
論文 / 著書情報
Article / Book Information

題目(和文) 半正定値計画問題に対する主双対内点法の並列実装

Title(English) Parallel Implementation of Primal-Dual Interior-Point Methods for
SemiDefinite Programming

著者(和文) 山下真

Author(English) Makoto Yamashita

出典(和文) 学位:博士（理学）,
 学位授与機関:東京工業大学,
 報告番号:甲第5675号,
 授与年月日:2004年3月26日,
 学位の種別:課程博士,
 審査員:

Citation(English) Degree:Doctor of Science,
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第5675号,
 Conferred date:2004/3/26,
 Degree Type:Course doctor,
 Examiner:

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Parallel Implementation of

Primal-Dual Interior-Point Methods

for SemiDefinite Programming

Makoto YAMASHITA

Submitted in partial fulfillments of

the requirement for the degree of

DOCTOR OF SCIENCE

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

March 2004

Acknowledgments

I would like to express my sincere thanks to my supervisor Professor Masakazu Kojima. He gave me the
opportunity to study in the field of Semidefinite Programming. A lot of his advices have encouraged me to
do study. Many and many of his ideas are included in this thesis. Surely, he has been a ’research-aholic’.
His attitude towards research has taught me many things. I am gratefully thank to him for his warmth and
considerations in researching.

My special thanks are due to Professor Katsuki Fujisawa of Tokyo Denki University. The two software in
this thesis, SDPARA and SDPARA-C, are based on his software SDPA. His support has been indispensable
for the development of these software.

My special thanks are also due to Dr. Kazuhide Nakata of Tokyo Institute of Technology for discussions
in particular on the joint work in Chapter 4. SDPARA-C relies on a result of his fundamental research in
the completion method.

I am grateful to Professor Satoshi Matsuoka of Tokyo Institute of Technology and the members of
his laboratory who provided us high performance PC clusters for the numerical results of Chapter 3 and
Chapter 4. Their support has often made up for my lack of knowledge in parallel computation.

I would like to thank Dr. Maho Nakata of Tokyo University, who provided us the large scale SDPs arisen
from quantum chemistry for the numerical experiments in Chapter 3.

I would like to express thanks to Dr. Mituhiro Fukuda of New York University. He gave me essential
improvements on my English for each international conference. He also gave me a priceless opportunity for
overseas education to study quantum chemistry at New York University.

I am also very grateful for the assistance of Professor Bastiaan J. Braams, Professor Michael Overton
and Ms. Zhengji Zhao of New York University when I was visiting there. In particular, Ms. Zhao gave me
many advices even after I returned to Japan. They led my interest to the research in quantum chemistry.
The period at New York University was one of my unforgettable and precious experience and reminded me
about fascinating aspects of mathematics.

I am also indebted to Professor Sunyoung Kim of Ewha Women’s University for discussions on Second-
Order Cone Programming. Her valuable suggestions enhanced my understanding on Conic Programming.

It is a pleasure to acknowledge the encouragements and support from Professor Yan Dai of University of
Illinois at Chicago, Professor Antoine Deza of McMaster University and Professor Takeaki Uno of National
Institute of Informatics.

I would like also to thank to Dr. Akiko Takeda for her support during this long time since the Master
program for a number of helpful suggestions.

My special thanks are due to Dr. Satoko Moriguchi. She looks sweet in her cute smile. She motivated
me in doing research, and cheered me up many time during these three years. Her great support led me to
the completion of the thesis.

I would like to thank Professor Yukio Takahashi, Professor Miyoshi Naoto, Professor Hidetoshi Shi-
modaira and Ms. Yuko Sadoyama for their support and all members of Kojima Laboratory, Takahashi
Laboratory, Miyoshi Laboratory and Shimodaira Laboratory for their friendship and cooperations. I have
really enjoyed a good time with them.

Finally, I wish to express my appreciation to my family for their support and encouragement in my daily
life.

I am delighted to have the opportunity to meet with a lot of people through my research. It is my
precious delight that I express my thanks to many and many people.

MAKOTO YAMASHITA
TOKYO, MARCH, 2004

i

Contents

1 Introduction 1

2 Semidefinite Programming and Primal-Dual Interior-Point Methods 5
2.1 SemiDefinite Programming . 5
2.2 Primal-Dual Interior-Point Methods . 6
2.3 SDPA (SemiDefinite Programming Algorithm) . 9

2.3.1 Search Direction . 9
2.3.2 Exploiting Data Sparsity . 10
2.3.3 Mehrotra Type Predictor-Corrector . 11
2.3.4 Step Length . 12
2.3.5 Block Diagonal Structure . 13

2.4 Other Methods and Software for Semidefinite Programming 14

3 Parallel Implementation of Primal-Dual Interior-Point Methods 16
3.1 Background of Parallel Computation . 16
3.2 Parallelization . 18

3.2.1 Bottlenecks of Primal-Dual Interior-Point Methods on a Single Processor 18
3.2.2 Parallel Evaluation of Elements of the Schur Complement Matrix 21
3.2.3 Parallel Cholesky Factorization and Two-Dimensional Block-Cyclic Distribution . . 25
3.2.4 SDPARA (SemiDefinite Programming Algorithm paRAllel Version) 28

3.3 Computation Environment for Numerical Experiments . 29
3.4 Preliminary Numerical Experiments and Evaluations of SDPARA 30

3.4.1 Issues of Belt Size . 31
3.4.2 Conjugate Gradient Method for the Schur Complement Equation 31
3.4.3 Effect of Network Environment on Primal-Dual Interior-Point Methods 36

3.5 Numerical Results . 38
3.5.1 SDPs from SDPLIB . 38
3.5.2 SDPs arisen from Quantum Chemistry . 39
3.5.3 Numerical Results for Quantum Chemistry . 43
3.5.4 Load-Balance . 43

3.6 Comparison with Other Software . 44
3.6.1 PDSDP . 44
3.6.2 SDPs from SDPLIB . 47
3.6.3 Quantum Chemistry . 47

3.7 Theoretical Validity of Parallel Implementation in SDPARA 49

4 Parallel Implementation with the Completion Method 57
4.1 Incorporation of the Completion Method . 57

4.1.1 Drawbacks of SDPARA and Introduction of the Completion Method 57
4.1.2 Theoretical Groundwork for Positive Semidefinite Matrix Completion 60

4.2 Primal-Dual Interior-Point Methods with the Completion Method and its Parallelization . 63
4.2.1 Adoption of Simple Primal-Dual Interior-Point Methods 63
4.2.2 Schur Complement Matrix and its Cholesky Factorization 64
4.2.3 Parallel Computation for Primal Variable Matrix of the Search Direction 67

ii

Contents iii

4.2.4 SDPARA-C (SemiDefinite Programming Algorithm paRAllel Version with the Com-
pletion Method) . 68

4.3 Numerical Results . 69
4.3.1 Scalability of SDPARA-C . 69
4.3.2 Effect of Sparsity . 72

4.4 Comparison with SDPARA and PDSDP . 73
4.4.1 Scalability for Various SDPs . 73
4.4.2 Effect of Size and Sparsity . 74
4.4.3 SDPs from SDPLIB and DIMACS . 75

4.5 Theoretical Validity of Parallel Implementation in SDPARA-C 77

5 Conclusions and Future Directions 81

Bibliography 84

List of Tables

3.1 Estimations of computation cost for each component . 18
3.2 SDPs from SDPLIB . 20
3.3 Performance of SDPA 6.0 for control11, theta6 and maxG51 on a single processor 20
3.4 Total estimation of computation cost and communication over all processors 27
3.5 Estimation of computation cost and communication on each processor 28
3.6 PC-cluster specs . 30
3.7 Effect of belt size on load-balance . 31
3.8 Estimation of computation cost and communication in one iteration of Conjugate Gradient

method on each processor . 33
3.9 Estimation of computation cost and communication of the Cholesky Factorization and Con-

jugate Gradient method on each processor . 34
3.10 Time for the Cholesky Factorization (’cholesky’ row) and Conjugate Gradient method (’cg’

row) . 35
3.11 Performance of SDPARA on each cluster . 37
3.12 SDPs picked up from SDPLIB . 38
3.13 Performance of SDPARA on multiple processors . 40
3.14 SDPs arisen from quantum chemistry . 43
3.15 Performance of SDPARA on multiple processors for SDPs arisen from quantum chemistry . 44
3.16 Load-balance of SDPARA on 64 processors . 45
3.17 Comparison of computation time (seconds) between SDPARA and PDSDP on multiple pro-

cessors . 47
3.18 Performance of SDPARA and PDSDP for SDPs arisen from quantum chemistry 48
3.19 Computation and Communication Time (second) . 49
3.20 Overhead of NON-SORT . 51
3.21 Overhead of SORT . 51
3.22 Number of elements of B(l) for each formula in the case of the appropriate selection 52
3.23 Performance of SYM-ON for control11 . 53
3.24 Performance of SYM-OFF for control11 . 53
3.25 Performance of SYM-ON for theta6 . 53
3.26 Performance of SYM-OFF for theta6 . 53
3.27 Statics of control11 . 53
3.28 Performance of CHOLESKY for control11 . 55
3.29 Performance of CHOLESKY for theta6 . 55
3.30 Difference of computation time between non-block-oriented and block-oriented 55
3.31 Estimated computation cost and communication cost on CHOLESKY 56

4.1 Comparison between SDPA,SDPA-C and SDPARA . 60
4.2 Comparison between SDPA,SDPA-C,SDPARA and SDPARA-C 69
4.3 SDPs for numerical experiments . 69
4.4 Performance of SDPARA-C . 71
4.5 Effect of sparsity for SDPARA-C . 73
4.6 Performance of SDPARA-C, SDPARA and PDSDP on multiple processors 74
4.7 Large-Scale Max Cut Problem . 75
4.8 Large-Scale Max Clique Problem . 76

iv

List of Tables v

4.9 Large-Scale Min Norm Problem . 76
4.10 Effect of sparsity on SDPARA-C, SDPARA and PDSDP . 76
4.11 Performance for SDPLIB and DIMACS . 77
4.12 Simple row-wise distribution for Max Clique Problem . 78
4.13 Hashed row-wise distribution for Max Clique Problem . 78
4.14 Communication time to broadcast d̃X . 80

List of Figures

3.1 Evaluation of the Schur complement matrix B . 22
3.2 Order of elements of B and their formula . 23
3.3 Original row number and assign processors for 1st block . 24
3.4 Original row number and assign processors for 2nd block . 24
3.5 Two-dimensional block-cyclic distribution . 26
3.6 Reposition of two-dimensional block-cyclic distribution . 26
3.7 Two-dimensional block-cyclic distribution for the Cholesky Factorization 26
3.8 Effect of size of belt on operation counts on each processor (control11) 32
3.9 Inner iteration number of Conjugate Gradient method (control11) 35
3.10 Scalability of the Cholesky Factorization and Conjugate Gradient Method (theta6) 36
3.11 Scalability on each cluster (theta6,CHOLESKY) . 37
3.12 Scalability for Control11 . 39
3.13 Scalability for LiF . 44
3.14 Operation count on each processor for HF . 45
3.15 Scalability of SDPARA and PDSDP for control11 and theta6 48
3.16 Scalability of SDPARA and PDSDP on NH2 and LiF . 49

4.1 Aggregate graph G . 61
4.2 Chordal graph Ĝ . 61
4.3 Lattice graph with size 4× 3 . 70
4.4 Scalability of SDPARA-C for clique-10-200 . 72
4.5 Scalability of SDPARA-C, SDPARA and PDSDP for cut-10-500 and control10 75

vi

Conventions

Symbols

m the number of equality constraints
n the size of variable matrices
Rm the m-dimension real space
Sn the set of n× n symmetric matrices

C ∈ Sn a coefficient matrix
Ak ∈ Sn (k = 1, 2, . . . , m) input data matrices
b1, b2, . . . , bm right hand side values

X ∈ Sn a primal variable matrix
Y ∈ Sn a dual variable matrix
z ∈ Rm a dual variable vector

dX ∈ Sn a primal matrix of a search direction
dY ∈ Sn a dual matrix a search direction
dz ∈ Rm a dual vector a search direction

Bdz = r the Schur complement equation
B ∈ Sm the Schur complement matrix
r ∈ Rm the right hand side of the Schur complement equation

N a number of available processors
u a rank of processor
B the row indices of B
Pu the row indices assigned to the uth processor
σ a permutation
{X}l the lth block of X
[X]ij the (i, j)th element of X
sb a size of belt
mb a row-wise size of block
nb a column-wise size of block

G(V, E) a graph with a vertex set V and an edge set E
G(V, E) an aggregate graph with an aggregate edge set E
X a matrix assigned by E

Ĝ(V, Ê) an extended graph with an extended edge set Ê

X̂ a matrix assigned by Ê

M the sparse Cholesky Factorization of X̂
N the sparse Cholesky Factorization of Y −1

[X]∗k the kth column of X

vii

Conventions viii

B row indices of B which break the simple row-wise distribution
Qi

u the column indices assigned to the uth processor
to compute the ith row of B

Ru the column indices assigned to the uth processor to compute dX

Notation

A •X the inner-product between A ∈ Sn and X ∈ Sn,
A •X =

∑n
i=1

∑n
j=1 AijXij

X º O to indicate X ∈ Sn is positive semidefinite
X Â O to indicate X ∈ Sn is positive definite

Acronyms

CG Conjugate Gradient Methods
D-IPM Dual Interior-Point Methods
IPM Interior-Point Methods
MT-PC Mehrotra Type Predictor-Corrector
PD-IPM Primal-Dual Interior-Point Methods
SDP SemiDefinite Programming
SDPA SemiDefinite Programming Algorithm
SDPARA SemiDefinite Programming Algorithm paRAllel version
SDPARA-C SemiDefinite Programming Algorithm paRAllel version with the Completion Method
TD-BCD Two-Dimensional Block-Cyclic Distribution

Abbreviation

ELEMENTS evaluation of the Schur complement matrix
CHOLESKY the Cholesky Factorization of the Schur complement matrix
PMATRIX computation for dX
DENSE computation for n× n matrices

Chapter 1

Introduction

The motivation of the thesis stems from the question,

“how we solve larger SDPs in shorter time.”

The question is described in a very simple and compact way. However, answering to the question in details is
difficult, complicated and far from its appearance. To answer the question, the thesis presents two parallel
computer software SDPARA (SemiDefinite Programming Algorithm paRAllel version) and SDPARA-C
(SemiDefinite Programming Algorithm paRAllel version with the Completion method).

The term SDP is a standard abbreviation of “SemiDefinite Programming” or “SemiDefinite Program”,
which is a principal subject in the thesis. To solve larger SDPs in a shorter time, we rely on parallel com-
putation, which is another principal subject of the thesis. The field of parallel computation experienced
dramatic accomplishments in the last decade. Particularly, clustering and grid-computing technologies,
which have been promoting rapid growth of the field in recent years, provide enormous resources for nu-
merical computations in mathematics.

The SDP is an established mathematical model in the field of optimization. The SDP we are addressing
in the thesis is defined as the primal-dual standard form.

SDP :

P : minimize C •X
subject to Ak •X = bk (k = 1, 2, . . . , m),

X º O.
D : maximize

∑m
k=1 bkzk

subject to
∑m

k=1 Akzk + Y = C,
Y º O.

,

where X, Y are n× n symmetric variable matrices and z is a variable vector in Rn. The n× n symmetric
matrices C, A1, . . . , Am and the scalars b1, b2, . . . , bm are given. We use the inner-product between two
symmetric matrices A • X =

∑n
i=1

∑n
j=1 AijXij and the notation X º O to indicate that a symmetric

matrix X is a positive semidefinite matrix, that is, all of eigenvalues of X are non-negative. Chapter 2
describes more details about SDPs and the algorithmic framework for solving them.

In the last decade, powerful Primal-Dual Interior-Point Methods (PD-IPM) [35, 42, 57, 64] were proposed
for SDPs, and several software [10, 67, 74] including SDPA [23] based on them were applied to many
applications of SDPs from various fields. For example, Linear Matrix Inequality arisen from Lyapnov
stability criteria in system and control theory [12] can be directly reformulated into an SDP. In financial
engineering [53], SDPs are used to find a minimum variance keeping a mean above a given threshold. Robust
optimization in engineering [7] utilizes SDPs to formulate optimization problems on uncertain situations.

Solving SDPs not only contributes their direct applications but also provides stable and efficient numer-
ical methods to other optimization problems; SDPs are embedded to solve other optimization problems. In
combinatorial optimization [27, 28, 72], SDPs generate approximate optimal values for Max Cut Problems,
which are known as NP-complete problems, with an inexpensive computation cost. Successive Convex
Relaxation Methods [43, 44, 45, 69] compute approximate optimal solutions of a non-convex optimization
problem by solving many SDPs as their sub problems. The SDP has a lot of direct and indirect applications.
Many survey papers [32, 72, 82, 83, etc.] on SDPs were also published.

1

Chapter 1. Introduction 2

Recently SDPs draw increasing attentions in the fields of data-mining [48] and quantum chemistry
[61, 62, 91]. In particular, it is interesting to observe that SDPs in quantum chemistry are formulated
through the principle of least action indicated in the textbook of Feynman [18]. We expect that more and
more applications to various fields will be found in the next decade.

At the present time sandwiched between the last and next decades, SDPs we are facing become larger
and larger. Some are beyond the effective range of the existing software working on a single processor,
because they require enormous memory space and/or can not be solved in a practical computation time.
Accuracy and flexibility in formulating SDP models from real problems are strongly dependent on how
large number m of equality constraints and how large-size n of variable matrices are allowed to take in
modeling. For example, if we pursuit higher accuracy of electron orbits in quantum chemistry, the number
m of constraints increase rapidly so that we have to solve an SDP with an extremely large m, often greater
than 10, 000. On the other hand, it is common in combinatorial optimization to encounter SDPs involving
large-size variable matrices with some special structures. The larger m and n require much computation
cost and more memory space to solve resulting SDPs numerically.

The main part of the thesis is the proposal of the two parallel software SDPARA and SDPARA-C for
solving the large SDPs with high accuracy in a short time, and the reports of their excellent performance
enhanced by experimental analyses. SDPARA is developed to solve large SDPs involving large m equal-
ity constraints in a short time, while SDPARA-C is designed for SDPs with large-size variable matrices.
Throughout designing and implementing of two software, the following points are remarkable for their
performance.

• In designing of SDPARA (for large m),

1. The reduction of computation time in evaluation of so-called the Schur complement matrix B,
which is a bottleneck in PD-IPM, is brought by its row-wise distributed evaluation on multiple
processors.

2. The row-wise distribution keeps the efficient handling of the sparsity in input data matrices
A1, A2, . . . , Am without yielding extra network communication.

3. The parallel Cholesky factorization of the matrix B on the two-dimensional block-cyclic distri-
bution enables us to acquire the solution of the Schur complement equation in a short time.

• In designing of SDPARA-C (for large n),

1. We incorporate the completion method proposed in [24, 59] into SDPARA to reduce memory
space for SDPs involving large-size but sparse input data matrices.

2. Together with the distribution of the Schur complement matrix B on multiple processors, we
can dramatically increase the size n of variable matrices involved in practically solvable SDPs.

3. Hashed row-wise distribution for B and parallel computation of a search direction further shorten
computation time.

Wide range experimental analyses considerably enhanced the performance of the two software. In
particular, it is significant to take account of the capacity of physical network between multiple processors.
In designing of SDPARA and SDPARA-C, lots of experimental analyses were done to reduce the amount
of data transferred among processors. As a result, SDPARA and SDPARA-C achieved a high performance
in numerical experiments as below.

• SDPARA achieved

1. SDPARA on 64 processors can solve SDPs arisen from control theory or quantum chemistry more
than 20 times faster than SDPA on a single processor.

2. SDPARA can also solve SDPs with a huge number m of equality constraints arisen from quantum
chemistry, which could not be solved before, in a practical time.

• SDPARA-C achieved

1. SDPARA-C can solve SDPs whose sizes are beyond the capability of other existing software.

Chapter 1. Introduction 3

2. In particular, SDPARA-C can solve an SDP of Max Cut Problem with 40, 000× 40, 000 variable
matrices on lattice graph and 40, 000 equality constraints.

Thus, a combined use of SDPARA and SDPARA-C is our answer to the question “how we solve larger
SDPs in shorter time.” The proposal of the two software means plentiful applications in the above fields
will be much accessible for us and they will enlarge our surrounding environments.

In Chapter 3, we discuss how we reduce computation time in SDPARA (SemiDefinite Programming
Algorithm paRAllel version). Generally speaking, the most computation time to solve many SDPs by PD-
IPM is occupied by construction of a system of linear equations, so-called the Schur complement equation
which plays an essential role in computing a search direction in each iteration, and its solution. For example,
this bottleneck regarding the Schur complement equation is serious in the case of quantum chemistry. In
PD-IPM, we continue updating (X, Y , z) along a search direction (dX, dY , dz) such that (X, Y , z) =
(X,Y ,z)+ (dX, dY , dz) until (X,Y ,z) reaches an approximate optimal solution. The Schur complement
equation Bdz = r generates the component dz of the search direction. The Schur complement matrix B
is an m ×m fully dense positive definite matrix and its elements are in the form Bij = (XAiY

−1) •Aj .
In SDPARA, we adopted row-wise distributed evaluation of the Schur complement matrix B on multiple
processors to reduce the computation time. It should be emphasized that an independent evaluation of
each row of B is available and the row-wise evaluation of B is also reasonable from viewpoints of parallel
processing since all elements in the ith row share the common computation of XAiY

−1. In addition,
the row-wise distribution provides us a natural storage scheme for the large-size matrix B on distributed
memory.

When applying parallel processing based on the row-wise distribution, however, a simple combination
of a diagonal block structure with the exploitation of sparsity proposed by [22] for input data matrices is
not consistent with less network communication to accumulate the evaluation results. SDPARA removed
the sorting [22] of input data matrices to eliminate surplus communication, and accomplished significant
reduction of computation time with excellent scalability in the evaluation of B.

Moreover, the parallel Cholesky Factorization on multiple processors shortens computation time to
acquire the solution of the Schur complement equation. Particularly, the redistribution from the row-wise
distribution used for the evaluation of B to the two-dimensional block-cyclic distribution makes the parallel
Cholesky Factorization more effective; the overhead of additional network communication caused by the
redistribution is relatively minor.

Consequently, SDPARA solves extremely large-scale SDPs with a large number of equality constraints
arisen from quantum chemistry in a short time which we could not attain before. SDPARA also solves
some other large-scale SDPs very fast. Additional numerical results show that SDPARA attains satisfying
scalability and load-balance with an advantage of the simple but powerful row-wise distribution of B and
the parallel Cholesky Factorization on the two-dimensional block-cyclic distribution.

In Chapter 4, we propose SDPARA-C (SemiDefinite Programming with the Completion method) for
another type of large-scale SDPs. SDP relaxations of combinatorial optimization problems often require
to solve SDPs with large-size input data matrices C, A1, . . . , Am. If we apply SDPARA to such SDPs,
the effectiveness of parallel computation of the Schur complement equation reduces and the portion in
computation time to handle dense variable matrices becomes larger. Taking this disadvantage of SDPARA
into account, we incorporated the completion method proposed in [24, 59] into SDPARA to exploit structural
sparsity in input data matrices. The dual variable matrix Y inherits the sparsity of the input data matrices,
but the primal variable matrix X becomes fully dense in general. In the completion method, many elements
in X are neither explicitly computed nor stored in memory through the adoption of the sparsity structure in
X characterized by the chordal graph property. Therefore, we can considerably save the growth of memory
space even when the size n of variable matrices increases. In fact, the size n of variable matrices in SDPs
which can be handled by SDPARA-C is far beyond the range of other software.

However, the row-wise distribution of SDPARA can not preserve its load-balance if we simply combine
SDPARA with the completion method, because we can not directly access the elements of the dense matrices
X and Y −1 in the completion method. Instead of X and Y −1, we hold their sparse Cholesky Factorization
matrices. Thus the formula to evaluate B is modified to utilize the sparse factorization of X−1 and Y in
substitutions for X and Y −1. Then computation cost for the ith row of B becomes heavily dependent on
the number of non-zero column vectors of Ai so that the modification often breaks down the load-balance of
the simple row-wise distribution. Specifically, in some SDPs arisen from combinatorial optimization, a sharp
bias of the numbers of non-zero column vectors in input data matrices is common; hence the load-balance

Chapter 1. Introduction 4

of the simple row-wise distribution becomes worse. To overcome the difficulty, we apply hashed parallel
processing to partition the computation of the elements Bij = (XAiY

−1)•Aj (j = 1, 2, . . . ,m) with many
non-zero column vectors in Ai. We divide the computation for such a row on multiple processors and
accumulate the results to generate entire evaluation of Bij(j = 1, 2, . . . , m) in the ith row of B. The hashed
row-wise distribution substantially improved load-balance in case of unbalanced input data matrices.

In addition, SDPARA-C replaced the serial computation of search direction dX with its parallel imple-
mentation. When the size n of matrices becomes large, we can not neglect the portion to compute dX. The
column-wise computation of dX in [59] provides us a practical method to apply parallel processing. We
distribute some serial columns of dX to each processor instead of a stereotypic cyclic-distribution in order to
reduce network communication cost for mutual broadcast of dX to retain entire elements on each processor
for subsequent computation. Furthermore, minimizing the number of elements of dX to be broadcasted by
the completion method cuts considerable amount of network communication.

In consequence, the reduction of memory space for dense matrices owing to the completion method and
the distribution of B on distributed memory enable SDPARA-C to handle SDPs involving the extremely
large-size n of variable matrices and solve them in a short time with the aid of parallel processing. SDPARA-
C inherits the powerful performance from both SDPARA and the completion method.

Numerical results on PC cluster exhibit that computation time of SDPARA and the size of SDPs which
SDPARA-C can handle are far superior to that of other existing software.

We start the thesis with describing some definitions related to SDPs and more features of PD-IPM in
Chapter 2. Chapter 3 and 4 are devoted to SDPARA and SDPARA-C, respectively. Numerical results on
them are also given there. Finally, we summarize the main assertions and results of the thesis and mention
some future directions in Chapter 5.

Chapter 2

Semidefinite Programming and
Primal-Dual Interior-Point Methods

In this chapter, we start from a mathematical definition of SDP and its significant characteristics in section
2.1. Then, section 2.2 describes an algorithmic framework of Primal-Dual Interior-Point Methods which
are known as powerful and stable methods to solve SDPs numerically. The details of how to implement the
framework on a single processor will be discussed in section 2.3 following the SDPA implementation. This
chapter is devoted to introduce fundamental concepts in advance of the discussions for parallel implemen-
tation.

2.1 SemiDefinite Programming

We begin with some mathematical notations, before introducing a standard form of SemiDefinite Program-
ming (SDP). Let Sn be the space of n× n symmetric matrices. We also use a notation X º O(X Â O) to
indicate an n × n symmetric matrix X is positive semidefinite (positive definite), respectively. Addition-
ally, we take an inner-product between two symmetric matrices, that is, U • V =

∑n
i=1

∑n
j=1 UijVij for

U , V ∈ Sn.
Given a number of equality constraints m, a size of matrices n, a coefficient matrix C ∈ Sn, input data

matrices A1,A2, . . . , Am ∈ Sn, and right hand side values b1, b2, . . . , bm ∈ R, we introduce a standard form
of SDP, the main interest which we are addressing,

SDP :

P : minimize C •X
subject to Ak •X = bk (k = 1, 2, . . . , m),

X º O.
D : maximize

∑m
k=1 bkzk

subject to
∑m

k=1 Akzk + Y = C,
Y º O.

We know at a glance that the form embodies the primal-dual definition. The primal definition (P) and
the dual definition (D) are equivalent in sense that we can acquire the same quality of information from
both definitions. Hence, we have a selection on solving SDPs with only the one definition or solving them
using both of the definitions.

In the primal definition (P), we want to decide the variable matrix X ∈ Sn which minimizes the linear
objective function C•X satisfying the linear equality constraints Ak•X = bk (k = 1, 2, . . . , m) and positive
semidefiniteness of X. Each linear constraints Ak •X = bk draws a hyper-plane in the space Sn, however,
positive semidefiniteness is a nonlinear constraint.

On the other hand, in the dual definition (D), we want to decide the variable matrix Y ∈ Sn and the
variable vector z ∈ Rm which maximize the linear objective function

∑m
k=1 bkzk satisfying the linear matrix

equality
∑m

k=1 Akzk + Y = C and positive semidefiniteness of Y . When we combine the linear matrix
equality and the positive semidefiniteness by substituting Y , the result (C − ∑m

k=1 Akzk º O) can be

5

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 6

viewed as a Linear Matrix Inequality (LMI). LMI plays an essential role for control theory [12]. Therefore,
we can consider that SDP covers the field of LMI in itself.

Apart from the LMI, SDP covers many mathematical programmings. If we restrict Sn in the above
definition into a space of n × n diagonal matrices, we have Linear Programming, the most fundamental
programming in the field of mathematical programming. It is also well known that we can classify Second-
Order Cone Programming and Quadratic Convex Optimization Programming into special cases of SDP.

In the above formulation, we call the matrix X (the pair of the matrix Y and the vector z) a primal
(dual) feasible solution or a primal (dual) feasible point if X (Y and z) satisfy all constraints in P (D),
respectively. When X (Y) is positive definite in addition to the feasibility, we call X (Y and z) a primal
(dual) interior point, respectively. If a feasible solution X (Y and z) attains minimum (maximum), then
we call a primal (dual) optimal solution, respectively. On conditions that X is a primal feasible solution
(interior point, optimal solution) and the pair of Y and z is a dual feasible solution (interior point, optimal
solution), we call (X, Y , z) ∈ Sn × Sn × Rm a primal-dual feasible solution (a primal-dual interior point,
a primal-dual optimal solution), or simply a feasible solution (an interior point, an optimal solution),
respectively. The (weak) duality theorem shows the relation between the objective values of P and D.

Theorem 2.1.1 (The (weak) Duality Theorem) : For any feasible solution (X,Y ,z), an inequality
between the primal and dual objective values,

C •X ≤ Σm
k=1bkzk,

holds.

From the weak duality theorem, it is apparent that the coincidence of the objective values in addition to
the feasibility stands for the optimum. However, in general SDPs, there may be duality gap between the
optimal values of (P) and (D). An example with positive duality gap is mentioned in [72].

Throughout this thesis, we make the following two assumptions.

• A set of the input data matrices {A1,A2, . . . , Am} is linearly independent.

• There exists an interior point (X, Y , z) for the SDP.

We can remove the first assumption if we pre-process a method such a Gaussian elimination. In the
meantime, the second assumption, so-called the Slater condition is essential for the primal-dual formulation
to establish the (strong) duality theorem

Theorem 2.1.2 (The (strong) Duality Theorem) : Suppose that both (P) and (D) have an interior
feasible solution. Then the feasible regions of (P) and (D) become compact set. Furthermore, the optimal
values of (P) and (D) are equal.

An excellent proof of the strong duality theorem can be found in [72]. The coincidence property of the
optimal values is very useful, since we can add the property as one kind of constraints when we search an
optimal solution. In other words, without the second assumption we need to search in wider space at which
the two optimal objective values may not coincide.

2.2 Primal-Dual Interior-Point Methods

So far, many methods have been developed to solve SDPs. Here, we focus on Primal-Dual Interior-Point
Methods (PD-IPM) among such methods. We will consider characteristics of other methods and compar-
isons with PD-IPM in section 2.4.

Historically, Interior-Point Methods (IPM) were introduced for the first time by Karmarkar [36, 37] to
solve Linear Programming. Compared to simplex methods, an excellent virtue of IPM is that its computa-
tion cost can be bounded polynomial time. Furthermore, practical results have shown that IPM are superior
to Ellipsoid Methods developed by Kchachiyan [38],which also possess the polynomial time property.

An remarkable breakthrough in the field of Interior-Point Methods was brought by Nesterov and Ne-
mirovskii [63]. They established a concept of self-concordant barrier functions for general convex optimiza-
tion programming. The concept plays an fundamental role in the proof that there exist polynomial time

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 7

methods for any general convex optimization programming that has their self-concordant barrier functions.
Since not only SDP but also Second-Order Cone Programming and Linear Programming are sub-classes
of general convex optimization programming, the proof ensures they can be solved effectively from the
theoretical viewpoints.

PD-IPM were initially developed for Linear Complement Problems (LCP) by Kojima, et al. [41]. A
significant improvement of PD-IPM is its high stability because PD-IPM solve both of the primal and the
dual LCPs simultaneously based on the duality theorem. After the first impact of PD-IPM, they were
extended to Linear Programming; See textbooks written by Wright [84] and by Ye [87] for the details
of PD-IPM for Linear Programming. One flows of the further extensions of PD-IPM were made toward
SDP [35, 42, 57, 64, 72]. Currently, many computer software including SDPA (SemiDefinite Programming
Algorithm) are available to solve SDPs.

In advance of details how PD-IPM solve SDPs, we should make sure the optimal condition of the
standard form of SDP. Under the second assumption in the previous section 2.1 (the Slater condition), it is
known that the KKT condition provides a necessary and sufficient condition for (X, Y , z) to be an optimal
solution for an SDP.

KKT:

Ak •X = bk (k = 1, 2, . . . , m),∑m
k=1 Akzk + Y = C,

X º O, Y º O,
XY = O.

(2.1)

We can see that the KKT condition (2.1) for SDPs is composed of the four constraints. The first and
the second constraints are exactly the primal and the dual equality constraints, respectively. The third
constraint guarantees the positive semidefiniteness of matrices X and Y . If these three constraints are
satisfied, the last constraint, so-called complementarity condition, is equivalent that the primal and the
dual optimal objective values attain the identical value. See [72] for the details.

Modifying the complementarity condition slightly with a perturbation parameter µ > 0, we acquire an
system which defines a central path.

Central Path:

(X, Y , z) ∈ Sn × Sn × Rm :

Ak •X = bk (k = 1, 2, . . . , m),∑m
k=1 Akzk + Y = C,

X º O, Y º O,
XY = µI.

, (2.2)

where the matrix I is the n × n identity matrix. Obviously, we know that a point on the central path
with µ = 0 is an optimal solution, since we address the same constraints as the KKT condition (2.1). Two
well-known facts are shown in [42]; the one is that if we fix the parameter µ to a positive number, there
exists a unique point on the central path; the other is that the central path comprises of an continuous
curve which converges an optimal solution as µ → 0. In addition, an equality µ = X •Y /n holds for every
point on the central path.

A main concept adopted by PD-IPM is that PD-IPM numerically traces the central path decreasing
the perturbation parameter µ toward 0; when µ is sufficiently close to 0, PD-IPM reach to an approximate
optimal solution. To describe an approximate optimal solution precisely, we define a feasibility error and a
relative duality gap as follows.

A feasibility error: max {a primal feasibility error, a dual feasibility error} ,

A relative duality gap:
|objP− objD|

max{(|objP|+ |objD|)/2.0, 1.0} ,

where

A primal feasibility error: max {|Ak •X − bk| : k = 1, 2, . . . ,m} ,

A dual feasibility error: max
{∣∣∣[Σm

k=1Akzk + Y −C]i,j
∣∣∣ : i, j = 1, 2, . . . , n

}
,

objP: C •X,

objD: Σm
k=1bkzk.

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 8

Other definition of a primal feasibility error and a dual feasibility error also can be employed, for example,

An alternate primal feasibility error:
(
Σm

k=1|Ak •X − bk|2
)1/2

An alternate dual feasibility error: ||Σm
k=1Akzk + Y −C||.

