{' has SNSI in S'.

1 -2

Conversely, suppose that Si' has SNSI in S'. Let E} ,Ei £ §i be

arbitrary. Let X,

—1 = =1 ’

* 1S 1

€ DSi (si ). Then hix(xi) € DSi (hi(si )). Since Si
— — 9 . ~ A —_—

has SNSI, hix(xi) £ DSi'*(hi(si Y). Then there exists ((xi,yi),si)

SNl = = N = 2 . R
€ S such that hix(xi)—hix(xi) and hi(si)_hi(si Y. Since 1I (hill e I)Is
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is an isomorphism, x,=x, and §'=§:2. Then x, € DS.*(EZz) and hence
ii i i i i i
— 1 - 2 — 2 — 1,
% % ; * *
DSi (si ) < DSi (si ). Similarly, DSi (si ) ¢ DSi (s:.L ). Therefgre

DS;*(5; )=DS;#(5,%) and hence S, has SNSI in S.

4) Suppose that S has WNSI in S. Let (x1',%3') € Xi' x X;' be arbitrary.
Then there exists (xj,Xj) € X3 X Xy such that hjg(xj)=x;' and hj.(X;)=x;'.
Since $; has WNSI, (xi,%X;) € X. Therefore (Ei"Xi')z(hixfgi);ﬁix(xi)) §
= I (hixli € I)((ii;§i)) e X'. Hence Si' has WNSI in S'.

Conversely, suppose that S;' has WNSI. Let (xj,x;) € X3 x X; be
arbitrary. Then (hi,(x;),h;x(X;)) € X;' x {'=X'. Since T (hyli e I)|$
is surjective and hjy and hiy are injectiﬁe, (x4,%;) € X. Hence S; has

WNSI in S. | - Q.E.D:

Proof of Corollary 4.4.2 :

1) Suppose that S is a non-interacted system. Then Si{ has NI for all i ¢ I.
By Theorem 4.4.1, S;' has NI for all i € I. It follows that S' is also

a non—interacted system. Similarly, if S' is a non~interacted systém, SO0
is 8.

2) ~ 4) are similarly proved. Q.E.D.

Proof of Theorem 4.4.2 : Since IS(S) is defined by IS(S)=[PI(S),SSI(S),

WSI(S)], it is enough to prove that 1) NPI(S)=NPI(S'), 2) WNSI(S)=WNSI(S')

and 3) SNSI(S)=SNSI(S').

1) Suppose that (i,3) e NPI(S). Let sj'l, sjfz € Sj' and xi' £ Xi'
§ 0 1 2 .

o ) .'* " n _l* _l .
be arbitrary. Suppose that x;' € DSiJ (sJ ) f DSiJ (sJ Y. Then

there exists yi'l, yi'z € Y;' such that ((xi',yi'l),sj’l) £ p(i’j)(S’)
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: 2 2 R . . . .
and ((%5',;" ),sj' ) e p(i’j)(s'). Since T (hyli e I)|s is an isomorphism,

there exist ((xi,yil),sjl) € ey, )(8) and ((Xi,yiz),sjz) € P(g,5)(8)

“such that h; x hj((xi’Yil)’Sjl)=<(xi'aYi'1~)?Sj'1) and h; x hj((xi’yiz ,sz)

=((Xi',yi'2),sj'2). Therefore X, € DSij*(sjl) n DSij*(sjz) and hence

1 2
% = * 3 3
i (sj )(Xi) Sij (sj )(Xi) because (i,j) € NPI(S). Therefore

Sij'*(Sj’l)(Xi')=Sij'*(3j'2)(xi,)- Hence (i,j) £ NPI(S').

Conversely, suppose/that (i,3) € NPI(S'). Let sjl_,sj2 3 Sj and X5 € Xi

be arbitrary. Suppose that x: € DSij*(sjl) n Dsij*(sjz). Then there

i
“exist yil,yi2 € Y; such that ((xi,yil),sjl) € P(i,j)(s) and ((xi,yiz),sjz)

€ p(i’j)(S). Since II (hi|i e I)|S is a modelling morphism, (hi(xi’yil)’

hj(sjl)) € p(i,j)(S') and (hi(xi,yiz),hj(sjzj) € p(i,j)(s'). Therefore
hye(xp) € DSy g"*(hy(s30)) n DS 5"*(hy(s4%)) and hence |
Sij'*(hj(sjl))(hix(xi))=Sij'*(hj(sjz))(hix(xi)) because (i,j) & NPI(S').
. Then hiy(yil) e.Sij'*(hj(sjz))(hix(xi)). Since II (hili € I) is a sur-
jective modelling morphism, there exists ((;i,§i),;j) € p(i’j)(S)

such that (hi(;i,§i),hj(;j))= (hi(xi,yil),hj(sjz)).

Since hy and hj are isomorphisms, (gi,§i)= (xi,yil) and

2

$37%3

2 ..
*
c Sij (sj )(xi). Similarly, S

. Therefore yil € Sij*(sjz)(xi) and hence Sij*(sjl)(xi)

2 1
* Lk
1 (sj )(Xi) c Sij (sj )(xi). Therefore

1 2 - S
% =g %

Sij (sj )(Xi) Sij (sj )(xi) and hence (i,j) € NPI(S).
2) Suppose that (i,j) € WNSI(S). Let (Xi',Xj') e Xy' x Xj' be arbitrary.
Then there exists (xj,x3j) € Xj X Xj such that hjy X hyx(xi,x)=(x1",%3")-
Since (i,j) e WNSI(S), (Xibxj) € p(i’j)(X). Therefore (xi',xj')=
(hijx(x1),hix(x4)) € p(q, 5)(X'). Hence (i,j) & WNSI(S').

Conversely, suppose that (i,j) € WNSI(S'). Let (Xi,Xj) e Xi X Xj
be arbitrary. Then (hix(xi):hjx(xj)) e Xg' x Xj'. Since (i,j) € WNSI(S'),

,(hix(xi)shjx(xj)) £ p(i’j)(x'). Then (Xi,Xj) £ p(i,j)(X) because T (hili € I)
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is an isomorphism and hijy and hjx are injective. Hence (i,j) € WNSI(S).

3) Suppose that (i,3) & SNSI(S). Let sj'l, s-'zns Sj' be arbitrary. Let

Jd
x;' € DSij*(sj'l). Then there exists yi'l € Y;' such Fhat ((xi',yi'l),si:;)
€ P(4, j)(S'). Since M (hjli & I)|S is surjective, there exists
Gy hosgh e P<1, j)(8) sueh that by x by (Grp,y; 1) P=(Cr ty, e D).
Then x; € DSy *(s ) Slnce (i,J) € SNSI(S), X; € DS, J*(s ) |
where hJ(s32)=sj 2. Then x;'=h; (x;) ¢ DSij'*(hj(s~ ))=DS; *(s '2).

Therefore DSij'*(sj'l) c DS .'*(sj'z). Similarly, DS, "*(s, '2) e ps, FRICY 1y,

ij
Hence (i,j) e SNSI(S').

Conversely, suppose that (i,3j) & SNSI(S'). Let s-l;s-2 € S;: be

J J J
arbitrary. Let xj € DS.. ( ) Then hix(xi) £ DS '*(h (s )) Since
‘ 2
(1,3) ¢ SNSI(S ) hy (%) ¢ DSiJ'*(h (s )) Therefore x; & DS1J (s S 4 )

because I (hyli € I)IS is an isomorphism. Hence DS -*(s' ) € DS; s*(s 2).
i 137453 137V°]

s s 2
% c
Similarly, DSij (sj ) DSij

*(sjl). Hence (i,3) = SNSI(S).

