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INVESTIGATIONS ON ENSEMBLE BASED UNSUPERVISED ADAPTATION METHODS

Y Kubota, Takahiro Shinozaki, Sadaoki Furui

Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan

ABSTRACT

We have previously proposed unsupervised cross-validation
(CV) adaptation that introduces CV into an iterative unsu-
pervised batch mode adaptation framework to suppress the
influence of errors in an internally generated recognition hy-
pothesis and have shown that it improves recognition per-
formance. However, a limitation was that the experiments
were performed using only a clean speech recognition task
with a ML trained initial acoustic model. Another limitation
was that only the CV method was investigated while there
was a possibility of using other ensemble methods. In this
study, we evaluate the CV method using a discriminatively
trained baseline and a noisy speech recognition task. As an
alternative to CV adaptation, unsupervised aggregated (Ag)
adaptation is proposed and investigated that introduces a bag-
ging like idea instead of CV. Experimental results show that
CV and Ag adaptations consistently give larger improvements
than the conventional batch adaptation but the former is more
advantageous in terms of computational cost.

Index Terms— Cross-validation, bagging, machine
learning ensemble, unsupervised adaptation, acoustic model

1. INTRODUCTION

Batch-type unsupervised adaptation is a useful technigue to
achieve high recognition performance without requiring any
human transcribed adaptation data. It is generally performed
by first running an automatic recognizer to derive a hypoth-
esis for the target utterances and then a parameter estimation
algorithm such as MLLR [1] is applied to update the model
using that hypothesis. Based on the adapted model, this pro-
cess is iterated for lower recognition error rates.

While it is effective, a problem is that the hypothesis made
by the recognizer always includes errors. Since the model is
updated using the hypothesis, it is likely that the same recog-
nition error occurs in the next decoding step. Moreover, the
negative effect is reinforced through the iteration as the same
data is used for the model update and for the decoding.

Based on these observations, we previously proposed an
unsupervised cross-validation (CV) adaptation algorithm to
improve the generalization performance of the adaptation pro-
cess [2]. The idea was to separate the data used in the decod-
ing step and in the model update step by introducing the CV
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technique. In this way, the repetition of the same recognition
error can be avoided since utterances used to estimate a model
are not recognized by the decoder using that model in the next
decoding step.

The unsupervised batch mode adaptation can be seen as
a kind of EM algorithm with the viterbi approximation and
parameter constraints. The expectation and the maximiza-
tion steps of EM respectively correspond to the decoding and
the model update steps of the unsupervised batch adaptation.
Therefore, the unsupervised CV adaptation can be regarded
as an extension of our previously proposed CV-EM that intro-
duces CV into the iterative EM framework [3]. As an alterna-
tive for CV-EM, we have proposed Ag-EM that introduces a
bagging like idea into the EM framework instead of CV and
have shown that it gives beiter performance than CV-EM [4].
Similar to the relationship between CV-EM and unsupervised
CV adaptation, it is possible to extend the Ag-EM to unsuper-
vised adaptation. This results in an unsupervised aggregated
(Ag) adapration that we propose and investigate in this paper.
Together with the CV adaptation method, we refer to these
adaptation techniques as unsupervised ensemble adaptations.
Compared to the traditional use of ensemble methods that di-
rectly improves evaluation performance, these methods differ
in that the ensemble scheme is integrated inside of iterative
parameter estimation process.

In the previous study, the unsupervised CV adaptation
method was evaluated by a clean speech task using an EM
trained maximum likelihood (ML) initial model. Here, the
CV and Ag adaptation methods are evaluated using both ML
and MPE [5] based systems. Mareover, they are evaluated for
a noisy speech recognition task recorded in real car environ-
ments to investigate their performance on different tasks.

The organization of this paperis as follows. In section 2,
we first briefly review the CV adaptation method and then
describe the Ag adaptation algorithm. Experimental condi-
tions are described in Section 3 and the results are shown in
Section 4. Finally, conclusions and future works are given in
Section 3.

2. UNSUPERVISED ENSEMBLE ADAPTATION
ALGORITHMS

In this section we first review the CV adaptation algorithm
and then explain the Ag adaptation method.
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Fig. 1. Unsupervised cross-validation (CV) adaptation algo-
rithm. M (k) is the k-th CV model, D (k) is the k-th ex-
clusive subset of adaptation data, and 7 (k) is a recognized
hypothesis for D (k) decoded by using M (k). M (0) is a
global CV model made by gathering all the K hypotheses.