We call (X,Y ,z) as an ε̄-feasible solution if the feasibility error is smaller than a small positive number
ε̄ and X and Y are positive semidefinite. Moreover, if the relative gap of (X, Y , z) is smaller than a
small positive number ε∗ in addition to ε̄-feasibility, we say (X,Y , z) as an (ε̄, ε∗)-optimal solution. At the
time PD-IPM find an (ε̄, ε∗)-optimal solution, PD-IPM terminate and give the (ε̄, ε∗)-optimal solution as
an approximate optimal solution. Usually, we take ε̄ = ε∗ = 1.0e− 8.

The final substantial element in PD-IPM is how we numerically trace the central path, that is, how we
move the current point (X,Y ,z) to a next point (Xnext, Y next, znext). We introduce a search direction
(dX, dY , dz) to update the current point as follow,

(Xnext, Y next, znext) = (X,Y ,z) + (dX, dY , dz). (2.3)

Desired characteristics of the next point are that it will be close to the central path and that an approximate
perturbation parameter µnext = Xnext •Y next/n will be smaller than current value µcurrent = X •Y /n to
make the next point closer to an optimal solution at which the KKT condition (2.1) holds. Therefore, we
apply the Newton method to the system (2.2) that defines the central path in order to obtain the search
direction in (2.3), and acquire a system,

Ak • (X + dX) = bk (k = 1, 2, . . . ,m),∑m
k=1 Ak(zk + dzk) + (Y + dY) = C,

(X + dX)(Y + dY) = β (X • Y /n) I,

with a parameter β from 0 to 1. If we set β close to 0, we obtain an aggressive search direction toward
an optimal solution. Too aggressive search direction, however, suffers from a numerical unstability and a
difficulty to attain the feasibility. Conversely, if we set β close to 1, the search direction leads the next point
to a neighborhood of the central path, thus successive updates can be done on a better condition. Since
we can control numerically the next point between an optimal solution and the central path by adjusting
β, we call the parameter β the centering parameter. It should be emphasized that the above system for
the search direction does not contain positive semidefiniteness of X and Y , because it is difficult to apply
the Newton method to the constraints that are not equality constraints. Consequently, we start from an
initial point with X Â O, Y Â O and keep positive definiteness by shrinking the search direction with step
length αp = max{α : X + α dX º O} for the primal and αd = max{α : Y + α dY º O} for the dual. The
feature that we retain the positive definiteness during all the computation in PD-IPM is the origin of the
name ’Interior-Point Methods.’

At the last of this section, we summarize the contents in the form of an algorithmic framework of
PD-IPM.

Algorithmic Framework of Primal-Dual Interior-Point Methods

Step 0 (Initialization): Choose an initial point (X, Y , z) satisfying X Â O and Y Â O; for example,
X = Y = I and z = 0. Set parameters 0 < β < 1, 0 < γ < 1, ε̄ > 0, ε∗ > 0.

Step 1 (Terminally check): If (X,Y ,z) is an (ε̄, ε∗)-optimal solution, we print out (X, Y , z) as an
approximation optimal solution and stop algorithm.

Step 2 (Next point search): We compute the search direction (dX, dY , dz) by the Newton method,
and the step lengths αp and αd.

Step 3 (Update): We update the point by (X, Y , z) ← (X, Y , z)+ γ(αp dX, αd dY , αd dz), and return
to Step 1.

We regard the successive computations from Step 1 to Step 3 as one iteration. The parameters set by
Step 0 affect the number of iterations that PD-IPM require to terminate the algorithm.

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 9

2.3 SDPA (SemiDefinite Programming Algorithm)

SDPA (SemiDefinite Programming Algorithm) [23] is software package for solving SDPs based on PD-IPM.
SDPA is known as stable and efficient software.

The first version of SDPA was released in 1995. Throughout continuous improvements devoted to SDPA
since the first release [20], SDPA contains many schemes to enhance its solvability. The major schemes among
them are the exploitation sparsity of the input data matrices for the so-called Schur complement matrix
and the Lanczos method to reduce the computation cost for the step length. Moreover, the latest version of
SDPA (version 6.0) [85] takes advantage of the fast numerical libraries for linear algebra, LAPACK (Linear
Algebra PACKage) [3] and ATLAS (Automatically Tuned Linear Algebra Software), to achieve further
shorter computation time. In this section, we describe more descriptions of such schemes incorporated into
SDPA from the viewpoints of implementation.

The source code and information of SDPA are maintained on the SDPA Home Page:
http://sdpa.is.titech.ac.jp/

2.3.1 Search Direction

As described in section 2.2, we need to solve the system by applying the Newton method to obtain the
search direction (dX, dY , dz) in (2.3) at each iteration.

Ak • (X + dX) = bk (k = 1, 2, . . . , m),∑m
k=1 Ak(zk + dzk) + (Y + dY) = C,

(X + dX)(Y + dY) = µcI,
(2.4)

where µc = β (X • Y /n). We ignore a minute nonlinear term dXdY in the third constraint of (2.4) and
keep only the variable terms in the left hand side, thus we acquire the next system.

Ak • dX = bk −Ak •X (k = 1, 2, . . . , m),∑m
k=1 Akdzk + dY = C −∑m

k=1 Akzk − Y ,
X dY + dX Y = µcI −XY ,

(2.5)

However, we can not solve the system directly because of a conflict between the number of variables and
that of equality constraints in the system. Since that an n × n symmetric matrix involves n(n + 1)/2 free
variables as its elements, we count the number of variables (dX, dY , dz) is n(n + 1)/2 + n(n + 1)/2 + m.
On the other hand, the number of equality constraints is m + n(n + 1)/2 + n2, because we must consider
the third constraint in the space of non-symmetric matrices while the second constraint in Sn.

Some approaches has been proposed to overcome the conflict [76]. Monteiro and Zhang [57, 88] brought
a general perspective to integrate many of such approaches. They replace the third constraint in (2.5) by
its symmetrization

HP (X dY + dX Y) = HP (µcI −XY),

to reduce n(n − 1)/2 equality, where HP (X) = (PXP−1 + (PXP−1)T)/2 is a symmetrization operator
based on a n×n non-singular matrix P . Three major search directions, HRVW/KSH/M [35, 42, 57], NT [64,
73], AHO [1] can be derived from the adequate choices of the matrix P as Y 1/2,X1/2(X1/2Y X1/2)−1/2X1/2,

I, respectively, where X1/2 is the n× n positive symmetric matrix that satisfies X1/2X1/2 = X.
The latest version of SDPA employs the HRVW/KSH/M search direction among them. In general, the

NT direction has stronger theoretical features, for example, which can attain the least iteration number
of PD-IPM. However, the reason why SDPA choose the HRVW/KSH/M direction is mainly the small
computation cost in each iteration, which often outweighs the increment the number of iterations when we
solve various SDPs.

In the HRVW/KSH/M search direction, we reduce the above system into

∑m
j=1((XAiY

−1)) •Ajdzj = pi −Ai • ((R−XD)Y −1),
dY = D −∑m

k=1 Akdzk,

d̂X = (R−XdY)Y −1, dX = (d̂X + d̂X
T
)/2,

(2.6)

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 10

where

pk = bk −Ak •X, D = C − Σm
k=1Akzk − Y , R = µcI −XY . (2.7)

Once we decide dz, the second and the third equality in the reduced system in (2.6) express a direct
computation for dX and dY . Note that d̂X is a intermediate matrix for dX to be a symmetric matrix.
Therefore, a substantial computation concentrates on solving the first linear equation to obtain dz. We call
the first equation the Schur complement equation and denote as

B dz = r, (2.8)

where

Bij = (XAiY
−1) •Aj , ri = pi −Ai • ((R−XD)Y −1). (2.9)

It is well-known that the coefficient matrix B, so-called the Schur complement matrix, is always positive
definite throughout all the iterations in PD-IPM. Hence, we can apply either the Cholesky Factorization
[direct method] or Conjugate Gradient Methods (CG Methods) [iterative method] to acquire dz from the
Schur complement equation. Details of a comparison between the Cholesky Factorization and CG Methods
will be focused on in section 3.4.2.

SDPA adopts the Cholesky Factorization, because the convergence rate of CG methods Methods deeply
depends on a condition number of B that becomes seriously worse as (X, Y , z) closes to an optimal solution,
although many researches have investigated to improve the convergence rate [15, 60, 79]. Of course, even the
Cholesky Factorization case, some numerical errors accumulated during the computation of PD-IPM affect
the accuracy of the Cholesky Factorization. When the positive definiteness of B can not be maintained
due to numerical errors, SDPA terminates the algorithm and prints out the current point (X, Y , z) as final
information.

The evaluation of elements of B is another remarkable component with respect to the Schur complement
equation. SDPA aggressively exploits the sparsity of the input data, and we describe the exploitation in
the next subsection.

2.3.2 Exploiting Data Sparsity

How much we can reduce the computational cost in the evaluation of the Schur complement matrix B at
each iteration immediately affects total computation time of PD-IPM, because the evaluation often occupies
most of the total computation cost. Meanwhile, the input data matrices Ak (k = 1, 2, . . . , m) arisen from
real problems often have a considerable sparsity, that is, the number of non-zero elements is relatively
smaller than n2. Without any consideration for the sparsity, it must be difficult to solve SDPs from real
problems in a practical time.

We incorporate the adequate method that successfully exploits sparsity for reducing the cost of B into
SDPA [22]. Here, we take a glance at how the computation cost of Bij = (XAiY

−1) •Aj changes between
the case Ai, Aj are fully dense and the case they are considerably sparse. Here, we should exclude the
computation cost of the inversion of Y from the comparison, because Y −1 is identical for all elements in
B throughout each iteration.

First, let both Ai and Aj have n2 non-zero elements, that is, fully dense. Then we need (2n3 + n2)
multiplications for Bij . ((2n3) for twice matrix multiplications, in addition n2 for inner-product.)

On the other hand, when both Ai and Aj are sparse, we denote that the number of the non-zero
elements of the matrices are nz(i) and nz(j), respectively and [Ai]pq stands for a (p, q) element in Ai. We
reformulate the formula for Bij to clarify an effect of the sparsity.

Bij = (XAiY
−1) •Aj

= Σn
p=1Σ

n
q=1[XAiY

−1]pq[Aj]pq

= Σn
p=1Σ

n
q=1(Σ

n
r=1Σ

n
s=1Xpr[Ai]rsY

−1
sq)[Aj]pq.

Based on the reformulation, the computation cost can be estimated as (2nz(i) + 1)× nz(j) multiplication.
A difference between (2nz(i) + 1) × nz(j) and 2n3 + n2 becomes more clearly, when nz(i) and nz(j)

are far from fully dense n2. If all input data matrices Ak (k = 1, 2, . . . , m) are sparse, the effect of the
exploitation of the sparsity would give us an immeasurable impact.

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 11

Certainly, the simple analysis for the computation cost of Bij described the above is not enough, because
we do not consider an overhead which stems from a data structure to handle the sparse matrices and a
possibility that all elements in the ith row of B can share a result of the multiplication XAiY

−1. In this
section, we do not turn into the more details; See [22] for more details.

Supported by the exploitation of the sparsity, SDPA successfully solves various SDPs as reported in [85].
Furthermore, another merit we exploit sparsity is that we can remarkably reduce the memory space to store
input data matrices. Therefore, we have a significant potential to deal with large SDPs.

2.3.3 Mehrotra Type Predictor-Corrector

In order to enhance a qualification of the search direction, SDPA employs Mehrotra Type Predictor-
Corrector (MT-PC) PD-IPM [55]. In MT-PC PD-IPM, we may attain second order convergence toward
an optimal solution while we need to obtain the two search direction at each iteration, the predictor search
direction (dXp, dY p, dzp) and the corrector search direction (dXc, dY c, dzc). MT-PC PD-IPM is dis-
tinct from Mizuno-Todd-Ye Predictor-Corrector PD-IPM [56], because the update from the current point
(X,Y ,z) to the next point in MT-PC is brought by only the corrector direction, and the predictor direction
aids only for obtaining the the corrector direction.

We describe the implementation of the search direction in SDPA based on MT-PC PD-IPM, which
replaces the Step 2 in the algorithmic framework of PD-IPM in section 2.2.

Algorithmic Framework for the Search Direction based on Mehrotra Type Predictor-Corrector

Step 0 (Parameter Set): Before starting the first iteration, we set 0 < β∗ ≤ β̄ < 1.

Step 1 (Predictor Step): If (X, Y , z) is ε̄-feasible solution, we set a predictor centering parameter βp

as 0, else as β̄. Let (dXp, dY p, dzp) be the solution (dX, dY , dz) of the Schur complement equation
replaced β in (2.6) by βp.

Step 2 (Corrector Step): Let

βt =
(

(X + dXp) • (Y + dY p)
X • Y

)2

. (2.10)

If (X,Y ,z) is an ε̄-feasible solution, we set a corrector centering parameter βc as max{β∗, βt}, else
as max{β̄, βt}. Let (dXc, dY c, dzc) be the solution (dX, dY , dz) of the Schur complement equation
replaced β in (2.6) by βc and R in (2.7) by µcI −XY − dXpdY p.

Step 3 (Search Direction Set): Set the search direction based on MT-PC PD-IPM (dX, dY , dz) by the
corrector search direction (dXc, dY c, dzc).

In the Step 2 of the above algorithmic framework, we utilize the predictor search direction (dXp, dYp, dzp)
to obtain the corrector search direction (dXc, dY c, dzc) as mentioned. The replacement of R enables us
to numerically trace the central path with an almost second-order approximation. A point we have to
note regarding the computation cost is that we need to solve the Schur complement equation twice for the
predictor search direction and the corrector search direction, however, we do twice computations with only
once evaluation of the Schur complement matrix in (2.8). The reason is the replacement in µ and R affects
the right hand side of the Schur complement equation but not the elements of the Schur complement matrix
B. Thus, a principal efficiency attained by MT-PC PD-IPM is originated from the reuse of B.

The above definition of the auxiliary centering parameter βt (2.10) is slightly different from an original
definitions as

βt =
(

(X + αpre
p dXp) • (Y + αpre

d dY p)
X • Y

)3

,

where

αpre
p = max{α ∈ [0, 1] : X + α dXp º O}, αpre

d = max{α ∈ [0, 1] : Y + α dY p º O}.
In the above definition(2.10), we take away the computation of αpre

p and αpre
d and alter the exponential

from 3 to 2. These changes were first incorporated into SDPA empirically. Nevertheless, we can verify the
changes highten the numerical stability of SDPA through numerical experiments. The choice of an auxiliary
centering parameter may have strong dependence on a step length that we will discuss next.

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 12

2.3.4 Step Length

To keep the positive definiteness of the variable matrices X and Y even after applying update in each iter-
ation, we shrink the search direction (dX, dY , dz) by the step lengths αp and αd for P and D, respectively.
Shortly, the requirement for αp and αd is

αp = max{α > 0 : X + α dX º O}, αd = max{α > 0 : Y + α dY º O}.

The positive definiteness of X and Y ensures the step lengths must be positive number. Since the maxi-
mizations in both P and D are essentially identical computations, we focus on only for αp in this section.

Fundamentally, we compute αp through a rewrite of the maximization with the Cholesky Factorization
L of X, that is, X = LLT .

αp = max{α > 0 : X + α dX º O}
= max{α > 0 : LLT + α dX º O}
= max{α > 0 : I + αL−1dXL−T º O}
= −1/λmin(L−1dXL−T),

where λmin(A) is a minimum eigenvalue of the matrix A. The last equality holds only if L−1dXL−T has
negative eigenvalues. Otherwise X + αdX becomes a positive definite matrix for any α > 0, hence we lose
the reason for the shrinkage of the search direction. In the case, we assign a sufficiently large number for
αp such as 100.

If we obtain αp > 1 when the current point (X, Y , z) is not ε̄-feasible solution, we restrict αp = 1 for
the next point being a feasible solution. The restriction is justified the fact that we can always maintain the
primal feasibility after once we reach the primal feasibility, except for the possibility of numerical errors.

The difficulty how we choose the step lengths comes also from a balance between a pursuit for the
feasibility and a reduction of the relative gap. After we attain zero relative gap, it may be impossible
to continue further iterations since the numerical stability of the Schur complement matrix may become
extremely worse. To control the feasibility and the relative gap, we need to investigate an effect of the step
length. Since the primal feasible error is

max{|pk| : pk = bk −Ak •X (k = 1, 2, . . . , m)}

and the primal component dX of the search direction satisfies Ak • (X + dX) = bk (k = 1, 2, . . . ,m), the
primal feasible error on the next point with the step length αp is

[The next primal feasible error]
= max{|bk −Ak • (X + αpdX)| : (k = 1, 2, . . . , m)}
= max{|bk −Ak •X − αpAk • dX| : (k = 1, 2, . . . , m)}
= max{|bk −Ak •X − αp(bk −Ak •X)| : (k = 1, 2, . . . , m)}
= max{(1− αp)|bk −Ak •X| : (k = 1, 2, . . . , m)}
= (1− αp)max{|pk| : (k = 1, 2, . . . , m)}
= (1− αp)× [The current primal feasible error]

The relation that the next error is multiple of the current error ensures with factor of (1−αp) indicates that
if we take αp = 1, the next error becomes zero. In addition, once we attain the feasibility, we can maintain
the feasibility all the after iterations. In the same way, the dual feasibility error decreases in proportion
to (1 − αd). On the other hand, we estimate the relative gap by the formula X • Y since the difference
between the primal and the dual objective value becomes C •X −∑m

k=1 bkzk = X • Y if (X, Y ,z) is a
feasible solution. To make a reduction rate of the feasibility error smaller than an estimation rate of the
relative gap ((X + αpdX) • (Y + αddY))/(X • Y), we adopt the following scheme:

Algorithmic Framework for Adjustment of the Step Lengths

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 13

Step 0 (Initialization): Set initial step lengths by
αp = max{α > 0 : X + α dX º O}, αd = max{α > 0 : Y + α dY º O}. If (X,Y ,z) is not
ε̄-feasible solution, we modify αp = min{αp, 1} and αd = min{αd, 1}. Choose a shrinking parameter
0 < ζ < 1

Step 1 (Termination check): If

max{1− αp, 1− αd} ≤ ((X + αpdX) • (Y + αddY))/(X • Y)

is satisfied, we stop.

Step 2 (Update lengths): Let αp → ζαp and αd → ζαd. Goto Step 1.

In SDPA, the actual implementation for the minimum eigenvalue of L−1dXL−T is the Lanczos method
developed by [77]. A standard eigenvalue decomposition needs O(n3) operation, while the Lanczos method
provides a cheaper computation with an enough approximation of the minimum eigenvalue.

2.3.5 Block Diagonal Structure

For many SDPs arisen from real problems, the coefficient matrix C and the input data matrices Ak (k =
1, 2, . . . , m) often have same non-zero structures other than simple sparsity. SDPA was designed to deal
with a structure called the block diagonal structure.

For example, if a symmetric matrix Xex has a non-zero structure such that

Xex =

1 2 3 0 0 0 0
2 4 5 0 0 0 0
3 3 6 0 0 0 0
0 0 0 7 8 0 0
0 0 0 8 9 0 0
0 0 0 0 0 10 0
0 0 0 0 0 0 11

,

we had better treat it as three small matrices (a 3× 3 matrix , a 2× 2 matrix and a diagonal 2× 2 matrix)
than one big 7× 7 matrix.

In general, the block diagonal structure for a symmetric matrix can be expressed by nBLOCK and
bLOCKsTRUCT in SDPA. If a symmetric matrix X has h block diagonal matrices X1 ∈ Sn1 ,X2 ∈
Sn2 , . . . Xh ∈ Snh , that is,

X =

X1 O · · · O
O X2 · · · O
...

...
. . .

...
O O · · · Xh

 ,

we define nBLOCK and bLOCKsTRUCT as

nBLOCK = h,

bLOCKsTRUCT = (n̂1, n̂2, . . . , n̂h),

n̂` =
{

n` if X` is a symmetric matrix,
−n` if X` is a diagonal matrix.

The block diagonal structure for the above Xex can be expressed as

nBLOCK = 3, bLOCKsTRUCT = (3, 2,−2).

A main merit of the adaptation of the block diagonal structure is a significant reduction of the compu-
tation cost. For instance, let A and X be two matrices sharing an identical block diagonal structure.

A =

A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · Ah

 , X =

X1 O · · · O
O X2 · · · O
...

...
. . .

...
O O · · · Xh

 .

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 14

Then we can reduce multiplication and inner-product between A and X into

AX =

A1X1 O · · · O
O A2X2 · · · O
...

...
. . .

...
O O · · · AhXh

 ,

A •X = A1 •X1 + A2 •X2 + · · ·+ Ah •Xh.

Furthermore, we can detect a positive semidefiniteness of X by smaller sub-matrices.

X º O ⇔ X1 º O, X2 º O, . . . , Xh º O.

As a result we do with only sub-matrices computations which require cheaper cost than one large matrix
computations.

A combination of the exploitation of the sparsity and the block diagonal structure described here cut
down the computation cost of SDPA. A significant effect can be observed when we apply SDPA to SDPs
arisen from real problems such as Control Problem and Theta Function Problem described in section 3.2.1.

2.4 Other Methods and Software for Semidefinite Programming

PD-IPM described in this section have been a strong position in the field of SDP since its first proposal [42].
Until now, PD-IPM have been implemented in some computer software for SDPs. SDPA is a representative
one of them, and the other representative software of PD-IPM are SDPT3[74], SeDuMi[67] and CSDP[10].

SDPT3, a MATLAB software, achieves an outstanding performance that is comparable to SDPA. A
main algorithmic framework in SDPT3 is almost the same as SDPA, for instance, the HRVW/KSH/M
direction, however, a point SDPT3 is superior to SDPA is that SDPT3 directly solves Second-Order Cone
Programming, namely deals with the Cartesian product of SDP, Second-Order Cone Programming and
Linear Programming.

SeDuMi is also a MATLAB software owing to the advantage of PD-IPM. SeDuMi utilizes Self-Dual
embedding and the NT search direction instead of the HRVW/KSH/M direction. With a schema which
holds the variable matrices in their Cholesky Factorization form, SeDuMi attains excellent stability far
beyond other software.

CSDP is written in C language, while SDPA is in C++ language. Thus, CSDP can ignore overheads
derived from C++ or MATLAB. Since CSDP and SDPA have their callable library and MATLAB interface,
we call their implementation from many program, including MATLAB [21].

PD-IPM have been verified very strong from viewpoints of both theory and practice by the above
software, however, they are not perfect for all SDPs. Suppose that the coefficient matrix C and all the
input data matrices Ak (k = 1, 2, . . . , m) have the same sparsity, that is, the same non-zero structure. The
dual variable matrix Y inherits the sparsity since Y = C−∑m

k=1 Ak. On the other hand, the primal variable
matrix X becomes usually full dense matrix even when the sparsity is remarkable. In order to overcome
the fully density in the primal matrix, two methods have been proposed in IPM framework. Nakata, et al.
proposed a new PD-IPM by means of a combination with the Completion Method [24, 60]. The proposition is
also incorporated into parallel implementation as described in chapter 4. The other method is Dual IPM (D-
IPM) introduced by Benson et al. [6]. In D-IPM framework, they consider in only the dual space D without
the primal space P. Therefore, in general, D-IPM only attains lower stability than PD-IPM based on the
dual theorem. They implement D-IPM into software package, DSDP[5]. Removing the memory storage for
the fully dense primal variable matrix X results in a successful reduction of computation memory space.
DSDP shows its strong power for SDP relaxations arisen from graph theory at which we may not require
high accuracy. The details of D-IPM will be discussed in section 3.6.1.

A main difficulty of IPM is that the most computation costs of either PD-IPM or D-IPM are usually
occupied by the Schur complement equation. To overcome the difficulty, many other researches have been
developed [78].

Among other methods, an approach that deals with SDP from the viewpoint of nonlinear optimal
programming (NLP) are remarkable. Krishnan, et al. [46, 47] focus a fact that positive semidefiniteness
of a symmetric matrix can be expressed semi-infinite linear constraints and propose Linear Programming

Chapter 2. SemiDefinite Programming and Primal-Dual Interior-Point Methods 15

approaches to SDP with cutting plane methods. Lagrangian method, a common method in the field of NLP,
is also utilized [25]. Kocvara, et al. apply penalty methods to augmented Lagrangian method. PENNON
[39, 40] implemented by them searches an optimal solution by alternating a movement of a variable matrix
and an update of Lagrangian multipliers. Spectral Bundle method proposed by Helmberg et al. [34] is also
implemented into software, SBMethod [33], based on the Lagrangian method. They convert an SDP to
an eigenvalue optimization problem. Furthermore, Burer, et al. [13, 14] introduce a first-order log-barrier
method utilizing gradient information, a fundamental concept in NLP.

More and more other methods and software can be found from Helmberg’s WWW site [32]. These
uncountable researches prove the importance and the attraction of SDPs which we are addressing in this
thesis.

Chapter 3

Parallel Implementation of
Primal-Dual Interior-Point Methods

In this chapter, we propose parallel software SDPARA (SemiDefinite Programming Algorithm paRAllel
version). We start the chapter from some background and historical description of parallel computation
in section 3.1. Then we move on section 3.2, a central part of this chapter. In section 3.2, after pointing
out bottlenecks of PD-IPM on a single processor, we describe how the bottlenecks have been replaced by
their parallel implementation of SDPARA. Section 3.3 is devoted for the details of parallel computation
environments. In section 3.4, we investigate effects of the parallel implementation by preliminary numerical
experiments. Then, full-scale numerical experiments on various SDPs, in particular, on SDPs arisen from
quantum chemistry in section 3.5 and a comparison with another parallel SDP solver in section 3.6 will show
the high performance of SDPARA. Finally, we provide a theoretical validity of parallel implementation of
SDPARA in section 3.7.

3.1 Background of Parallel Computation

As stated in section 2.1, SDPs have many applications from real issues. However, more accurate descriptions
or more input datas for the models make extremely large SDPs. In particular, SDPs arisen from quantum
chemistry can have arbitrary number of constraints, if we prepare a quite number of base wave functions as
described in section 3.5.2.

Such large scale SDPs are impossible to solve on a single processor mainly due to two reasons. The
first reason is that memory space we can attach on a single processor is limited. The other reason is that
computation time required for large scale SDPs may not be practical even if we have enough memory to
store them. The questions we have to ask in this thesis are that how to store large SDPs, and that how to
solve in a short time.

On the other hand, over these few years, a considerable number of researches have been devoted on
parallel computation. We can verify noticeable accomplishments in the field of parallel computation through
Top 500 [80] list which reports the 500 strongest computation resources in the world. Historically speaking,
an event which made quite an impact on people was that a parallel computer ’Deep Blue’ beated the
world chess champion in 1997. After that, parallel computation has been brought to public attention as
computation resources. What we are interested in here is whether we can solve the large scale SDPs in
short time if we incorporate parallel computation into PD-IPM.

Before we turn to investigate the possibility of parallel computation for SDPs, let us draw our attention
to parallel computation itself.

The history of mechanical calculators can date back to automatically additions and subtractions by
Pascal in 1649 and multiplications and divisions by Leibniz in 1674. After almost 300 years from Pascal, the
first electronic calculator ’ABC (Atanasoff-Berry Computer)’ was developed by Atanasoff and Berry in 1942.
In 1946, ENIAC (Electronic Numerical Integrator And Calculator) by Mauchly and Eckart proved that the
power of electricity enables us to compute effectively. From mathematical views, important contributions
were achieved by Turing and von Neumann. Turing [81] established a fundamental concept of computability,

16

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 17

what we can compute or can not. A lot of number of mechanical devices for computation proposed by von
Neumann in 1945 affect almost all the present computers.

The first super computer to persist high performance computing was CDC6600 in 1964. In succes-
sion, the Cray-I regarded as a synonym for super computer was built in 1976. CDC6600 and Cray-I were
parallel computers which we can categorize into vector parallel computer. They were designed to achieve
high performance, in particular, for vector computations arisen from technological fields; they had spe-
cialized processors for vector computations. Since the outstanding micro processors evolutions in 1980s,
multiple attempts were made for parallel computation based on commercially-designated micro processors.
Subsequently, in 1990s, the super parallel computer with hundreds of thousands of processors emerged.

At the present time, we have two key technological factors in parallel computation, Cluster and Grid
Computing. Cluster technology has aimed for a realization of multiple computation resources, such as
personal computers, work stations and super computers, lumped together in a big virtual parallel compu-
tation resource by connections through the network. On the other hand, the term Grid is derived from
an electronic grid. When we use an electronic power from a plug, we usually do not worry about where
the electricity is produced. In the same way, Grid technology explores a possibility whether we can use
computation resources without any attention where the computation is done. Cluster and Grid computing
technologies will provide us more easiness ways for parallel computation and massive computation resource
in near future.

In the above paragraphs, we have reviewed the short history. In turn, we take look at categorizations of
parallel computation. In general, we have multiple processors and multiple data on parallel computation. A
relation between data and operators on processors gives us a categorization called SIMD (Single Instruction
stream and Multiple Data stream) and MIMD(Multiple Instruction stream and Multiple Data stream). For
example, suppose that we have two processors, P1 and P2. If we compute a1 = b1+c1 on P1 and a2 = b2+c2

on P2 simultaneously, we call SIMD since P1 and P2 apply the same operation (namely addition). On the
other hand, when a1 = b1 + c1 on P1 and a2 = b2 × c2 on P2, we call MIMD, because of the difference
of operators (namely addition and multiplication). The other categorization is from memory space which
corresponds to processors. On SMP (Symmetric MultiProcessors) system, all processors share one large
memory space. Conversely, on distributed memory system, each processor posses their own memory space.
We usually require no communication over memory space on SMP system, while distributed memory easily
enables us to retain large memory space.

Another perspective we are concerned about parallel computation is performance measures. Common
measures are scalability and load-balance. It may be natural we expect that we can solve problems N
times faster as compared to a single processor when we use N processors. The scalability is a measure
how much faster parallel computations solve problems than a single processor. If N processors are used, a
desirable scalability is N , but it is often impossible due to communication between multiple processors and
components which we should not replace with parallel computation from a single computation because of
algorithmic frameworks. Generally speaking, a reduction of communication generates higher scalability. On
the other hand, after counting the number of operation on each processors through parallel computation,
we can evaluate the performance by load-balance, which is the ratio of the highest operation counts and the
lowest counts in N processors. The load-balance close to 1 indicates that we distribute computations on
the processors averagely. Clearly, the load-balance and the scalability has strong correlation. Approaches
to better load-balance are surely results in higher scalability, since there may be no redundant computation
time on each processor. What we have to note here is, however, that grain sizes is one subject. The grain
size is the unit size into which we divide the original problem for the distribution over multiple processors.
Small grain sizes are helpful for better load-balance and give worse scalability because of incremental
communication. Therefore, better load-balance and higher scalability are sometimes difficult for us to
acquire simultaneously.

So far, a lot of applications on parallel computation have been developed through significant number
of supports over the past years. Among them, crucial researches are examined in the field of data mining
and image processing. In addition, a drastically growth of parallel computation is continued on pattern
matting for DNA analysis. In the field of numerical analysis, finite element methods arisen from differential
equation has relatively long history on parallel computation.

We are convinced that high performances achieved by parallel computation enable us to solve extremely
large-scale SDPs in a short time which we could not attain so far. Before discussing detail implementation
to solve SDPs on parallel computation, we should inquire into bottlenecks when we solve SDPs on a single

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 18

processor, since the bottlenecks must be targets to be replaced with their parallel implementation.

3.2 Parallelization

3.2.1 Bottlenecks of Primal-Dual Interior-Point Methods on a Single Processor

To gain a sufficient effect on parallel computation, there are somethings to keep our eyes on. Clearly,
a reduction of computation time offered by parallel computation is considerably attractive to solve large
SDPs, however, we also need to consider overheads of communication between multiple processors. It is
said in general that only 10 percent of source codes occupies 90 percent of computation time. A significant
task we are facing is that we have to decide which components of PD-IPM we apply parallel computation.
Here, let us examine to figure out bottlenecks of PD-IPM on various SDPs on a single processor, then we
consider replacements for the bottlenecks with their parallel implementation.

From combinations of theoretical estimations for computation cost and empirical results on some SDPs,
we categorize the four components of PD-IPM which may be bottlenecks mainly from the algorithmic
framework of PD-IPM (section 2.1) and the search direction (section 2.3.1).

1. ELEMENTS
The Evaluations of elements of the Schur complement matrix B with formula Bij = Ai • (XAjY

−1)
in (2.9).

2. CHOLESKY
The Cholesky Factorization of the Schur complement matrix B.

3. PMATRIX
The computation for dX, the primal variable matrix in the search direction in the framework of the
HRVW/KSH/M direction based on the last formula (2.6).

4. DENSE
The other portions required by computation for primal and dual dense variable matrices, X and Y .
For example, the Lanczos method for the step length (section 2.3.4), multiplications for the right hand
side in the Schur complement equation (2.9) and the inversion of Y .

We summarize estimations of computation cost for each component in Table 3.1, regarding the number
of equality constraints m and the matrix size n for X and Y . What we want to emphasize is that the

Table 3.1: Estimations of computation cost for each component
ELEMENTS O(mn3 + m2n2)
CHOLESKY O(m3)
PMATRIX O(n3)
DENSE O(n3)

most computation time at each iteration of PD-IPM in general SDPs is occupied by the evaluations of the
elements of the Schur complement matrix B, ELEMENTS, and its Cholesky Factorization, CHOLESKY.
Although the former computation heavily depends on how sparse the input data matrices A1, A2, . . . , Am

are, it often occupies the largest portion of the computational time, even though we exploit the sparsity
[22]. (The estimations in the above table were made on an assumption that in the case all input data
matrices A1, A2, . . . , Am are fully dense.) In addition, the Schur complement matrix B usually becomes
fully dense no matter how sparse input data matrices are. Since the Cholesky Factorization of B needs
m3/3 multiplication, it sometimes takes longer computation time than the evaluation of the elements of B
especially when the input data matrices are sparse and/or the number m of the equality constraints of P
is much larger than the size n of the variable matrices. The reason why we divide O(n3) computation into
two portions, PMATRIX and DENSE, may not be clear here, however, this division will be necessary in
the next chapter where we incorporate the completion method with PD-IPM.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 19

To confirm the above fact from numerical results, we pick up three characteristic problems from SDPLIB
[11], ’control11’, ’theta6’ and ’maxG51’ arisen from Control Problem, Theta Function Problem, Max Cut
Problem, respectively. Shortly, let us examine how these problems are formulated into SDPs. See [12, 35, 72]
for details of the formulations and their backgrounds.
SDPs arisen from Control Theory

Let A be a symmetric matrix. Suppose that time-dependent vector u(t) is controlled under the following
differential equation.

du(t)
dt

= Au(t). (3.1)

It is known that a stability condition ||u(t)|| → 0 (t → ∞) holds provided that all eigenvalues of A are
negative. Furthermore, we assume A is a linear combination of symmetric matrices A1, A2, . . . , Am, that
is, A =

∑m
k=1 xkAk. Then we can detect whether the stability in (3.1) holds or not by an optimal value of

the SDP.
minimize λ subject to X = −∑m

k=1 xkAk + λI, X º O.

Since λ is an upper bound of the eigenvalues of A, we conclude that if the optimal value λ in the above
SDP is negative, there exists x which stabilizes the differential equation, i.e., all the eigenvalues of A are
negative. Conversely, ||u(t)|| can not be bounded if λ is positive.

More general cases are discussed in [12]. In the paper, we do not enforce the input matrices A1, A2,. . ., Am

be symmetric matrices. To consider the stability of the more general differential equation, we transform
a stability condition derived from Lyapnov function into the following SDP in which we have a positive
semidefinite matrix Y to be determined.

minimize λ subject to AT
k Y + Y Ak ¹ O (k = 1, 2, . . . , m), λI º Y º O. (3.2)

’control11’ in SDPLIB is an SDP formulated in this general way. We often say Control Problem instead of
’SDPs arisen from Control Theory.’
Theta Function Problem

Let G = (V, E) be an undirected graph with a vertex set V = {1, 2, . . . , n} and an edge set E ⊂ {(i, j) :
i, j ∈ V, i < j}. We define the theta function θ(G) on G as an optimal value of the following SDP.