Q.E.D.
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4. Proofs for Chapter 5

Proof of Proposition 5.1.1 : Let (RX,RY) be an associated pair with R.

Let p=(px,py) be defined by

| PiX > X/Ry ;5 x » [X]Ry

py:Y Y/Ry 3y [yIRy -

For any (x,y) € S, (x,y)/s [xIRx x [y]Ry N S. Thefefore ([x]Rx,[y]Ry) €
S/R and p=(px,py) is a modelling morphism. And for any ([x]RX,[y]Ry) e S/R,
" there is (x',y") € 8 such that (x',y') ¢ [x]Ry X [y]Ry n S. Therefore
p(x',y")=(px(x"),py(y')) =([x']Rx,[y"]IRy) =([x]Rx,[y]Ry); Hence

p=(px,Py) is a surjective modelling morphism, that is S/R is a surjective
model of S.

Q.E.D.

Proof of Proposition 5.1.2, 5.1.3 : See the Reference [3].

Proof of Proposition 5.1.4 : Since o =( ox, Oy) :S/pih > Sj is

an injective modelling morphism from Propoéition 5.1.3. It is enough
to show that o is a sufjective modelling morphism if so is h.

Since pj o h is a surjectiﬁe modelling morphism, for any (x1,¥1) € S3,
there is (x,y) € S such that pjoh(x,y)=(x{,y;). Therefore
([X]Pixhx:[Y]Piyhy) e S/pih and o ([x],[y]) =(x4,yi). Hence ¢ is

a surjective modelling morphism and S/pih = Sj.

Q.E.D.
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Proof of Theorem 5.1.1 :

(1) Let 1=(ly,1y) be defined by

LX > DS/R) 5 LGo)=([x]Ry L, [x]Ry %)

RN R(S/R) 5 1 (y) (Iy1R, ,[y]R 2y.
For any (x,y) €S, (x,y) € ([x}Rx n [XJRX ) % ({y]Ry n [y]Ry ) nS.
Therefore (([x]RX ,[x]Rx ),([y]Ry ,[y]Ry )) € S[E.and 1=(14,1y) is a
modelling morphism. For any (([xl]RXI,[XZ]RXZ),([yl]Ryl,[yz]Ryz)) e S/R,
there is (x,y) ¢ (Ix IR 0 [x,]R, %) * (LypIR," 0 [y,1R,%) S. Then
108,57)=(1y (%), 1y (yD=CCxIR,, [xIRA), ([1R D, Ty 1R 2))

=(CIxy IR L5 [ TR 2), (I3 TR, [y2 1Ry 2)) -

Hence l_is a surjective modelling morphism and S/E.is a surjective model

of S.

(2) Suppose that Ry and Ry are separating. If 1,(x)=1x(x'), (x,x') €
Rxl f sz. Theg x=x"' and lx is injective. Similarly, so is ly' Therefore
1=(1X,1y) is an injective modelling morphism. Since 1 is a surjective
modelling morphism as well by (1), 1 is an isomorphism.
(3) Suppose that R is full, and Ry and Ry are separating. Since § = S[g
by (1), it is enough to prove S/R = S/Rl X S/RZ. Let §' < X' x Y' be
defined by |
IxIR, 1% 1R, %), (T3 IR D, [y 1RS)) € 8 |

= (IR LIy IR D), ([, IR 2, 3, 1R D)) & 8/RY x /82

IR

, where X' c X/RX1 x X/RX2 and Y' ¢ Y/Ryl X Y/Ryz. Since obviously S’

S/Rlbx S/R2 in the sense of set theory, it is enough to show that‘S[g

IR

St.
For any ((tgﬂRxl,[XZ]RXZ),([yl]Ryl,[yz]Ryz)) e 8', there are (x,",y;') ¢
[XI]Rxl X [yllRyl n'S and (xz',yz') € [XZ]RXZ X [yz]RY2 f S. Since R is
~full, there is (x,y) € S such that (Xl,yl)Rl(x,y) and (x,y)RZ(xz,yz).

Then (([x IR, [y; 1R ), ([x)]1R 2, 1, IR 20)=(CIxIR D, [y IR D), ([xIR 2, [¥IR D)
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& S/R. Since it is obvious that S/R ¢ §', it follows that S/R=s".

Q.E.D.

Proof of Proposition 5.2.13) see the reference [3].

 Proof of Proposition 5.2.2

Let us first prove the if part. Let §/§_be the canonical complex
. system over §f[5, Then by Theorem 5.1.1, §/5_E S. Therefore §[§

is an injective (moreover, isomorphic) model of S.

Conversely, suppose that S © 81 X Sy is an injective model of S
and h=(hx,hy):§ + § is an injective’modelling morphism. Let = pi o h

denote a relation on S defined by

i

(x,5) = pi o h(x'5¥") ©» pi 0 h(x,y)=pi o h(x'y")

it

for i=1,2. Then it is easy to see that pi o h is an input-output compa—

H

tible equivalence relation on S with ( pix * hx’ = piy » hy) as ‘its

associated pair by Proposition 5.1.2, where

(x,x') & = pix « hx @ pix * hx(x)=pix * hx(x")

1

(7,9') € = Piy « hy © Piy * hy(¥)=piy * hy(y')-

For any X,xXx' € ﬁ, let (x,x') € = pjy * hy for i=1,2. Then hx(x)=hx(x').
Since hy is injective, x=x'. Therefore Ry= { = plx + hxs = p2x » hx }
is separating. Similarly, so is §y= { = ply « hy» = p2y * hy } . This 1is

what to be proved. Q.E.D.
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Proof of Proposition 5.2.38) . By Theorem 5.1.1, the if part is obvious. And
1

if we construct relations R- and R2 on 8 as in the proof of Proposition

5.2.2, R! and R? are input—-output compatible. Q.E.D. .

Proof of Proposition 5.2.4 : This is directly derived from’PropoSition

5.2.2 and Proposition 5.2.3. » "Q.E.D.

Proof of Proposition 5.3.1 : Let S €81 x 83 be a complex system{ For

any ((x1,%x2),(y1,y2)) € S, since kj and ky are modelling morphisms, '
k1(xy,y1) € 81" and ky(xy,y9) € Sp'. Therefore k1 % ko((x1,¥1),(x2,¥2))
=(k1(x1,y1),ko(x2,¥2)) € S1' %X S3"'=8". Hence kj X kZIS is a modelling

morphism. , Q.E.D.

Proof of Proposition 5.3.2 : For any ((x1,y1),(x2,y2)) €S, ki o pi((x1,y1),

(x2,¥2))=ki(x4,74) € Si"', because k;y:8; > S;' is a modélling,ﬁorphism for

i=1,2. While, pi' o (ky X k2)((x1,¥1),(x2,¥2))=pi " (k1(x1,y1),k2(x2,¥2))=

ki(x4,y1). Hence the diagram is commutative. » Q.E.D.

Proof of Proposition 5.3.3 : Suppose that ki x ky|S is a surjective mode-

1ling morphism from S < §; x S5 to 8" < §;' x S9'. For any (x1',y1')

€ S1', there is (x3',y2"') € S9' such that ((xl',yl'),(xz',yz'))’e s'
because S' is a complex system. Since ky x kgl|S is a surjectivé mode 1~
ling morphism, there is ((x1,y1),(%2,¥2)) € S such that
ky x k2|S((x1,y1),(x2,y2)) =((x1',y1'),(x2',y2')>. Therefore there is
(xi,yl) € 81 such that ky(x1,y1)=(x1',y1'). Hence k; is a surjective

modellig morphism. Similarly, so is kj.
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Conversely, suppose that $=S7 X So ,and kj3:S1 > S1' and kp:Sp > S2'

are sur jective modelling morphisms. For any ((x1',y1'),(x2',y2')) ¢ s',
gince k1 and k9 are surjective modelling morghisms, there are (x1,y1) £ S1
“and (Xz,yz) € S9 such that kj(xy,y1)=(x1',y1") and kz(XZ;Y2)=(X2',Y2')-
'Since 8=81'x 89, ((x1,¥1),(x%2,¥2)) € S. Therefore kj x kélS is a sur-—

jecive modelling morphism. _ :  Q.E.D.

Proof of Proposition 5.3.4 : It is enough to show that kix X kpy|X and

: kiy X kzle are injective as mappings. For any (xi,x9),(x1'x2') € X,

if kyy X Koy(x1,%x9)=kix X kox(x1"',%9"), kiyx(x1)=ki4(%1") and ko (x9)=kor(x9').
"Since kjyx and kox are injective, x3=x1' and x9=x3'. Therefore kiyx X kox X '

is injective. Similarly, so is kiy X kzle. Hence kj % kp|S is an injective

- modelling morphism. ; ‘ Q.E.D.

Proof of Proposition 5.3.5 : By Proposition 5.3.3 and 5.3.4, it is obvious

that k3 x k2|S is an isomorphism. Q.E:D.
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5. Proofs for Chapter 6

Proof of Proposition 6.1.1 : The if part is obvious by Theorem 5.1.1.

Let us next prove the only if part Suppose that § has a non-lnteracted
system Sy X 82 as its model, where 8; < X b Y for i=1 2 Let h"(h hy) S >

81 xSy be a modelling morphism from S to Sy X 8, and Py =(p; ) the i-th

1x’p1y

projection on S7 X S9 for i=1,2. Since pj o h is also a modelling morphism‘

from S to Si for 1=1,2, the induced equivalence relation = pi o h is
an input—-output compatible equivalence relation for i=1,2 by Proposition

5.1.2- Q.E.D. )

Proof of Proposition 6.1.2 : Let us prove the if part first. Suppose that:

(in,R i) is an associated pair with rY for i=1 ,2. Let §/Ri be . the quo-

) be defined by

tient system of S modulo RY for i= =1,2. Let k (k1X iy

kix:X > X/Rx 3 kix<x)=[x]Rx

kypi¥ > YRGS 5 kg (y)=[yIRy

for i=1,2. For any (([Xl]Rxl,[XZ]RXZ),[YllRyl

, 1y, 1R,%)) & S/RE x §/82,
there is (§,§) € S such that (2;;) € ([Xl]Rxl X [yl]RYl n §) fn

([xz]sz X [yz]Ry2 n §) because R is full. Therefore k; x k2l§(§,§)
=(CRIRL [TIR,D), ([RIRZ, [51R,2)) |

—(([xl]RX ,[yl]Ry ), ([XZ]RX ,[yZ]Ry )). Hence k; X kZIS is surjective
modelling morphism.

Let us next prove the only if part. Suppose that S has a non-
interacted system S; X S9 as its sufjective model. Let = pi Obh be the
induced equivalence relation for i=1,2. For any (;l,§1),(§2,§2)

.e S, let (x1,¥1)=p; © h(§1;§1) and (x9,5,)=py © h(§2,§2).

Since ((x1,-¥1),(x2,¥2)) € 81 X Sy and h is a surjective modelling morphism,
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there is (;,;) £ § such that h(;,;)=((x1,x2),(yl,y2)). Therefore
((x11Y1)’(XDY)) € = p, oh and ((X;Y)>(X2ay2)) € = P2 oh*
Hence R= { E'pl oh» ¥p2 oh } is full.

Q.E.D.

Proof of Proposition 6.1.3 : Let us first prove the if part. Suppose that

: (in,Ryi) is an associated pair with ’RY for i=1,2. Let S/RL be the quo~

tient system of S modulo RY for i=1,2. Let ki=(kix,kiy) be defined as

in the proof of Proposition 6'1i2‘ Let k, x k2|§=(kx,ky). Obviously,

1

~ ~

"kl X k2I§ is a modelling morphism. For any ;1’X2 € X such that
X # %) there are y;,y, such that (%1,51)5(%9,75) € S.
Since (xy,%,) € R\ n R %, ([x IR 1,[%1R.%) # ([%,]R.L,[%,]R.2)
1°%2) & R MRS (Ix IR, [x IRy 21Ry T [%9 IR
Hence ky is injective. Similarly, so is ky. Therefore ki % kzIS'is
an inejctive modelling morphism.
Let us next prove the only if part. Suppose that § has a non-

interacted system 83 x S9 as its injective model, where S; < Xj X Y3

for i=1,2. Let pj{ o h be defined as in the proof of Proposition 6.1.1.

. Let (Xl’XZ) g = P, © hx n = b, 0 hx. Then Piy © hx(x1)=pix o hx(XZ)
for i=1,2. Since hX is injective, X) =X, . Therefore Bk= { = ? oh ®
, : 1x b4
=p oh } is separating. Similarly, so is Ry= { = p oh>s Zp
2x X » ly v 2y
Q.E.D.
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Proof of Proposition 6.1.4 : It is a direct comsequence by Proposition

6.1.2 and 6.1.3. See also Theorem 5.1.1. . Q.E.D.

‘Proof of Lemma 6.2.1 : Let £:A/Ry, > A/R be defined”byr~
£([2]Ro)=([a]Ry, [a]Ry). |

For any a' e [a]R,, ([a]Rl,[a]R2)=([a']R1?[a']R2) because R6=R1 n Ré.

Therefore £ is well defined. It is easy to see that f is surjectiﬁe.

Let ([a]Ry,[a]R2)=([a"']R1,[a"]R2). Then (a,a') ¢ Ry n R2=Ro. Therefofe

[a]Ro=[a']R, and hence f is injective. Conséquently, f is bijective.

Hence A/R, = A/R. Q.E.D.

Proof of Lemma 6.2.2 : Let fi:X/in > X/gxi be defined as in the proof

of Lemma 6.2.1, where R i= {R"_1,R_} such that R fpr 1a R

For any (([x]Re,[¥IR,1), (IXIRZ,[51R;2)) & S/R, since £;([R]R, D)
=([XIR", 1, [X]R,) for i=1,2, (£ x £5) x (Id x TA)((([RIR},[R]R2)

(IR L IR 2)=(CCIxIR' L [RIR ), (1RIR' 2, [%1R,)), _

(IR, I9IR,2)) & P(S/RY,8/R%). Since (£; x £,) x (Id x 1d)IS/R is
injective modelling morphism, by Proposiotion 5.3.4, S/R is embedded in"

p(s/rL,s/rZ). | Q.E.D.

Proof of Lemma 6.2.3 : Suppose that R satisfies the condition. Let .t'i:X/'RX.‘.L

> X[gxi be defined as in Lemma 6.2.2. Let us show that (fl X fz) x

( Id x 1d)|S/R is an isomorphism from S/R to P(S/Rl,S/Rz)Q Since

(f1 x £2) x( Id x 1d)|S/R is an injective modelling morphiém by Lemma 6.2.2,
it is enough to show that it is also a surjective mddelling morphism by
Proposition 2.2.5. For any s'=((([x1]R'xl,[z]RZ),([xz]R'xz,[z]Rz)),

(Iy11RyY, 1321R,%)) € P(S/RL,S/R2), since [x11R',! 0 [2]R, # ¢ and [xy]R",2
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- n[z]R, # ¢, s' can be written as s'=((([xl]R'xl,[xl]Rz),([xz]R'xz,[xz]RZ)),

;([yl]Ryl,[yz]Ryz)). By the condition of R, there is (x,y) € § such that

(x,3) € (xR 0 [xg IR, x [y 1R X (CIxpIR' % 0 [x91R,) % [yp]1R,%)

n 8). Therefore s'=((([xIR'},[xIR,), ([xIR", 2, [XIR,), (Iy IR}, IyIR D).