θ(G) = maximize eeT •X
subject to I •X = 1,

Eij •X = 0, (i, j) /∈ E
X º O,

where e is a vector in Rn whose all components equal one and Eij is a matrix in Sn whose only (i, j)
and (j, i) components equal one and other components are zero. An important property is that θ(G) is
an upper bound of the maximum size of a stable set and a lower bound of the coloring number. However,
computations for the two numbers, the maximum size of a stable set and the coloring number, are NP-
complete problem. Since θ(G) is an optimal value of the SDP which can be solved in polynomial time by
PD-IPM, θ(G) provides an efficient approximation value for the two complicated numbers.
SDP relaxation for Max Cut Problem

Again, we start from an undirected graph G = (V,E) with a vertex set V = {1, 2, . . . , n} and an edge
set E ⊂ {(i, j) : i, j ∈ V }. Additionally, we attach a weight value c(i, j) = c(j, i) on each edge in E. In Max
Cut Problem, we want to separate the edge set V into two disjoint sets V1 and V2 with maximizing weight
across the two sets. More precisely, Max Cut Problem is described in the following mathematical definition.

max{Σi∈V1,j∈V2c(i, j) : V1 ∪ V2 = V, V1 ∩ V2 = φ}

We introduce a variable xi on each vertex to indicate the vertex is separated into either V1 = {i ∈ V : xi = 1}
or V2 = {i ∈ V : xi = −1}. Let C be a matrix in Sn whose elements are weight values, Cij = c(i, j) = c(j, i).
Then we reformulate Max Cut Problem into an integer quadratic optimization problem.

max{Σn
i=1Σ

n
j=1cij(1− xixj) : xi = ±1 (i = 1, 2, . . . , n)}

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 20

Regarding multiplication xixj as xij , (i, j) element of a symmetric matrix X, we converts the constraint
xi = ±1 (i = 1, 2, . . . , n) into the three constraints Xii = 1,X º O and rank(X) = 1. Especially, the rank
condition for the matrix makes Max Cut Problem difficult to be solved. Max Cut Problem as well as the
maximum size of a stable set are NP-complete Problems.

However, a disregard for the rank condition generates an SDP relaxation for Max Cut Problem.

max{Ĉ •X : Eii •X = 1 (i = 1, 2, . . . , n), X º O},

where Ĉij = δij

∑n
k=1 Cik − Cij and Eii is a matrix whose only ith diagonal elements are equal to one

and other elements are zero. Consequently, a relation between the SDP relaxation and its original Max
Cut Problem is similar as between Theta function and coloring number, since the SDP relaxation gives an
efficient lower bound of optimal value of Max Cut Problem.

Goemans and William [27, 28] first introduced SDP relaxations for Max Cut Problem, and then their
effectiveness and efficiency have been deeply investigated. We often use ’Max Cut Problem’ to indicate
SDP relaxation for Max Cut Problem, because we focus on only SDP in this thesis and original Max Cut
Problem (NP-complete Problem) is beyond our interest.

Now, we return to our main concern, bottlenecks of PD-IPM executed by a single processor on ’control11’,
’theta6’ and ’maxG51’ whose sizes are shown in Table 3.2. m is the number of equality constraints of P,
nBLOCK and bLOCKsTRUCT define the structure of X and Y . Table 3.3 shows how much proportion of

Table 3.2: SDPs from SDPLIB
name m nBLOCK bLOCKsTRUCT

control11 1596 2 (110,55)
theta6 4375 1 (300)

thetaG51 6910 1 (1001)

the total computation time in second is occupied by the above four categorized components of PD-IPM and
the other parts denoted by “Others”. “Total” denotes the total computation time in second. We executed
SDPA 6.0 on a single Pentium 4 (2.2 GHz) processor and 1GB memory under Linux 2.4.18.

Table 3.3: Performance of SDPA 6.0 for control11, theta6 and maxG51 on a single processor
control11 theta6 maxG51

time ratio time ratio time ratio
ELEMENTS 463.2 91.6% 78.3 26.1% 1.5 1.0 %
CHOLESKY 31.7 6.2% 209.8 70.1% 3.0 2.1 %
PMATRIX 1.8 0.3% 1.8 0.6% 47.3 33.7%
DENSE 1.0 0.2% 4.1 1.3% 86.5 61.7%
Others 7.2 1.4% 5.13 1.7% 1.8 1.3%
Total 505.2 100.0% 292.3 100.0% 140.2 100.0 %

Table 3.3 explicitly indicates that about 90% of computation time was spent for ELEMENTS in control11
and about 70% for CHOLESKY in theta6, respectively. In both cases, the computation time spent in the
other portions of SDPA is less than 5%. In solving many SDPs by the SDPA, ELEMENTS and CHOLESKY
occupy most of the computation time. Therefore, applying parallel computation to these two components
ELEMENTS and CHOLESKY is quite reasonable to shorten the total computation time.

This is not true, however, in the case maxG51. Max Cut Problem described above has two significant
structures. First, the size n of the variable matrices X and Y is as large as the number m of the equality
constraints in P. The other is that the input data matrices A1, A2, . . . , Am have only one element in their
diagonal positions. Due to the two structures, parallel implementation for ELEMENTS and CHOLESKY
cannot carry out its parallel computation effectively.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 21

In this section, we will focus on replacing ELEMENTS and CHOLESKY, the components regarding
the Schur complement B in (2.8) to obtain the search direction, with their parallel implementation. After
the numerical results of the parallelization, we discuss the component of PMATRIX with advantage of the
Completion Method in the next chapter to overcome the difficulties in Max Cut Problem.

3.2.2 Parallel Evaluation of Elements of the Schur Complement Matrix

A purpose of this section is to explain details of parallel implementation for ELEMENTS component of
PD-IPM. In the subsequent section, we describe for CHOLESKY component. We assume the number of
available processors is N and attach the numbers from 1 through N to each processor. We start from the
most simple case in which we do not adopt exploitation of sparsity in the input data matrices proposed in
[22] and the diagonal block structure described in section 2.3.5.

Since each element of the Schur complement matrix B is of the form Bij = (XAiY
−1)•Aj , all elements

Bij (j = 1, 2, . . . ,m) in the ith row share a common matrix (XAiY
−1). If two different processors shared

the computation of those elements, they would need to compute the entire matrix (XAiY
−1) in duplicate

or they would need to transfer partial elements of the matrix to each other. Hence, to avoid duplicate
computation of (XAiY

−1) and communication time between different processors, it is reasonable to require
a single processor to compute the entire matrix (XAiY

−1) and all elements Bij (j = 1, 2, . . . , m) in the
ith row. On the other hand, if k 6= i then we can compute the matrix (XAkY −1) and the elements
Bkj (j = 1, 2, . . . , m) independently from them. Thus we assign the computation of the elements in each
row of B to a single processor. To be precise, let B = {1, 2, . . . ,m} be the row indices of B and the index sets
Pu ⊂ B for the uth processor. In other word, we assign the computation for all the elements in the ith row
of B (i ∈ Pu) to the uth processor. Generally speaking, we divide B into disjoint sets Pu (u = 1, 2, . . . , N),
that is,

B = ∪N
u=1Pu, Pu ∩ Pv = φ (u 6= v).

From the viewpoints for better load-balance, B should be equalized into the sets Pu (u = 1, 2, . . . , N).
Shortly, we may attain higher scalability when we choose the cardinality of each set Pu is as close as to
m/N . A concept we adopt to level the load-balance is that we divide B into some belts and assign each
processor to each belt in a sequential order. Concretely, we first define the wth belt Bw ⊂ B with a constant
size sb in the Schur complement matrix B.

Bw = {i : (w − 1)× sb + 1 ≤ i ≤ min{m,w × sb}}

Surely, we hold dm/sbe belts in B, where dte is a ceiling number of t. Only the upper bound of the last
belt (the dm/sbeth belt) may be the cardinality m of B. Then, we compose Pu (u = 1, 2, . . . , N) of some
belts in rotation,

Pu = ∪{i : i ∈ Bw, w%N = u}, (3.3)

where a%b denotes the remainder of a divided by b if it is non-zero or b if it is zero. We call this division
of B row-wise distribution.

Figure 3.1 will enable us to understand the concept more clearly than the above precise explanation.
We illustrate in Figure 3.1 the case when B is a 18 × 18 matrix, the number of processors is N = 4 and
the size of belt is sb = 2. For instance, B35 and B39 are computed by the processor 2, and B14,15 and
B14,18 are computed by the processor 3. Note that B is always symmetric since its elements are formed of
Bij = (XAiY

−1) •Aj . Therefore, we need to compute only an upper triangular part of B.
We want to emphasize that the above processor assignment enables us to distribute memory space to

store B in the straight way. The rows indicated by Pu is stored in memory space on the uth processor. From
viewpoints of not only computation cost but also memory space, we can easily achieve well load-balance.

Furthermore, communication between multiple processors is not necessary for the evaluations of the
Schur complement matrix, provided that we distribute information of X, Y , A1, A2, . . . , Am on all the
processors before the evaluations. This significant characteristic results in surprising high scalability as
reported in numerical results.

Although the above description of the row-wise distribution is very simple, it contains enough basic
concepts for actual implementation. However, the exploitation of the input data matrices sparsity by [22]
and the block diagonal structure make evaluations of B difficult.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 22

Figure 3.1: Evaluation of the Schur complement matrix B

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

15 16 17 18

Processor 1

Processor 2

Processor 3

Processor 4

Processor 1

Processor 2

Processor 3

Processor 4

Processor 1

�

For a moment, we take a look how the block diagonal structure affect the formula Bij = (XAiY
−1)•Aj .

Let {X}l denote the lth diagonal block matrix of X. Here, we consider the case that the block structure
comprises of two blocks, then

Bij = (XAiY
−1) •Aj

=
([{X}1

{X}2

] [{Ai}1
{Ai}2

] [{Y −1}1
{Y −1}2

])
•

[{Aj}1
{Aj}2

]

=
([{X}1{Ai}1{Y −1}1

{X}2{Ai}2{Y −1}2

])
•

[{Aj}1
{Aj}2

]

= {X}1{Ai}1{Y −1}1 • {Aj}1 + {X}2{Ai}2{Y −1}2 • {Aj}2
= B

(1)
ij + B

(2)
ij ,

where B(1) and B(2) are the sub Schur complement matrices generated from 1st and 2nd diagonal blocks,
respectively. We can extend this result for a more general case with h diagonal blocks,

B = Σh
l=1B

(l).

Therefore, it will be reasonable that we compute Bij over all the diagonal blocks by only the uth processor
(i ∈ Pu). Otherwise, if we compute B

(l)
ij on the uth processor and B

(k)
ij on the vth processor, a communi-

cation between the uth and the vth processors is necessary for the addition Bij = B
(l)
ij + B

(k)
ij + · · · and a

storage of the result on memory space of the uth processor.
On the other hand, a notable feature in the exploitation of the sparsity by [22] is that they propose

three formula F1,F2,F3 to evaluate elements of B. A combination of this feature and the block diagonal
structure makes parallel processing over distributed memory more complicated. Suppose that Ai and Aj

are sufficiently sparse, then they use the formula F3 to evaluate Bij from Ai and Aj directly.

Bij = (XAiY
−1) •Aj

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 23

= Σn
p=1Σ

n
q=1[XAiY

−1]pq[Aj]pq

= Σn
p=1Σ

n
q=1(Σ

n
r=1Σ

n
s=1Xpr[Ai]rsY

−1
sq)[Aj]pq

However, if the Ai is almost fully dense, an usage of a temporary storage T = XAiY
−1 is clearly smart

since we do computation Bij = T •Aj over all j = 1, 2, . . . , m with only inner-product, that is, the formula
F1. They exploit F2 formula to compute Bij with dense Ai and sparse Aj . Furthermore, they estimate
the computation cost for each formula regarding the number of required multiplications and overheads for
sparse data structures. We store the input data matrices into special data structures to cut memory space
and computation cost of zero elements.

They have proved that the most efficient manner to evaluate B based on the estimation is as follow. At
first, they sort the input data matrices by their density with a permutation σ so that Aσ(1), Aσ(2), . . . , Aσ(m)

satisfy nz(σ(i)) ≥ nz(σ(j)) for σ(i) ≤ σ(j), where nz(σ(i)) is the number of non-zero elements of Aσ(i).
A key-point of their proof is that there exist two indices p, q(1 ≤ p ≤ q ≤ m) such that we can attain the
minimum computation cost when we apply the formulas Fk for each row Bk, where B1 = {1 ≤ σ(i) ≤
p},B2 = {p ≤ σ(i) ≤ q},B3 = {q ≤ σ(i) ≤ m}. We do not change the formula on each row since,
for example, F1 is the most efficient if we compute the temporary matrix T = XAiY

−1 even once.
Consequently, they evaluate the elements of B in the order of the permutation σ as Figure 3.2.

Figure 3.2: Order of elements of B and their formula

����� ��� ��� ��� ����� �	� ���
�� ����� �	� ��� �� ����� ��� ��� ���

�����
�� ���
��������
�� ��� �� �����
� ��� ���

����� �� ��� � ����� �� ���
 � ��� �� ��� ���

�����
�� ���
 � ���
�� ��� ���

��� � �� � � � � � � �� ��� ���

� ��� ��� ��� ���

�������

!

���#"$�

%'&

%)(

%)*

�

In the combination of the sparsity exploitation and the block diagonal structure, it is promising that we
sort the input data matrices on non-zero number of each sub-block matrices. Let σ(i, l) be a permutation
for the lth block so that {Aσ(i,l)}l has more non-zero number than {Aσ(j,l)}l if σ(i, l) ≤ σ(j, l).

Here, we consider a plain model which has m = 4 constraints and h = 2 block diagonal matrices. Thus,
the Schur complement matrix becomes 4× 4 symmetric matrix. In addition, suppose σ(i, 1) and σ(i, 2) for
the permutation of 1st block and 2nd block as follow.

σ(1, 1) = 2, σ(2, 1) = 1, σ(3, 1) = 4, σ(4, 1) = 3,

σ(1, 2) = 3, σ(2, 2) = 2, σ(3, 2) = 1, σ(4, 2) = 4.

In other word, Aσ(4,1) is the 1st block of A3, i.e. {A3}1. Furthermore, we assume that we use two processors
P1, P2 and set the size of belt is sb = 1. Figure 3.3 for the 1st block and Figure 3.4 for the 2nd block show
the order of evaluations of elements of B(1) and B(2), respectively, with the original row number in B and

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 24

the assigned processors for each row. As space is limited, we use an abbreviation σl
i,j = B

(l)
σ(i,l),σ(j,l) in these

figures.

Figure 3.3: Original row number and assign proces-
sors for 1st block

Original
Row Processor

���
��� �

���
��� �

���
��� �

���
��� �

���
�	� �

���
�
� �

���
�
� �

� �
�
� �

���
�
� �

���
�
� �

�

�

�

�
�

�
�

�
�

�
�

�

Figure 3.4: Original row number and assign proces-
sors for 2nd block

Original
Row Processor

��� �
�
� ��� �

� �
��� �
� �

��� �
� �

���
� � �

���
� � �

���
� � �

� �
��� �

���
��� �

���
��� �

�

	

�

� �

�
�

� �

�
�

The difficulty we need to focus on here is clarified by the computation for B14

B14 = B
(1)
14 + B

(2)
14 = B

(1)
σ(2,1)σ(3,1) + B

(2)
σ(3,2)σ(4,2) = σ1

2,3 + σ2
3,4

From these figures, σ1
2,3 is computed by the processor P2, while σ2

3,4 is computed by the processor P1.
Therefore, a communication between P1 and P2 is required to add the two elements for B14.

It is apparent that the difficulty is originated from the different permutations in the order of density at
each block. It is desired on parallel processing that the Schur complement matrix can be evaluation with
as small communication as possible. On the same time, we need to retain the advantage of the formulas
F1,F2,F2.

The following corollary derived from Theory 3.1 in [22] provides an important concept for the evaluation
of the Schur complement B without any communication between multiple processors.

Corollary 3.2.1. Suppose that we pre-process the selection of the formula F1,F2,F3 for all pair (i, l), the
ith row and the lth block, based on Theory 3.1 in [22] before the evaluation of the Schur complement matrix
B. Then we can attain the minimum computation for B without any communication by an manner that
B

(l)
ij evaluated on ith row by the formula for (i, l) if {Ai}l has more non-zero elements than {Aj}l.

Due to the corollary, we develop an algorithm for the evaluation of B.

Algorithmic Framework for Evaluation of the Schur Complement Matrix

Before starting the first iteration of PD-IPM, we select F (i,l) from F1,F2,F3 for the ith row and the lth
block. In every iterations of PD-IPM, we compute B as follow.

Set B = O
For l = 1, 2, . . . , h (iterator for block)

For i = 1, 2, . . . , m (iterator for row)
For j = 1, 2, . . . , m (iterator for column)

If nz({Ai}l) ≥ nz({Aj}l) then
Compute B

(l)
ij by F (i,l)

Bij ← Bij + B
(l)
ij

Based on the above algorithm, we can easily divide the computation and subsequently the memory
space into the row-wise distribution on multiple processors. Furthermore, the algorithm enables us to
retain the row-wise division proposed by Pu in (3.3) from viewpoints of both computation cost and memory

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 25

space. It should be emphasized that no communication between multiple processors is required in the above
algorithm.

However, the algorithm has a drawback that we do not have the guarantee of symmetric property of
the Schur complement matrix B since, for example B

(1)
12 is computed on the fist row and B

(2)
12 is computed

on the second row, respectively. Some communication is required to symmetrize B by an addition the
lower part into the upper part. Usually, communication time for the symmetrization is very smaller than
computation time for each element of B. Therefore we can justify the communication by the remarkable
reduction of the computation time for each element owing to parallel computation.

Nevertheless, in case almost all the input data matrices are considerably sparse, we had better compute
each component ignoring the density instead of the symmetrization of B. In other words, we compute
B

(l)
ij (i ≤ j) over all blocks in the ith row without comparison between nz({Ai}l) and nz({Aj}l), because

the computation time may become too short compared to the communication for the symmetrization. Theta
Function Problem explained in section 3.2.1 where all the input data matrices other than one identity matrix
has only two non-zero elements is good example to discuss this case.

We end up this subsection with the summary of parallel version of algorithmic framework.

Parallel Processing for Evaluation of the Schur Complement Matrix on the uth Processor

Before starting the first iteration of PD-IPM, we select F (i,l) from F1,F2,F3 for the ith row and the lth
block.
Prepare a flag sym.

If F1 or F2 are selected more than once
then sym = 1,
else sym = 0.

Reserve memory space to store rows assigned by Pu.
At each iteration of PD-IPM, we compute as follow.

B = O
For l = 1, 2, . . . , h (iterator for block)

For i ∈ Pu (iterator for row)
For j = 1, 2, . . . , m (iterator for column)

If nz{Ai}l ≥ nz{Aj}l or sym = 0 then
Compute B

(l)
ij by F (i,l)

Bij ← Bij + B
(l)
ij

If sym = 1 then
Symmetrize B over distributed memory

3.2.3 Parallel Cholesky Factorization and Two-Dimensional Block-Cyclic Dis-
tribution

After the computation of the elements of the Schur complement matrix B, we apply the parallel Cholesky
Factorization, provided by ScaLAPACK [8], to B in order to solve the Schur complement equation Bdz = r.
The matrix B is always positive definite throughout all the iterations of PD-IPM. Since ScaLAPACK
assumes the elements of a positive definite matrix to be factorized are distributed according to the two-
dimensional block-cyclic distribution, over distributed memory, what SDPARA needs to do before calling
the parallel Cholesky Factorization routine is to redistribute the elements of B as ScaLAPACK assumes. In
this paper, we abbreviate the two-dimensional block-cyclic distribution to TD-BCD. To estimate amount
of communication for the parallel Cholesky Factorization as precisely as possible, we describe more details
of TD-BCD and how we apply the Cholesky Factorization on parallel processing. In this description, zero-
origin is smart for the attachment of numbers. Usually, we use one-origin and count, for example, the 1st
row, the 2nd row, . . ., the mth row. On the other hand, in zero-origin, we start from 0, that is, the 0th row,
the 1st row, . . . , the (m − 1)th row. Zero-origin has an advantage of removing troublesome of remainders
and floor numbers arisen from divisions of integers.

Generally speaking, TD-BCD adopted by ScaLAPACK distributes a large matrix on distributed memory
space in the following style. Suppose that the number of available processors is P ×Q = N . In other words,

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 26

we have attached a row number Pr (0 ≤ Pr ≤ P − 1) and a column number Qc (0 ≤ Qc ≤ Q− 1) on each
processor in the way P (0, 0), P (0, 1), . . . , P (0, Q− 1), P (1, 0), . . . , P (P − 1, Q− 1). Furthermore, we assume
the size of the matrix B to be factorized is m × n. ScaLAPACK routines demand parameters, block sizes
mb and nb, that we choose depending on network environments for numerical experiments.

Thus, the (i, j) element of B, that is Bij (Note that 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1 because of zero-
origin), is stored in the (m mod mb, n mod nb) position of the (bbm/mbc/P c, bbn/nbc/Qc) block on the
(bm/mb mod P c, bn/nb mod Qc) processor. We use the notations a mod b to denote the remainder when
we divide the integer a by b, and bxc to denote the largest integer that does not exceed x.

An example shown in Figure 3.5, where we have a 9 × 14 matrix and 3 × 2 processors and assign
parameters mb = 2 and nb = 3, will help us to understand this complicated distribution. Figure 3.6 shows
the same distribution of the matrix by sorting from the viewpoints of the memory space on each processor.

Figure 3.5: Two-dimensional block-cyclic distribu-
tion

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

P(0,0) P(0,1) P(0,0) P(0,1) P(0,0)

P(1,0)

P(2,0)

P(0,0)

P(1,0)

P(1,1) P(1,0) P(1,1) P(1,0)

P(2,1) P(2,0) P(2,1) P(2,0)

P(0,1) P(0,0) P(0,1) P(0,0)

P(1,1) P(1,0) P(1,1) P(1,0)

Figure 3.6: Reposition of two-dimensional block-
cyclic distribution

0 1 2 6 7 8 12 13 3 4 5 9 10 11

0

1

6

7

2

3

8

4

5
P(2,0)

P(0,0)

P(1,0)

P(2,1)

P(0,1)

P(1,1)

With the assistance of TD-BCD, ScaLAPACK attains well-considered load-balance of both memory
space and computation cost. See [16] to consult more details of excellent features being capable by ScaLA-
PACK.

Fortunately, we can restrict our situation to simpler case for more clear estimation of communication
between multiple processors, since we only apply the parallel Cholesky Factorization. The Schur complement
matrix B is always a symmetric matrix, therefore, a restriction m = n and parameters assignment as
mb = nb are sufficiently reasonable. In order for plainness, we assume P = Q that the number of available
processors is necessary to be an square of some integer, N = P 2, and m is a multiple number of mb. Figure
3.7 shows the case that m = 8,mb = 2, P = 2 with 4 processors. A comparison between Figure 3.5 and
Figure 3.7 exhibits how much simpler our restrictions and assumptions change the distributions.

Figure 3.7: Two-dimensional block-cyclic distribution for the Cholesky Factorization
0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

P(0,0) P(0,1) P(0,0) P(0,1)

P(1,0) P(1,1) P(1,0) P(1,1)

P(0,0) P(0,0)P(0,1) P(0,1)

P(1,0) P(1,1) P(1,0) P(1,1)

It is important to understand the parallel Cholesky Factorization is that the Cholesky Factorization can
be decomposed into each block factorization. Let B be factorized as B = UT U , where U is an upper

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 27

triangular matrix. Furthermore, we suppose that we partition B and U into 4 sub-block.

B =
(

B11 B12

BT
12 B22

)
, U =

(
U11 U12

U22

)
,

where the size of matrices B11,B12, B
T
12 and B22 are mb × mb,mb × (m − mb), (m − mb) × mb and

(m−mb)× (m−mb), respectively. For instance in Figure 3.7, 4 elements, B00, B01, B10 and B11 comprise
of the left-upper block B11 and the right-lower block B22 has 6 rows and 6 columns. Then we virtually
factorize B in block-oriented.

B =
(

B11 B12

BT
12 B22

)

= UT U =
(

UT
11

UT
12 UT

22

)(
U11 U12

U22

)
=

(
UT

11U11 UT
11U12

UT
12U11 UT

12U12 + UT
22U22

)
.

Consequently, we arrive at the block-oriented Cholesky Factorization.

Algorithmic Framework for the block-oriented Cholesky Factorization

Step 1 (Inner Cholesky Factorization): Apply the non block-oriented Cholesky Factorization to one
block B11 and acquire U11.

Step 2 (Computation of the Upper Part): We compute U12 = (UT
11)

−1B12

Step 3 (Update the Right-Lower Block): Update B22 ⇐ B22 −UT
12U12 = UT

22U22.

Step 4 (Next Block): Partition B22 into smaller blocks and apply the block-oriented Cholesky Factor-
ization to B22 to obtain U22.

In brief, we take a look what will be computed when we apply the above algorithm to B in Figure 3.7.
First, we apply the Cholesky Factorization implemented for a single processor to the mb ×mb left-upper
block B11, which is composed of B00, B01, B10 and B11, on Processor P (0, 0). The mb×mb left-upper block
is factorized on a single processor without any communication. Second, the information of U11 is sent to all
processors involved in the computation for U12, that is, the processors P (0, 0) and P (0, 1). Therefore, the
message from P (0, 0) to P (0, 1) is necessary in this step. Furthermore, we send U12 and its transpose for
the update of the right-lower block B22. We should recognize is that the update for 4 elements B26, B27, B36

and B37, requires only U02, U03, U12, U13, U06, U07, U16 and U17, not all elements of U12. This characteristic
significantly reduces the amount of communication for having U12. Finally, we repeat m/mb times of these
computation to apply the Cholesky Factorization to all components of B; 4 times in the Figure 3.7.

We estimate total computation cost and communication needed for the parallel Cholesky Factorization
over all processors, in a general matrix B, and summarize in Table 3.4.

Table 3.4: Total estimation of computation cost and communication over all processors
Computation Cost Communication

Step 1 1
3 ×m×mb2 0

Step 2 1
4 ×m2 ×mb (P − 1)×m×mb

Step 3 1
3 ×m3 (P − 1)×m2

Based on Table 3.4, we advance average computation cost and communication on each processor, since
we are focusing on parallel processing. At most P and P 2 processors join the computation in Step 2 and
Step 3, respectively. Meanwhile, estimations of communication on each processor will become very difficult,
because it seriously depends on topological structures of network environments. Here, we make a simple
assumption that a processor in a row or column of processor position can broadcast their elements without
any effect for other rows or columns. Concretely saying, we can broadcast two messages simultaneously over
two rows, from P (i1, j1) to P (i1, j2) (j2 = 0, 1, . . . , P−1) and from P (i2, j2) to P (i2, j2) (j2 = 0, 1, . . . , P−1).
Based on this assumption, we can divide the amount of communication by at most P processors. In step

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 28

Table 3.5: Estimation of computation cost and communication on each processor
Computation Cost Communication

Step 1 1
3 ×m×mb2 0

Step 2 1
4 ×m2 ×mb/P (P − 1)×m×mb

Step 3 1
3 ×m3/P 2 (P − 1)×m2/P

1, the computation is done on only a single processor. Hence, other processors are waiting the only one
processor. The results of estimation regarding computation cost and communication on each processor are
shown in Table 3.5.

Since we consider large-scale matrix to be factorized, we take mb/m and P/m as zero. As a result, the
parallel Cholesky Factorization requires 1

3 ×m ×mb3 + 1
4 ×m2 ×mb/P + 1

3 ×m3/P 2 computation costs
and (P − 1)×m× (mb + m/P) communication. We can not neglect that each transmission of message has
overhead for processing of network protocol. Let h be an overhead for the protocol at each transmission
of size mb. Then, the amount of communication with the overhead turns out to be (P − 1) ×m × (mb +
m/P)× (1 + (m/mb)× h) for the reason that we have m/mb blocks.

Therefore, we are facing a trade-off between the computation cost and communication. Smaller block size
decreases the computation cost, at the same time increases the amount of communication cost. By choosing
an appropriate block size mb depending on network configurations, we will verify through numerical results
that the parallel Cholesky Factorization undoubtedly reduces computation time overcoming the overheads of
communication between multiple processors. In particular, an effect that the primal term of the computation
cost has the denominator P 2 = N is clearly meaningful from the viewpoint of parallel processing.

Similar analysis as the above can be seen in [29], which discusses only the case mb = 1.

3.2.4 SDPARA (SemiDefinite Programming Algorithm paRAllel Version)

In sections 3.2.2 and 3.2.3, we have investigated the concepts to overcome the bottlenecks of PD-IPM on
a single processor, constructing and solving the Schur complement matrix, with significant advantage of
parallel computation. Based on these fundamental concepts, we have implemented SDPARA (SemiDefinite
Programming Algorithm paRAllel version) on multiple processors and distributed memory. SDPARA as
well as SDPA can be downloaded from the SDPA Home Page:

http://sdpa.is.titech.ac.jp/
In the following section, we will exhibit the high performance provided by SDPARA through numerical
results.

To implement SDPARA, we utilize two libraries, MPI (Message Passing Interface) for communication
between multiple processors, and ScaLAPACK(Scalable Linear Algebra PACKage) for the parallel Cholesky
Factorization described in section 3.2.3. MPI is de facto standard communication library for parallel com-
puter composed of multiple processors, and designed to aim the standard regarding efficiency, portability,
and flexibility on parallel processing. The manifold benefits from MPI enable us implement parallel software
without studying complicated protocols for network programming; we can concentrate on data distribution
and numerical algorithms. ScaLAPACK utilizes MPI as a method for communication. Other than ScaLA-
PACK, there are many software to apply linear algebra on parallel precessing, for example, PLAPACK
[66], TAO (Toolkit for Advance Optimization) [71]. The reason we choose ScaLAPACK is that we can
directly access memory space allocated on each processor. The merit is very important, in particular, for
constructing the Schur complement matrix. Since we hold an exact position in memory space to store a
computation result in advance by only information retained on each processor without any information of
a entire matrix, we really compute the Schur complement matrix without communication between multiple
processors, resulting in excellent scalability.

Before showing the numerical results, we should reconsider the flow of the data distribution. In order to
evaluate the Schur complement matrix as mentioned in section 3.2.2, every processor needs to maintain all
input data, A1,A2, . . . , Am,C, b1, b2, . . . , bm. Since these data are constant for all iterations of PD-IPM, we
distribute these data over all processors at the beginning of the execution of SDPARA. Furthermore, some
portions for the Schur complement matrix, X, Y , and z, are also maintained by each processor throughout
all the iterations of PD-IPM.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 29

On the other hand, the Schur complement matrix B itself is allocated on distributed memory. We
prepare two type memory allocation for the Schur complement matrix B, the row-wise distribution for
evaluation and TD-BCD for applying the parallel Cholesky Factorization. In each iteration of PD-IPM, we
redistribute the Schur complement matrix from row-wise distribution to TD-BCD. After solving the Schur
complement equation on parallel processing, the result vector dz is broadcast for all processors to obtain
dX, dY and each processor progresses subsequent components.

After all, the data flow over distributed memory is wrapped as follow. Note that only one processor is
required to access an input file to read given datas. Here, we call the processor as the first processor.

The Distribution of Data Flow of SDPARA

Step 1 (Parameter Setting): Set the belt size (sb) and the block size (mb). These values must coincide
over all the processors.

Step 2 (Input Data Matrices): The first processor reads the given datas, m,n, A1, A2,,. . . , Am, C,
b1, b2, . . . , bm from an input file. Then, the first processor broadcasts these data to all the processors.

Step 3 (Memory Allocation): Each processor allocates the memory space for the current point (X,Y , z)
and the search direction (dX, dY , dz). In addition, each processor allocates the memory space for the
Schur complement matrix, B1 for the row-wise and B2, dz2 for TD-BCD defined by m,n, sb,mb and
the rank of the processor. We use dz2 for dz allocated on distributed memory.

Step 4 (Main Loop Start): If the terminal condition of PD-IPM is satisfied, the first processor prints
out the result, and all the processor release their memory space, finally, stop the algorithm.

Step 5 (Evaluating the Schur complement matrix): Each processor evaluates the assigned elements
of the Schur complements and stores them in B1 independently from other processors.

Step 6 (The Parallel Cholesky Factorization): Redistribute the Schur complement matrix from B1

to B2. If needed, B2 is symmetrized. Then, apply the parallel Cholesky Factorization provided
ScaLAPACK to B2. Subsequently, apply forwarding and backwarding substitution to obtain dz2.

Step 7 (Search Direction and Update): Copy from dz2 over distributed memory composed of multiple
processors to dz on the first processor. Then the first processor broadcast dz to all the processors.
Finally, each processor progresses the computation of PD-IPM to acquire the rest components of the
search direction (dX, dY) and updates (X, Y). Goto Step 4.

Since ELEMENTS component (Step 5) is done without any communication, the most portion of commu-
nication is originated from CHOLESKY part (Step6). Therefore CHOLESKY part may be strongly affected
by the network environments for numerical experiments. One point to be noticed is that we synchronize
all the processors in only Step 4, and Step 6 in Main Loop, and other components of PD-IPM are done on
each processor independently and individually. Therefore the overhead required for the synchronization has
already been minimized.

Numerical results in the following sections will prove the high performance of SDPARA, in particular,
from the viewpoints of the meaningful reduction of the computation time and the scalability.

3.3 Computation Environment for Numerical Experiments

Here, let us mention the computation environments for our numerical experiments before moving on to
numerical results.

We are very fortunate to have the opportunities to execute our numerical experiments on the three
PC-clusters, namely, Presto-I , Presto-III and sdpa. Presto-I and Presto-III are assembled and maintained
by Matsuoka lab, Tokyo Institute of Technology, while sdpa cluster is supported by Fujisawa lab, Tokyo
Denki University. PC-cluster is promising in cluster technology mentioned in section 3.1 and categorized
into distributed memory system.

A PC-cluster is composed of multiple Personal Computers connected by LAN (Local Area Network)
and designed to achieve high performance owing to parallel computation. PC-clusters are superior to
specialized parallel computers form many standpoints. First, almost all physical components of PC-clusters

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 30

are commonplace parts, therefore, it is relatively easy to assemble PC-clusters. Second, when we are
faced with update after a passage of time since built-up, we can replace some components by a process
of easy gradation, not all components at once. A life span of PC-clusters may be longer than we expect
to specialized parallel computers. In addition, we are able to apply the same knowledge on PC-cluster
as on a single Personal Computer, for instance, Operating Systems, programming tools and programming
languages.

We summarize the above PC-cluster specs in Table 3.6.

Table 3.6: PC-cluster specs
Name Presto-I Presto-III sdpa
Number of nodes 64 256 45
Processor Celeron 1.4 GHz Athlon 1.6 GHz Athlon 1.2 GHz
Number of Processors 1 2 2
on each node
Memory Space 384 MB 768 MB 2 GB (8 nodes)
on each node 1 GB (37 nodes)
Network 100 Base-TX Myrinet-2000 Gigabit

Ethernet Ethernet
Performance 20 GFLOPS 760 GFLOPS 105 GFLOPS

The Operating Systems on all the three PC-clusters are Linux, which has been developed since 1981.
Traditionally speaking, Linux comes from Linus. B. Trovalds hobby. However, it is obvious that the state-
of-art Linux has gone beyond borders of hobbies. At present time, Linux is considered as a strong and stable
Operating System. Linux provides sufficient flexibilities on network environments and powerful instruments
for numerical computations.