Since s=(([x]Rx1,[x]sz),([y]Ryl,[y]Ryz)) e S/R, (£, x £,) x (Id x Td)(s)=s'.
Therefore (f1 x f9) x (Id x Id)ls[g'is a surjective modelling morphism.
From now on, we use f?(fxbfy) as fx=f1‘x £21D(S/R) and fy=Id x Id|R(S/R).

Q.E.D.

Proof of Proposition 6.2.1 : Let us first prove the if part. Suppose that
i

R satisfies the cqnditions and RX1=R'x nR, for i=1,2. Since §[§_can be
- embedded in P(§/Rl,§/R2) by Lemmak6.2.2, we can easily construct
a modelling morphism from S to P(§/R1,§/R2). Hence EX(P(§/R1,§/R2))
is a model of §. Because P(§/R1,§/R2) = EX(P(§/R1,§/R2))
by Proposition 3.1.1. |

Let us next pro&e the only if part. Suppose that there are component
systems Sy and Sy such that EX(P(S;,59)) is a model of §, that is,
P(S,,S,) is a model of S. Let h=(hx,hy):§ > 2(8,,8,) be a modelling
morphism. Then R= { = pj oh, =pgoh } is a class of input—output

compatible equivalence relations. Let R, < X x X be defined by

=3

(z,2') e Rz © (2,2') € 2 p1z *» hy 0 = py ¢ hy
, where piZ:Xi* X . Z + Z is the projection.- And R'xi c X x X

be defined by R'Xi=

pixf * hy, where pix‘*:xi* x Z » X;* is the proje-

R i
ction. Then R_*= = p,. *h=2=p. ,h 0 =p. +h and hence R 1
X ix X iz, *x iz X X

and R 2
X

W

are decomposable with Ry= = pj, * hy.

Q.E.D.

- 138 -



Proof of Proposition 6.2.2 : Suppose that there is a class R= { Rl,R2 } of

input-output compatible equivalence realtions on 8 such that Rxl and

2

R_“ are decomposable with Rz and R satisfies the condition. Let R'Xl and

X

R'x2 be equivalence relations on X such that in=R'Xi ﬂ’RZ for i=1,2.

Let.f=(fx,fy)£§/§_+ P(§/Rl,§/R2) be defined as in the proof of

Lemma 6.2.3. Then £ o 1:§ +‘P(§/R1,§/R2) is a surjective modelling

morphism. Because the natural modelling morphism l:§ > §[§'is é sur-

jective modelling morphism. Since EX(P(§/R1,§/R2)) = P(§/R1,§/R2)

by. Proposition 3.1.1, § is surjectively parallel decomposable.

ConverSely, suppose that there are input-output systems

S1 < (X1* x Z) x Yy and Sy < (Xo* x Z) x Y such that EX(P(S1,S7)) is

é surjective model of §. Let h=(hx,hy):§ +'EX(P(51;SZ)) be a surjective

modelling morphism. Let us define equivalence reiations as follows.
R'xi cX x X : (x,x') ¢ R'xi o pix*hx(x)=pix*hx(x')

R, <X xX : (x,x') ¢ R, o pzhx(x)=pzhx(x')

i - o i
R ecY xY ') eR * p, h =p, h_(y'
- PGy e Ry Py (5)=p; ho(y")
» Where pixx:X1* X Z x Xo% > X3%, p,:X1* x Z x Xo% » Z and pjy:Y¥1 X Y3
are projections. Let in=Rin n RZ and let R} ¢ § x § be defined by

(G6¥),(x',y") e RN » (x,x") e BT and (7,y") e R T for i=1,2.
Then R is an input-output compatiblé equivalence relations on § for
i=1,2. Let (xl,yl),(xz,yz) €S beyarbitrary such that [xi]Rx={x2)Rz.
Let Sz((Plx*hx<X1)’chx(xl))pZ){*hx(XZ));(p]_yhy(}']_),pthy(YZ)) € EX(P(SI)SZ))‘
Since h is a surjective modelling morphism, there is (x,y) ¢ § such that

] | ‘ 1 1 2 2
h(x,y)=s. Therefore (x,y) & ([x;]IR " x [y1IR™ 7 8) 0 ([x5]R," x [yyIR," 0 8).
Hence R satisfies the condition.

Q.E.D.
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Proof of Proposition 6.2.3 : Suppose that there is a class R= { Rl,R2 }

~

of equivalence relations on S satisfying the conditions. Since the naturai
modelling morphism 1=(1X,1y):§ + §/§_is an isomorphism by Theorem 5.1.1
and f=(fx,fy):§/gb+ p(S/RL,5/R?) defined in the proof of Lemma 6.2.3
is also an injective modelling morphism, it is easily seen that § is
injectively parallel decomposable.

‘Conversely, supposefthat there are input—output systems
8 © (X1*>x Z) x Yy and Sy < (X9* x Z) x Y, such that S is injectively
parallel decomposable into EX(P(Sl,Sz)). Let h=(hx,hy):§ +_EX(P(Sl,Sz))
be an injective modelling morphism. Let R'Xi,RZ,Ryi,RXi and Ri,be defingd
as in the proof of Proposition 6.2.2. Then R is an input-output compatible
equivalence relation on $ for i=1,2. Let (x,x') ¢ Rxl n sz.

1

Then (x,x') e R',~ AR, 0 R'Xz, Since h, is injective, x=x'. Therefore

R { R,',R,% } is saparating. Similarly, so is R~ { Ryl,Ry2 } .

Q.E.D.

Proof of Proposition 6.2.4 : 1t is a direct consequence from Propoéition

6.2.2 and 6.2.3. Q.E.D.

Proof of Proposition 6.3.1 : TFor any s=(([x1]Rx1,[yl]Ryl),([xz]sz,[yz]Ryz))

£ EX(C(FSQ(S;RY),s5Q(8;R2))), there is (x,y) € S such that x e
[x IR," 0 [x1R, % and v e [y IRT 0 [y,IR %, Then s=(([xIR,,[yIR,D),
([x]sz,[y]Ryz)) e S/R. Therefore EX(FSQ(S;R}),s5Q(S;R2))) < §/R.
Similarly, S/R < EX(C(FSQ(S;R1),55Q(8;R%))). Hence S/R=EX(C(FSQ(S;RL),

ssQ(§,Rr2))).  Q.E.D.
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Proof of Proposition 6.3.2 : Suppose that there is a class R= { rl,r? }

of input-output compatible equivalence relations on S. Since EX(C(FSQ(§;R1),

SSQ(§;R2)))=§[E by Proposition 6.3.1, it is obvious that EX(C(FSQ(§;R1),

SSQ(§;R2)))‘is a surjective model of S bykTheorem 5.1:1.

Conversely, éuppose that there are input~out;ut-§ystems Si é X1 x (Z x Y1%)
asnd 8, < (Xz* x Z) x Y, such that EX(C(Sl,SZ)) is a model of §; Let
h=(hx,hy):§ > EX(C(SI,,SZ)) be a modelling morphism. Leﬁ in énd'Ryi
be defined by

(x,x") e RT @ py b (x)=p; b (x")
, (ysy") € Ryi o pighy(y)=piyhy(y')
for 1=1,2, where pjx:Xy X Xp* » Xj(or X9%) and Piy:Y1* x Y3 > Yi*(or Y3)
are projections. Let R be defined by
((x,7),(x",y")) ¢ ri . (x,x") ¢ R*i and (y,y') ¢ Ryi for 151,2.