Here, we pick up some ingredients from each PC-cluster. PAPI [52] enables us to measure load-balance on
Presto-I. Since PAPI supplies detail information of microprocessor, we can count the number of operations
executed on each processor involved in parallel computation. The environment for parallel computation
on sdpa-cluster is essentially under a supervision of SCore [65]. SCore developed by RWCP (Real World
Computing Partnership) is comprised of communication library, administration and programming tools,
run-time environments and other components to realize parallel computation on PC-cluster more near-
at-hand. Myrinet-2000 developed by Myricom [58] strongly enhances the network performance of Presto
III. The reason of the high capacity is shortly that Myrinet loads special network processors and special
switch to connect each nodes. In particular, the special network processor can input-communication and
output-communication simultaneously.

Since we have a chance that we run on three PC-clusters, we can select the PC-cluster depending on
objectives of numerical results. We select Presto-I on experimental stage of a parallel implementation.
Based on the number of operations executed on each processor reported by PAPI, we adjust load-balance
to attain higher scalability. Subsequently, we test on sdpa-cluster with faster network than Presto-I. We
can obtain the effect caused by the difference of network speed. Finally, we try the largest problem on
Presto-III, because Presto-III has the highest performance in the three PC-clusters as seen in Table 3.6.
Unless otherwise stated, all numerical experiments in this thesis were done on Presto-III.

3.4 Preliminary Numerical Experiments and Evaluations of SD-
PARA

In advance of full-scale numerical experiments for some benchmark SDPs and extremely large SDPs, we have
done preliminary experiments to understand fundamental characteristics of the parallel implementation of
SDPARA. To achieve high performance for full-scale experiments, reflections of the knowledge from the
preliminary experiments are necessary.

The first subject is a choice of the belt size to allocate the evaluation of the Schur complement on each
processor. Then, we compare the Cholesky Factorization and Conjugate Gradient Method to solve the

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 31

Schur complement equation from the viewpoint of parallel processing. Finally, we investigate an effect of
network capacity to SDPARA. We pick up control11 and theta6 to measure performance of SDPARA, since
the most time consuming components of the two SDPs have been replaced by their parallel implementation
in SDPARA.

3.4.1 Issues of Belt Size

As we have mentioned in section 3.2.2, the strategy adopted by SDPARA to allocate of the evaluation of
the Schur complement matrix B to each processor is the row-wise distribution. Precisely saying, the uth
processor evaluate all elements in the ith row (i ∈ Pu). Let m be the size of B and N be the number of
available processors, respectively. Then Pu is composed of some belts,

Pu = ∪{i : i ∈ Bw, w%N = u}, where Bw = {i : (w − 1)× sb ≤ i ≤ min{m,w × sb}}.
Therefore, we have a choice of the belt size sb. In this subsection, we explore the most adequate sb.

We have applied SDPARA to control11 and theta6 with changing sb from 1 to 32 on Presto I with 32
processors. The reason we have selected Presto I is that we can count the number of operators executed
on each processors by PAPI [52]. It means the details of the load-balance are available. Table 3.7 shows
the lowest and highest operation counts in 32 processors and their ratio with respect to ELEMENTS, the
component of PD-IPM to evaluate B.

Table 3.7: Effect of belt size on load-balance
size of belt 1 2 4 8 16 32

control11 lowest 2.54e+10 2.48e+10 2.40e+10 2.32e+10 2.25e+10 1.50e+10
highest 2.67e+10 2.66e+10 2.85e+10 3.12e+10 3.62e+10 4.03e+10
ratio 1.05 1.07 1.18 1.34 1.36 2.68

theta6 lowest 1.21e+9 1.21e+9 1.19e+9 1.17e+9 1.10e+9 1.00e+9
highest 1.25e+9 1.26e+9 1.27e+9 1.31e+9 1.35e+9 1.49e+9
ratio 1.03 1.04 1.06 1.11 1.22 1.49

For both control11 and theta6, the smaller sb attains the lower ratio. In particular, the case sb = 1
results in the most adequate load-balance. On the other hand, if we set sb more than 8, the load-balance is
rather worse, which means we have idle processors.

We continue further investigation on control11, since ELEMENTS is the most time consuming compo-
nents for control11. Figure 3.8 shows the operation counts for ELEMENTS on each processor by ascending
order. Thus, the smaller gradient indicates better load-balance. From Figure 3.8, it becomes an apparent
conclusion again that the most adequate size is sb = 1. In control11, there are various sparsity from very
sparse to almost fully-dense in A1, A2, . . . , Am. The big steps in the counts in the case sb = 16, 32 come
from the characteristic. Therefore, the well-leveled load-balance is necessary to attain high performance on
parallel processing decreasing the idle processors.

The conclusion in this subsection is that we should fix sb = 1 in SDPARA to achieve high performance
in full-scale numerical experiments.

3.4.2 Conjugate Gradient Method for the Schur Complement Equation

After constructing the Schur complement matrix B, a subsequent task is to solve the Schur complement
equation Bdz = r to obtain the dual component dz of the search direction. Since it is well-known that
the Schur complement matrix B is always positive definite through all the iterations of PD-IPM [20], we
immediately hit upon the idea of the Cholesky Factorization as a direct method and Conjugate Gradient
Method (CG method) as an iterative method. So far, many researches have been devoted to incorporate
CG method with PD-IPM [60, 79]. However, since their numerical results were done on a single processor,
CG method on parallel processing has not been discussed. We compare between the Cholesky Factorization
and CG method from the viewpoints of not only PD-IPM but also parallel processing.

Since we have already estimated the computation cost and the amount of communication of the parallel
Cholesky Factorization in section 3.2.3, we focus on an estimation of CG method on the same assumption.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 32

Figure 3.8: Effect of size of belt on operation counts on each processor (control11)

� � � � � � �

� � � � �

� � � � � � �

� � � � �

� � � � � � �

� � � � �

� � � � � � �

� � � � � � � � � � � �

	

�
�

�

�
�

�
�

�
�

�
�

�
�
	
�

�
�

�
�

�
�
�
�
��
�
�

�

� � � �� ! �" " #$ % & � �

� �
�'
(

�
�

Suppose that we solve an equation Ax = b to obtain a vector x ∈ Rm, where the coefficient matrix A is an
m×m positive definite matrix. In short, we replace B by A, dz by x and r by b in the Schur complement
equation (2.8). In CG method, we seek to minimize the convex function

φ(x) =
1
2
(x−A−1b)T A(x−A−1b), (3.4)

instead of the direct Factorization of A. φ(x) attains its minimum value zero if and only if x = A−1b,
which stands for the solution of the equation. In CG method, we continue a line search with a steepest
descendant direction −∇φ(x) until we reach the solution, where ∇φ(x) = Ax − b is a gradient vector of
φ(x). The step length α of the line search is defined to satisfy ∂

∂αφ(x + α(−∇φ(x))) = 0. Therefore, a
simple CG method is designed as follow.

Simple CG method

Set x = 0.
Compute ∇φ(x) = Ax− b.
While ||∇φ(x)|| 6= 0

Compute α = ∇φ(x)T∇φ(x)

∇φ(x)T A∇φ(x)
.

Update x ← x + α(−∇φ(x)).
Compute ∇φ(x) = Ax− b.

end(While)

Let k be the inner iteration number to terminate the while loop of CG method. We add ’inner’ to
distinguish from the iteration number of PD-IPM. We call the iteration number of PD-IPM ’outer’ iteration
number if needed. Theoretically speaking, k is bounded above by m, in particular, k is expected to be as
small as possible. However, CG method sometimes can not terminate due to numerical errors. Therefore,
CG method must be designed to terminate if the norm of the residual vector r = b −Ax is smaller than
a priori precision ε, for example 1.0× 10−8, or if k exceeds a priori iteration number maxiter, for example

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 33

10000. Taking computation efficiency into account, we have implemented the following practical CG method
on parallel processing. The algorithmic framework is based on the method described in [29].

Practical CG method

Choose parameters ε and maxiter.
Set x = 0, p = 0, r = b, β = 0, γ = bT b, and k = 0.
While γ > ε and k < maxiter

Update p ← r + βp.
Compute q = Ap.
Compute α = γ/(pT q).
Update x ← x + αp.
Update r ← r − αq.
Compute δ = rT r.
Compute β = δ/γ.
Update γ ← δ.

end(While)

In CG method, the heaviest computation concentrates on multiplications between a matrix and a vector.
In the simple CG method, two multiplications are required. We can reduce the multiplication to only once
in the practical CG method by the auxiliary vectors p, q, r.

Regarding memory space over distributed memory space, the Schur complement matrix A which may
become extremely large should be stored on Two-dimensional Block-Cyclic Distribution (TD-BCD) in the
same way as the parallel Cholesky Factorization, because the memory space is divided equally into each
processor. In addition, TD-BCD is adequate to attain high performance of multiplication with vector q pro-
vided that the vectors x, p, q, r are also stored in the style of TD-BCD. The matrix A is distributed over all
processors, however, x, p, q, r are not over all processors. Suppose P×Q = N processors are available and we
attach the process name on each processor, P (0, 0), P (0, 1), . . . , P (0, Q − 1), P (1, 0), P (1, 1), . . . , P (1, Q −
1), . . . , P (P − 1, 0), P (P − 1, 1), . . . , P (P − 1, Q − 1). Following the style of TD-BCD described in sec-
tion 3.2.3, a vector regarded as an m × 1 matrix is usually stored in the processors on the first column,
P (0, 0), P (1, 0), . . . , P (P − 1, 0). Since all the vectors x,p, q, r are stored in the same distribution, the
additions between two vectors, p ← r + βp,x ← x + αp, r ← r − αp, can be done with only broadcasts
of the scalar value α, β. The inner-products pT q, rT r also require only cheap communication. Therefore,
the most portions of the communication as well as the computation cost are occupied by the multiplication
Ap.

To estimate on the same assumption as the Cholesky Factorization in section 3.2.3, we assume that
N = P 2 processors are available, the block size for column and row are identical mb = nb, and each
communication is divided into mb size transmissions and each transmission requires an overhead h on each
transmission. Furthermore, for plainness, suppose that m is a multiple number of mb.

Since one iteration of CG iteration is comprised of one multiplications between a matrix and a vector,
three additions between two vectors, two inner-products between two vectors, and broadcasts of scalar
value γ, we estimate each part of computation cost and amount of communication on each processor and
summarize in Table 3.8. The computation cost is counted by the number of scalar multiplication.

Table 3.8: Estimation of computation cost and communication in one iteration of Conjugate Gradient
method on each processor

Computation Cost Communication
multiplication m2/P 2 2m + m× P
addition m/P P
inner-product m/P 2× P
broadcast 0 2× P

Now, we can roughly compare the total estimation of computation cost and amount of communication

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 34

in primary term on each processor with the overhead h between the Cholesky Factorization and CG method
in Table 3.9, where k is the inner iteration number required by CG method.

Table 3.9: Estimation of computation cost and communication of the Cholesky Factorization and Conjugate
Gradient method on each processor

Cholesky Computation Cost 1
3 ×m3/P 2

Communication m2 × (1 + (m/mb)× h)
CG method Computation Cost 2× k ×m2/P 2

Communication 2× k × (m× (P + 2)× (1 + (m/mb)× h))

CG method must be called twice in each outer iteration for the predictor and the corrector search direc-
tions, hence the multiplier 2 is considered in Table 3.9. From the estimation in Table 3.9, the computation
cost of CG method is smaller than the Cholesky Factorization when the iteration number k is bounded by
k ≤ m/6. In addition, since the number of available processors is at most 64 in our numerical environments,
we have P = 8 at most. Therefore, the condition k ≤ m/20 is sufficient for the communication of CG
method to be smaller than that of the Cholesky Factorization. Hence, it is apparent that the comparison
is determined by the iteration number of k.

We have applied CG method to control11 replacing the Cholesky Factorization in PD-IPM to count
actual iteration counts k. In Figure 3.9, the horizontal axis indicates the outer iteration count of PD-IPM,
and the vertical axis indicates the inner iteration k required at each outer iteration. While we need to solve
the Schur complement twice for the predictor and the corrector search directions, the iteration counts only
for the corrector directions are plotted in Figure 3.9. In control11, we have m = 1596 equality constraints.
Therefore, k should be bounded by 266 in the computation cost or by 79 in the communication for CG
method to be superior to the Cholesky Factorization. However, the threshold is easily broken when the
outer iteration number is greater than 12. In particular, after 15 outer iteration, the inner iteration counts
reach the pre-set maximum to terminate CG method even if a enough convergence is not attained. The
super-abundant inner iterations are conductive to expensive computation costs.

Table 3.10 shows the time regarding CHOLESKY components when we apply SDPARA to control11
and theta6 changing the number of processors. Note that the implementation of CHOLESKY components
are replaced by CG method in the row of ’cg’. CG method requires tens times computation time of the
Cholesky Factorization. Furthermore, we can make a guess based on the above estimation and the super
abundant iteration number that the total communication of CG method far exceeds that of the Cholesky
Factorization.

Generally speaking, the iteration counts of CG method depend on a condition number of the coefficient
matrix. More precisely, a convergence rate of the sequence {xk : k = 1, 2, . . .} generated by the practical
CG method to the solution can be estimated as

∣∣∣∣xk −A−1b
∣∣∣∣

A ≤ 2
∣∣∣∣A−1b

∣∣∣∣
A

(√
κ− 1√
κ + 1

)k

,

where ||x||A =
√

xT Ax and κ is a condition number of A. Therefore, a small condition number assures a
rapid convergence to the solution. See [29] for more details.

However, it is well-known that the condition number of the Schur complement matrix remarkably grows
up when the outer iteration count increases. Until now, many approach has been developed to bound the
growth of the condition number. The preprocessing techniques are familiar methods, for example, diagonal
scaling [90] and incomplete Cholesky Factorization [50, 51]. A general framework for pre-processing from
the viewpoints of incomplete orthogonalization was discussed in [89]. Recently, a division method based on
eigenvalues of the Schur complement matrix was proposed by Toh [78] . However, these methods are too
complicated to implement on distributed memory. Therefore, we can not now prevent CG method from the
explosive iteration number due to the large condition number.

Nevertheless, CG method is not always inferior to the Cholesky Factorization from all standpoints.
Parallel processing brings out a point at which CG method beats the the Cholesky Factorization, that is,
scalability. Figure 3.10 shows the scalability computed from Table 3.10. In the small number of processors,

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 35

Figure 3.9: Inner iteration number of Conjugate Gradient method (control11)

�

� �

� � �

� � � �

� � � � �

� � � � � �

� � � � � � � � � ��
��
��
� �
��
	�

��
��
�
� �
� �
	�
�
��
	
�

��
�
� �
�
� �
�

��� ��� � � ��� �� � ��� � ! "# $ � "%

� ��� �� � ��� &� ' (� �

Table 3.10: Time for the Cholesky Factorization (’cholesky’ row) and Conjugate Gradient method (’cg’ row)
the number of processors 1 2 4 8 16 32 64

control11 cholesky 67 30 18 14 8 7 4
CHOLESKY cg 17111 9554 4122 2412 1450 997 564

control11 cholesky 698 368 200 113 65 43 28
Total cg 17734 9907 4298 2510 1507 1032 593
theta6 cholesky 541 164 93 62 33 25 14

CHOLESKY cg 30995 15903 7968 4187 2022 1112 644
theta6 cholesky 711 335 170 113 66 49 34
Total cg 31193 16104 8054 4243 2057 1138 666

the scalability of the Cholesky Factorization is higher than CG method. However, the situation becomes
reverse when the number of available processors increases. The reason why the Cholesky Factorization
can not attain higher scalability comes from the structure of the block-oriented Cholesky Factorization
mentioned in section 3.2.3. In particular, the factorization in the most right and the lowest block which is
the last block to be factorized is done on only one processor and other processors are idle. Therefore the
well load-balance is difficult to attain by the Cholesky Factorization. On the other hand, in CG method,
the similar situation does not occur, because the most of computation cost is occupied in the multiplication
between a matrix and a vector and the computation of the multiplication without block-oriented can be
equally distributed on all the processors.

From the above comparison, the conclusion toward full-scale numerical results is that we should adopt
the Cholesky Factorization as the current implementation of SDPARA because of the small computation
cost. However, it must not be neglected that CG method is advantageous when the higher scalability is
necessary without regarding total computation

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 36

Figure 3.10: Scalability of the Cholesky Factorization and Conjugate Gradient Method (theta6)

�

� �

� � �

�
�
��
�
��
�
�
�
	

 �� �� � � � � � � � � �� � � � � � �

� � � � � � �� �� �� � !" # $
� � � � � � �� �% �
'& � $

� (�� �� � !" # $
� (�% �
'& � $

3.4.3 Effect of Network Environment on Primal-Dual Interior-Point Methods

In this subsection, we investigate an effect of the physical network environments on SDPARA, in particu-
lar, on the time of consuming components, ELEMENTS and CHOLESKY. We have applied SDPARA to
control11 and theta6 on the three PC-clusters, Presto I, sdpa and Presto III. The network environments of
the PC-clusters are Ethernet, Gigabit-Ethernet, Myrinet, respectively. More detail specs of the PC-clusters
have already been described in section 3.3. Table 3.11 shows the numerical results regarding ELEMENTS
and CHOLESKY and Total time changing the number of processors. On Presto I, we can not solve con-
trol11 with 4 processors because of some communication error and theta6 with 1 processor owing to lack
of memory space. In this subsection, we can fix the size of belt sb = 1 from the results of the previous
numerical experiments.

As we have pointed out in section 3.2.2, ELEMENTS can be computed without any communication be-
tween multiple processors due to the excellent advantages of the row-wise distribution. Therefore, SDPARA
attains almost linear scalability independently from the network environment.

However, CHOLESKY requires a lot of communication over Two-dimensional block-cyclic distribution
(TD-BCD). Figure 3.11 shows the scalability of CHOLESKY on each cluster. Presto III which has the
fastest network in the three PC-clusters does not lose the scalability even when we increase the number of
processors up to 32. Over 2 Giga bps capacity generated by Myrinet plays an essential role to achieve the
excellent scalability. On the other hand, Ethernet on Presto I can not retain the scalability on 32 processors.
It means that the overheads on Ethernet can not be covered by the power of parallel processing.

More detail of Figure 3.11 lets us know that the performance of CHOLESKY on Presto III is better
when the number of processors is square of some integer. The slops regarding increment of the number of
available processors of 2 → 4 and 8 → 16 are steeper than that of 4 → 8 and 16 → 32. The reason comes
from the structure of TD-BCD on which the parallel Cholesky Factorization based. TD-BCD can attain its
best performance when we have square processor grid, that is, P = Q =

√
N as described in section 3.2.3.

However, the performance on sdpa-cluster has little relevant to the characteristic of the TD-BCD structure.
It is possible to consider the reason is that the network library of sdpa-cluster is under SCore library. SCore
may affect the total communication over multiple processors.

Let us summarize the effect of the network environment for SDPARA. SDPARA has two parallel compo-

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 37

Table 3.11: Performance of SDPARA on each cluster
the number of processors 1 2 4 8 16 32

control11 Presto I 1143.6 569.6 * 140.3 69.3 34.4
ELEMENTS sdpa 683.6 341.6 169.8 84.9 41.9 20.7

Presto III 603.4 293.4 146.8 73.6 35.9 17.9
control11 Presto I 150.4 106.5 * 94.4 69.0 84.9

CHOLESKY sdpa 92.4 38.3 24.3 23.7 13.9 13.8
Presto III 54.5 29.2 18.7 15.4 10.1 9.1

control11 Presto I 1342.2 816.9 * 329.4 205.3 182.6
Total sdpa 809.3 761.6 239.4 142.3 78.19 55.3

Presto III 685.3 363.1 195.0 112.1 66.6 42.9
theta6 Presto I * 65.8 30.3 14.3 7.0 3.5

ELEMENTS sdpa 137.7 62.4 29.8 14.8 7.16 3.5
Presto III 166.0 102.6 60.3 35.5 18.6 9.4

theta6 Presto I * 533.4 409.9 336.1 190.6 236.8
CHOLESKY sdpa 760.3 211.3 124.4 107.4 51.6 48.2

Presto III 417.3 161.7 93.3 63.1 35.6 27.2
theta6 Presto I * 819.4 613.9 458.9 279.3 314.7
Total sdpa 953.7 398.2 212.5 165.0 87.2 75.2

Presto III 600.6 339.9 166.9 111.4 66.7 49.1

Figure 3.11: Scalability on each cluster (theta6,CHOLESKY)

�

� �

� � �

�
�
�
�
�
�
�
�
�
�
	

 �� �� � � � � � � � � �� � � � � � �

� � � �
 � �
� � ��

� � � �
 � � � �

nents, ELEMENTS and CHOLESKY. ELEMENTS can be done without any communication, therefore the
scalability of ELEMENTS is independent from the network environments. On the other hand, CHOLESKY
requires a lot of communication on TD-BCD. Thus, CHOLESKY is strongly affected by the network envi-
ronments. From the results for components of PD-IPM, we can make sure that the high capacity network
plays a significant role to attain excellent scalability in total computation time for SDPARA as well as other
general parallel software. It is important from the viewpoints of parallel processing to explore whether the

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 38

parallel implementation quite depends on the network capacity or not.

3.5 Numerical Results

In this section, we report full-scale numerical results of SDPARA. The SDPs that we tested are divided into
the following two types. The SDPs of the first type are selected from SDPLIB benchmark problems [11],
while the other type are SDPs arisen from quantum chemistry. Almost all our numerical experiments in
this paper were mainly executed on Presto III, unless we indicate.

3.5.1 SDPs from SDPLIB

We selected control10,11, theta5,6 , thetaG51 and maxG51 from SDPLIB. Three of them were also picked
up in section 3.2.1. Their sizes are shown in Table 3.12. The problems control10 and control11 are Control
Problems and they are the largest problems of this type in SDPLIB, while theta5, theta6 and thetaG51 are
Theta Function Problems. In particular, thetaG51 requires the most computation time among all problems
of SDPLIB. The problem maxG51 is a Max Cut Problem. The formulations of these SDPs have been
described in section 3.2.1. The numerical results on SDPARA applied to these problems are shown in
Table 3.13 in form of required time in second for the components of PD-IPM categorized in section 3.2.1.
In Table 3.12, m is the number of equality constraints of P, nBLOCK and bLOCKsTRUCT define the
structure of X and Y . In Table 3.13, ’*’ indicates lack of memory, and we skip the components which can
be computed in less than 20 seconds even by a single processor.

Table 3.12: SDPs picked up from SDPLIB
name m nBLOCK bLOCKsTRUCT

control10 1326 2 (100,50)
control11 1596 2 (110,55)
theta5 3028 1 (250)
theta6 4375 1 (300)

thetaG51 6910 1 (1001)
maxG51 1000 1 (1000)

In control10 and control11, the most of the computation time is spent in ELEMENTS (the computation
of the elements of the Schur complement matrix B). We observe an excellent scalability, the ratio of real time
to solve a problem with respect to the number of processor used, especially in ELEMENTS, as illustrated
in Figure 3.12. For example, SDPARA with 8 processors solved control11 6.1 times faster than SDPARA
with a single processor, and the case with 64 processors solved the problem 22 times faster than the case
with a single processor, respectively. The m×m Schur complement matrix is always a fully dense and its
Cholesky Factorization does not depend on the block structure of the test problem described as nBLOCK
(the number of blocks) and bLOCKsTRUCT (the block diagonal structure) in Table 3.2. Although the
block structure and the sparsity of X, Y and Ai are effectively utilized in the multiplication and inner
products, they do little affect to the scalability of ELEMENTS. The scalability sometimes exceeds the ratio
of the number of processors. This unusual phenomenon happened probably because as we increased the
processors the memory space for each processor to access decreased so that the access speed to memory
became faster.

In theta5, theta6 and thetaG51, most of the computation time are spent for CHOLESKY (the parallel
Cholesky Factorization of the Schur complement matrix B). We observe again high scalability in the
numerical results on these problems. For instance, SDPARA with 8 processors solved theta6 5.3 times
faster than SDPARA with a single processor, and the case with 64 processors solved the problem 15 times
faster than the case with a single processor, respectively.

In contrast to the excellent scalability described above for Control Problems and Theta Function Prob-
lems, it is unfortunate that SDPARA can not attain any scalability for the Max Cut Problem, maxG51.
As mentioned in the implementation of SDPARA, we have replaced ELEMENTS and CHOLESKY by
their parallel implementation. However, the most consuming components when we executed SDPARA on

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 39

Figure 3.12: Scalability for Control11

�

� �

� � �

� � � � � �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� ��
�� � � � !"

� �
$# %
& '� # %

maxG51 are PMATRIX and DENSE. We will investigate parallel implementation for PMATRIX component
in chapter 4 with the completion method.

3.5.2 SDPs arisen from Quantum Chemistry

To examine the performance of SDPARA more widely, we employ SDPs arisen from quantum chemistry.
Here, we take a look at the formulation of the SDPs to grab their characteristic.

In the field of quantum chemistry, the ground-state energy has been a meaningful subject over many
decades. In short, the ground-state energy can be considered as system energy in the most stable state of
a molecule. The ground-state energy state plays an essential role to estimate quantity of heat caused by
chemical reaction. So far, Hartree-Fock approximation and Full Configuration-Interaction were developed
to obtain the ground-state energy See [68] by Szabo and Ostlund for more details.

In 1955, Mayer [54] first pointed out that the system energy can be fundamentally described by the
effect between two electrons, that is, two-body reduced density matrix (2-RDM). Then, in 1963, a concept
of N -representability was introduced by Coleman [17] to represent the state in not only one electron but
also multiple electrons, N electrons. A remarkable study in Coleman’s accomplishment was he indicated
that N -representability lies on a strong relation with SemiDefinite Programming. At that time, however,
a powerful algorithm such as PD-IPM had not been developed yet. Poor algorithms could not carry out
the expensive computation cost of the SDP formulations in N -representability. Thirty years later, in 2000,
practical scale numerical results in descriptions of 2-RDM have been reported in Nakata, et al. [61, 62]
based on the significant developments of PD-IPM and its implementation, SDPA [23]. Furthermore, Zhao,
et al. [91] successfully reduced the order of the equality constraints m in the SDP formulation. In [61, 62],
the primal SDP formulation of is adopted to describe the conditions of quantum chemistry, while Zhao, et
al. adopts dual SDP formulation in [91]. In addition, portions of 3-RDM are taken into consideration in
[91] so that an optimal value generated by an SDP will become closer to the ground-state energy. Here, we
follow the SDP formulation discussed in [61, 62, 91].

We start from a single-electron wave function ψ(r), where r is the location of the electron in three real
dimension R3. Though a single-electron wave function must include a condition with respect to spins of
electrons, the discussion here is advanced without regarding the spin; we assume that the wave functions

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 40

Table 3.13: Performance of SDPARA on multiple processors
the number of processors 1 2 4 8 16 32 64
control10 ELEMENTS 400.5 208.2 108.3 56.3 27.5 14.0 7.5

CHOLESKY 31.8 18.2 12.3 10.2 6.5 6.1 3.7
Total 440.8 233.9 127.8 73.5 41.0 27.3 19.8

control11 ELEMENTS 603.4 293.4 146.8 73.6 35.9 17.9 9.0
CHOLESKY 54.5 29.2 18.7 15.4 10.1 9.1 5.3

Total 685.3 363.1 195.0 112.1 66.6 42.9 31.8
theta5 ELEMENTS 72.4 46.6 27.6 16.7 8.7 4.4 2.5

CHOLESKY 140.8 58.8 36.0 26.0 14.9 12.5 6.9
Total 222.5 113.2 70.8 49.7 30.6 24.0 16.7

theta6 ELEMENTS 166.0 102.6 60.3 35.5 18.6 9.4 5.5
CHOLESKY 417.3 161.7 93.3 63.1 35.6 27.2 17.3

Total 600.6 339.9 166.9 111.4 66.7 49.1 35.5
thetaG51 ELEMENTS * 1627.1 473.4 265.9 131.5 68.0 36.6

CHOLESKY * 962.3 557.2 334.8 181.5 125.4 75.9
PMATRIX * 145.0 101.4 101.4 101.4 101.2 101.3

DENSE * 204.4 184.5 184.9 184.6 184.3 185.0
Total * 3786.5 1344.3 911.9 624.9 505.8 424.1

maxG51 PMATRIX 55.5 55.9 55.5 55.6 55.7 38.4 35.0
DENSE 108.8 109.5 109.0 109.3 109.2 77.6 69.8
Total 176.7 178.4 176.2 188.1 183.4 129.9 161.7

ψi(r) (i = 1, 2, . . . , N) have already included spin information.
A fundamental constraint which ψ(r) must satisfy is the Schrödinger equation,

Hψ(r) = εψ(r).

The system energy ε and ψ(r) can be regarded as an eigenvalue and an eigen function with respect to the
Hamiltonian operator H which includes a term for the kinetic energy and a term for the potential energy
received from protons. Furthermore, ψ(r) needs to be normalized, because ψ(r) includes just one electron
in all space R3.

∫
ψ(r)∗ψ(r)dr = 1. (3.5)

We use ’*’ to denote the conjugate value (to be consistent in spin of each electron), and omit an explicit
integral region, since it is always R3. Note that we integrate in three dimension; to be precise, the integration
is

∫
ψ(r)dr =

∫

R

∫

R

∫

R
ψ(rx, ry, rz)drxdrydrz.

The normalization (3.5) gives us another viewpoints of the system energy,

ε = ε

∫
ψ(r)∗ψ(r)dr =

∫
ψ(r)∗Hψ(r)dr

Since the smallest eigenvalue corresponds to the ground-state energy in the system, the following mini-
mization problem will give us the ground-state energy.

min ε =
∫

ψ(r)∗Hψ(r)dr
subject to

∫
ψ(r)∗ψ(r)dr = 1.

(3.6)

Until now, the subject matter is only single-electron; thus the above argument is further simple. However,
the molecules whose ground-state energy is our interest have multiple electrons, for example LiF, NH2,
therefore the situations become very complicated, in particular, because of the Pauli’s exclusion principle.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 41

Let N be the number of electrons in a molecule. Suppose that we have single-electron wave functions
ψi(r) (i = 1, 2, . . . , N). It is common that an N -electron wave function ψ(r1, r2, . . . , rN) is composed in
the form of the Slater determinant to satisfy the Pauli’s principle.

ψ(r1, r2, . . . , rN) =
1√
N !

det

ψ1(r1) ψ2(r1) · · · ψN (r1)
ψ1(r2) ψ2(r2) · · · ψN (r2)
...

...
. . .

...
ψ1(rN) ψ2(rN) · · · ψN (rN)

 .

The factor
√

N ! is required for ψ to be normalized (3.5). The Slater determinant ensures that any wave
function is independent from each other (ψi 6= ψj if i 6= j) and no electron exists on the two wave functions
(ri 6= rj if i 6= j) simultaneously.

When we have a normalized N -electron wave function ψ(r1, r2, . . . , rN), we can regard it as a density
function. More precisely,

ψ(r1, r2, . . . , rN)ψ∗(r1, r2, . . . , rN)dr1dr2 . . . drN

is the possibility that the 1st electron resides the cube centered r1 with the width dr1 on a side, the 2nd
electron resides the cube centered r2 with the width dr2 on a side, . . ., and the Nth electron resides the
cube centered rN with the width drN on a side.

If our focus on the 1st electron, the 1st-order Reduced Density Matrix (1-RDM), γ, has advantageous to
shed light on the relation for SemiDefinite Programming.

γ(r1, r
′
1) = N

∫
ψ(r1, r2, . . . , rN)ψ∗(r′1, r2, . . . , rN)dr1dr2 . . . drN .

The factor N is required so that the integration over dr1 with r1 = r′1,
∫

[γ(r1r
′
1)]r′1=r1

dr1 =
∫

ρ(r1)dr1,

becomes the electron number N , where

ρ(r1) = N

∫
ψ(r1, r2, . . . , rN)ψ∗(r1, r2, . . . , rN)dr1dr2 . . . drN

is called the reduced density function for single-electron. Note that 1-RDM is a generalization of the reduced
density function.

Since the 1-RDM is a continuous matrix, we construct a discrete representation with single-electron base
wave functions φ1(r), φ2(r), . . . , φK(r),

γij =
∫

φ∗i (r1)γ(r1, r
′
1)φj(r′1)dr1dr′1.

Conversely, if the set of the base wave functions is complete,

γ(r1, r
′
1) = Σijφi(r1)γijφ

∗
j (r

′
1).

Although many attempts have been made at the base wave functions φi(r)(i = 1, 2, . . . , K), we will not
take them up in detail here as space is limited. STO-3G and STO-6G are common base wave functions sets
and we have selected STO-6G. See [68] for more base wave functions sets.

Now, we examine a reformulation of the above minimization problem to obtain the ground-state energy
with the discrete representation of 1-RDM. What we have to recognize here is that the Hamiltonian operator
H must be modified to include reactions between two electrons.

H = ΣN
i=1H1

i +
1
2
ΣN

i=1Σ
N
j=1H2

ij

H1
i is the Hamiltonian operator with respect to the ith electron for its kinetic power and its potential energy

from protons, and H2
ij stands for the reaction between two electrons (the ith and the jth). For instance,

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 42

coulomb force is a strong effect between two electrons. Since we focus on 1-RDM here, we first ignore H2
ij

here, then we back at H2
ij .

First, the objective function in (3.6) will be described in 1-RDM.

ε =
∫

ψ∗(r1, r2, . . . , rN)Hψ(r1, r2, . . . , rN)dr1dr2 . . . drN

= h • γ,

where the matrix h is composed of elements hij =
∫

φ∗i (r1)H1
1φj(r1)dr1. Since we select STO-6G as the

base wave function sets, the matrix h can be calculated by Gaussian98 [19]. Therefore, we can assume that
h is given after the selection of the base wave function sets.

Furthermore, the integral over all space in three dimensions must coincide with the total number of
electrons N .

N = N

∫
ψ∗(r1, r2, . . . , rN)ψ(r1, r2, . . . , rN)dr1dr2 . . . drN

= Σiγii = I • γ.

Finally, any single-electron ψ(r) wave function has the possibility of electron existence in the range from
0 to 1. If ψ(r) is decomposed into a linear combination of the basic wave functions, ψ(r) = Σixiφi(r), the
condition will be replaced by the positive semidefiniteness of 1-RDM. The possibility that the 1st electron
resides in ψ(r) is

∫
ψ∗(r1)γ(r1, r

′
1)ψ(r′1)dr1dr′1 = Σijx

∗
i γijxj .

Since the possibility for any x in the range from 0 to 1, we obtain the positive semidefinite conditions,

O ¹ γ ¹ I.

Now, the continuous minimization problem (3.6) is reduced into the SDP.

min ε = h • γ
subject to I • γ = N

O ¹ γ ¹ I
.

As we have mentioned, however, 1-RDM is not enough to represent the coulomb force between two-electrons.
Therefore, we employ 2-RDM Γ and its discrete representation.

Γ(r1, r2, r
′
1, r

′
2) = N(N − 1)

∫
ψ(r1, r2, r3, . . . , rN)ψ∗(r′1, r

′
2, r3, . . . , rN)dr3 . . . drN

Γij;kl =
∫

1√
2

(
φ∗i (r1)φ∗j (r2)− φ∗j (r1)φ∗i (r2)

)
Γ(r1, r2, r

′
1, r

′
2)

1√
2

(φk(r′1)φl(r′2)− φl(r′1)φk(r′2)) dr1dr2dr′1dr′2

Note that 1√
2

(φi(r1)φj(r2)− φj(r1)φi(r2)) is the Slate determinant which is comprised of φi(r) and φj(r).
With 2-RDM, the objective function is modified as

ε = h • γ +
1
2
H • Γ,

where

Hij;kl =
∫

1√
2

(
φ∗i (r1)φ∗j (r2)− φ∗j (r1)φ∗i (r2)

)H2
12

1√
2

(φk(r1)φl(r2)− φl(r1)φk(r2)) dr1dr2

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 43

If we adopt higher-RDMs than 2-RDM, an accuracy of an optimal value to the exact ground-state
energy will better. At the same time, however, the SDP becomes extremely large and we can not solve it.
It is reported in [91] that 3-RDM is enough to acquire a sufficient accuracy from standpoints of quantum
chemistry, in addition that 3-RDM can be expressed by linear combinations of 2-RDM elements.

The above discussions can be summarized into the formulation of SDP.

min ε = h • γ + 1
2H • Γ

subject to I • γ = N
ΣkΓik;jk = γij (i = 1, . . . ,K, j = 1, . . . ,K)
O ¹ γ ¹ I
O ¹ Γ ¹ I
and 3-RDM conditions.

Regarding computation cost, the above SDP grows in extremely rapid speed with respect to the number
K of the basic wave functions. The number m of equality constraints and the size n of variable matrices are
estimated as O(K6) and O(K4), respectively. Zhao, et al. [91] reduces them to m = O(K4) and n = O(K4)
in significant order based on the dual formulation of SDP. Even when they utilize the reduction, the SDPs
are still very large.

However, the extremely largeness of the SDPs arisen from quantum chemistry are in the right place
for SDPARA. Thorough the numerical results, we will verify that SDPARA successfully solves such large
SDPs.

3.5.3 Numerical Results for Quantum Chemistry

The SDPs given in Table 3.14 are from quantum chemistry [61, 62]. The characteristic of this type of SDPs
is that the number m of equality constraints of P can be very large. In the largest problem with m = 24503,
we need to store a 24503× 24503 matrix for the Schur complement matrix B on distributed memory. The
matrix requires about 9GB memory to store, so that we need at least 16 processors on Presto III to solve the
problem. Table 3.15 shows the numerical results on SDPARA applied to the problems listed in Table 3.14.
(’*’ indicates lack of memory.) It is clear that as more processors we used, faster we solved each problem.

Table 3.14: SDPs arisen from quantum chemistry
System.Status.Basis m nBLOCK bLOCKsTRUCT
BH3.1A1.STO-6G 2897 2 (120,120)
HF+.2Π.STO-6G 4871 3 (66,66,144)
NH2.2A1.STO-6G 8993 3 (91,91,196)
LiF.1Σ.STO-6G 15313 3 (120,120,256)

CH4.1A1.STO-6G 24503 3 (153,153,324)

It should be also emphasized that as the size of the problems becomes larger, SDPARA attains higher
scalability; as the number of processors is increased from 8 to 64, 1/2.5 reduction of the real time to solve
the smallest problem BH3 is attained while 1/5.2 reduction is attained in the larger problem case LiF. We
illustrate the scalability attained by SDPARA for LiF in Figure 3.13.

3.5.4 Load-Balance

We have measured load-balance of SDPARA over 64 processors by using PAPI [52] on Presto I. Table 3.16
shows the lowest and highest CPU operation counts in 64 processors and their ratio regarding two parallel
components. In addition, we post Figure 3.14 for more details of operation counts on each processor in the
case of HF. (In this figure, we sort the order by operation counts.)

We observe that the ratios in Total operation counts are bounded by 1.40. Especially, in control11 and
theta6, SDPARA shows excellent load-balance in ELEMENTS. Therefore we can conclude that SDPARA
attains reasonable load-balance although it adopts the simple parallel implementation described in section
3.2.2.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 44

Table 3.15: Performance of SDPARA on multiple processors for SDPs arisen from quantum chemistry
the number of processors 8 16 32 64

BH3.1A1.STO-6G ELEMENTS 38.7 19.1 11.3 5.4
CHOLESKY 24.0 13.5 10.9 6.6

Total 66.7 36.7 26.5 16.6
HF+.2Π.STO-6G ELEMENTS 109.7 56.3 28.2 14.1

CHOLESKY 86.8 49.8 33.7 19.7
Total 210.4 120.6 76.7 48.8

NH2.2A1.STO-6G ELEMENTS 406.8 236.5 125.6 61.4
CHOLESKY 452.6 289.0 185.2 108.0

Total 908.2 573.6 358.9 219.4
LiF.1Σ.STO-6G ELEMENTS 1454.8 760.7 370.0 185.6

CHOLESKY 2245.1 1270.1 730.1 404.2
Total 3830.9 2160.8 1224.8 720.7

CH4.1A1.STO-6G ELEMENTS * 1695.5 907.1 426.5
CHOLESKY * 4369.5 2743.3 1248.1

Total * 6367.7 3952.4 1980.3

Figure 3.13: Scalability for LiF

�

� �

� � � � �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� ��
�� � � � !"

� �
$# %
& '� # %

3.6 Comparison with Other Software

3.6.1 PDSDP

In this section, we compare the performance of our SDPARA with PDSDP [4] through some numerical
results. PDSDP is a parallel version of DSDP, an SDP solver developed by Benson and Ye [5]. In our best
knowledge, PDSDP had been the only parallel solver for general SDPs before we implemented SDPARA.
There is a major difference between SDPARA and PDSDP. The difference lies in their algorithmic frame-
works; SDPARA is based on PD-IPM with the use of the HRVW/KSH/M search direction as described in
section 2, while PDSDP is based on D-IPM (dual-scaling interior-point methods).

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 45

Table 3.16: Load-balance of SDPARA on 64 processors
problems lowest highest ratio

control11 ELEMENTS 1.24× 1010 1.35× 1010 1.09
CHOLESKY 1.62× 109 4.30× 109 2.65

Total 2.10× 1010 2.72× 1010 1.29
theta6 ELEMENTS 6.06× 108 6.43× 108 1.06

CHOLESKY 1.67× 1010 2.68× 1010 1.60
Total 4.19× 1010 5.21× 1010 1.24

HF+.2Π.STO-6G ELEMENTS 1.82× 109 2.62× 109 1.43
CHOLESKY 2.42× 1010 3.57× 1010 1.42

Total 3.16× 1010 4.40× 1010 1.39

Figure 3.14: Operation count on each processor for HF

�

� � � � �

� � � � �

��� � � � � �

� � � � �

� � � � � � �

	 � � � �

	� � � � � �

 � � � �

 � � � � � �

� � � � �

� � � � � 	 �
 � � � � �

�
 �
��
��
��
��
��
��
��

� � � �� �� �� � � � �� ! � �

"# "$ "% &'
() *# " ' +,

& � �.- /

Now, we take a look at chief characteristics of D-IPM. D-IPM was proposed in [6] to overcome a drawback
of PD-IPM that the primal variable matrix X is a full dense matrix in general. Conversely, the dual variable
matrix Y inherits the sparsity of the input data matrices.

Y = C − Σm
k=1Akzk.

Therefore, it is natural that we had better carry out the interior-point methods with only dual space if
possible. In other words, the method may reduce considerable amount of memory space to store the dense
matrix X and be capable of exploiting the sparsity of the input data matrices much directly.

In the derivation of the HRVW/KSH/M search direction in section 2.3.1, we apply the symmetrization
operator HP (X) = (PXP−1 + (PXP−1)T)/2 to XdY + dXY = µI −XY originated from XY = µI.
In stead of the replacement for XY = µI, we consider an equivalent equation X = µY −1 in D-IPM. Hence,
the central path is comprised of

{X, Y , z : Ak •X = bk(k = 1, 2, . . . ,m), Σm
k=1Akzk + Y = C,

X º O,Y º O, X = µY −1}.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 46

A characteristic feature of D-IPM is that we progress without the primal variable X, however, the use of
X facilitates a derivation of the search direction computed in D-IPM.

Let (dX, dY , dz) be the search direction. Then, we solve the following system with the Newton methods.

Ak • (X + dX) = bk (k = 1, 2, . . . ,m)
Σm

k=1Ak(zk + dzk) + (Y + dY) = C
X + dX = µ(Y + dY)−1

(3.7)

Since the last equation contains nonlinear term, we use an equation

(Y + dY)−1 = Y −1 − Y −1dY Y −1,

which holds in the first order approximation.
With the first and the second equations in (3.7), we construct the equivalent system.

{ ∑m
j=1(Y

−1AiY
−1) •Ajdzj = bi/µ−Ai • (Y −1 − Y −1DY −1),

dY = D −∑m
k=1 Akdzk,

where
D = C − Σm

k=1Akzk − Y .

This transformation indicates that we remove the dense matrices X and dX. Following the manner for
PD-IPM, we call the first equation the Schur complement equation for D-IPM. Furthermore, we call its
coefficient matrix B the Schur complement matrix for D-IPM whose elements are in the form of Bij =
(Y −1AiY

−1) • Aj . Solving the Schur complement equation to obtain dz and a subsequent substitution
to obtain dY result in the comprehensive search direction (dY , dz) required for D-IPM which solves SDPs
from only dual space information. To progress D-IPM, we also need information to reduce µ toward 0,
which is approximately estimated as µ = X•Y

n in PD-IPM. This update is done by an appropriate choice
of a potential function proposed in [70, 75] to assure a convergence of the sequence generated by D-IPM
iterations.

An algorithmic framework of D-IPM is very similar to that of PD-IPM. Starting with positive definite
matrix Y , we continue iterations which are comprised of evaluating the Schur complement matrix, solving
the Schur complement equation, computing the step length to keep positive definiteness of Y , updating the
variables (Y , z) to the next point, and estimation of the new µ with the potential function, until we reduce
µ to sufficiently close to 0.

As mentioned above, the attractive characteristic of D-IPM is that it may release us from the computation
cost and the memory space arisen from the primal dense X. If the information X is surely required, we
can estimate from the dual matrix Y and the equation X = µY −1. However, the high stability of PD-IPM
and the strong results of the primal-dual pair formulation, for instance, the duality theorem described in
section 2.1 may be lost in D-IPM because of lack of the primal information.

Another excellent property implemented in PDSDP in a combination with D-IPM is a low-rank property,
which stands for that PDSDP effectively constructs the Schur complement matrix if the ranks of input data
matrices Ak(k = 1, 2, . . . , m) are relatively small compared to the matrix size n. Let ri and rj be ranks of
Ai and Aj , respectively. In addition, we decompose Ai and Aj through their eigenvalue decomposition in
the form,

Ai = Σri
p=1ξpupu

T
p , Aj = Σrj

q=1ζqvqv
T
q ,

where ξp, ζq are eigenvalues and up, vq are eigenvectors of Ai, Aj , respectively. Then, we can rewrite the
formula to compute the elements of the Schur matrix B,

Bij = (Y −1AiY
−1) •Aj

=
(
Y −1

(
Σri

p=1ξpupu
T
p

)
Y −1

) • Σrj

q=1ζqvqv
T
q

= Σri
p=1Σ

rj

q=1 ξpζq(vT
q Y −1up)2.

Therefore, the smaller ri and rj leads to less computation cost required for evaluation Bij . In particular,
all the input data matrices A1, . . . , Am has only 1 element in Max Cut Problems described in section 3.2.1,
since PDSDP shows the strong power of its low-rank property for such cases.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 47

The components to which PDSDP pay attention to apply parallel computation are similar that of
SDPARA. Even though using D-IPM with low-rank property, the bottlenecks remain to the evaluation of
the Schur complement matrix B and solving the Schur complement equation. In the first implementation
of PDSDP before we implemented SDPARA, PDSDP adopted Conjugate Gradient Method to solve the
equation on parallel processing. However, PDSDP replaced with the parallel Cholesky Factorization to
attain higher accuracy, because of the same reason described in section 3.4.2.

In general, D-IPM has advantage for SDPs that have special structure in the input data matrices, while
PD-IPM is capable of being applied for various SDPs. The numerical results in the following subsection,
however, shows the higher performance of SDPARA than PDSDP.

3.6.2 SDPs from SDPLIB

We applied SDPARA and PDSDP with changing the number of processors to the SDP problems control10,
control11, theta5, theta6, thetaG51 and maxG51 selected from SDPLIB. Their sizes are shown in Table 3.12.
The total time required by them to solve the problems is shown in Table 3.17 and the scalability for control11
and theta6 are shown in Figure 3.15.

Table 3.17: Comparison of computation time (seconds) between SDPARA and PDSDP on multiple proces-
sors

the number of process 1 2 4 8 16 32 64
control10 SDPARA 441 235 129 75 43 32 25

PDSDP 2090 1993 732 463 314 207 200
control11 SDPARA 685 363 195 112 67 43 32

PDSDP 3319 3346 1369 757 531 340 299
theta5 SDPARA 223 114 72 51 35 26 20

PDSDP 221 181 131 125 117 154 177
theta6 SDPARA 601 342 168 113 68 51 38

PDSDP 586 471 328 296 253 323 375
maxG51 SDPARA 176 179 177 189 184 185 190

PDSDP 85 83 80 83 83 95 108

In Control Problems, SDPARA achieves both faster total time and higher scalability than PDSDP.
In particular, when we use 64 processors to solve control11, SDPARA is 64 times faster than PDSDP.
The overwhelming difference is mainly due to the fact that SDPARA computes the elements of the Schur
complement matrix B on parallel processing without any communication between the processors. This
enables SDPARA to obtain high scalability for Control Problems which spend most of the computation
time on the evaluation of the Schur complement matrix (see Table 3.3).

In the problems theta5 and theta6 which are Theta Function Problems, SDPARA is also faster than
PDSDP. Since the algorithmic frameworks of the parallel Cholesky Factorization adopted by both software
are essential the same, the difference between SDPARA and PDSDP indicates that the iteration number of
SDPARA is smaller than that of PDSDP owing to the remarkable stability of PD-IPM.

In maxG11 and maxG51, however, PDSDP is obviously faster than SDPARA. This is mainly because
the size n of the matrix variables X and Y is as large as the number m of the equality constraints in
these problems (see Table 3.12), so that the main computation time is occupied by operations to the matrix
variables X and Y , PMATRIX and DENSE components, not by ELEMENTS and CHOLESKY. Hence
SDPARA can not attain much scalability. For such SDPs, we can not expect SDPARA to work effectively.
On the other hand, the dual scaling algorithm adopted by PDSDP effectively exploits the special sparsity
of the input data, and attains the shorter computation time than SDPARA.

3.6.3 Quantum Chemistry

SDPARA and PDSDP were also applied on SDPs arisen from quantum chemistry listed in Table 3.14. Table
3.18 shows their numerical results. In addition, Figure 3.16 displays the scalability on NH2 and LiF. Note
that we use more than 8 processors, because the SDPs arisen from quantum chemistry have a tendency to

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 48

Figure 3.15: Scalability of SDPARA and PDSDP for control11 and theta6

�

� �

� � �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� � � � �
 � � � � �
� � �� � � � � �
 � � � � �

�� �� �� �
 ��
 � !
� � �� � �
 ��
 � !

" #� � �

become large SDPs with large number of equality constraints. In Table 3.18, SDPARA can not solve CH4

with 8 processors due to lack of memory space indicated by ’*’.

Table 3.18: Performance of SDPARA and PDSDP for SDPs arisen from quantum chemistry
the number of processors 8 16 32 64

BH3.1A1.STO-6G SDPARA 67 37 27 17
PDSDP 361 277 255 266

HF+.2Π.STO-6G SDPARA 210 121 77 49
PDSDP 813 663 682 612

NH2.2A1.STO-6G SDPARA 908 574 359 219
PDSDP 3719 2677 2722 2469

LiF.1Σ.STO-6G SDPARA 3831 2161 1225 721
PDSDP 16918 12458 10977 10258

CH4.1A1.STO-6G SDPARA * 6368 3952 1980
SDPARA 31065 25184 19359 15744

Table 3.18 makes it clear that SDPARA solves all SDPs many times faster than PDSDP. Particularly,
CH4 is extremely large SDP which could not solve by other software than SDPARA and PDSDP. Therefore,
at the current time, the computation time for CH4 attained by SDPARA is the shortest time. Furthermore,
the scalability of SDPARA exceeds that of PDSDP. Though PDSDP slightly raises the scalability with more
than 16 processors, SDPARA can lengthen the scalability up to 64 processors in the straight way. The main
difference between SDPARA and PDSDP is their algorithmic framework, PD-IPM and D-IPM, respectively.
It is possible to consider that the stability of PD-IPM enables SDPARA to attain such a higher scalability.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 49

Figure 3.16: Scalability of SDPARA and PDSDP on NH2 and LiF

�
� �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� � ��
� � �� � � ��

�� �� �� � ! "#
� � �� � � ! "#

$ %� & '

3.7 Theoretical Validity of Parallel Implementation in SDPARA

We have already described details of the parallel implementation of SDPARA (in section 3.2) and reported
its numerical results (in section 3.4,3.5). However, we have several alternative approaches in the course
of developments of SDPARA. In this section, we discuss a theoretical validity of selected approaches in
SDPARA focusing on a trade-off between reductions of computation time owing to parallel processing and
overheads of communication between multiple processors, and comparing with other alternative approaches.

Throughout discussions in this section, we use three values tf , tv and tm in Table 3.19 regarding com-
putation and communication time. The unit size of these values is second. Here, we assume a type of all

Table 3.19: Computation and Communication Time (second)
tf Computation time for a multiplication between two values
tv Transfer time to send a value
tm Latency

data values stored in memory space is ’double’ type which requires 64 bits. In other words, tf stands for
time to compute a multiplication between two ’double’ values, tv stands for the reciprocal of the number of
’double’ values which can be sent in a second (the reciprocal of bandwidth), and tm stands for time to send
the first ’double’ value from one processor to another processor, respectively.

When real values are required to compare with alternative approaches after we establish theoretical
measures, we use values attained in numerical experiments executed on PC-cluster, Presto III. As described
in section 3.3, the important feature of the PC-cluster is that all nodes are connected by Myrinet. Myrinet
provides a high network capacity whose bandwidth is 2 Giga bit per second at its theoretical limits. There-
fore, communication time tv is not a so heavy burden as compared to computation time tf . Approximate
orders of the above three values on Presto III are tf = 10−9, tv = 10−8, tm = 10−5. (Note that the unit
sizes of these values are second. For example, a multiplication between two ’double’ values requires about
10−9 second.) These values may be changed when we use a different PC-cluster.

SDPARA has two parallel components, ELEMENTS (in section 3.2.2) and CHOLESKY (in section

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 50

3.2.3). We will concentrate on the two components in this section. First, we discuss ELEMENTS component
which evaluates elements of the Schur complement matrix on parallel processing. In advance of listing up
alternative approaches, we review the algorithmic framework implemented in SDPARA.

Evaluation of the Schur Complement Matrix on the uth Processor

Before starting the first iteration of PD-IPM, we select F (i,l) from F1,F2,F3 for the ith row and the lth
block.
Prepare a flag sym. If F1 or F2 are chosen more than once then sym = 1, else sym = 0.
Reserve memory space to store rows assigned by Pu.
At each iteration of PD-IPM, we compute as follow.

B = O
For l = 1, 2, . . . , h (iterator for block)

For i ∈ Pu (iterator for row)
For j = 1, 2, . . . , m (iterator for column)

If nz{Ai}l ≥ nz{Aj}l or sym = 0 then
Compute B

(l)
ij by F (i,l)

Bij ← Bij + B
(l)
ij

If sym = 1 then symmetrize B on distributed memory

In the course of implementation, we had two alternative approaches below.

1. [SORT vs. NON-SORT]

In SDPARA, we do not use the sorting of input data matrices by their density proposed in [22]
(NON-SORT). Therefore, an alternative approach can be the evaluation with the sorting (SORT).

2. [Automatic Symmetrization]

We symmetrize the Schur complement matrix on distributed memory if required. The other alternative
approaches are one that evaluates all elements in the upper triangular instead of the symmetrization
(SYM-OFF), and one that always uses the symmetrization for any SDP (SYM-ON).

We start from a comparison between SORT and NON-SORT. As described in section 3.2.2, the manner to
evaluate the Schur complement matrix proposed in Fujisawa et al. [22] is as follow. Let {Ai}l denotes the lth
diagonal block of Ai. For the lth diagonal block (l = 1, 2, . . . , h), they first sort {A1}l, {A2}l, . . . , {Am}l

by their density with a permutation σ so that {Aσ(1,l)}l, {Aσ(2,l)}l, . . . , {Aσ(m,l)}l satisfy nz(σ(i, l)) ≥
nz(σ(j, l)) for σ(i, l) ≤ σ(j, l), where nz(σ(i, l)) is the number of non-zero elements of {Aσ(i,l)}l. Then they
compute the elements of the sub Schur complement matrix B

(l)
σ(i,l)σ(j,l) if σ(i, l) ≤ σ(j, l). The remarkable

point of their manner is a selection of appropriate formulas depending on the sparsity of the input matrices
from three formulas, F1 for dense, F2 for mildly dense and F3 for sparse. The algorithmic framework for
SORT will be described below. Here, we do not consider the symmetrization to concentrate on SORT vs.
NON-SORT.

Evaluation of the Schur Complement Matrix on the uth Processor [with SORT]

Before starting the first iteration of PD-IPM, compute a permutation σ(i, l) and thresholds pl, ql.
Reserve memory space to store rows assigned by Pu.
At each iteration of PD-IPM, we compute as follow.

B = O
For l = 1, 2, . . . , h (iterator for block)

For î ∈ Pu (iterator for row)
b = 0
i ← σ(̂i, l)
If i < pl then F ← F1, else if i < ql then F ← F2, else F ← F3

For ĵ = î, î + 1 . . . , m (iterator for column)
j ← σ(ĵ, l)

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 51

Compute B
(l)
ij by F and bj ← B

(l)
ij

End (For)
send b to the vth processor (i ∈ Pv)
add b to the ith row of B on the vth processor (i ∈ Pv)

End (For)
End (For)

As we have pointed in section 3.2.2, SORT requires communication because the evaluation of an element
may executed on a processor which is different from the processor where the result of the element must be
stored. The example in section 3.2.2 depicted this conflict more clearly. Therefore, the communication cost
may be a heavy burden of SORT.

To compare SORT and NON-SORT, we can not neglect that the computation cost for B
(l)
ij (i, j =

1, 2, . . . , m) and their addition are the same in the either approach because of Corollary 3.2.1. Furthermore,
since the number h of diagonal block and the iteration number of PD-IPM become the same, we need
only to compare the computation cost at inside of the For loop with respect to î of SORT and i of NON-
SORT. We summarized each overhead of NON-SORT and SORT compared with the other approach in
Table 3.20 and 3.21, respectively.

Table 3.20: Overhead of NON-SORT
operation the number of required operation time for one operation
pick up of F m/N tpick

pick up of nz(i, l), nz(j, l) m(m + 1)/N tpick

comparison of nz(i, l), nz(j, l) m2/N tcmp

Table 3.21: Overhead of SORT
operation the number of required operation time for one operation
assignment of b = 0 m/N tassign

pick up of i m/N tpick

pick up of j m(m− 1)/(2N) tpick

comparison to define F 2m/N tcmp

transfer of b m/N tsend

Let N be the number of all available processors. We assume the ideal shortest communication time
between N processors, that is, N source processors can send and N destination processors can receive
simultaneously. This simple assumption is very useful to estimate the lower bound of tsend in Table 3.21.
Furthermore, each processor transfers b to itself with a possibility 1/N , we can remove the transfer. Then
tsend can be estimated as follow.

tsend ≥ (mtv + tm)× (N − 1)/N.

Hence the total difference between TSORT (the total time for SORT) and TNON−SORT (the total time
for NON-SORT) becomes

TSORT − TNON−SORT

= {mtassign/N + m(m + 1)tpick/(2N) + 2mtcmp/N + m/N × (mtv + tm)(N − 1)/N}
−(mtpick/N + m(m + 1)tpick/N + m2tcmp/N)

= m/N × {tassign − (m + 3)tpick/2 + (mtv + tm)(N − 1)/N − (m− 2)tcmp}
≥ m/N × (mtv(N − 1)− ((m− 2)tcmp + (m + 3)tpick/2)
≥ m/N × (mtv(N − 1)/N −m(tcmp + tpick))
= m2/N × (tv(N − 1)/N − (tcmp + tpick)).

Therefore, when N ≥ 2, the total time for NON-SORT is shorter than that for SORT if tv ≥ (tcmp + tpick).
From numerical experiments on Presto III, we obtained tv ≥ 3.2 × 10−8 and tcmp + tpick ≤ 1.5 × 10−8.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 52

Furthermore, the value of tsend used in the above estimation is the ideal lower bound and can not be
attained in practical situations. Consequently, we obtain TNON−SORT ≤ TSORT , which means that the
selection of NON-SORT approach is valid.

Next, we move on a validity of Automatic Symmetrization. When we use SYM-ON, we compute either
B

(l)
ij or B

(l)
ji depending on the comparison between nz(i, l) and nz(j, l). After the evaluation of all elements,

we need to symmetrize the total Schur complement matrix B = Σh
l=1B

(l) by Bij ← (Bij +Bji)/2 (i < j).
The computation of B

(l)
ij can be computed the appropriate formula from F1,F2,F3, but the communication

cost is required to symmetrize B because it is stored on the distributed memory. Generally speaking, the
symmetrization consumes communication time Tsym = m2tv/N .

On the other hand, SYM-OFF approach always computes B
(l)
ij when i ≤ j. Therefore, no communication

is necessary for B to be a symmetric matrix. However, there is a possibility that the appropriate formula
is not selected for some j, since the formula to compute B

(l)
ij is decided by only i. We use G(1,l),G(2,l),G(3,l)

to denote the sets of row indices correspond to F1,F2,F3, respectively. To be precise,

G(p,l) = {i : 1 ≤ i ≤ m,F (i,l) = Fp} for p = 1, 2, 3.

Furthermore, we define m(p,l) for the cardinality of G(p,l) (Note that m(1,l) + m(2,l) + m(3,l) = m, l =
1, 2, . . . , h). and nz(p,l) for sum of nonzero elements of {Ai}l, that is, nz(p,l) = Σ

i∈G(p,l) nz(i, l). When we

use SYM-ON, the number of elements of B(l) evaluated by each formula is counted as Table 3.22. In the

Table 3.22: Number of elements of B(l) for each formula in the case of the appropriate selection
i \ j G(1,l) G(2,l) G(3,l)

F1,G(1,l) m(1,l)(m(1,l)m1 + 1)/2 m(1,l)m(2,l) m(1,l)m(3,l)

F2,G(2,l) m(2,l)(m(2,l) + 1)/2 m(2,l)m(3,l)

F3,G(3,l) m(3,l)(m(3,l) + 1)/2

case of SYM-OFF, if we compute B
(l)
ij without the comparison of nz(i, l) and nz(j, l), the following three

non-appropriate selection may happen.

1. The elements B
(l)
ij which should be computed by F1 may be computed by F2. The computation cost

increases (nl + 1)nz(j, l)− nz(j, l).

2. The elements B
(l)
ij which should be computed by F1 may be computed by F3. The computation cost

increases (2nz(i, l) + 1)nz(j, l)− nz(j, l).

3. The elements B
(l)
ij which should be computed by F2 may be computed by F3. The computation cost

increases (2nz(i, l) + 1)nz(j, l)− (nl + 1)nz(j, l).

In the above, nl is the size of the lth diagonal matrix {X}l. The increment costs are estimated based on the
formulas proposed F1,F2 and F3 in [22]. Here, we assume that the order of nz(1, l), nz(2, l), . . . , nz(m, l)
follows uniform distribution and all {A1}l, {A2}l, . . . , {Am}l are stored in sparse data structures. The sec-
ond assumption implies that an overhead of the sparse data structures need not be taken into consideration.

Hence, the total increment of computation cost Tinc on each processor in SYM-OFF approach can be
estimated as

Tinc = Σh
l=1

tf
2N

{Σ
i∈G(1,l)Σ

i∈G(2,l)((nl + 1)nz(j, l)− nz(j, l))

+Σ
i∈G(1,l)Σ

i∈G(3,l)((2nz(i, l) + 1)nz(j, l)− nz(j, l))

+Σ
i∈G(2,l)Σ

i∈G(3,l)((2nz(i, l) + 1)nz(j, l)− (nl + 1)nz(j, l))}

= Σh
l=1

tf
2N

{nlm
(1,l)nz(2,l) + 2nz(1,l)nz(3,l) + 2(nz(2,l) − nlm

(2,l))nz(3,l)}.

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 53

Therefore, the following strategy is reasonable.

If Tinc < Tsym, we adopt SYM-OFF.
Else we adopt SYM-ON.

From numerical experiments on the two SDPs, control11 and theta6, on Presto III, we obtained the real
time in second with respect to the computation of B

(l)
ij (i, j = 1, 2, . . . , m, l = 1, 2, . . . , h) [COMPUTE] and

the symmetrization of B [SYM] on SYM-ON and SYM-OFF (Table 3.23,3.24,3.25 and 3.26). The real time
in the tables are the total time over all the iterations of PD-IPM. The iteration number of control11 and
theta6 are 48 and 18, respectively. In addition, the time for COMPUTE and SYM are the same through
all the iterations. For example, COMPUTE time in each iteration with respect to SYM-ON for control11
on a single processor is 596.0/48 = 12.4.

Table 3.23: Performance of SYM-ON for control11
the number of processors 1 2 4 8 16 32 64

COMPUTE 596.0 300.2 149.9 73.9 36.7 18.3 9.2
SYM 5.4 11.1 7.8 5.5 2.2 1.7 0.6
Total 690.3 367.6 198.0 112.4 63.8 42.8 28.5

Table 3.24: Performance of SYM-OFF for control11
the number of processors 1 2 4 8 16 32 64

COMPUTE 716.6 363.0 192.4 105.0 60.9 37.0 27.9
SYM 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 805.2 417.8 232.3 137.2 85.5 59.3 46.6

Table 3.25: Performance of SYM-ON for theta6
the number of processors 1 2 4 8 16 32 64

COMPUTE 122.3 58.2 28.8 14.8 7.6 4.4 2.7
SYM 18.0 32.1 24.1 17.0 6.8 5.0 1.8
Total 726.5 364.8 190.3 127.4 71.8 53.2 37.0

Table 3.26: Performance of SYM-OFF for theta6
the number of processors 1 2 4 8 16 32 64

COMPUTE 122.0 56.9 27.6 13.6 6.8 3.4 1.8
SYM 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 707.9 331.2 165.5 109.4 64.1 48.0 34.1

First, we consider control11 (m = 1596, bLOCKsTRUCT = [110, 55]). From the statics of control11

Table 3.27: Statics of control11
1st block m(1,1) 1571 m(2,1) 25 m(3,1) 0

nz(1,1) 1641358 nz(2,1) 10372 nz(3,1) 0
2nd block m(1,2) 0 m(2,2) 0 m(3,2) 1596

nz(1,2) 0 nz(2,2) 0 nz(3,2) 6050

summarized in Table 3.27, Tinc = tf/N × 1.85 × 109. When the appropriate formulas are selected (in the
case of SYM-ON), the computation for COMPUTE requires tf/N × 4.93 × 107 second, and its real time
is 596.0/48/N second (48 is the iteration number of PD-IPM). Hence Tinc becomes approximately 458/N
second. On the other hand, the communication time is bounded as tv ≤ 5.7×10−7 owing to Myrinet capacity;
thus Tsym ≤ 70/N . Therefore, SYM-ON is faster than SYM-OFF as the numerical results indicated.

Next, we consider Max Cut Problem case. In Max Cut Problem, the number of non-zero elements
involved in each input matrix is 1, that is, nz(i, 1) = 1 for i = 1, 2, . . . , m. (Note that the number of

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 54

diagonal block matrix is 1, that is h = 1, in Max Cut Problem or Theta Function Problem.) Hence, only F3

is selected for all rows of B. Then, the assignment of non-appropriate formulas do not happen. Therefore,
Tinc = 0 since m(1,l) = m(2,l) = nz(1,l) = nz(2,l) = 0. In this case, SYM-OFF is faster than SYM-ON.

Finally, we pick up an interesting case, Theta Function Problem. In Theta Function Problem, only one
input matrix is the identity matrix and the number of non-zero elements in the other input matrices are 2.
In this case, two formulas F2 and F3 are used, but Tinc becomes 0 since m(2,1) = 1,m(3,1) = m−1, nz(1,1) =
0, nz(2,1) = n1, nz(3,l) = 2(m − 1). Hence, SYM-OFF is faster than SYM-ON. This result is consistent in
the results of Table 3.25 and 3.26.

In SDPARA implementation, we adopt Automatic Symmetrization whose strategy is{
If F1 or F2 are selected more than once : SYM-ON is used

Otherwise : SYM-OFF is used.

In other words, the Automatic Symmetrization uses SYM-OFF when Tinc = 0. The strategy is simpler
than the one we have discussed above based on the comparison between the computation time Tinc and
the communication cost Tsym. However, numerical results on many SDPs indicate that the simple strategy
can be considered as a well approximation to the one discussed above. Therefore, we have verified that the
Automatic Symmetrization implemented in SDPARA is effective.

Until now, we concentrate on ELEMENTS component. In SDPARA, we have another parallel com-
ponent, CHOLESKY. To enhance the performance of the parallel Cholesky Factorization, we redistribute
the Schur complement matrix B from the row-wise distribution to TD-BCD (two-dimensional block-cyclic
distribution). Therefore, it will be a subject matter that how much fast the parallel Cholesky Factorization
on the row-wise distribution without the redistribution is as compared to the parallel Cholesky Factorization
on TD-BCD with the redistribution.

Here, we assume a belt size in the row-wise distribution is one, because the slimest belt attains the
shortest time for ELEMENTS component as verified in section 3.4.1. Therefore, the uth processor stores
rows of B defined by Pu = {i : 1 ≤ i ≤ m, (i − 1)%N = u}. An algorithmic framework of the parallel
Cholesky Factorization on the row-wise distribution to factorize m ×m matrix B into a lower triangular
matrix is summarized as follow.

The parallel Cholesky Factorization on Row-wise Distribution on the uth processor

For i = 1, 2, . . . ,m
If i ∈ Pu

Bii ←
√

Bii

Broadcast Bii to all processors
End (If)
For j = i + 1, i + 2, . . . , m

If j ∈ Pu

Bji ← Bji/Bii

Broadcast Bji to all processors
End(If)

End (For)
For j = i + 1, i + 2, . . . , m

If j ∈ Pu

For k = i + 1, i + 2, . . . , m
Bjk ← Bjk −Bji ×Bki

End (For)
End (If)

End (For)
End (For)

Based on the above algorithmic framework, the order of the computation time of the parallel Cholesky
Factorization on the row-wise distribution TROW can be estimated as

TROW = m3tf/(3N) + (m + m2/(2N))× tv log2 N + 2mtm, (3.8)

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 55

where log2 N implies that Bii and Bji are broadcasted. To broadcast from the 1st processor to all processors,
1st processor sends to the 2nd and the 3rd processor at first. Then the received ith processor sends to the
2ith and the (2i + 1)th processor in general. Hence, all processors receive the data from the 1st processor
with in tv log2 N second.

On the other hand, the order of computation time of the parallel Cholesky Factorization on TD-BCD
TTD and the communication time for the redistribution from the row-wise distribution Tred are

TTD = m3tf/(3N) + (2 + 1/2 log2 N)m2tv/
√

N + (4 + log2 N)/(mb)tm, (3.9)
Tred = m2tv/N, (3.10)

where mb is a block size of TD-BCD. The order of TTD in (3.9) is different from that in section 3.2.3,
because (3.9) is better suited for the comparison with the row-wise distribution. The difference comes from
the one with respect to the assumptions of data transfer type. We cite the above order of TTD from [8].