Then it is easily seen that Rl is an input-output compatible equivalence

relations on § for i=1,2. Q.E.D.

Proof of Proposition 6.3.3 : By Theorenm 5.1.1, it is similariy proved as 

Proposition 6.3.2.

Proof of Proposition 6.4.1 : Let S ¢ X x Y be an input-output system. By

Definition 6.4.1, FT(S) < (X x 8) x (Y x 8) is defined by

FT(8)= { (x,(%,¥)), (¥, (x,y)I(x,y) € S } .
And therefore EX(FT(S))= { (x,y) € S } =S. Hence every input-output system

is feedback decomposable into F(S,Id). : ' Q.E.D.
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Proofs for Chapter 7

6f of Proposition 7.1.1 : Since pi=(Pix,piy) is a surjective modelling

orphlsm, Pix (x ) x p 1(y.) ns # ¢ for all (Xi’yi) € Si' y Ci c S
obv1ous. For any (x,y) €S, pl(x y)= (Plx(X),Piy(Y)) € 54

fahd (%,9) € Pix (pix(x)) Piy (piy(y)) N S. Therefore U C;=S. Hence

'Ci is a covering of S. Let C_ i- ¢ Pix l(X )!X e X5 } and Cy1= { Piy_l(Yi)v
7 i € Y3 } . Then obviously, CX1 and Cyi are coverings of X and Y,
trespectively, and (C i,Cyi) is an associated pair with C;. Hence C; is

“input—output compatible. . Q.E.D.

Proof of Proposition 7.1.2 : See the Reference [3].

“Proof of Proposition 7.2.1 : Suppose that S ¢ X x Y has a simulation

model § © §; % Sp. Let hsz(hx,hy):§ +> 8 be a simulation morphism.
Let C '—X/plxhx and C = { hypiy_l(yi)lyi € Y; } . By assumption, for any y,
there is x € X such that (x,9) € 3 and h® is a simulation mor-
phism, there is y & Y such that (hx(;),Y) € S and hy(Y)=§~ Since ; €
hypiy_l(piy(y)), c.} is a covering of §.‘And obviously, Cxi is a covering
of X. Let Cl= { [x] = x hypiy“l(yi) nSlx e X and y; €% b
For any (x,7) € S, there is y € Y such that (hx(g),y) € S and hy(y)=§.
Therefore (%,9) € [%] = by, % ByPiy  (Pgy(y)) 0 §. Hence c* is
an input—output compatible covering of § for i=1,2.

Conversely, suppose that there is a class R= { Rl,R2 } of input—-output
compatible equivalence relations satisfying that By= { Ryl,Ry2 } is separating.
Let §/§_be the canonical complex system over §q= ¢ s/rL,S/R% 3 .

Let hxzﬁ +;2(§[§) and hy;5(§[§) +» Y be defined by
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he(R)=([xIR, L, [XIR,2)
and gy IR [y, IR, 2= { y e Iy IR, n [72\1Ry2¢ 0

Yo e Y otherwise

Since Ry is separdtlng, h, 1is well—deflned For any (x,y) € S

y
(h, (x), ([y]Ry ,[y]R 2y) ¢ S/R and h ([y]Ry ,[Y]Ry )=y.

Hence S[giis a simulation model of §. 7 . . Q.E.D.

Proof of Proposition 7.2.2 : Let h=(hyx,hy) € Hom (s,8").
MOD1p
Then for any (x,y) € S, (hx(x),hy(y)) e St. ‘

-1

Since hy is bijective, the invérse hy of hy‘is well defined. Therefore

for any (x,y) € S, (hx(x),hy(y)) g€ S' and h —1hy(y)=y. Hence Fyo(h) € Hom

y SIMpy

(s,s8'). Similarly, FSM(hS) £ Hom (8,8") for any h® ¢ Hom (5,8")

MOD;4, L Sy
Since FMS(h' o h)=FMS((hx' . hx,hy' . hy))=(hx' hy, h . h )=
Fyg(h') o Fyg(h) and Fyg(Id)=Id, Fyg is a functor. Similarly, so is Fgy.
It is obvious that Fyg o Fgy and Fgy o Fyg are identity functors.

Q.E.D.
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Proofs for Chapter 8§

Proof of Proposition 8.1.1 : Let h=(hx,hy) be a modelling morphism.

:For_any x € X, there'is y e Y such that S(x)=y. Since h is a modelling

morphism, (hx(x),hy(y)) € S', that is S'hy(x)=hy3(x). Hence the diagram

is commutative.

Conversely, suppose that the diagram is commutative. Then for any
(x,y) €8, hy(y)=hyS(x)=S'hX(x). Therefore (hx(x),hy(y)) £ S'. Hence h is a
modelling morphism.

Let us next prove the second part. Let h=(hx,hy) be-an isomorphism.
Tﬁen it is obvious that both of hy and hy are bijective by Proposition
2.2.4 and 2.2.5.

k‘anversely, suppose that hy and hy are bijective and the diagram

is commutative. Then h=(hx,hy) is a modelling morphism as we proved above.
For any (x',y') € 8', there is x € X and y € Y such that hy(x)=x"' and
hy(y)=y' because hy and hy are surjective.‘Since S is functional, hyS(x)
=S'hx(xj=S'(x')=y'=hy(y). Since hy is injective, S(x)=y. Therefore

(x,y) € 8 and h is a surjective modelling morphism.

Hence h is an isomorphism because both of hy and hy are injective.

Q.E.D.

Proof of Proposition 8.1.2 : Suppose that Ry and Ry satisfy the condition.

Let ([x]Rx,[yIRy),([xIRx,[y'IRy) € S/R. Then S(x) & [yIRy 0 [y'IRy-
Therefore [y]Ry=[y']Ry and hence S/R is functional.

Conversely, suppose that S/R is functionél. Let x,x' € X be arbitrary
elements‘such that (x,x') e Rg. Since S/R is functional, [S(x)]Ry

=5/R([x]Ry)=8/R([x' [R,)=[S(x')]Ry. Therefore (S(x),5(x')) € Ry. Q.E.D.
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Proof of Theorem 8.2.1 : It is directly shown by Proposition 6.1.4 and

Proposition 8.1.2. Q.E.D.

s

Proof of Theorem 8.3.1 : Suppose that Ry= { Ryl,Ry2 } is separating.
Let Sl X x Y/Ry1 and S2 c iyx S?/R-y2 be defined by
1 1

(x,[yIR;™) € 8) » 5(x) ¢ [yIRy

G [71R%) 6 55 @ 5(x) e [yIRy2.
Then S, and S, are functional. Let Y'= { ([y]Ryl,[y}Ryz)[y e Y}
and h:Y > Y' be defined by h(y)=([y]Ry1,[y]Ry2). Then h(S(x))
=([§(x)]R 1,[§(x)]Ry2)=(Sl(x),Sz(x)). Since By is separating, h is
bijective. Therefore § is parallel decomposable.

Conversely, suppose that S= { Sy,S5 } is a class of functional comnpo--

nent systems and S is parallel decomposable into Pp(S). Then there

is a bijection h:f > Y such that the diagram commutes. Let Ry1 and
Ry2 be defined by
1 1., - '
(v,y') ¢ R, plyh(y) plyh(y )
2 -

(y,5') e Ry" © Poyh(y)=py h(y') .
Then for any (y,y') e Ryl n Ryz, h(y)=h(y'). Since h is injective, y=y'.
Hence §y= { Ryl,Ry2 } is separating.

Q.E.D.

Proof of Theorem 8.3.2 : Let 8= { 01, © 9 } be a full and separating

class of congruénce relations on S(A). Then Y (©71)and ¥ (O 2) are
Q —normal subgroups of S(A). By Theorem 2.4.2, ( ¥ ( O 1), ¥ ( ) 2)) €
1 (5(A)). Therefore any S(a) € S(A) can be uniquely decomposed into‘
8(a)=byt+by, where by £ ¥ ( 6 1) and bz € ¥ ( 6 2) by Proposition 2.4.2.

Let 53:A > A and S5:A > A be defined by
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S1(a)=by e [S(a)] © 2 n [0] © 1

So(a)=by € [S(a)] © 1 n [0] © 2 .

;Then by the proof of Theorem 2.4.2, Si and So are well defined and

 S(a) =by+by=81(a)+Sy(a)= =(51+57)(a). Hence S is parallel decomposable.
Conversely, suppose that S is injective and S$=81+S53. Let O 1 and O 2
~be relations on S(A) defined by

(b,b') € © L@ 85 H(b)=8;57T(b")

(b,b') €0 5 © 58 L(b)=8,5 1 (b"),

where S_l:s(é) > A is the inverse of S. Then obviously, 9‘1 and © 5 are
congruence relations on S(A). Let (b,b') £ © 1170, Then sls“l(b)=sls”1(b')
and 8,571 (b)=8,5 1 (b'). Therefore b=55 "1 (b)=8, 571 (b)+5,57  (b)=8,57 1 (b")
+SZS~1(b')=SS“1(b‘)=b'. Hence © = { @ 10 99 } is separating. For any
a,b £ S(A), let ¢ € S(A) be defined by c=818—l(a)+828_1(b). Then Sls—l(c)
=5,5 15,87 (aps,57 5,87 (6)=5,5 7 (a) and 5,571 (c)=5,8 7 (b). Therefore
(a,b) €01 00 9. Hence 9 is full.

Q.E.D.

Proof of Theorem 8.4.1 : Let 6 = { 0 3, © 2 } be full and separating

ciass of congruence relations on A and O 5 a congruence relation on
A'=[A;Fg UFy v {8 } ]. Let Sl:é_+'é'andk82:§'+té be defined by

Si(a) € [S(a)] © 1 n [a] @
and S,(a) & [S(a)] @ 5 0 [a] O 1.
Since O is fuli and separating, $j and Sy are well defined. Let S1(a)=b
and Sp(b)=c. Then c=S5(b) & [S(b)] © 2 n [b] © 1 and
b=51(a) € [S(a)] © 1 0 [a] © 5. Therefore (c,S(b)) € © 5,(b,c) € O 1,
(s(a),b) € © 1 and (a,b) € O 9. Since © 5 is a congruence relation on

A', (S(a),S(b)) £ © 9. Then (S(a),c) € © 2. Therefore (s(a),c) e © 1 n
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© 2 and therefore S(a)=c. Because O is separating. Hence S(a)=S5(Si(a))

=(S1 - S2)(a). Q.E.D.

Proof of Theorem 8.5.1 :"Suppose ‘that © 2 £ 0 is a congruence relation on
A'. Since © satisfies the conditions of Theorem 8.4.1, S is serial
decomposable
such that $=§; + Sy', where S1:A > A and Sy':A > A are defined by

S1(a) € [s(a)] © 9 n [a] O 1

Sg'(a) € [S(a)] @1 n[a] © 9 .
Then by the condition 3) and 4), S; and Sy' are bijective. Therefore

1

there exist the inverse of S; and Sy', call it Sl‘ and Sz'_l. Let

$,=8,"}(1-5,""!), where I:A > A is the identity morphism. Then 5,5,=
1-55' "1 and $,'=(1-5:5,) !, Therefore 5=5; + §,'=8; * (I-5;5,)7. Hence

S is feedback decomposable.

Q.E .D'
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8. Proofs for Chapter 9

Proof of Theorem 9.1.1 : Suppose that there is a full and separating

~

class O = {o 1» e 2 } of congruece relations on Eﬂ $ ). Let g}('g 1)

~ ~

=C( ¢ )/ © 1 and_g?(-g 2)59( ¢_)/@e 9+ Since 0 { and © 5 are congrpencéw
relations on C( ¢ ), quotient algebras are well-defined. Then_g(fg l)
xC( 9 2)=C( )/ ©, xC( $) ©, =C( ¢ ) by Theorem 2.5.2. Since

oo ( —Q_) l) x ¢( E 2) is the parallel counection of C( I{{ 1) and C( ) 2)

~

by Proposition 3.3.3, C( ¢ ) is parallel decomposable, that is, T is

parallel decomposable.

~

Conversely, suppose that C( ¢ ) is parallel decomposable. That is,
there are transition systems T1=[Cl,§; E'l] and T2=[C2,§; E’z], and an

isomorphism hza > Cl X Cqy such that

¢ tt'(c’xtt')= o tt'(h(c)’xtt')
=( ¢ 1tt' (plh(c))xtt'))> 9 ztt'(pzh(c);xtt'))
, Where T=[§; Cp x ng-a ] is the parallel connection of Ty and Tjp.

~

Let O 1 and © 2 be relations on C( ¢ ) defined by

prh(c')

pzh(c').

(c,e') € ©1 « pih(e)

and (c,e') € @9 « poh(c)
Then © ; 1is an equivalence relations on C for i=1,2. Moreover, since
p;jh is a homomorphism from_g( ; ) to C( E;i), © ; satisfies the substitution
property. Hence 6 = { é 1> © 2 } is a class of congruence relations
on G( ; ). If (c,c') e ©®1 00O 9, hic)=h(c"). Sincé h is injective, c=c'.
And hence O is separating. For any 31,32 € 6, let |
>c=(plh(€1),p2h(€2)) € Cl X C2' Since h is surjective, there is g

e C such that h(e)=(p;h(e),pyh(e))=e=(pyh(cy),pyh(ey))-

Therefore (c,c') € © 1 0 ©® 2 and hence 0 is full. ' Q.E.D.
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Proof of Proposition 9.2.1 : Suppose that © is a congruence relation on

C(C ¢ ). Then if (c,c') € 0 , ( ¢ pere,Xppt)s & ter (e’ X 1)) € O for any
Xgp? € Xepr. Therefore ( © , © ) is a congruence pair of T.
Conversely, if ( © , © ) is a congfuengengair of T, it is obvious

that O is a congruence relation on C( ¢ ). Q.E.D.

Proof of Proposition 9.2.2 : Since Id < @ for every congruence relation

Qon C, it is obvious from definition. Q.E.D.

Proof of Theorem 9.2.1 : Suppose that there is a full and separating

class 9= { 0 1> 99 } of congruence relations on ¢ satisfying the
conditions. Let c1=6/ 04 and Cz;a/ 0 5 aﬁd construct state autométa
T1=[A,C;, 6 1] and T9=[C; X A,Cy, & 9] by
51:Cp xA >
(fc] © 1,2) > [ 6 (c,a)] 04
8 9:Cy x (C] x A) > Cy
([e2] @ 2,([c1] ©1,a)) > [ & (c,a)] ©
, Where c € [ci] © 1 N [ca]l O 9
Since O 1 is a congruence relation oﬁ C( &6), 861 1is well defined.
And since Q is full and separating and so ( © 1 10 2,‘®~2) is a éongruence
pair of T by Proposition 9.2.2, § 9 is also well defiﬁed.
Let T=[A,C, & ] be the serial connection of Ty andez, where C=C; x Cy
and & is defined as follows.
5§ :CxA~>C;
8 (fe1] © 1,[c2] © 2),a)
=( & 1([e1] © 1,a), & 5(lca] © p,([e1] © 1,a)))-

Let h:C » C be defined by

- 149 -



“h(e)=([e] 0 1,[c] 6 7).
Then h is an isomorphism by Theorem 2.5.2. For any (c,a) € C x A,
h 6 (c,a)=([ 6 (c,a)] © 1,[ 6 (c,a)] © 9)
and & (h(e),a)=( & 1([c] © 1,a), & 2([c] © 2,([c] © 1,a)))
=([ & (c,a)] © 1,1 8 (c,2)] 0 2)-
Therefore the following diagram is commutative.