The comparison between the order of TROW and that of TTD + Tred implies the row-wise distribution
looks faster than TD-BCD. However, the apparent result is inconsistent in numerical results on Presto
III.Table 3.28 and 3.29 are numerical results on control11 and theta6, respectively. The problem control11
has m = 1596 equality constraints and requires 48 iterations, while theta6 has m = 4375 equality constraints
and requires 18 iterations.

Table 3.28: Performance of CHOLESKY for control11
the number of processors 1 2 4 8 16 32 64

TROW 1173.3 418.5 247.9 161.4 132.7 105.3 94.5
TTD 65.5 29.7 18.3 14.7 8.8 7.9 5.0
Tred 10.4 15.5 11.4 7.5 4.4 2.8 1.1

Table 3.29: Performance of CHOLESKY for theta6
the number of processors 1 2 4 8 16 32 64

TROW 12381.7 2826.5 1613.4 973.8 623.9 458.3 372.3
TTD 547.3 164.8 92.6 62.5 33.5 25.2 14.5
Tred 31.0 40.4 33.1 21.5 11.5 6.3 4.4

The inconsistency stems from an implicit assumption that tf , tv and tm are the same regardless of the
row-wise or TD-BCD. For example, if we compute the Cholesky Factorization on a single processor, then the
computation cost is approximately m3tf/3. However, the computation time of non-block-oriented Cholesky
Factorization which is a base of the parallel Cholesky Factorization on the row-wise and that of block-
oriented Cholesky Factorization (see section 3.2.3) which is a base of the parallel Cholesky Factorization
on TD-BCD are clearly different as indicated by Table 3.30. (The denominators in time are the number of
iterations.)

Table 3.30: Difference of computation time between non-block-oriented and block-oriented
computation time (second)

control (m=1596) non-block 671 / 48
block 37 / 48

theta (m=4375) non-block 5561 /18
block 253 / 18

We estimate tf from Table 3.30 and estimate tv and tm from the formulas (3.8),(3.9),(3.10), and Ta-
ble 3.28,3.29. The estimated values are summarized in Table 3.31. (The value tv in Tred is the upper bound
when the number of processors is changed.) Then, the most significant differences come from tf and tv. The
tf and tv of TROW are considerably larger than those of TTD. It may possible to consider that the parallel

Chapter 3. Parallel Implementation of Primal-Dual Interior-Point Methods 56

Table 3.31: Estimated computation cost and communication cost on CHOLESKY

tf tv tm
control11 TROW 1.2× 10−8 9.0× 10−7 1× 10−5

TTD 1.7× 10−9 4.7× 10−8 1× 10−5

Tred 6.2× 10−7

theta6 TROW 8.7× 10−9 2.3× 10−6 1× 10−4

TTD 3.9× 10−10 3.3× 10−8 1× 10−5

Tred 8.1× 10−7

Cholesky Factorization can exploit memory cache more effectively and transfer data with longer length to
attain a sufficient bandwidth owing to the block-oriented Cholesky Factorization than the parallel Cholesky
Factorization on the row-wise distribution based on the non-block-oriented Cholesky Factorization. Hence,
the parallel Cholesky Factorization on TD-BCD with the redistribution from the row-wise distribution is
actually reasonable to be embedded in SDPARA.

Through the above discussions, we verified that the parallel implementation of SDPARA is superior to
the other alternative approaches.

Chapter 4

Parallel Implementation with the
Completion Method

In the previous chapter, we have pointed out the bottlenecks of PD-IPM and describe how to overcome
them with advantage of parallel processing. In addition, we have shown the high performance of SDPARA
[86] through numerical experiments, in particular, for quantum chemistry.

However, we still have another opportunity to solve considerably large SDPs. What we need to remember
is that SDPARA could not reap any benefits from parallel processing in the numerical experiments for Max
Cut Problem. This fact leads us a further approach for SDPs; an incorporation of the completion method.

We start this chapter from an examination of additional exploiting an structural sparsity, then introduce
a concept of the completion method in section 4.1. We also present some distinguishing and important
theoretical groundworks. Then, we carry forward the main subject in section 4.2; how to incorporate
the completion method into the framework of parallel processing, especially from viewpoints of memory
reduction and computation efficiency. Then, section 4.3 and section 4.4 show numerical results and prove a
significant development based on the completion method At the end of this chapter, we provide a theoretical
validity of the parallel implementation in section 4.5.

4.1 Incorporation of the Completion Method

4.1.1 Drawbacks of SDPARA and Introduction of the Completion Method

As we have seen, the bottlenecks in PD-IPM for general SDPs are the evaluation of the Schur complement
matrix (ELEMENTS) and its Cholesky Factorization (CHOLESKY). Replacing the two bottlenecks by
their parallel implementation is the most fundamental feature of SDPARA. As a result, SDPARA shows
the high performance and the excellent scalability with the aid of strong parallel processing. In particular,
SDPARA attains a considerable reduction in computation time for extremely large SDPs arisen from the
quantum chemistry.

Nevertheless, we should not underestimate the fact that the performance is very poor for Max Cut
Problem. SDPARA can not obtain any scalability on the problem. The time consumed by ELEMENTS
and CHOLESKY components is far small compared to the total time. Therefore, the parallel implementation
of SDPARA does not work effectively. The most computation time on Max Cut Problem is consumed to
compute dX (the primal component of the search direction) and to deal with dense matrices, which are
components called PMATRIX and DENSE, respectively, as we have categorized in section 3.2.1.

The characteristic of Max Cut Problem reveals a drawback of SDPARA. From the formulation described
in section 3.2.1, the number m of equality constraints of the problem is equal to the size n of matrices . Thus,
if we want to solve Max Cut Problem with more equality constraints, the required memory space to store
variable matrices, X and Y , grows in proportion to m2. Another drawback of SDPARA is that SDPARA
restores the matrices X and Y in the full-dense style on each processor, even if all the input data matrices
C,A1, A2, . . . , Am have some sparsity structures. To make matters worse, all the computation with respect
to these matrices are done on each processor. In other words, PMATRIX and DENSE components can not
obtain any advantage of parallel processing. Hence, almost all the performance of SDPARA is vanished,

57

Chapter 4. Parallel Implementation with the Completion Method 58

when we try to solve SDPs that the number of equality constraints is not sufficiently larger than the size of
matrices.

To overcome the above drawbacks of SDPARA, let us focus on a special sparsity which belongs to all
the input data matrices. We start from an easy sample SDPs. First, let the size n of matrix be equal to
the number of equality constraints in which SDPARA has trouble. Then, each input data matrix Ak(k =
1, 2, . . . , n = m) has non-zero elements in the only position {(k, k), (k, n), (n, k)}. In addition, the positions
of the non-zero elements in the coefficient matrix C are also {(i, i), (i, n), (n, i)} where i = 1, 2, . . . , n.

Terminologies in the field of graph theory play essential roles to explain the completion method. In
order to relate non-zero elements of matrix to a graph, we introduce an assigned graph.

Definition 4.1.1. Given an n×n symmetric matrix X, a graph G(V,E) is said to be an assignment graph
of X if the vertex set is V = {1, 2, . . . , n} and the edge set is E = {(i, j) ∈ V × V : Xij 6= 0}. And we
call such edge set E an assignment edge set of X. Conversely, if all positions of non-zero elements of X is
covered by a edge set of a given G(V,E), we say X is assigned by E, thus by G .

Then, let us consider the sparsity in the dual standard SDPs. The dual variable matrix Y directly
inherits the special sparsity from the dual constraints,

Y = C − Σm
k=1Akzk.

It means that Y in the simple example is assigned by an edge set in {(i, i), (i, n), (n, i) : i = 1, 2, . . . , n}.
We define an aggregate sparsity pattern as a composition of assigned edges of all the input data matrices.
For convenience, let A0 = C.

Definition 4.1.2. We define an aggregate sparsity pattern E as

E = ∪m
k=0{(i, j) : (i, j) element of Ak is nonzero}.

We call a matrix assigned by E an aggregate sparsity matrix.

Hence, it may be natural that we exploit the aggregate sparsity in the dual variables. The direct inheritance
of the sparsity in the dual SDP is origin of D-IPM adopted by PDSDP as described in section 3.6.1. However,
we should retain the excellent stability of PD-IPM, instead using D-IPM.

Here, we look back on the primal standard SDPs and pay attention to the primal variable matrix X.
Since X is usually dense, SDPARA suffers from PMATRIX and DENSE. In the primal SDP, we minimize
the objective function C •X over equality constraints Ak •X = bk with positive semidefiniteness of X.
Therefore, the elements of X required for the inner-product are only the elements whose positions are
correspond to non-zero elements of the input data matrices. In the simple example, {(k, k), (k, n), (n, k)}
elements of X are used to the take inner-product with Ak. Therefore, {(i, i), (i, n), (n, i) : i = 1, 2, . . . , n}
elements of X assigned by the aggregate sparsity pattern are enough to compute the inner-products with
all the input matrices. We derive the following aggregate sparsity matrix X from X,

X =

X11 X1n

X22 X2n

. . .
...

Xn−1,n−1 Xn−1,n

X1n X2n . . . Xn−1,n Xnn

.

Note that X is sufficient for inner-products in the primal SDP. Furthermore, if we hold the positive semidef-
initeness of X in some sense, we can construct X keeping the non-zero elements of X as follows.

X =

X11
X1nX2n

Xnn
. . .

X1nXn−1,n

Xnn
X1n

X1nX2n

Xnn
X22 . . .

X2nXn−1,n

Xnn
X2n

...
...

. . .
...

...
X1nXn−1,n

Xnn

X2nXn−1,n

Xnn
. . . Xn−1,n−1 Xn−1,n

X1n X2n . . . Xn−1,n Xnn

.

We call X a positive semidefinite completion matrix of X.

Chapter 4. Parallel Implementation with the Completion Method 59

Definition 4.1.3. A matrix X is said to be a completion matrix of X if Xij = Xij for any (i, j) in the
assignment edge set of X. In addition, if X is positive semidefinite, X is called a positive semidefinite
completion matrix of X.

Consequently, we can execute PD-IPM with X instead of X, and after the computation of PD-IPM, we
complete X from X. It is apparent that a benefit owing to the structure of X is significant, because the
required memory space of X is only 2n + 1 while that of the fully dense matrix X is n2. For the larger n,
the reduction will become more drastic.

In general, however, we should not forget that we can not progress PD-IPM iterations with only the non-
zero elements assigned by the aggregate sparsity pattern E. The reason is that the algorithmic framework
of PD-IPM involves the Cholesky Factorization of variable matrices to obtain the step length to keep a
condition that we can make a positive semidefinite completion matrix.

The matrix X may not be positive semidefinite and even if X is positive semidefinite, the assignment
edge set E may not cover all elements arisen from fill-in due to the Cholesky Factorization. A concept of
clique-PSD which will be described in section 4.1.2 enables us to retain positive semidefiniteness of X in
some enough sense to complete X.

Now, suppose that X is positive definite for a moment to view the fill-in more precisely. For instance,
let us consider the Cholesky Factorization on the following sample positive semidefinite matrix X.

X =

5 3 1
3 6 2
1 7 4

2 4 8

 .

The result of the Cholesky Factorization into the lower triangular matrix is

L =

2.23607
1.34164 2.04939
0.44721 −0.29277 2.59119

0.97590 1.65395 2.07655

 ,

where X = L L
T
. Note that (3, 2) element of L is non-zero, whose position has zero in X. We call this

phenomenon fill-in. Therefore, we prepare X̂ whose assignment graph Ĝ(V, Ê) cover not only non-zero
elements of X but also elements emerged from fill-in. To express such assignment edge set Ê, we define an
extended sparsity pattern.

Definition 4.1.4. Given an aggregate sparsity pattern E, we call Ê an extended sparsity pattern if Ê covers
all non-zero elements of the matrix X assigned by E and all fill-in elements arisen from the Cholesky
Factorization of X.

Theoretically speaking, Ê is determined by the chordal graph, as we will describe in the next subsection 4.1.2.
Thus, the memory space for X̂ is minimum to contain all non-zero elements required for the evaluation
of primal feasibility, the result of the Cholesky Factorization for the step length and the completion to
construct X.

However, we have to notice that the evaluation of the Schur complement matrix B whose elements are of
form Bij = (XAiY

−1)•Ak demands the dense matrices X and Y −1, even if X̂ and Y posses considerably
sparsity. The completion method ensures that if we choose X as a completion matrix whose determinant
is maximum in all the completion matrices from X̂, the sparse Cholesky Factorization matrices is available
for X and Y −1, that is X = M−T M−1 and Y = NNT . The matrices M and N are assigned by the
extended sparsity pattern Ê. Therefore, the sparse Cholesky Factorization enables us to evaluate B without
directly storing dense matrices, X and Y −1.

Here, we have reached a framework into which we introduce the sparsity for the primal formulation
in general scheme. First, we collect all the indices of non-zero elements of the input data matrices and
construct an aggregate sparsity pattern E. Then, we extend E to obtain an extended sparsity pattern Ê
which is characterized by the chordal graph. Let M and N be matrices assigned by Ê. Thus M and N
have enough non-zero storage for the primal variable matrix X and the dual variable matrix Y , respectively.
As a result, PD-IPM can be done with information only sparse matrices M and N . In other words, M

Chapter 4. Parallel Implementation with the Completion Method 60

and N are sufficient for the evaluation of the Schur complement matrix B, the computation of the step
length and feasibility check for both primal and dual. After all the iteration of PD-IPM, we construct the
optimal solution X = M−T M−1 and Y = NNT .

Based on the framework of PD-IPM with the completion method, SDPA-C was proposed in [24, 59].
We examine three software, SDPA, SDPA-C and SDPARA on an SDP arisen from the relaxation for Max
Clique mentioned in section 4.3 to investigate a relation between an effectiveness of the completion method
(SDPA-C) and an efficiency of parallel processing (SDPARA on 64 processors). The number of equality
constraints of SDP is m = 1891 and the number of matrix size is n = 1000. Table 4.1 shows the time
required by each components of PD-IPM and memory space for the Schur Complement matrix B and the
sum total of n× n matrices.

Table 4.1: Comparison between SDPA,SDPA-C and SDPARA

SDPA SDPA-C SDPARA
ELEMENTS 82.0s 662.8s 7.7s
CHOLESKY 25.3s 34.1s 2.9s
PMATRIX 69.4s 32.6s 69.0s
DENSE 125.7s 2.6s 126.1s
Total Computation time 308s 733s 221s
Memory Space for B 27MB 27MB 1MB
Memory Space for n× n matrices 237MB 8MB 237MB
Total Memory Space 279MB 39MB 265MB

Table 4.1 makes it clear that SDPA-C successfully reduces of the computation time for PMATRIX and
DENSE and the memory space for n × n matrices. It is quite natural because SDPA-C directly reaps the
benefits of the completion method. However, SDPA-C requires considerably longer time to evaluate the
Schur complement matrix (ELEMENTS) than SDPA, since the memory storages of M and N make it
impossible to incorporate into the exploitation of the sparsity described in section 2.3.2 (proposed in [22]).

On the other hand, SDPARA achieves the excellent performance on ELEMENTS and CHOLESKY
as shown in section 3.5, while it can not attain any reductions for PMATRIX, DENSE, and the memory
space for n × n matrices. Because the number m of equality constraints is at most twice of the size n
of matrices, the non-parallel components PMATRIX and DENSE counterbalance the performance of the
parallel processing.

To obtain higher results, we want the benefits from the completion method and the parallel processing
simultaneously. This idea leads us to a combination of them. Based on various knowledges of the paral-
lelization for SDPARA, we have implemented SDPARA-C in incorporation of the completion method into
SDPARA. It should be emphasized is that not only ELEMENTS and CHOLESKY but also PMATRIX
components are parallelized in SDPARA-C. We will mention schemes for the parallelization, after we briefly
summarize the theoretical groundwork of the completion method. The numerical experiments reported in
section 4.3 and 4.4 will prove the idea that we combine the completion method and the parallel processing
attains a significant performance.

4.1.2 Theoretical Groundwork for Positive Semidefinite Matrix Completion

In [24, 59], Fukuda, et al. and Nakata, et al. brought to light the close link between the chordal graph
and the positive semidefinite matrix completion. Shortly, we pick up the important ingredients for the
completion method from the theoretical viewpoints. See [24, 59] and their references for more details.

Two substantial materials we focus on here are one that the extended sparsity pattern Ê covers all the
positions of fill-in arisen from the sparse Cholesky Factorization and one that the matrix X̂ assigned by Ê
enables us to complete the positive semidefinite matrix X as an optimal solution. The two materials play
primitive roles for us to exploit the sparsity in the primal variable and to attain a significant reduction of
computation cost and memory space.

As we have seen, it is apparent that the aggregate sparsity pattern E provides enough elements for X to
be checked the primal feasibility. We derive the aggregate graph G(V, E), whose edge set is the aggregate

Chapter 4. Parallel Implementation with the Completion Method 61

sparsity pattern E. In other words, an edge e = (i, j) exists in G if (i, j) elements of X is non-zero. The
following sample 7×7 matrix X in (4.1) generates the aggregate graph G in Figure 4.1; ’+’ in X stands for
non-zero elements. Note that since X is symmetric, we ignore the edges (i, j) ∈ E for i ≥ j in the Figure
4.1. In addition, we can assume that {(i, i) : i ∈ V } ⊂ E.

X =

+ + +
+ + +
+ + +

+ + + + +
+ + +
+ + +

+ + +

(4.1)

Figure 4.1: Aggregate graph G

1 2

3 4 5

6 7

We introduce an induced graph to investigate characteristics of a given graph.

Definition 4.1.5. A graph G′(V ′, E′) is said to be an induced graph of G(V, E) if V ′ ⊂ V and E′ =
{(i, j) ∈ E : i, j ∈ V ′}.

Applying the symbolic Cholesky Factorization, we obtain the matrix X̂ in (4.2), where ’*’ stands for
fill-in elements. Then, we add some edges to G to reflect the fill-in, and we build an assigned graph Ĝ for
X̂ in Figure 4.2. The terminology chordal represents a meaningful characteristic of Ĝ.

X̂ =

+ + +
+ + ∗ +
+ ∗ + +

+ + + + +
+ + ∗ +
+ ∗ + +

+ + +

(4.2)

Figure 4.2: Chordal graph Ĝ

1 2

3 4 5

6 7

C2

C3

C4

C1

Definition 4.1.6. A graph Ĝ(V, Ê) is defined to be chordal if the length of each cycle in any induced graphs
of Ĝ is at most three.

For the chordal graph, a lot of matters has already been discussed [9, 30, 49]. To make a relation of fill-in
and the chordal graph more meaningful, we had better understand how to decrease the number of fill-in.
Let G(V,E) be a given graph. We say the induced graph C ⊂ G is a clique if C is complete. Next, a
vertex v ∈ V is said to be simplical if the graph induced by {v} ∪ {u : (u, v) ∈ E} is a clique. Now, we
suppose that G is a chordal graph. From the characteristic of the chordal graph, we can find a simplical
vertex v. Moreover, even after we eliminate the vertex v from G, the left graph induced by V \{v} is still
the chordal graph. Hence we can eliminate all vertices in a sequential order {v1, v2, . . . , vn} and we generate
the sequential induced chordal graphs. We call the order Perfect Elimination Ordering in G. In the chordal
graph of Figure 4.2, a perfect elimination ordering is, for example, 1, 7, 2, 6, 3, 5, 4. The perfect elimination
is not alway unique for a general chordal graph.

Chapter 4. Parallel Implementation with the Completion Method 62

We can summarize a strong connection between the chordal graph and perfect elimination ordering in
the following theorem:

Theorem 4.1.7 (Fulkerson and Gross [26]) : A graph is chordal if and only if it has a perfect elimi-
nation ordering.

In the next step, we focus from the viewpoints of linear algebra. Let Z be an n × n positive definite
matrix to be factorized and P be an n × n permutation matrix. Note that the PZP T is always positive
semidefinite. Since there may be a difference between the number of fill-in of the Cholesky Factorization
to Z and that of PZP T , there is a possibility that an adequate choice of the permutation matrix P may
reduce fill-in. For example, the reduction is obvious if Z is left-upper arrow matrix. It is desired that
there exists a permutation matrix P which does not produce any fill-in through the Cholesky Factorization
on PZP T . If such a permutation exists with respect to Z, we call the orderings of rows and columns
determined by the permutation matrix P Perfect Elimination Ordering on matrix Z.

It is apparent from Figure 4.1 and 4.2 that a positive semidefinite matrix X̂ has a perfect elimination
ordering if and only if the assigned graph Ĝ(V, Ê) has a perfect elimination ordering, since the fill-in of X̂

can be assigned by Ê. Therefore, X̂ characterized by the chordal graph has enough memory space to apply
the sparse Cholesky Factorization.

Furthermore, a set of maximal cliques {C1, C2, . . . , Cr} which comprises of the chordal graph Ĝ(V, Ê)
is very useful to detect whether we can complete a positive semidefinite matrix X from the matrix X̂
assigned by Ê. We say a maximal clique for a clique which is not contained by any other clique as its
induced graph. In addition, we extract sub-matrix X̂Ck

whose rows and columns determined by the vertex
set of the maximal clique Ck(k = 1, 2, . . . , r) from the matrix X̂. We call X̂ is clique-PSD if all sub-matrices
X̂Ck

(k = 1, 2, . . . , r) are positive semidefinite.
The next theorem plays another central role in a combination of PD-IPM with the completion method.

Theorem 4.1.8 (Theorem 2.5 in [24]) : Suppose that Ĝ(V, Ê), an assignment graph for X̂, is a chordal
graph. Then, we can complete a positive semidefinite matrix X from X̂ if and only if X̂ is clique-PSD.

In Figure 4.2, the chordal graph can be decomposed into four maximal cliques,

C1(V1, E1) where V1 = {1, 2, 3}, E1 = {(1, 2), (1, 3), (2, 3)}
C2(V2, E2) where V2 = {2, 3, 4}, E2 = {(2, 3), (2, 4), (3, 4)}
C3(V3, E3) where V3 = {4, 5, 6}, E1 = {(4, 5), (4, 6), (5, 6)}
C4(V4, E4) where V4 = {5, 6, 7}, E4 = {(5, 6), (5, 7), (6, 7)}

Thus, we can complete from X̂ if clique-PSD as below is satisfied.

X̂C1 =

X̂11 X̂12 X̂13

X̂12 X̂22 X̂23

X̂13 X̂23 X̂33

 º O, X̂C2 =

X̂22 X̂23 X̂24

X̂23 X̂33 X̂34

X̂24 X̂34 X̂44

 º O,

X̂C3 =

X̂44 X̂45 X̂46

X̂45 X̂55 X̂56

X̂46 X̂56 X̂66

 º O, X̂C4 =

X̂55 X̂56 X̂57

X̂56 X̂66 X̂67

X̂57 X̂67 X̂77

 º O.

Hence, the retain of clique-PSD through all the iterations of PD-IPM guarantees that we acquire a result
matrix X as a completion matrix of X̂. Note that the retain is not so difficult, since it is almost the
same as the case where we consider all the sub-matrices X̂Ck

(k = 1, 2, . . . , r) as one block diagonal
matrix. Although we may generate multiple matrices when we complete the matrix X̂, however, an actual
computation generates a distinguished complete matrix X with the following characteristic.

Theorem 4.1.9 (Grone, Johnson, Sá and Wolkowicz [31]) : Assume that we can complete the ma-
trix X̂ to be positive semidefinite. Then, there exists a unique completion matrix X such that

det(X) = max{det(X̃) : X̃ is a completion matrix of X̂}

Chapter 4. Parallel Implementation with the Completion Method 63

At the end of this subsection, we summarize the incorporation of the completion method into PD-IPM.
We progress PD-IPM with X̂ instead of dense matrix X. The matrix X̂ assigned by the extended sparsity
pattern Ê is considerably sparse, however, Ê assures enough memory space for all the fill-in arisen from
the sparse Cholesky Factorization and for check the primal feasibility. In addition, the retain of clique-PSD
through all the iteration enables us to complete X from X̂. After the terminal condition of PD-IPM is
satisfied, we construct a completion matrix of X that maximizes the determinant. Finally we output X as
a primal optimal solution.

4.2 Primal-Dual Interior-Point Methods with the Completion
Method and its Parallelization

In this section, we focus on schemes to incorporate the completion method into parallel computation. Hence,
we assume that we have already understood the parallel implementation of SDPARA in some depth.

We begin from a fundamental change for the algorithmic framework; we do not use Mehrotra Type
Predictor-Corrector PD-IPM adopted by SDPARA. Then we investigate an effect of the completion method
on the evaluation of the Schur complement matrix and its parallel implementation. Furthermore, we point
out another component of PD-IPM, the computation of the primal variable matrix of the search direction,
also can be replaced with its parallel implementation.

Based on these schemes, we have implemented SDPARA-C (SemiDefinite Programming Algorithm paR-
Allel version with the Completion method). In subsequent sections, we will show numerical results of
SDPARA-C.

4.2.1 Adoption of Simple Primal-Dual Interior-Point Methods

As we have mentioned in section 2.3.3, SDPA and its descendant SDPARA employ Mehrotra Type Predictor-
Corrector (MT-PC) PD-IPM as their algorithmic frameworks. In MT-PC PD-IPM, we can re-use the Schur
complement matrix to obtain the predictor search direction in the computation of the corrector search
direction. Since the evaluation of the Schur complement matrix and its Cholesky Factorization (ELEMENTS
and CHOLESKY) require most of computation cost for general SDPs, not only the reduction of computation
cost but also the almost second-order approximation by the corrector search direction provide us sufficient
reasons to employ MT-PC PD-IPM.

However, since SDPs we are trying to solve with the advantage of the completion method in this chapter
hold a special structural sparsity, a large portion of computation cost is consumed by the primal component
of the search direction (PMATRIX) and computation for n×n matrices (DENSE). It will be legitimate from
viewpoints of a convergence rate that the corrector search direction with the re-use of the Schur complement
matrix is inferior to the search direction obtained from the Schur complement matrix which is evaluated for
each search direction. In MT-PC, the inferior point is covered by the significant reduction of computation
cost due to the re-use. However, as the occupying portions of ELEMENTS and CHOLESKY decrease, the
benefit of MT-PC also vanishes. It means that the completion method may compete with MT-PC.

The other perspective of the MT-PC PD-IPM is the matrix R to obtain the right hand side of the
Schur complement equation, ri = pi −Ai • ((R −XD)Y −1. The matrix R emerges also in the course of
PMATRIX. In MT-PC framework, we need to prepare two versions of R, for the predictor and corrector
search direction,

Rp = µpI −XY , Rc = µcI −XY − dXpdY p,

respectively. The above definition indicates that the matrix for corrector Rc requires multiplication of the
primal and dual matrices of the predictor search direction. Since the matrices dXp and dY p are n × n
matrices, in the completion method, it is preferable to avoid the multiplication to decrease the weight of
DENSE component if possible. When we do not compute the corrector search direction, we can consider
only one version of R,

Rp = µpI −XY .

Chapter 4. Parallel Implementation with the Completion Method 64

Substituting the definition into the computation of PMATRIX,

d̂X = (R−XdY)Y −1

= (µI −XY −XdY)Y −1

= µY −1 −X −XdY Y −1,

enable us to preserve almost sparsity of X = M−T M−1 and Y = NNT .
From the above observations, SDPA-C and its parallel implementation SDPARA-C do not adopt MT-PC

PD-IPM. In other words, they adopt the simple PD-IPM. (Here, simple stands for ’without MT-PC’.) In
exchange for discarding MT-PC, SDPA-C and SDPARA-C guarantee the only first-order convergence.On
the other hand, PD-IPM often work out fine with the special structural sparse SDPs, for example, when we
sometime know priori the existence of the interior feasible point and the boundness of objective value. Thus,
the first-order convergence has enough likelihood to obtain a sufficient accuracy for an optimal solution.
Note that in PD-IPM framework, we acquire only an approximate solution, not an optimal solution itself.

In the simple PD-IPM, SDPA-C solves SDPs effectively due to the incorporation of the completion
method. Nevertheless, the computation for PMATRIX is still heavy for a single processors. In the following
subsection, we consider the parallel implementation to replace PMATRIX.

4.2.2 Schur Complement Matrix and its Cholesky Factorization

In the implementation of SDPARA, the exploitation of the sparsity for the evaluation of the Schur comple-
ment matrix B (ELEMENTS) proposed in [22] plays an essential role to reduce the significant computation
cost. However, the exploitation directly accesses the elements of dense matrices X and Y −1 which we do
not hold in the framework of the completion method. Therefore, we use the formulation proposed in [59]
with the assistance of the sparsity matrix M and N which satisfy X = M−T M−1 and Y = NNT . To
introduce the formulation, we need to note that for any symmetric matrices A and B,

A •B = Tr(AB) = Σn
k=1[AB]kk = Σn

k=1e
T
k ABek = Σn

k=1(Aek)T [B]∗k,

where Tr stands for the trace of a matrix, ek is the unit vector whose only the kth component is one, [X]kk

is the (k, k) element of X and [X]∗k denotes the kth column vector of X.
Here, we compose the formula to compute Bij , elements of the Schur complement matrix B, and

ri(i = 1, 2, . . . ,m), the right hand side of the Schur complement equation, acquiring the benefits of sparsity
of M and N . We start the composition from the Schur complement to obtain the HRVW/KSH/M search
direction described in section 2.3.1. Furthermore, we fix R = µI −XY , since we do not adopt the MT-PC
PD-IPM but the simple PD-IPM.

Bij = (XAiY
−1) •Aj

= Tr(XAjY
−1Ai)

= Σn
k=1e

T
k (XAjY

−1Ai)ek

= Σn
k=1(Xek)T AjY

−1[Ai]∗k
= Σn

k=1(M
−T M−1ek)T Aj(N−T N−1[Ai]∗k) (4.3)

ri = pi −Ai • ((R−XD)Y −1)
= pi −Ai • ((µI −XY −XD)Y −1)
= (pi + Ai •X)− µAi • Y −1 + Ai • (XDY −1)
= bi − µTr(Y −1Ai) + Tr(XDY −1Ai)
= bi − µΣn

k=1e
T
k (Y −1[Ai]∗k) + Σn

k=1(Xek)T DY −1[Ai]∗k
= bi − µΣn

k=1e
T
k (N−T N−1[Ai]∗k) + Σn

k=1(M
−T M−1ek)T D(N−T N−1[Ai]∗k)

(4.4)

It should be emphasized that all the computations involving M and N are multiplications between their
inverse and vectors. Calculating M−1v for some vector v is equivalent to solve the system Mw = v as
follow, because M and N are the lower triangular matrices.

Chapter 4. Parallel Implementation with the Completion Method 65

For i = 1, 2, . . . , n

wi = (vi − Σi−1
j=1Mijwj)/Mii

end(For)

Hence, it is apparent that the sparsity of M decreases the computation of the summention. The computation
M−T v are also done in the same way. In addition, the bilinear inner-product in the form vT Aw in the
last step of Bij and of ri can be computed effectively, since Ai(i = 1, 2, . . . , m) and D are assigned by the
aggregate sparsity pattern which is a subgraph of the extended sparsity pattern. We need to remember
that the completion method adequately acts if the extended sparsity pattern of the SDP holds a sufficient
sparsity. Therefore, we can consider that the above formulas actively incorporate into the sparsity of the
SDP.

The other feature of the above formulations is that we can skip in the summention with respect to k if
the kth vector of Ai is zero vector. For example, since all Ai(i = 1, 2, . . . , m) in Max Cut Problem described
in section 3.2.1 has only one non-zero elements, the effect based on the skip is remarkable.

From the viewpoint of parallel processing, the formula of the Schur complement matrix B in (4.3)
reserves the row-wise computation. As we have mentioned in section 3.2.2, we assign the computation of
the ith row of B, where i ∈ Pu, to the uth processor over row-wise memory distribution on distributed
memory. Furthermore, Pu is comprised of some belts in rotation with size of belt sb,

Pu = ∪{i ∈ Bw : w%N = u}, where Bw = {i : (w − 1)× sb ≤ i ≤ min{m,w × sb}}.
The concept of the row-wise distribution is basically quite useful even when we incorporate into the com-
pletion method, since the above formula for Bij can be done independently and individually by the same
implementation as SDPARA.

The most significant difference we are facing is that the skip in the summention of k due to the con-
siderably sparsity of Ai may break the appropriate load-balance attained by SDPARA. Let us consider
the case we apply the above formula to SDPs arisen from Theta Function Problem described in section
3.2.1. Only one input data matrix, for example A1, is an identity matrix and each other input data matrix
Ai(i = 2, 3, . . . ,m) has only two non-zero elements. In other words, we can not skip any column vector of
A1, while only two column vectors of Ai(i = 2, 3, . . . ,m) are taken into the computation. Since M and N
are identical for all rows in B and the computation of their inverse does not depend on the sparsity of the
vector to be multiplied, the processor assigned to the row with respect to A1 requires quite larger amount
of computation cost than other processors.

To avoid the above worse load-balance, the row with respect to Ai which has many non-zero columns
should be computed by multiple processors. Let B ⊂ {1, 2, . . . , m} be a index set of such rows. Suppose
that N processors are available for us now. Then we hash the columns of Ai (i ∈ B) into N disjoint sets
Qi

1,Qi
2, . . . ,Qi

N such that

∪n
u=1Qi

u = {k : 1 ≤ k ≤ n, [Ai]∗k 6= 0} and Qi
u ∩Qi

v = φ for u 6= v.

However, the division poses the problem of the memory space on distributed memory space. If we divide
each row of memory space according to Qi

1,Qi
2, . . . ,Qi

N , the memory space for the entire matrix B may be
hashed, and a lot of communication will be required. Therefore, we should keep the row-wise distribution of
memory space based on Pu(u = 1, 2, . . . , N). Hence, to compute the ith row, we prepare on each processor
an temporary vector bu and an temporary value su for elements of the ith row of B and the right hand
side of the Schur complement equation r, respectively. Here, [bu]j denotes the jth component of bu.

[bu]j = Σ
k∈Qi

u

(M−T M−1ek)T Aj(N−T N−1[Ai]∗k)

su = −µΣ
k∈Qi

u
eT
k (N−T N−1[Ai]∗k) + Σ

k∈Qi

u
(M−T M−1ek)T D(N−T N−1[Ai]∗k)

To acquire Bij and ri, we need to collect the results of bu and su of all processors. Hence, we send the
result from the uth vector to the vth processor, which holds original memory space for the ith row (i ∈ Pv),
and compute the summention of bu and su to obtain the ith row of B and the ith element of r on the vth
processor. Finally, we store the evaluated them into distributed memory space of the vth processor.

Chapter 4. Parallel Implementation with the Completion Method 66

After the computation for rows in B, we evaluate the rest rows in the same way as SDPARA. Since
the rest rows come from the relatively sparse matrix, the serious trouble with respect to load-balance do
not occur in general. In this case, no communication is required between multiple processors, since the
processor holds memory space of elements which are computed by the processor itself.

We call a combined distribution of a row-wise distribution for B and a hashed distribution for B a hashed
row-wise distribution. On the contrary, we call a row-wise distribution adopted by SDPARA as a simple
row-wise distribution.

Consequently, the algorithmic framework of the evaluation of the Schur complement matrix B and the
right hand side r on each processor can be expressed as follow.