~

”~ 6 ~
CxA > C
ho¥ $Id  +h
C xA + C

)

Hence‘f is serial decomposable.

Conversely, suppose thét there are state automata T3=[A,Cy, & 1]
and T2=[C1 x A,Coy, & 2] such that T is decomposable tb the serial
connection of T1 and TZ‘ Let hﬁa > C1 X‘Cz be an isomorphism and
the diagram commutes. Let O ; and © , be relations on C defined by

(cye¢’) € 61 ¢ pih(c)=pih(c’)
and (c,c') € 09 < poh(c)=poh(c'),
where p;:C1 X Cy +4Ci is the i-th projection. Then it is easily seen that
o 1 and O 2 are congruence relations on 6 and moreover O = {0 1 o 2 }
is full and separating because h is bijective. If (c,c') £0 1,
p1h( & (c,a))= 6 1(p1h(c),a)= & 1(p1h(e’),a)=p1h( & (c'a))
for all a € A. Then O 1 is also a congruence relation on C( 6 ).

Hence we obtain the required results. Q.E.D.

- 150 ~




9. Proofs for Chapter 10

Proof of Proposition 10.1.1 : Suppose that h=(hx,hy) is a strong modelling

morphism. Let (x,y) € S. Then y e-S(x) and hence hy(y) € hy*(S(X))=S(hX(X))-
Therefore (hx(x),hy(y)) e S*.and h‘is a modelling morphism.

Let (hy(x),y"') € S'. Then y' € S'(hx(x))=hy*(s(x)).‘Thereforerthere
exists vy € Y such that (x,y) £ S and hy(y)=y' and hence the condition-is
satisfied.

Conversely, suppose that h is a modellig morphism and satisfies
the condition. Let x & X be fixed. For any y' ¢ hy*(S(x)), there exists
y € S(x) such that hy(y)=y'. Since h is a modelling morphism, yf=hy(y)

€ S'(hk(x)). Therefore hy*(S(x)) c 8'(hg(x)). And fqr any y' e S'(hg(x)),
there exists’y € S(x) such that hy(y)=y' bykthe condition. Therefore
y' e hy(y) € hy*(5(x)) and hence S'(hy(x)) < hy*(8(x)). Consequently,
h=(hx,hy) is a strong modelling morphism.

Q.E.D.

Proof of Lemma 10.1.1 : It is easy to show that h|S:S » S8' is a

modeiling morphism because g © 3. Let us show that hlg satisfies

the condition mentioned in Proposition 10.1.1. Let (hy(x),y') € 8' for any
X € i. Since h:S =+ S' is a strong modelling morphism, there 1is

y € Y such that (x,y) € S and hy(y)=y'. Then there is y é ; such

that (x,y) € g and hy(y)=y' because Sl§=g. Therefore hlg 3

is a strong modelling morphism.

Q.E.D.
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Proof of Lemma 10.1.2 : For any [xjli € I] e I (X3li € I), let i, e I

~ be fixed. Then there is yj, & Yj, such that (X105Yi0) € Si0» Xio * Yio
and ([xili € I],[[xili e I- { ig } 1,¥iol) € S. Therefore X = I (X;li ¢ I).
Similarly, Y = I (Y4li € I) and X = Y because X; = Y; for all i ¢ I.

Let (pix(x),¥1) € Si- If pix(x) # vy, let y=([pjx()|j e I- {1} 1,
yi)- Then (x,y) € S and piy(y)=yi. If pix(x)=yy, let y‘=
k[[ij(X)lj e I- {1, } ],yio],'where i+14,, (P1o(%)5¥40) € Sio énd
: Pio(X) # Yio+ Then (x,y) € S and piy(y)=yi. Therefore Pi=(PiXaP1y) is
--a stfong modelling morphism in both cases. Since Pi=(PixaPiy) is a sur-
jective modelling morphism, pj is a surjective strong modelling morphism.

Q.EOD.

Proof of Lemma 10.1.3 : Suppose that Il (hili € I)|S is an injective strong

modelling morphism. Let xj and xi' be arbitrary elements of Xj satisfying
that xj # xi'. Let xj € Xj be arbitrary for all j ¢ I- {i} . Then
([lx313 e I- {1 } 1,%4],11x5l3 e - { 1 } 1,%;']) e S from the definition
of a disjunctivé complex system. Since I (hili e I)([[lej e I- {1} 1,%xi],
[[lej eI- {1} 1,x1"]) €8", hix(x1) # hjy(x4'). Therefore hjx(=hjy)
is ihjective and hence hi=§hix,hiy) is an injective modelling morphism.

Let (hjx(xi),yi') € Si'. Suppose that hjy(xy) # yi'. Let x5 € X3
be arbitrary for all j &€ I~ { i } . Then [x4]i & I] &€ X and ([hix(xi)]i € I},
[[hjy(xj)lj eI- {1} 1,y;']) € 8'. Since I (hyli € I)|S is a strong
modelling morphism, there is [yili € I] € Y such that ([x3li € I1,[y4li e 1])

€S and II (hiyli e I)(yyli e I)=[[hjy(xj)!j e I- {1} ],y;']. Therefore

there is y; € Y{ such that (x4,y{) € S; and hiy(yi)=yi'° Let us next
suppose that hix(xi)=yi'. Since (xj,x3) € Sy, it is obvious

that h; is a strong modelling morphism. Hence hj is an injective strong
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modelling morphism in both cases.
Conversely, let us suppose that hi=(hix,hiy) is an injective strong
modelling morphism for all i e I. For any ([xili ¢ I], [yill e I]1) € 8,
there is i € I such that (x4,yi) €83, x§ # yj and x §vj for all j e I- {1 } .
Then II (hili e I)(([x4]li € 11,[yili € 1]1)) & 8'. Because hi”isvan injective
modelling morphism. Therefore II (hili € 1)Is is a modelling morphism.
Let [x3]i € I] # [x;'l1 € I]. Then there is 1 ¢ I such x; # x3'. Since
hj is an injective modelling morphism, I (hixli & Ij({xi{i e I]) #
I (hixli e I)([x1']4 € I]). Therefore I (hyli e )|s=( I (hixli e 1), T (hlyli £ I»
is also an injective modelling morphism because II (hlel € I)=1I (h1y|l € I).
Let ( I (higli e I)([x3]li ¢ 1),[yi'li € I]) € S'. Then there is i € I
such that (hix(x1),¥i') € 53' and hj,(xy) # y;', and hie(xy)=y;' for j eI~ {1},
Since hj is an injective modelling morphism, there is yi such that (x4,y;) & S;,
Xj #yj and hijy(y{)=yi'. Therefore ([x4li ¢ I],[[lej eI- {1} 1,y;1) €8
and T (hiyli e D(=313 e I- {1 } 1,yiD=[yi'lL € I]. Hence T (hili e T)|s
=( I (hixli e DIX, H~(hiyli € ;)IY) is an injective strong morphism.

Q.E.D.