Evaluation of the Schur complement matrix B and the right hand side r on the uth processor
in the style of a hashed row-wise distribution

Set B = O and r = b
For i ∈ B

Decide processor v such that i ∈ Pv

Set bu = 0 and su = 0.
For k ∈ Qi

u

Compute g = M−T M−1ek, h = N−T N−1[Ai]∗k
For j ∈ 1, 2, . . . , m

Compute gT Ajh and add to [bu]j
end(For:j)
Compute −µeT

k h + gT Dh and add to su

end(For:k)
Send bu and su to the vth processor
If u = v

Compute ΣN
u=1bu and store into the ith row of B

Compute ΣN
u=1su and add to ri

end(If)
end(For:i)
For i ∈ Pu \ B

For k ∈ {k : 1 ≤ k ≤ n, [Ai]∗kis not zero vector}
Compute g = M−T M−1ek, h = N−T N−1[Ai]∗k
For j ∈ 1, 2, . . . , m

Compute gT Ajh and add to Bij

end(For:j)
compute −µeT

k h + gT Dh and add to ri

end(For:k)
end(For:i)

In actual implementation, a kind of estimation is required to determine which rows are included by B, in
other words, which rows had better be computed by multiple processors. SDPARA-C adopts the following
simple threadhold to determine whether the ith row to be put in B or not.

nz(Ai) ≥
√

n,

where nz(Ai) is the number of non-zero elements of Ai. The nz(Ai) is slightly different from the number
of non-zero columns of Ai what we want. However, the threshold works well as numerical results will show
in the following section.

Once we construct B and r, we solve the Schur complement equation B dz = r to obtain dz. In the
course, we adopt the parallel Cholesky Factorization. The computation to obtain dz is identical to the
process on two-dimensional block-cyclic distributed memory which we have mentioned in section 3.2.3.

Chapter 4. Parallel Implementation with the Completion Method 67

4.2.3 Parallel Computation for Primal Variable Matrix of the Search Direction

After the acquisition of dz as the solution of the Schur complement equation, each processor receives it on
their own memory space. Then, we compute the dual variable matrix of the search direction,

dY = C − Σm
k=1Akdzk.

Since the sparsity of the input data matrices is inherited directly into the dual variable matrix, dY can be
assigned by the aggregate sparsity pattern E. The computation to obtain dY is so cheap that we compute
it on each processor without any high communication between multiple processors.

On the other hand, the primal variable dX, the PMATRIX component of PD-IPM, is more complicated.
The matrix dX is essentially computed through the multiplications between matrices and symmetrization.
Although the PMATRIX is not replaced by a parallel implementation in SDPARA, we need to focus on the
component because the component consumes relatively much portion of computation cost, in particular,
if the completion method is incorporated. Therefore, we investigate an implementation to apply parallel
processing to PMATRIX.

PMATRIX is done by the computations d̂X = (R − XdY)Y −1 and dX = (d̂X + d̂X
T
)/2. Here,

we use an auxiliary matrix d̃X instead of d̂X, because we use d̂X to indicate the matrix assigned by
the extended sparsity pattern Ê characterized by the chordal graph. Hence, a relation between the three
matrices dX, d̃X and d̂X as follow.

First, from the dY assigned by the aggregate sparsity pattern, we compute d̃X = (R − XdY)Y −1.

Then d̂X is composed of the elements assigned by Ê of the symmetrized matrix (d̃X + d̃X
T
)/2. The

point is that we can equate dX with d̂X, because both matrices requires to be assigned by Ê. Note that
discarding some non-zero elements in the course of construction for d̂X enforces us a non-linear search,
substituting linear search X + αpdX. However, the non-linear search is enough for a sequence in PD-IPM
to converge to an optimal solution [59].

Since we store only M and Y on each processor instead of X and Y as we have mentioned in the
above section 4.1.2, we prefer to utilize the information of M and N . The column-wise computation for
d̃X proposed in [59] will be a practical from viewpoints of not only the completion method but also parallel
processing.

[d̃X]∗k = [(R−XdY)Y −1]∗k
= [(µI −XY −XdY)Y −1]∗k
= [−X + µY −1 −XdY Y −1]∗k
= [−X]∗k + µY −1ek −XdY Y −1ek

= [−X]∗k + µN−T N−1ek −M−T M−1dY N−T N−1ek

Remember that the multiplication of the inverse of M and N with vector is considerably cheap, because
M and N are the sparse triangular lower matrices. In addition, dY is assigned by the aggregate sparsity
pattern, then the total computation cost of the above formula can be reasonably suppressed.

The column-wise computation provides us a natural scheme to apply parallel processing to PMATRIX.
Let Ru be the column set computed by the uth processor such that

∪N
u=1Ru = {k : 1 ≤ k ≤ n} and Ru ∩Rv = φ for u 6= v.

Since the computation cost for each column is almost the same, Ru can be determined in a simple manner
even regarding load-balance.

Ru = {k : (u− 1)× bn/Nc+ 1 ≤ k ≤ u× bn/Nc} (u = 1, 2, . . . , N − 1)
RN = {k : (N − 1)× bn/Nc+ 1 ≤ k ≤ n} ,

where bxc is the largest integer that does not exceed x. We call the distribution {Ru : u = 1, 2, . . . , N} a
serial-columns distribution. As a result, the computation for d̃X on the uth processor is described as follow.

The Computation of Intermediate matrix d̃X on the uth processor

Chapter 4. Parallel Implementation with the Completion Method 68

Set d̃X = −X.
For k ∈ Ru

Compute µN−T N−1ek −M−T M−1dY N−T N−1ek

and add to [d̃X]∗k
end(For)
Broadcast all columns in Ru to all other processors
Receive the rest columns from all other processors

In the last two step of the above framework, we require communication to store the entire matrix d̃X

on all processors. The matrix d̂X, however, is assigned by the extended sparsity pattern Ê. Therefore,
the elements to be transmitted are limited by Ê and the amount of the communication in PMATRIX will
not be so siginicant. In addition, the serial-columns distribution {Ru : u = 1, 2, . . . , N} requires smaller
communication time than a stereotypic cyclic-columns distribution.

The application of parallel processing to compute the primal component will produce a meaningful
reduction of computation cost. The effect will be shown in numerical results.

4.2.4 SDPARA-C (SemiDefinite Programming Algorithm paRAllel Version
with the Completion Method)

We have implemented SDPARA-C (SemiDefinite Programming Algorithm paRAllel version with the Com-
pletion method) based on the above-mentioned schemes to apply parallel processing to the evaluation of the
Schur complement matrix (ELEMENTS) and the computation of the primal variable matrix of the search
direction (PMATRIX) with advantage of the completion method. A main objective of SDPARA-C is clearly
to merge the merits of SDPA-C and SDPARA.

For the implementation of SDPARA-C, the knowledge of the communication acquired through SDPARA
is essential. We have integrated two libraries, MPI (Message Passing Interface) and ScaLAPACK (Scalable
Linear Algebra PACKage), into SDPARA-C.

Here, we want to focus on the data storage on each processor which we have not mentioned so far.
In the same way as SDPARA, all the input data from an input file, A1, A2, . . . , Am, C, b1, b2, . . . , bm

are stored on each processor. In addition, the Schur complement matrix B is stored twice, the row-wise
distribution for the evaluation of elements and two-dimensional block-cyclic distribution for the parallel
Cholesky Factorization.

The point we have to consider involved in the completion method is the storage of the variable matrices,
X and Y , and the component of search direction dX and dY . As we have mentioned, we store M and
N assigned by the extended sparsity pattern Ê instead of X and Y . Generally speaking, since X and
Y −1 are considered to be fully dense matrices, we can not hold them on each processors. However, the
numbers of non-zero elements involved in the matrices M ,N , dX, dY are limited by the edge number of
Ê. Therefore, we can maintain the four matrices on each processor. The storage on each processor results
in no communication to evaluate the rows of the Schur complement matrix B that are not members of B.

In short, the information divided into distributed memory space on each processor is only the Schur
complement matrix B. The computation of the primal variable matrix of the search direction (PMATRIX)
requires communication between multiple processors, however, we do not divide the memory space of d̃X
and dX on multiple processors to cut the ineconomical communication.

It should be mentioned that SDPARA-C itself do not construct the aggregate sparsity pattern E and
the extended sparsity pattern Ê. Instead, we utilize an additional highly technical program to generate
such information before we apply SDPARA-C. Since the generation requires file input/output, it should not
be applied parallel processing. Thus, if we measure the time including the generation, it makes difficult to
measure an immediate effect brought by parallel processing. Hence, we assume in the following numerical
results that the information of E and Ê are supplied through the given input file with the input data
matrices.

As we have described in the first paragraph of this subsection, merging the merit of SDPA-C and
SDPARA is the main objective of SDPARA-C. Here, we show a portion of numerical results, which clearly
proves the objective is accomplished. Table 4.2 presents Table 4.1 in section 4.1.1 with the additional results
of SDPARA-C on 64 processors.

Chapter 4. Parallel Implementation with the Completion Method 69

Table 4.2: Comparison between SDPA,SDPA-C,SDPARA and SDPARA-C

SDPA SDPA-C SDPARA SDPARA-C
ELEMENTS 82.0s 662.8s 7.7s 10.5s
CHOLESKY 25.3s 34.1s 2.9s 4.0s
PMATRIX 69.4s 32.6s 69.0s 2.4s
DENSE 125.7s 2.6s 126.1s 2.3s
Total Computation time 308s 733s 221s 26s
Memory Space for B 27MB 27MB 1MB 1MB
Memory Space for n× n matrices 237MB 8MB 237MB 8MB
Total Memory Space 279MB 39MB 265MB 41MB

Inheriting the characteristic from SDPARA, the computation time of SDPARA-C for the evaluation of
the Schur complement matrix B (ELEMENTS) and its Cholesky Factorization (CHOLESKY) are success-
fully reduced. Moreover, the memory space for B is divided into all processors.

Additionally, the completion method enables us to compute the primal variable matrix of the search
direction (PMATRIX) and linear algebra with respect to X, Y , dX, dY (DENSE) with very cheap costs
and save a lot of memory space for n×n matrices. Furthermore, the parallel implementation of PMATRIX
which does not belong to SDPARA decreases the significant computation time.

In consequence, SDPARA-C solves the SDP with the shortest computation time in the above four
software. In the following full-scale numerical results, we investigate the performance of SDPARA-C on
various SDPs. We also explore the effect of the sparsity of the input data.

4.3 Numerical Results

Our numerical experiments of SDPARA-C were done on PC-Cluster Presto III. The specs of Presto III have
been described in section 3.3.

In this section, we focus on the performance of SDPARA-C. Comparisons with other software will be
subjects in the subsequent section. First, we investigate computation time required by SDPARA-C to
solve various SDPs. Then, we examine SDPs which have different sparsity, because the efficiency of the
completion method is strongly dependent of the sparsity of the input data matrices; thus the performance
of SDPARA-C may also depends on the sparsity.

4.3.1 Scalability of SDPARA-C

To investigate a fundamental performance of SDPARA-C, we have applied it to SDPs in Table 4.3. The
problem cut-10-500 is a Max Cut Problem mentioned in section 3.2.1. Additionally, clique-10-200 and
norm-10-990 are SDPs from Max Clique Problem and Min Norm Problem, respectively. Here, we describe
the definition of these problems shortly. The rest four SDPs have been selected from SDPLIB [11].

Table 4.3: SDPs for numerical experiments
name m n
cut-10-500 5000 5000 Max Cut Problem with P = 10, Q = 500
clique-10-200 3791 2000 Max Clique Problem with P = 10, Q = 200
norm-10-990 11 1000 Min Norm Problem with P = 10, Q = 990
control10 1326 150 SDPLIB
theta6 4375 300 SDPLIB
maxG51 1000 1000 SDPLIB
qpG11 1600 800 SDPLIB

Chapter 4. Parallel Implementation with the Completion Method 70

SDP relaxation for Max Clique Problem
Let G(V,E) be an undirected graph with a vertex set V = {1, 2, . . . , n} and an edge set E ⊂ {(i, j) :

i, j ∈ V }. We assume C(Vc, Ec) is max clique in G, that is, C is complete and the vertex number of C
is not smaller than that of any other clique in G. Let K be the cardinality of Vc. Therefore K is to be
maximized. We introduce variables x1, x2, . . . , xn to indicate vi ∈ V (xi > 0) or vi /∈ V (xi = 0).

Then, finding max clique in G is equivalent to solve the following maximization problem.

max{Σn
i=1Σ

n
j=1xixj : xixj = 0((i, j) /∈ E),Σn

i=1x
2
i = 1}.

The constraint xixj = 0 ((i, j) /∈ E) ensures that if there does not exist an edge between vi and vj , at most
one of the vertices can be contained in the clique. On the other hand, Σn

i=1x
2
i = 1 is added to bound the

objective value from above. We have xi = 1/
√

K (vi ∈ Vc) and xi = 0 (vi /∈ Vc) when optimal is attained.
Therefore the optimal objective value of the maximization problem is K.

Since Max Clique problem as well as Max Cut Problem is NP-complete problem, SDP relaxation method
is essential to acquire an approximate optimal value in polynomial time. From Max Clique Problem, we
obtain standard SDP.

max{E •X : Eij •X = 0((i, j) /∈ E), I •X = 1, X º O},

where E is the n× n matrix whose all elements are one, Eij is the n× n matrix whose only (i, j) and (j, i)
elements are one and other elements are zero. Furthermore, we apply an transformation proposed in [24]
to the above SDP to change its aggregate sparsity pattern to suit the completion method. We usually say
SDP relaxation arisen from Max Clique Problem as Max Clique Problem.
Min Norm Problem

Given F p ∈ Rq×r (i = 0, 1, 2, . . . , p), a subject of Min Norm Problem is to find a linear combination of
the matrices with the minimum norm in all linear combinations. In a mathematical formulation, the norm
minimization problem is described as

min{||F 0 + Σp
k=1F izi|| : zi ∈ R (i = 1, 2, . . . , p)},

where the norm ||X|| is square root of a maximal eigenvalue of XT X. The minimization problem is
equivalent to the following dual SDP.

max

{
−zp+1 : Y =

p∑

i=1

(
O F T

i

F i O

)
zi +

(
I O
O I

)
zp+1 +

(
O F T

0

F 0 O

)
, Y º O

}
.

We construct the SDPs, cut-10-500, clique-10-200 and norm-10-990 in Table 4.3 based on lattice graphs.
Here, let us take a look at a definition of lattice graph. Figure 4.3 shows a lattice graph with size 4 × 3.
Vertices of lattice graph correspond to lattice nodes and edges connecting vertices comprises of the structure
of lattice itself.

Figure 4.3: Lattice graph with size 4× 3

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

Chapter 4. Parallel Implementation with the Completion Method 71

In general, let G(V,E) be a lattice graph with size P ×Q. Then V and E are precisely defined as

V = {(i, j) : 1 ≤ i ≤ P, 1 ≤ j ≤ Q}
E = {((i, j), (i, j + 1)) : 1 ≤ i ≤ P, 1 ≤ j ≤ Q− 1}

∪{((i, j), (i + 1, j)) : 1 ≤ i ≤ P − 1, 1 ≤ j ≤ Q}.
Therefore, Max Cut Problem based on a lattice graph with size P×Q has the number of equality constraints
m = P×Q and the size of matrices n = P×Q. In the same way, we have m = 2P×Q−P−Q+1, n = P×Q in
Max Clique Problem and n = P +Q in Min Norm Problem. Note that the number m of equality constraints
in Min Norm Problem is independent from the structure of lattice graph, since m = p + 1 where p is the
number of matrices involved in the linear combination.

The matrix assigned by the lattice graph has the same property of the coefficient matrix arisen from
a differential equation. Hence, it is not difficult to construct an ordering which reduces the fill-in of the
Cholesky Factorization. It means that we can estimate the sparsity of the extended sparsity pattern if
the matrices assigned by the lattice graph. We define a sparsity ρ of an SDP as an average number of
non-zero elements on each row of an extended sparsity pattern generated by its input data matrices. A
short consideration leads us that the sparsity ρ is at most 2×min{P, Q}+ 1. This property clearly fits the
completion method we are focusing in this chapter.

So far, we take a look at the formulation of cut-10-500, clique-10-200, norm-10-990. Meanwhile, con-
trol10, theta6, maxG51 and qpG11 are picked up from SDPLIB [11]. They are Control Problem, Theta
Function Problem, Max Cut Problem and Quadratic Partition Problem, respectively.

Table 4.4 shows numerical results of SDPARA-C with changing the number of processors. In the table,
we skip the components of PD-IPM that can be computed in less than 20 seconds by even a single processor.

Table 4.4: Performance of SDPARA-C
the number of processors 1 2 4 8 16 32 64
cut-10-500 ELEMENTS 937.0 482.5 270.4 149.1 74.6 40.9 23.0

CHOLESKY 825.1 253.4 142.0 90.0 49.7 35.5 19.9
PMATRIX 459.5 234.7 120.4 60.6 30.9 15.9 9.2

Total 2239.7 982.5 544.4 310.6 166.8 105.0 70.7
clique-10-200 ELEMENTS 2921.9 1589.1 802.8 412.6 203.6 106.6 55.6

CHOLESKY 538.9 171.9 100.1 68.9 38.2 29.2 17.1
PMATRIX 197.4 104.7 51.9 27.8 14.6 8.8 5.5

Total 3670.1 1876.0 966.2 519.1 266.5 156.2 95.6
norm-10-990 ELEMENTS 29.4 15.0 8.2 3.8 2.1 1.9 1.6

PMATRIX 28.8 14.9 7.7 3.4 2.2 1.7 2.2
Total 66.0 37.5 23.4 14.1 14.9 13.3 20.4

control10 ELEMENTS 27341.8 14294.4 7444.1 4022.5 2276.6 1400.5 1001.9
CHOLESKY 66.9 34.0 22.2 18.2 11.3 10.2 7.5

Total 27437.3 14351.8 7488.2 4060.5 2308.7 1432.3 1035.1
theta6 ELEMENTS 1743.1 958.5 522.7 281.8 140.3 76.6 42.8

CHOLESKY 898.7 275.0 155.9 105.1 57.9 43.8 25.3
PMATRIX 51.9 27.1 14.8 9.2 7.4 6.1 10.8

Total 2714.4 1278.9 711.5 412.3 222.3 145.3 101.9
maxG51 ELEMENTS 228.1 126.3 65.2 34.9 17.9 10.2 6.3

PMATRIX 220.1 116.5 60.1 33.5 20.3 14.0 18.4
DENSE 26.8 26.8 26.4 26.8 26.7 26.4 26.9
Total 485.7 276.7 157.2 100.6 70.1 56.9 61.1

qpG11 ELEMENTS 42.1 24.0 12.8 6.9 3.6 2.1 1.4
PMATRIX 24.8 13.1 6.7 3.5 1.9 1.2 0.9

Total 73.5 42.8 24.9 15.5 10.9 9.9 12.68

First, we pay attention the scalability of each component of PD-IPM in clique-10-200. The scalability
is depicted in Figure 4.4. It is clear that all parallelized components, ELEMENTS, CHOLESKY and

Chapter 4. Parallel Implementation with the Completion Method 72

PMATRIX, attain excellent scalability. The surprising scalability in ELEMENTS is also shown in SDPARA-
C. On the other hand, what we have to recognize on here is the scalability of PMATRIX which is not replaced
by parallel implantation in SDPARA. Although PMATRIX offers a less scalability than ELEMENTS, the
reduction of computation cost in PMATRIX strongly affect the scalability of the total computation time.
If we do not apply parallel processing to PMATRIX, the scalability of the total computation time in 64
processors remains only 12.7, almost one-third of SDPARA-C.

Figure 4.4: Scalability of SDPARA-C for clique-10-200

�

� �

� � �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� ��
�� � � � !"

� $ �% &'
� �
)(*

Next, let us overlook all the problems reported in Table 4.4. SDPARA-C shows high scalability for, in
particular, cut-10-500, clique-10-200, norm-10-990. The fact the problems are constructed on lattice graphs
implies us that if the extended sparsity pattern is successfully assembled keeping the sparsity of the input
data matrices, not only the completion method but also parallel processing work effectively.

For control10 and theta6, the scalability is not so worse. However, ELEMENTS requires much longer
time compared to the case SDPARA. Since we have the factorized matrices M and N instead of X and Y ,
we can not exploit the sparsity in the input data matrices proposed in [22]. It should not be underestimated
that we need to consider scalability and total computation time simultaneously.

On the other hand, the scalability for maxG51 and qpG11 are not so good. More than 16 processors, it is
difficult to attain some scalability for these problems. The issue of qpG11 is that the problem is too small to
solve on 64 processors. In fact, SDPARA-C solves the problem with enough scalability up to 16 processors.
It is natural that scalability becomes worse if we assign an excessive number of processors to small problems.
However, the issue of maxG51 is essentially different from that of qpG11. The issue is the ratio of DENSE
to Total computation time. Since the components is processed on each processors, the scalability is bounded
if SDPARA-C requires most of computation cost on DENSE. However, the computation time for DENSE
is much smaller than the case of SDPARA owing to the advantage of the completion method.

4.3.2 Effect of Sparsity

To investigate effect of the completion method in SDPARA-C, we solve Max Cut Problems by SDPARA-C
on 64 processors changing the sparsity of the input data matrices. In Max Cut Problem, we can easily
generate SDPs involving the same m and n and different ρ, where m is the number of equality constraints,
n is the size of matrices X and Y , and ρ is the sparsity, that is, an average number of non-zero elements on

Chapter 4. Parallel Implementation with the Completion Method 73

each row of an extended sparsity pattern. Here, we fix m = n = 1000 and change ρ as 3, 10, 30, 100, 300, 1000.
(Note that ρ = 1000 means the extended sparsity matrix is full dense.) Table 4.5 shows the time in second
required by each component of PD-IPM and memory space.

Table 4.5: Effect of sparsity for SDPARA-C
sparsity 3 10 30 100 300 1000

ELEMENTS 0.7 1.1 1.5 6.5 23.9 31.6
CHOLESKY 0.7 1.1 0.7 0.8 1.1 1.1
PMATRIX 0.6 0.9 3.0 18.6 99.5 108.7

DENSE 0.2 0.9 3.2 19.4 226.3 187.7
Total 9.4 12.7 15.8 53.7 364.2 344.3

Memory(MB) 31 33 48 152 644 471

As the increment of sparsity ρ, the time for PMATRIX and DENSE positively grow. Table 4.5 reconfirms
us the fact that the two components are strongly affected by the completion method and the memory storage
of M and N . On the other hand, CHOLESKY component is constant for the sparsity, because the parallel
Cholesky Factorization can be applied even without the completion method.

From the above numerical experiments, SDPARA-C solves sparse SDPs effectively on the small memory
space. Conversely, when the sparsity if not enough, SDPARA-C suffers from longer computation time and
requires larger memory space. In other words, the sparsity of the extended sparsity pattern deeply affects
the performance of SDPARA-C.

4.4 Comparison with SDPARA and PDSDP

In the previous chapter, we proposed SDPARA. Then, we have proposed another parallel implementation
SDPARA-C in this chapter. In this subsection, we compare the performance of the two software and PDSDP
[4].

We start from the scalability on various SDPs. Then, we investigate the effect of the sparsity of SDPs
and examine how large SDPs can be solved by each software. Finally, the performance of software for SDPs
from SDPLIB [11] and 7th DIMACS implementation challenge problem library (semidefinite and related
optimization problems) are reported.

4.4.1 Scalability for Various SDPs

In section 4.3.1, we have applied SDPARA-C to SDPs listed in Table 4.3. To compare the performance, we
also apply SDPARA and PDSDP to the same SDPs.

Table 4.6 shows the computation time consumed by each software to solve the SDPs. In the table, ’M’
indicates memory over. Since SDPARA can not exploit the sparsity in the input data matrices at any point
in the variable matrices X and Y , SDPARA generally requires more memory space than SDPARA-C and
PDSDP.

In the same way as section 4.3.1, we start from scalability on cut-10-500 and control10 depicted in Figure
4.5. We can confirm that SDPARA-C attains the highest scalability in the three software. The reason is
that almost all time-consuming components of PD-IPM are replaced by their parallel implementation in
SDPARA-C. Therefore, SDPARA-C is adequately to parallel processing. The numerical results in Table
4.6 show the high scalability of SDPARA-C on the other problems.

However, SDPARA-C requires more computation time on control 10 than SDPARA, even though the
scalability of SDPARA-C is higher than that of SDPARA. Since the numbers m of equality constraints of
control10 and theta6 are relatively greater than the sizes of variable matrices X and Y , the parallel im-
plementation with respect to only the Schur complement matrix B is enough and the effect of PMATRIX
is small. Additionally, SDPARA-C needs much computation cost for B because of the storage of M and
N instead of X and Y , even when we have developed the further parallelized implementation. Mean-
while, SDPARA directly exploits the sparsity for ELEMENTS through the method described in section

Chapter 4. Parallel Implementation with the Completion Method 74

Table 4.6: Performance of SDPARA-C, SDPARA and PDSDP on multiple processors
the number of processors 1 2 4 8 16 32 64
cut-10-500 SDPARA-C 2239.7 982.5 544.4 310.6 166.8 105.0 70.7

SDPARA M M M M M M M
PDSDP 2129.0 1894.6 1672.8 1604.9 1559.5 1652.0 1752.08

clique-10-200 SDPARA-C 3670.3 1876.0 966.0 519.1 266.5 156.2 95.6
SDPARA M M M M M M M
PDSDP 5295.0 5222.3 4879.2 4764.1 4718.5 4743.2 4777.8

norm-10-990 SDPARA-C 66.0 37.5 23.4 14.1 14.9 13.7 20.4
SDPARA 1372.6 893.4 566.4 440.3 414.3 407.2 431.1
PDSDP 458.7 265.9 180.3 138.4 99.7 100.5 102.6

control10 SDPARA-C 27437.1 14351.5 7488.8 4061.2 2308.2 1432.8 1035.6
SDPARA 429.1 233.0 128.3 75.2 42.7 302. 21.9
PDSDP 2101.2 1913.6 727.8 468.3 210.7 213.9 207.0

theta6 SDPARA-C 2714.4 1278.9 711.5 412.3 222.3 145.3 101.9
SDPARA 697.0 332.2 169.0 112.6 66.2 50.0 39.7
PDSDP 555.5 463.6 320.8 288.7 250.8 324.3 370.4

maxG51 SDPARA-C 485.7 276.7 157.2 100.6 70.1 56.9 61.0
SDPARA 174.9 177.5 176.0 175.8 174.5 178.0 178.7
PDSDP 82.6 82.1 79.3 82.6 83.6 96.9 109.8

qpG11 SDPARA-C 73.5 42.8 24.5 15.5 10.9 9.9 12.68
SDPARA 639.8 650.2 651.0 650.3 651.3 653.0 655.8
PDSDP 43.1 43.1 40.8 41.8 43.3 51.9 60.1

2.3.2. Therefore, the performance of SDPARA on Control Problem is higher than SDPARA-C. Conversely,
SDPARA-C is well-suited for SDPs with the condition m ≤ n.

On the other hand, the performance of PDSDP shows similar characteristic to SDPARA-C. If m << n,
PDSDP also solves SDPs effectively. Comparing SDPARA-C and PDSDP, SDPARA-C solves all the SDPs
listed in Table 4.3 much faster than PDSDP, in particular, in the case more processors are participated,
except only control10.

4.4.2 Effect of Size and Sparsity

We examine how large SDPs can be solved by each software. Table 4.7, 4.8 and 4.9 shows the time and the
memory space to solve Max Cut Problems, Max Clique Problems and Min Norm Problems, respectively.
These SDPs are solved on Presto III with 64 processors. We can generate the SDPs with various sizes
keeping the sparsity ρ based on lattice graphs. More precisely, if we have a lattice graph with size P ×Q,
the sparsity of the generated SDPs can be bounded as ρ ≤ 2min(P, Q) + 1. Meanwhile, the number of
equality constraints is m = P ×Q (Max Cut Problem), m = 2P ×Q−P −Q+1 (Max Clique Problem), and
the size of matrices is n = P ×Q (Max Cut Problem, Max Clique Problem), n = P ×Q (Norm Minimization
Problem). Therefore, by fixing P = 10 and changing Q from 100 to 4000, we generate SDPs keeping the
same sparsity in various sizes.

In the three tables, Table 4.7, 4.8 and 4.9, ’M’ stands for memory over. SDPARA is not strong against
the increment of n. Since SDPARA holds the variable matrices X and Y as full dense matrices on each
processor, the exhaust of memory space soon becomes gross amount. The upper bound for SDPARA is at
most n = 1000. The results of PDSDP are slightly better than SDPARA; PDSDP also can not exploit the
sparsity so effectively.

In the three software, SDPARA-C solves the largest problems with n = 40000. Due to the completion
method, SDPARA-C reserves a lot of memory space and attains adequate performance for the sparse and
large SDPs.

In turn, we fix the size of matrices n = m = 10000 and change the sparsity ρ from 3 to 1000. We
generate Max Cut Problems to examine the effect of sparsity in the same way as section 4.3.2. Table 4.10
shows the numerical results of the three software. As we have mentioned with respect to SDPARA-C, the

Chapter 4. Parallel Implementation with the Completion Method 75

Figure 4.5: Scalability of SDPARA-C, SDPARA and PDSDP for cut-10-500 and control10

�

� �

� � �

�
��
�
��
��
� �
	

 �� �� � � � � � � � � �� � � � � � �

�� �� �� � � � � �
 � � � � ! � �
� � �� � � � �
 � � � � ! � �

�� �� �� � � � � � �
 � � " � �
�� �� �� � � � �
 � � " � �

� � �� � � � � �
 � � " � �

Table 4.7: Large-Scale Max Cut Problem

SDPARA-C SDPARA PDSDP
size of time memory time memory time memory
lattice n (s) (MB) (s) (MB) (s) (MB)
10× 100 1000 10.2 35 164.3 262 54.7 36
10× 200 2000 16.6 42 M 192.0 72
10× 500 5000 69.3 70 M 1731.1 317
10× 1000 10000 274.3 126 M M
10× 2000 20000 1328.2 276 M M
10× 4000 40000 7462.0 720 M M

increment of the sparsity sharply means the increment of the computation time and the memory space.
PDSDP has the same tendency as SDPARA-C, although the tendency is milder than SDPARA-C. On the
other hand, the sparsity does not have any effect on the performance of SDPARA. Since SDPARA does not
take the sparsity in the primal variables into consideration, SDPARA is robust no matter how dense the
SDPs are.

The conclusion from the above numerical results is that we had better apply SDPARA-C to sparse SDPs
and SDPARA to dense SDPs. In addition, PDSDP attains middle performance between SDPARA-C and
SDPARA and is useful to limit the memory space in the small amount.

4.4.3 SDPs from SDPLIB and DIMACS

To evaluate the performance of software for the standard benchmark problems, we pick up 7 SDPs from
SDPLIB and 4 SDPs from 7th DIMACS implementation challenge problem library (semidefinite and related
optimization problems). The problems equalG11 and equalG51 are Max Cut Problems with the constraints
that two divided partitions have the same number of vertices. The problems which start with ’torus’ are
also Max Cut Problems with the special structure defined by model of spin glasses. The reason why ’torus’

Chapter 4. Parallel Implementation with the Completion Method 76

Table 4.8: Large-Scale Max Clique Problem

SDPARA-C SDPARA PDSDP
size of time memory time memory time memory
lattice n (s) (MB) (s) (MB) (s) (MB)
10× 100 1000 28.1 41 225.6 265 684.8 50
10× 200 2000 93.9 58 M 4776.0 119
10× 500 5000 639.5 119 M M
10× 1000 10000 3033.2 259 M M
10× 2000 20000 15329.0 669 M M

Table 4.9: Large-Scale Min Norm Problem

SDPARA-C SDPARA PDSDP
size of time memory time memory time memory
lattice n (s) (MB) (s) (MB) (s) (MB)
10× 990 1000 16.6 40 417.2 262 107.9 35
10× 1990 2000 32.3 54 M 653.0 63
10× 4990 5000 96.9 97 M M
10× 9990 10000 409.5 164 M M
10× 19990 20000 1800.9 304 M M
10× 39990 40000 7706.0 583 M M

SDPs are selected from DIMACS is that the extended sparsity patterns do not become so dense, with the
aid of the transformation proposed in [24]. In Table 4.11, the time (in second) and the amount of memory
space (’mem’ in Mega Bytes) to solve the SDPs by SDPARA-C, SDPARA and PDSDP are shown. In
the table, m is the number of equality constraints, n is the size of matrices and ρ is sparsity. ’M’ stands
for memory over and ’I’ indicates that PDSDP can not reach an optimal solution in a predefined iteration
number.

SDPARA-C can solve effectively the large SDPs, maxG32, thetaG51, torusg3-15 and toruspm3-15-50
which SDPARA can not solve because of memory over. The size n of matrix size of these problems is over
2000, and SDPARA is required to hold full dense variable matrices with size n on each processor. On the
other hand, SDPARA-C hold the only elements assigned by the extended sparsity pattern, and reduces a
lot of amount of memory space for the variable matrices.

Furthermore, SDPARA-C reaches the optimal solution which PDSDP can not reach optimal solution.
Generally speaking, PD-IPM adopted by SDPARA-C is considered to be more stable than D-IPM adopted
by PDSDP. The result reflects the difference in the stability.

Table 4.10: Effect of sparsity on SDPARA-C, SDPARA and PDSDP

SDPARA-C SDPARA PDSDP
time memory time memory time memory

ρ (s) (MB) (s) (MB) (s) (MB)
3 9.4 31 156.0 262 44.6 36

10 12.7 33 175.7 262 61.6 36
30 15.8 48 175.1 262 61.3 36

100 53.7 152 182.5 263 126.5 38
300 364.2 644 168.4 263 291.6 41

1000 344.3 471 160.2 263 276.5 42

Chapter 4. Parallel Implementation with the Completion Method 77

Table 4.11: Performance for SDPLIB and DIMACS

SDPARA-C SDPARA PDSDP
m n ρ time mem time mem time mem

thetaG11 2401 801 23 22.7 15 130.3 182 I
maxG32 2000 2000 32 31.8 51 M 229.6 73
equalG11 801 801 35 17.2 40 141.3 177 57.3 32
qpG51 2000 1000 67 654.8 139 416.4 287 500.5 65
control11 1596 165 74 2017.6 84 29.9 67 307.2 42
thetaG51 6910 1001 137 107.9 107 M I
equalG51 1001 1001 534 528.5 482 230.1 263 400.3 41
torusg3-8 512 512 78 14.7 51 45.4 88 26.0 27
toruspm3-8-50 512 512 78 14.8 51 34.7 88 25.7 27
torusg3-15 3375 3375 212 575.0 463 M 1958.9 165
toruspm3-15-50 3375 3375 212 563.3 463 M 1841.9 165

From Table 4.11, we confirm again that SDPARA-C solves very effectively if SDP holds sufficient sparsity.
In particular, the performance of SDPARA-C is prominent compared to other two software on large sparse
problem, such as torusg3-15 and toruspm3-15-50.

4.5 Theoretical Validity of Parallel Implementation in SDPARA-
C

In this section, we discuss a theoretical validity of the parallel implementation of SDPARA-C. In SDPARA-
C, we have replaced three components, ELEMENTS (section 4.2.2), CHOLESKY and PMATRIX (section
4.2.3) with their parallel implementation. Among them, the parallel implementation of CHOLESKY is the
same as the one used in SDPARA. Hence, we examine the two rest components in this section. To advance
discussions, we use the three values tf , tv and tm in Table 3.19 again.

For ELEMENTS component, we proposed the hashed row-wise distribution as a substitute for the
simple row-wise distribution of SDPARA. Here, let us observe an effect of the hashed row-wise distribution
comparing with the simple row-wise distribution.

To evaluate the Schur complement matrix B, we employ the following formula based on the completion
method.

Bij = Σm
k=1(M

−T M−1ek)T Aj(N−T N−1[Ai]∗k)

Let B = {1, 2, . . . ,m} be the set of row indices of B, B ⊂ B be a set of row indices to be hashed and
m = |B|. We assume m << N << m where N is the number of available processors. This assumption
often comes into effect in large-scale sparse SDPs arisen from combinatorial optimization. We use nz(ex)
to denote the number of non-zero elements involved in the extended sparsity and let n(i) = |{k : 1 ≤ k ≤
n, [Ai]∗k 6= 0}|. Then the computation cost for the ith row is

tr(i) = n(i)× 4× nz(ex)× 2× Σn
j=1nz(j)× tf .

In addition, let tr(B) = Σ
i∈Btr(i), tr(B − B) = Σ

i∈B−B tr(i).
In the manner of the simple row-wise distribution, the uth processor computes rows assigned by Pu,

Pu = {i : 1 ≤ i ≤ m, i%N = u}.

Then the computation time for ELEMENTS, Tsimple, is

Tsimple = max
u
{Σ

i∈B,i%N=u
tr(i)}+ max

u
{Σ

i∈B−B,i%N=u
tr(i)}.

Chapter 4. Parallel Implementation with the Completion Method 78

On the other hand, in the hashed row-wise distribution, we hash non-zero column vectors of Ai (i ∈ B)
into sets of column indices, ∪N

u=1Q
i
u = {k : 1 ≤ k ≤ n, [Ai]∗k 6= 0}. Hence, for the ith row in B, the uth

processor computes

B
(u)
ij = Σk∈Qi

u
(M−T M−1ek)T Aj(N−T N−1[Ai]∗k).

We assume that n(i) is sufficiently larger than N (i ∈ B). This assumption is also natural for SDPs arisen
from combinatorial optimization. Then, the computation cost of B

(u)
ij becomes almost the same over all

the processors. Since the rest rows in B − B are evaluated in the same manner as the simple row-wise
distribution, the computation time of the hashed row-wise distribution, Thashed, is

Thashed = Σ
i∈Btr(i)/N + max

u
{Σ

i∈B−B,i%N=u
tr(i)}

However, the hashed row-wise distribution needs communication cost Tacc to accumulate the hashed rows
over all processors to obtain Bij = ΣN

u=1B
(u)
ij (i ∈ B, j = 1, 2, . . . ,m). Tacc can be estimated as follow.

Tacc = m(mtv + tm) log2 N.

Consequently, the hashed row-wise distribution evaluates the Schur complement matrix in a shorter time
than the simple row-wise distribution if

Tsimple − (Thashed + Tacc) = max
u
{Σ

i∈B,i%N=u
tr(i)} − (Σ

i∈Btr(i)/N + m(mtv + tm) log2 N)

=
(
max

u
{Σ

i∈B,i%N=u
n(i)} − Σ

i∈Bn(i)/N
)
× 8× nz(ex)× Σn

j=1nz(j)× tf

−m(mtv + tm) log2 N

is positive.
In Max Clique Problem, only A1 is an identity matrix and the number of non-zero elements involved in

each other input matrix (A2,A3, . . . , Am) is two. In this case, B = {1} and n(1) = 1, hence,

Tsimple − (Thashed + Tacc) = (1− 1/N)tr(1) + (mtv + tm) log2 N.

Therefore, the computation cost for A1 becomes prominent when the number of processors increase.
From numerical experiments (Table 4.12 and 4.13) on Max Clique Problem (m = 3971, n = 2000, on

lattice graph with size 10 × 200), we obtain the real values tr(1) = 573, tr(B − B) = 2420, Tacc ≤ 14 and
the range of tv is 1.6× 10−6 ≤ tv ≤ 1.8× 10−4. (The communication time for the accumulation depends on
N .) These value indicates that Tsimple − (Thashed + Tacc) > 0 when N ≥ 2.

Table 4.12: Simple row-wise distribution for Max Clique Problem
the number of processors 1 2 4 8 16 32 64

tr(B) (second) 3039.7 1788.2 1210.0 927.4 769.6 689.8 645.8
Total (second) 3855.0 2200.1 1457.3 1088.9 855.5 755.9 698.0

Table 4.13: Hashed row-wise distribution for Max Clique Problem
the number of processors 1 2 4 8 16 32 64

tr(B) (second) 2993.0 1471.9 717.4 369.5 180.8 93.1 45.3
tr(1)/N (second) 573.6 295.9 152.7 76.8 37.6 19.2 9.7

Tacc (second) 0.0 11.4 13.5 5.6 2.2 1.1 0.6
Total (second) 3814.0 1840.4 967.3 518.6 272.9 162.6 100.0

The case of Max Clique Problem is an obvious example. However, the simple row-wise distribution
always suffers from the ill-conditioned load-balance of tr(B) and requires more computation time than the
communication time for the accumulation provided the assumptions n(i) >> N and m << N << m is
valid. We often encounter the imbalance in the number of non-zero column vectors. In particular, the

Chapter 4. Parallel Implementation with the Completion Method 79

minorities of input matrices involve a lot of non-zero column vectors in SDPs arisen from combinatorial
optimization. Hence, it would be appear that the assumptions are reasonable. On the other hand, the
hashed row-wise distribution hashes the computation of tr(B) into multiple processors and reduces the
number of idle processors. Therefore, the hashed row-wise distribution is faster than the simple row-wise
distribution, even though it requires the additional communication cost.

The last parallel component of SDPARA-C we discuss in this section is PMATRIX. To evaluate a primal
search direction d̃X, we based on the column-wise formula proposed in [59],

[d̃X]∗k = [−X]∗k + µN−T N−1ek −M−T M−1dY N−T N−1ek.

We divide the column vectors of d̃X by a serial-column distribution.

Ru = {k : (u− 1)× bn/Nc+ 1 ≤ k ≤ u× bn/Nc} (u = 1, 2, . . . , N − 1)
RN = {k : (N − 1)× bn/Nc+ 1 ≤ k ≤ n}

Then algorithmic framework on the uth processor is summarized as follow.

Computation of d̃X on the uth processor

Set d̃X = −X.
For k ∈ Ru

Compute µN−T N−1ek −M−T M−1dY N−T N−1ek

and add to [d̃X]∗k
end(For)
Broadcast all columns in Ru to all other processors
Receive the rest columns from all other processors

In the above framework, we broadcast only the elements assinged by the extended sparsity. First, we
investigate how much communication cost is reduced as compared to the case when we broadcat full-elements
of d̃X. Let ρ be the average number of non-zero elements in each column of the extended sparsity.

When we broadcast only the elements of the extended sparsity, we repeat broadcast of the length of
ρ × n/N for N times. On the other hand, in the case of full-elements, we repeat broadcast of the length
of n × n/N for N times. Since the length of each broadcast is different, we use two values tv(extended)
and tv(full) for the communication time to broadcast one ’double’ value, respectively. Then, the total
communication time in the case of the extended sparsity Textended and that of full-elements Tfull are
estimated as follow.

Textended = (tv(extended)× ρ× n/N × log2 N + tm)×N

Tfull = (tv(full)× n× n/N × log2 N + tm)×N

Therefore,

Textended ≤ Tfull ⇐⇒ ρ× tv(extended) ≤ n× tv(full).

It is common ρ < n/100 for SDPs the completion method solves effectively. In addition, we obtained
tv(extended) ≤ 10 × tv(full) from the numerical experiments on such SDPs. Therefore, the broadcast
with only elements assigned by the extended sparsity is faster than full-elements. The point regarding the
communication cost is that we can attain enough bandwidth in the case of the broadcast with the length
ρ × n/N even when we compare with the case of the length n × n/N . These results are consistent on the
numerical results on Presto III. In Table 4.14, we compare the broadcast time for d̃X in the case of the
extended sparsity and full-elements. The problems cut-10-500 and clique-10-200 are the same problems
listed in Table 4.3 and cut-10-200 is a smaller Max Cut Problem on lattice graph with size 10 × 200. The
unit size of time Textended, Tfull, tv(extended), and tv(full) in Table 4.14 is second.

Chapter 4. Parallel Implementation with the Completion Method 80

Table 4.14: Communication time to broadcast d̃X
ρ n Textended tv(extended) Tfull tv(full)

cut-10-200 9 2000 0.017 1.51× 10−7 0.80 3.33× 10−8

cut-10-500 9 5000 0.026 9.39× 10−8 4.83 3.21× 10−8

clique-10-200 16 2000 0.022 1.12× 10−7 0.80 3.33× 10−8

Finally, we investigate an advantage of the serial-column distribution {Ru : u = 1, 2, . . . , N} as compared
to a stereotypic cyclic-column distribution {Su : u = 1, 2, . . . , N}, where

Ru = {k : (u− 1)× bn/Nc+ 1 ≤ k ≤ u× bn/Nc} (u = 1, 2, . . . , N − 1)
RN = {k : (N − 1)× bn/Nc+ 1 ≤ k ≤ n} ,

and

Su = {i : 1 ≤ i ≤ n, i%N = u}.
We abbreviate the serial-column distribution and the cyclic-column distribution as SERIAL and CYCLIC,
respectively. Since the computation cost for each column of d̃X is almost the same, there is little difference
between the computation cost of SERIAL and that of CYCLIC. Therefore, we concentrate on a difference
of the communication cost. The significant difference between SERIAL and CYCLIC comes from the data
storage of [d̃X]; [d̃X]∗,k and [d̃X]∗,k+1 are continuous on memory space on each processor. Therefore, in
the case of SERIAL, we can broadcast ∪{[d̃X]∗,k : k ∈ Ru} on the uth processor by only one broadcast
operation.

To show the advantage of SERIAL, we estimate the shortest communication cost when we are supposed
to adopt CYCLIC. We first examine a data conversion to make ∪{[d̃X]∗,k : k ∈ Su} continuous. However,
the communication after the conversion is the same as SERIAL. Therefore, CYCLIC is slower than SERIAL
due to an overhead of the conversion. Hence, we have to consider the possibility of transfers on CYCLIC
without conversing the data storage. We discuss two types of transfers on CYCLIC here.
1. Broadcast with a smaller length.

We repeat broadcast of [d̃X]∗,k for k = 1, 2, . . . , n. In this case, the total amount of communication
is the same as SERIAL. However, we need n times broadcast of the length ρ in CYCLIC, while N times
broadcast of the length ρ × n/N in SERIAL. Therefore, the bandwidth of SERIAL is higher than that of
CYCLIC. As a result, the communication time of SERIAL is shorter than CYCLIC.
2. Accumulation over all processors.

We accumulate the result of d̃X on each processor. Let d̃X
(u)

be the evaluated d̃X on the uth processor.

(Note that [d̃X
(u)

]∗,k is assigned the zero vector if k /∈ Su.) Then we compute
∑N

u=1 d̃X
(u)

and broadcast
the result of summention. Then each processor holds the entire matrix of d̃X.

In this case, we can send by the length ρ×n by one ’accumulation’ operation. Let tv(acc) and tv(broad)
be the communication time to send one ’double’ value by ’accumulation’ and ’broadcast’ operations, re-
spectively. Then, the communication time for SERIAL, TSERIAL, and that for CYCLIC, TCY CLIC are
estimated as follow.

TSERIAL = (ρ× n/N × tv(broad)× log2 N + tm)×N,

TCY CLIC = (ρ× n)× (tv(acc)× log2 N) + tm.

Therefore, the difference is

TCY CLIC − TSERIAL = (tv(acc)− tv(broad))× ρ× n× log2 N − (N − 1)× tm.

From the numerical experiments of cut-10-200, cut-10-500, clique-10-200 on Presto III, we obtained the
order of real values, tv(acc) = 10−5, tv(broad) = 10−8 and tm = 10−5. Considering situations n >> N−1 ≥
2 and ρ ≥ 1 which are reasonable for a general SDPs, we can conclude TCY CLIC ≥ TSERIAL. Consequently,
we have verified that the communication cost for d̃X is minimized when we broadcast only the elements
assigned by the extended sparsity and adopt the serial-columns distribution.

Chapter 5

Conclusions and Future Directions

SDP has made continuous impacts by the strong PD-IPM on the broad range fields such as control theory,
combinatorial optimization, financial engineering. Furthermore, the application regions are extended to
data-mining and quantum chemistry. However, in particular in quantum chemistry and combinatorial
optimization, SDPs become extremely large involving a lot of equality constraints and large-scale variable
matrices and beyond the range of the existing software on a single processor. Therefore, we focus on the
question “how we solve larger SDPs in shorter time” in this thesis.

To answer the question, we relied on parallel computation which have recently supplied massive com-
putation resource. To apply parallel computation, at first we divided the computation of PD-IPM into
the following four components and investigated the bottlenecks which should be replaced by their parallel
implementation (section 3.2.1).

• ELEMENTS (the evaluation of the Schur complement matrix)

• CHOLESKY (the Cholesky Factorization of the Schur complement matrix)

• PMATRIX (the computation for the dX)

• DENSE (the other computation for n× n matrices)

We verified that most of computation cost to solve general SDPs is occupied by ELEMENTS and
CHOLESKY. We replaced these two components by their parallel implementation and developed the parallel
software SDPARA.

• ELEMENTS is distributed on multiple processors in accordance with the simple but strong row-wise
distribution (section 3.2.2).

• We redistribute the Schur complement matrix from the row-wise distribution to two-dimensional
block-cyclic distribution to reduce the computation time of the parallel Cholesky Factorization for
CHOLESKY (section 3.2.3).

To analyze the performance of SDPARA, we carried out the following preliminary numerical experiments.

• We examined how the best performance is obtained in the row-wise distribution and learned that the
slimest belts attain the best load-balance (section 3.4.1).

• It was verified that the Cholesky Factorization is faster than Conjugate Gradient method when we
solve the Schur complement equation on parallel computation. However, it should be mentioned that
Conjugate Gradient method obtains higher scalability than the Cholesky Factorization (section 3.4.2).

• The numerical experiments to investigate the effect of the physical network environments were also
conducted. The ELEMENTS component is almost independent of the capacity of the network, while
the CHOLESKY component is strongly affected. The high speed network is required to obtain enough
scalability (section 3.4.3).

Through the full-scale numerical experiments, SDPARA got the following results.

81

Chapter 5. Conclusions and Future Directions 82

• SDPARA can solve control11 and theta6 from SDPLIB in the very short time which other existing
software could not achieve. In particular, the excellent scalability of ELEMENTS on control11 is
attained, because the row-wise distribution enables SDPARA to compute ELEMENTS without any
communication between multiple processors (section 3.5.1).

• SDPARA also solves SDPs in quantum chemistry at a further rapid speed than ever. Furthermore,
the scalability grows up when the size of SDP increases. (section 3.5.3).

• SDPARA is superior to the existing parallel software PDSDP on Control Problems, Theta Func-
tion Problems, and SDPs in quantum chemistry from the viewpoints of both computation time and
scalability. However, PDSDP is superior on Max Cut Problems (section 3.6).

Especially, it can be said that SDPs in quantum chemistry will be put into practical use by the short
computation time attained by SDPARA.

We have also discussed the theoretical validity of the selected approaches in SDPARA as compared to
other alternative approaches and verified the superiority of SDPARA (section 3.7).

These numerical results and validity show that SDPARA have proposed a partial approach to answer
the question how we solve larger SDPs in shorter time.

Nevertheless, parallel computation implemented in SDPARA does not always perform all SDPs effec-
tively. SDPARA is not an eligible for SDPs involving large-scale variable matrices, since SDPARA retains
n×n dense matrices on each processor and the computation cost occupied by PMATRIX looks conspicuous.
In addition, PD-IPM has a drawback that the primal variable matrix X is fully-dense no matter how sparse
the input data matrices are. Therefore, even if the number m of equality constraints is large, the advantage
of SDPARA to reduce the computation cost of ELEMENTS and CHOLESKY is vanished.

To handle the sparsity of the input data matrices on the primal variable matrix, we incorporated the
completion method into parallel computation. We implemented SDPARA-C which is a combination of
SDPARA with the completion method.

SDPARA-C has remarkable features as below.

• Instead of fully-dense X and Y −1, SDPARA-C retains their inverse sparse Cholesky Factorization M
and N (X−1 = MMT , Y = NNT). The retention successfully cuts a lot of memory space (section
4.1).

• For ELEMENTS component, SDPARA-C adopts the hashed row-wise distribution which hashes the
rows which disturb the load-balance of the simple row-wise distribution into smaller units. Therefore,
SDPARA-C does not lose its scalability on SDPs involving the special structure arisen from graph
theory (section 4.2.2).

• SDPARA-C also adopts the column-wise distribution for PMATRIX, which enables us to reduce the
computation time of PMATRIX bottlenecks. In addition, the distribution is implemented so that
SDPARA-C can compute with the minimum amount of communication regarding PMATRIX (section
4.2.3).

The numerical experiments of SDPARA-C show us that

• SDPARA-C requires less computation cost and memory space to solve sparse SDPs. However, the
performance of SDPARA-C is strongly affected by the sparsity of input data matrices. (section 4.3).

• SDPARA-C can obtain higher scalability than SDPARA or PDSDP. Furthermore SDPARA-C can
handle extremely large SDPs arisen from combinatorial optimization which are out of the ranges of
SDPARA and PDSDP (section 4.4).

The validity of parallel implementation in SDPARA-C regarding the hashed row-wise distribution and
the transfer type of primal variable matrix have also presented (section 4.5).

In particular, the results how large SDPs can be carried out by SDPARA-C show that a combination of
the completion method with parallel computation brings another approach to answer the question how we
larger SDPs in shorter time to us.

Here, we point out some future directions from the viewpoint of parallel computation.

Chapter 5. Conclusions and Future Directions 83

• The current implementation is derived from the simple row-wise distribution, although it attains
enough performance. We had better equalize the load-balance for ELEMENTS based on a more
sophisticated theoretical analysis. However, the issue will become NP-hard combinatorial problem if
we treat it strictly. Therefore we have to seek a compromise between load-balance and computation
cost. At the same time, the distribution of memory space and the amount of communication must be
taken into consideration.

• SDPARA-C attains higher scalability than SDPARA. Nevertheless, if the sparsity of the input data
matrices is not enough, SDPARA-C does not perform them efficiently since the effect of the completion
method shrinks. Meanwhile, the performance of SDPARA can attain its performance even when all
the input data matrices are dense. In short, SDPARA and SDPARA-C can complement each other.
An automatic selection between two software according to the sparsity will bring significant benefits
and should be implemented. However, the selection will require accurate estimations of parallel
computation time of SDPARA and SDPARA-C. It may not be so easy task.

• Although we focused on only SDP in the thesis, it should be challenged that how to apply parallel
computation to a combination of SDP and Second-Order Cone Programming which also can be solved
effectively by PD-IPM. A research of parallel computation retaining the cheaper computation cost of
Second-Order Cone Programming than that of SDP should be discussed.

Finally, we make mention of some researches on which we have strong theoretical interests as our future
directions.

• An unsatisfying point of the current implementation of SDPARA and SDPARA-C is their numerical
stability. To solve SDPs whose feasible regions are very narrow, for example Control Problem, we
can not avoid a discussion of the numerical stability. In particular, since a condition number of the
Schur complement matrix becomes extremely worse in a neighborhood of an optimal solution, we must
bound it above by some schemes.

• A promising idea of efficiency we have now is a combination of CG method in the beginning iterations,
the Cholesky Factorization in the middle iterations, and the preconditioned symmetric quasi-minimal
residual method proposed by Toh [78] in the last iterations. However, the computation cost for the
condition number to switch the methods on parallel computation is heavy, other threshold is required
to be developed.

• In PD-IPM frameworks, the assumption that both primal and dual SDPs have interior feasible points
is essential, since PD-IPM are based on the duality theorem which ensures the coincidence of the
primal and dual optimal values. However, all SDPs do not have interior feasible points [72]. To
deal with such SDPs, we have to adopt other methods. For example, approaches such as Quantifier
Elimination (QE) [2] which do not assume the existence of interior feasible points should be discussed
more widely. However, it also should be mentioned that computation cost of QE is so heavier than
PD-IPM that QE is now far from practical use.

• It is common that SDPs arisen from data-mining have special structures about the number m of
equality constraints and the size n of variable matrices. Since the field of data-mining is expected
to grow quickly, it will be meaningful for many researches that we implement specific software to
solve such special SDPs very fast. We may be able to apply some knowledge of SDPs from quantum
chemistry to this type of large-scale SDPs.

Bibliography

[1] F. Alizadeh, J. P. A. Haeberly and M. L. Overton, Primal-dual interior-point methods for semidefinite
programming: Convergence rate, stability and numerical results, SIAM Journal on Optimization, (1998),
8, 746–768.

[2] H. Anai, Quantifier Elimination for Real Algebraic Constraints in Industry, Proceedings of the Sixth
International Workshop on Computer Algebra in Scientific Computing, CASC 2003, Institut für Infor-
matik, Technische Universität München, Germany, October, 2003, 3–11.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Croz, A. Greenbaum, S. Ham-
marling, A. McKenney and D. Sorensen, LAPACK Users’ Guide Third, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[4] S. J. Benson, Parallel Computing on Semidefinite Programs,
Preprint ANL/MCS-P939-0302, [http://www.mcs.anl.gov/˜benson/dsdp/pdsdp.ps], 2002.

[5] S. J. Benson and Y. Ye, DSDP home page, [http://www.mcs.anl.gov/˜benson/dsdp], 2002.

[6] S. J. Benson, Y. Ye and X. Zhang, Solving large-scale sparse semidefinite programs for combinatorial
optimization, SIAM Journal on Optimization, (2000), 10, 443–461.

[7] A. Ben-Tal and A. Nemirovskii, Lectures on Modern Convex Optimization Analysis, Algorithms, and
Engineering Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.

[8] L. S. Blackford, and J. Choi, and A. Cleary, and E. D’Azevedo, and J. Demmel, and I. Dhillon, and
j. Dongarra, and S. Hammarling, and G. Henry, and A. Petitet, and K. Stanley, and D. Walker, and
R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1997.

[9] J. R. S. Blair and B. Peyton, An introduction to chordal graphs and clique trees, in A. George,
J. R. Gilbert and J. W. H.Liu (Eds.), Graph Theory and Sparse Matrix Computation, Springer-Verlag,
New York, 1993, 1–29.

[10] B. Borchers, CSDP, A C Library for Semidefinite Programming, Optimization Methods and Software,
(1999), 11 & 12, 613–623.

[11] B. Borchers, SDPLIB 1.2, a library of semidefinite programming test problems, Optimization Methods
and Software, (1999), 11 & 12, 683–690.

[12] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system and control
theory, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

[13] S. Burer, Semidefinite programming in the space of partial positive semidefinite matrices, manuscript,
Department of Management Sciences, University of Iowa, Iowa City, IA 52242-1000, USA, May (2002).

[14] S. Burer, R.D.C. Monteiro, and Y. Zhang, A computational study of a gradient-based log-barrier
algorithm for a class of large-scale SDPs, Mathematical Programming B, (2003), 95, 359–379.

[15] C. Choi and Y. Ye, Solving sparse semidefinite programs using the dual scaling algorithm with an
iterative solver, Manuscript, Department of Management Sciences, University of Iowa, Iowa City, IA
52242, USA, 2000.

84

Bibliography 85

[16] J. Choi, J. J. Dongarra, L. S. Ostrouchov, A. P. Petitet D. W. Walker and R. C. Whaley, Design and im-
plementation of the ScaLAPACK LU, QR, and Cholesky factorization routines, Scientific Programming,
(1996), 5(3), 173–184.

[17] A. J. Coleman, Structure of Fermion Density Matrices, Reviews of Modern Physics, (1963), 35(3),
668–689.

[18] R. P. Feynman, R. B. Leighton and M. L. Sands, The Feynman Lectures on Physics, Addison-Wesly
Publishing Company Inc, Reading, Massachusetts, 1965.

[19] M. J. Frish et al., Gaussian 98, Revision A.9 Gaussian, Inc, Pittsburgh, PA, 1998.

[20] K. Fujisawa, M. Fukuda, M. Kojima and K. Nakata, Numerical Evaluation of SDPA (SemiDefinite
Programming Algorithm), in H. Frenk, K. Roos, T. Terlaky and S. Zhang (Eds.), High Performance
Optimization, Kluwer Academic Press, 2000, 267–301.

[21] K. Fujisawa, Y. Futakata, M. Kojima, K. Nakata and M. Yamashita, SDPA-M (Semidefinite Program-
ming Algorithm in MATLAB) User’s Manual, Technical Report B-359, Department of Mathematical
and Computing Sciences, Tokyo Institute of Technology. Revised July 2003.

[22] K. Fujisawa, M. Kojima and K. Nakata, Exploiting Sparsity in Primal-Dual Interior-Point Methods
for Semidefinite Programming, Mathematical Programming, (1997), 79, 235–253.

[23] K. Fujisawa, M. Kojima, K. Nakata and M. Yamashita, SDPA (Semidefinite Programming Algorithm)
User’s Manual, Technical Report B-308, Department of Mathematical and Computing Sciences, Tokyo
Institute of Technology. Revised July 2002.

[24] M. Fukuda, M. Kojima, K. Murota and K. Nakata, Exploiting sparsity in semidefinite programming
via matrix completion I: General framework, SIAM Journal on Optimization, (2000), 11, 647–674.

[25] M. Fukuda, M. Kojima and M. Shida, Lagrangian Dual Interior-Point Methods for Semidefinite Pro-
grams, To appear in SIAM Journal on Optimization, March 2001. Revised October 2001.

[26] D.R. Fulkerson and J.W.H. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathe-
matics, (1965), 15, 835–855.

[27] M. X. Goemans, Semidefinite programming in combinatorial optimization, Mathematical Programming,
(1997), 79, 143–161.

[28] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming, Journal of Association for Computing Machinery,
(1995), 42(6), 1115–1145.

[29] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University Press, Maryland,
1983.

[30] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

[31] R. Grone, C. R. Johnson, E. M. Sá and H. Wolkowicz, Positive definite completion of partial hermitian
matrices, Linear Algebra and its Applications, (1998), 82, 291–315.

[32] C. Helmberg, SemiDefinite Programming Home Page,
[http://www-user.tu-chemnitz.de/˜helmberg/semidef.html]

[33] C. Helmberg, K. C. Kiwiel, A Spectral Bundle Method with Bounds (rev.Vers.SEP01), Mathematical
Programming, (2002), 93, 173–194.

[34] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM Journal
on Optimization, (2000), 10 673–696.

[35] C. Helmberg, F. Rendl, R. J. Vanderbei and H. Wolkowicz, An interior-point method for semidefinite
programming, SIAM Journal on Optimization, (1996), 6, 342–361.

Bibliography 86

[36] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, (1984) 4,
375–395.

[37] N. Karmarkar, J. C. Lagarias, L. Slutsman and P. Wang, Power series variants of Karmarkar-type
algorithms, AT&T Technical Journal, (1989), 68, 20–36.

[38] L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet Mathematics Doklady, (1979),
20, 191–194.

[39] M. Kocvara and M. Stingl, PENNON - A Generalized Augmented Lagrangian Method for Semidefinite
Programming, Research Report 286, Institute of Applied Mathematics, University of Erlangen, 2001

[40] M. Kocvara and M. Stingl, PENNON - A Code for Convex Nonlinear and Semidefinite Programming,
Research Report 290, Institute of Applied Mathematics, University of Erlangen, 2002

[41] M. Kojima, S. Mizuno and A. Yoshise (1989), A Primal-Dual Interior Point Algorithm for Linear
Programming, in N. Megiddo (Eds.), Progress in Mathematical Programming: Interior Point and Related
Methods, Springer-Verlag, New York, 1989, 29–47.

[42] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone semidefinite linear
complementarity problems, SIAM Journal on Optimization, (1994), 7, 86–125.

[43] M. Kojima and A. Takeda, Complexity analysis of successis convex relaxation methods for non convex
sets, To appear in Mathematics of Operations Research, April 1999, Revised July 2000.

[44] M. Kojima and L. Tunçel, Cones of matrices and successive convex relaxations of nonconvex sets,
SIAM Journal on Optimization, (2000), 10, 750–778.

[45] M. Kojima and L. Tunçel, Discretization and Localization in Successive Convex Relaxation for Non-
convex Quadratic Optimization Problems, Mathematical Programming, (2000), 89, 79–111.

[46] K. Krishnan and J. Mitchell, Semi-infinite linear programming approaches to semidefinite programming
(SDP) problems, in P. M. Pardalos and H. Wolkowicz (Eds.), Novel Approaches to Hard Discrete
Optimization, Fields Institute Communications Series, American Math. Society, 2002.

[47] K. Krishnan and J. Mitchell, Properties of a Cutting Plane Method for Semidefinite Programming,
Technical Report, Department of Computational & Applied Mathematics, Rice University, May 2003

[48] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. Jordan, Learning the kernel matrix with
semi-definite programming, in C. Sammut and A. Hoffmann (Eds.), Proceedings of the 19th International
Conference on Machine Learning, Morgan Kaufmann, 2002.

[49] J. G. Lewis, B. W. Peyton and A. Pothen, A fast algorithm for reordering sparse matrices for parallel
factorization, SIAM Journal on Scientific and Statistical Computing, (1989), 10, 1146 – 1173.

[50] C. J. Lin and R. Saigal, On solving large-scale semidefinite programming problems - a case study of
quadratic assignment problem, Dept. of Industrial and Operations Engineering, University Michigan,
Ann Arbor, MI 481098, 1998.

[51] C. J. Lin and R. Saigal, An incomplete Cholesky factorization for dense symmetric positive definite
matrices, BIT, (2000), 40 536–558.

[52] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer, PAPI:End-user Tools for
Application Performance Analysis, Using Hardware Counters, Presented at International Conference on
Parallel and Distributed Computing Systems, August 2001.

[53] H. M. Markowitz, Mean-variance analysis in portfolio choice and capital markets, Blackwell Publishers,
Oxford, New York, 1987.

[54] J. E. Mayer, Electron Correlation, Physics Review, (1955), 100 (2), 1579–1586.

Bibliography 87

[55] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on
Optimization, (1992), 2, 575–601.

[56] S. Mizuno, M. J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear
programming method, Mathematics of Operations Research, (1995), 18, 964–981.

[57] R. D. C. Monteiro, Primal-dual path following algorithms for semidefinite programming, SIAM Journal
on Optimization, (1995), 7, 663–678.

[58] Myricom Home Page, [http://www.myri.com/]

[59] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota, Exploiting sparsity in semidefinite pro-
gramming via matrix completion II: Implementation and numerical results, Mathematical Programming,
Series B, (2003), 95, 303–327.

[60] K. Nakata, K. Fujisawa and M. Kojima, Using the Conjugate Gradient Method in Interior-Point Meth-
ods for Semidefinite Programs, (in Japanese), Proceedings of the Institute of Statistical Mathematics,
Tokeisuuri, (1998) 46(2), 297–316.

[61] M. Nakata, M. Ehara and H. Nakatsuji, Density matrix variational theory: Application to the potential
energy surfaces and strongly correlated systems, Journal of Chemical Physics, (2002), 116, 5432–5439.

[62] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata and K. Fujisawa, Variational calculations
of fermion second-order deduced density matrices by semidefinite programming algorithm, Journal of
Chemical Physics, (2001), 114, 8282–8292.

[63] Yu. E. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex Programming:
Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

[64] Yu. E. Nesterov and M. J. Todd, Primal-Dual Interior-Point Methods for Self-Scaled Cones, SIAM
Journal on Optimization, (1994), 8, 324–364.

[65] PC Cluster Consortium Home Page, [http://www.pccluster.org/]

[66] A. Robert and van de Geijn, Using PLAPACK: Scientific and Engineering Computation series, The
MIT Press, Cambridge, Massachusetts, 1997.

[67] J. F. Strum, SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization
Methods and Software, (1999), 11 & 12, 625–653.

[68] A. Szabo and N. S. Ostlund, Modern quantum chemistry : introduction to advanced electronic structure
theory, Dover Publications Inc, New York, 1996.

[69] A. Takeda, Y. Dai, M. Fukuda, and M. Kojima, Towards Implementations of Successive Convex
Relaxation Methods for Nonconvex Quadratic Optimization Problems, in P. M. Pardalos (Eds.), Ap-
proximation and Complexity in Numerical Optimization: Continuous and Discrete Problems, Kluwer
Academic Publisher, 2000, 489–510.

[70] K. Tanabe, Centered Newton Method for Mathematical Programming, in M. Iri and K. Yajima (Eds.),
System Modeling and Optimization, Springer, New York, 1988, 197–206.

[71] TAO : Toolkit for Advanced Optimization Home-page, [http://www-fp.mcs.anl.gov/tao/]

[72] M. J. Todd, Semidefinite optimization, Acta Numerica, (2001), 10, 515–560.

[73] M. J. Todd, K. C. Toh and R. H. Tütüncü, On the Nesterov-Todd direction in semidefinite program-
ming, Technical Report, School of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY 14853-3801, USA, 1996.

[74] M. J. Todd, K. C. Toh and R. H. Tütüncü, SDPT3 – a MATLAB software package for semidefinite
programming, version 1.3, Optimization Methods and Software, (1999), 11 & 12, 545–581.

Bibliography 88

[75] M. J. Todd and Y. Ye, A centered projective algorithm for linear programming, Mathematics of
Operations Research, (1990), 15, 508–529.

[76] K. C. Toh, Some new search directions for primal-dual interior point methods in semidefinite program-
ming, SIAM Journal on Optimization, (2000), 11, 223–242.

[77] K. C. Toh, A note on the calculation of step-lengths in interior-point methods for semidefinite pro-
gramming, Computational Optimization and Applications, (2002), 21, 301–310.

[78] K. C. Toh, Solving large scale semidefinite programs via an iterative solver on the augmented systems,
To appear in SIAM Journal on Optimization.

[79] K. C. Toh and M. Kojima, Solving some large scale semidefinite programs via the conjugate residual
method, SIAM Journal on Optimization (2002), 21, 669–691.

[80] TOP 500 Supercomputer sites, [http://www.top500.org/]

[81] A. M. Turing, On computable numbers, with an application to the Entscheidungs problem, Proc.London
Math.Soc., Ser.2, (1936), 42 , 230–265, (1937), 43 , 544–546.

[82] L. Vandenberghe and S. Boyd, Positive-Definite Programming, in J. R. Birge and K. G. Murty (Eds.),
Mathematical Programming: State of the Art 1994, U. of Michigan, 1994.

[83] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algo-
rithms, and Applications, Kluwer Academic Publishers, Massachusetts, 2000.

[84] S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.

[85] M. Yamashita, K. Fujisawa and M. Kojima, Implementation and Evaluation of SDPA6.0(SemiDefinite
Programming Algorithm 6.0), Optimization Methods and Software, (2003), 18, 491–505.

[86] M. Yamashita, K. Fujisawa and M. Kojima, SDPARA: SemiDefinite Programming Algorithm paRAllel
version, Parallel Computing, (2003), 29, 1053–1067.

[87] Y. Ye, Interior Point Algorithms : Theory and Analysis, Wiley-Interscience Series in Discrete Mathe-
matics and Optimization. John Wiley & Sons, New York, 1997.

[88] M. Zhang, On extending some primal-dual interior-point algorithms from linear programming to
semidefinite programming, SIAM Journal on Optimization, (1998), 8, 365–386.

[89] S. L. Zhang, K. Nakata and M. Kojima, Incomplete orthogonalization preconditioners for solving large
and dense linear systems which arise from Semidefinite Programming, Applied Numerical Mathematics,
(2002), 41, 235–245.

[90] Q. Zhao, S. E. Karish, F. Rendl and H. Wolkowicz, Semidefinite programming relaxations for the
quadratic assignment problem, Journal of Combinatorial Optimization, (1998), 2, 71–109.

[91] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus, The reduced density matrix
method for electronic structure calculations and the role of three-index representability, Journal of
Chemical Physics, (2004), 120, 2095–2104.