Proof of Lemma 10.1.4 : Suppose that'1=(1x,ly) is a strong modelling
morphism. Let (x,¥) £ S and [x]RXi # [y]Ryi. Suppose that'[x]in=[x']in
for arbitrary x' e X. Let ;Q[[[x']ijljvs I- {i} ],[y}Rgi].kThen
(lx(x'),§) € DC(§)|2§S[§)=S[§. Therefore there is y' £ Y such that
(x',y') €S and ly(y')5§ because 1 is a strong modelling morphism.
Henceé there is y' e Y such that (x';y') € S and [y']Ryi=[y}Ryi.
Conversely, suppose that the condition is satisfied. Leﬁ (L (x),

[[yi]Ryili e I]) ¢ S[g_c Dc(g).kThen there is i & I such that [x}RXi

# [yi]Ryi and [x]ij=[yj]Ryj for all j € I~ { i } . By the definition
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of S[g, there is (£,§) € S such that x ¢ N 1.(x) and

y €n ([yi]Ryili e 11). Since [x]R *=[x]R_ !, there is y € Y such that
(x,y) S and [yIR,*=[VIR I=[y; IR, 1. And since 1(x,y) € DC(S), [y]Ry

; =[Xj]ij for all j e I- {1} . Therefore_ly(y)=[[y]Ryi|i € I]=[{[y]RYj
13 e 1= (1) LIyIRMI=tIxIR 15 € 1= {1 ¥ 1L Iy IR 1=l0yg IR e ]

and hence l=(lx,1y) is a strong modelling morphism. Q.E.D.

Proof of Lemma 10.1.5 : It is easy to see that i=(iX,iy) is a modelling

morphism. For any (ix([[x]inIi £ I]),[{yi]Ryili e 1]) & DC(S), there
is (x,y) €S such that 1_(x)=[[x]R |1 e T]=1,([[x]R 1 & T]) and

y &0 1(y)=n [[y]Rini e 1]. Therefore (1 (x),1(y)) & S/R and iy « 1.
(=1, (LI IRME & TD=[IYIR M1 & T1=[1y; IR 14 € T]. Hence 1=(i,,1)

is a strong modelling morphism. Q.E.D.

Proof of Theorem 10.1.1 :

Only if part : Suppose that h=(hx,hy):§ > § is a strong modelling mor-—

j'=Ryi be an equivalence relation on §(=§)

phism and h_=h . Let R

Xy X
defined by

X Rx1 x' o Pixhx<x) = Py (x').
And let &1 be an equivalence relation on S induced by (in,Ryi), that is,‘

(x,y) RY (x',y') ©» x RXl x' and y Ryi y'.

i, _ . ‘ _ .2
Then R* is input-output compatible. And let ki (kix,kiy).si > Si be
defined by
ki iX/RT > Xy 3 [xIR" > pyghe(x)
. i . i

Then kjx=kjy and ki is an embedding strong modelling morphism because

h is a strong modelling dorphism.
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For any ([[x;]R,'11 e T11,[1y;1R; 11 € T11) e DC(S)ID(S/R), there
is x en [[xi]inIi € I] such that (hx(x), [piyhy(yi)li g I]) £ 8. Since
h is a strong modelling morphism, there is y & § such that (x,y)'s §‘

and piyhy(y)=piyhy(yi),for any i € I;‘Therefore DC(§)IQ£S[§) < S/R.
 Forany (1R & TLIYIR ML € TID) & /R, (h(x),h (1)) € S
Since S is a disjunctive coﬁplex system, ([[x]RXili‘a I],[[y]Rinile I])k

€ DC(S) by the definition of ri. Hence S/BfDC(§)lQﬂS[§). |

Let (x,y) £ S and [x]RXi # [y]Ryi. Suppose that [x]in=[;]R#i
for arbitrary % € X. Let y'=[[pjxhx(£)|j eI~ {1} 1pg b (]

Then (hx(§),y') € S. Since h is a strong modelling morphism, there is

; £Y such that (;,9) € S and hy(§)=y'. Hence [;]Ryi=[y]Ryi.

If part : Suppose that all the conditions are satisfied. Let us define
hy= I (kixli € I) * 1y and hy= T (kiyli € I) ¢ 1y, Then h=(hyg,hy) is a
strong modelling morphism. Because 1=(1X,ly) is a strong modelliﬁg
morphism by_Lemma 10.1.4, so is the inclusion operation from S[§ to DC(S)
by Lemma 10.1.5 and II (kili e I)=( T (kixli € 1),

I (kiyli € I)):DC(S) » DC(S) is also a strong modelling morphism by

Lemma 10.1.3. Q.E.D.

Proof of Proposition 10.2.1 : At first, let us show that SGF g of S
satisfies the following condition ; ’ |
g(x)=min(N- { gy e s(x) andx #y } ). -
Suppose that g(x) < min(N- { g(y)ly & S(x) énd x#+y} ). Tﬁen g(x)
e { g(y)ly e s(x) and x #y } kand hence there is y € é(x) such that
x #y and g(x)=g(y). 1t contradicts the condition 1) of Definition 10.2.1.

Let us now suppose that min(N- { g(y)ly € S(x) and x # y'} )v< g(x).
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Then there is y € S(x) such that g(y)=min(N- { g(y)ly € S(x) and x # y } )
from the condition 2) of Definition 10.2.1. Therefore g(y) e { g(y)ly & S(x)
and x # y } and it is also a contradiciton. Hence g(x)=min(N- { g(y)ly & S(x)
and X #y } ).

Let us now show that SGF is unique. Suppose that g and g' are SGFs
of S. Let WO—Y-X Then g(Wy)=g'(W,)=0. Because x & Wy implies that g(x)
=g'(x)=min(N- ¢ )=0. Suppose that g(x) # g'(x) for some X & X-Y. Then there
is y € 8(x) such that x # y and g(y) # g'(y) because { gy)ly e S{x) and
x#y } #{ g (y)ly € S(x) and x # y } . Continueing this process, we get
g(W) # g(W') for some w € Wojbecause S is progressively bounded. Then this
is a contradiction and hence SGF is uniquely determined;

Q.E.D.

Proof of Lemma 10.2.1 : Let us show that g satisfies the conditions of

Definition 10.2.1. Let (x,y) €S and x # y. Then (hx(x),hy(y)) e 8' and
hy(x) # hy(y) and hence g(x)=g'hy(x) # g'hy(y)=g(y) because g' is

SGF. Let m < g(x)=g'hy(x) for arbitrary x € X. Then there is y' £ Y'
such that (hy(x),y') € S' and g'(y')=m. Since h is a strong modelling
morphism, there is y € Y such that (X,y) € S and hy(y)=y', hence g(y)
=g'hy(y)=g'(y')=m. Let m < g(x) for arbitrary x & Y=-X. If hy(y) € X',
there 1s y' € Y' such that (hy(x),y') € S and g'(y')=m. Since h is a
strong modelling morphism, there is y £ Y such that (x,y) £ S and
hy(y)=y'. This is a contradiction. Therefore g is SGF of S.

Q.E.D.

Proof of Lemma 10.2.2 : See the reference [24].
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Proof of Theorem 10.2.1 : Since S is a disjunctive complex system, SGF g
of S can be defined by |

g([xgli e 1) =@ (gi(x)]1 e T)
by Lemma 10.2.2. And h=(hy,hy) is a strong modelling morphisn, SGF g

of S can be defined by

>

g(x) = { ghy,(x) =(:)(gipixhx(x)|i e 1) % é

<>

ghy (y) =@ (g5p; b ()11 & 1) x €
by Lemma 10.2.1. Since h|S is also a strong modelling morphism

by Lemma 10.1.1, SGF g of S can be defined by

. ghe(x) =@ (gipy, ()i e 1)  xeX
g(x) = { N
ghy(x) =@ (g;py ho ()i e 1)  ye¥

Q.E.D.
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