2.1. Cross-validation (CV) adaptation

Figure 1 shows the procedure of the unsupervised cross-
validation (CV) adaptation method. In this procedure, the tar-
get utterances are divided into K exclusive subsets (D {1},
D(2).-..,D(K)) so that each subset has roughly the same
size. The first decoding step is basically the same as the
conventional batch mode adaptation and the K subsets are
processed using the same initial model. Then, given the A
recognition hypotheses (T (1), T(2)--- . T (K)), K cross-
validation models (M (1), M (2),---, M(K")) are made by
excluding one of the recognition hypotheses, instead of mak-
ing a single model. As an initial model to estimate the k-th
CV model, the k-th CV model of the previous stage is used.
Each model is used in the next decoding step to make a new
hypothesis for the data subset that has been excluded from
the parameter estimation of that model. The decoding step
and the model update step are repeated as in conventional
batch mode adaptation and the final recognition hypothesis
is obtained by gathering the hypotheses of the K subsets
made in the last decoding step. If a single adapted model is
required as an output of the adaptation process, a global CV
model (M (0)) may be made in the last update step by using
all recognition hypotheses.

With this procedure, the data used for the decoding and
for the model parameter estimation are effectively separated.
The data fragmentation problem is minimal for large K, since
(K —1) /K of the data is used for the parameter estimation
of each CV model. The parameter update can be performed
by using any kind of adaptation methods and not limited to a
specific algorithm. The compurational cost for the decoding
step is constant for K excepting the overhead due to reading
K different models. The computational cost for the update
step is proportional to K.
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Fig. 2. Unsupervised aggregated (Ag) adaptation algorithm.
T (n, k) is a recognition hypothesis for the &-th subset made
by using n-th Ag model M (n). M (0) is a global Ag model.

2.2. Aggregated (Ag) adaptation

Figure 2 describes the unsupervised aggregated (Ag) adap-
tation algorithm. Unlike the CV adaptation, Ag adaptation
allows overlap between the data used in the decoding step
and the update step. Instead, the generalization ability is
obtained through aggregating N models as in the bagging
method. More specifically, the target utterances are first di-
vided into K exclusive subsets (D (1), D(2).---, D(K)).
Then, each data subset is repeatedly decoded using IV models
(M (1).M(2),--- ,M (N)). Inidally, these IV models are
prepared just by copying an initial model. In the update step,
N models are made using N K’ hypotheses from K’ (< K)
subsets that are randomly selected. Depending on the un-
derlying adaptation method, the observation counts may be
normalized by N in the parameter estimation since NV hy-
potheses from the same utterance are simultaneously used.
The N models are then used in the next decoding step. The
computational cost for the decoding step is O (V) and the
cost for the update step is O (N?K'/K).

In this procedure, IV recognition hypotheses are generated
for each utterance. In order to make a single output, the hy-
potheses were integrated by word level voting based on an
alignment by the progressive multiple alignment method with
UPGMA [6]. If necessary, a global Ag model (M (0)) may
be made in the last update step by using all recognition hy-
potheses.

3. EXPERIMENTAL SETUPS

The unsupervised CV and Ag adaptation algorithms were
evaluated as speaker adaptation methods using clean and
noisy speech recognition tasks. The test set for the clean



speech task was the evaluation set of the Corpus of Spon-
taneous Japanese (CSJ) [7] that consisted of 10 academic
presentations given by 10 different male speakers. The length
of each presentation was about 10 to 20 minutes and the
total duration was 2.3 hours. Unsupervised speaker adapta-
tion was performed for each of these presentations and their
word error rates were averaged. The acoustic model was a
tied-state Gaussian mixture oiphone HMM that was trained
from academic oral presentations from the CSJ using the ML
and MPE methods. The total length of the training set was
254 hours. The HMM had 3000 states and Gaussian mixture
with 32 components per state. Feature vectors had 39 ele-
ments comprising 12 MFCCs and log energy, and their delta,
and delta delta values. The language model was a trigram
trained from 6.8M words of academic and extemporaneous
presentations from CSJ. The dictionary size was 30k.

Noisy speech recognition was performed using speech
FacHom UG Divay’ eedaSpasr Coputip cCrEp
vippmcpt” ppuyld] givep by priGopANFIvEUAICIAY
sel. & consisted of 20 male speakers and 20 female speak-
ers. The utterances were voice commands to a car navigation
system and there was a total of 108 utterances per speaker,
They were recorded inside a car in idling mode, running in
a city, or running on a highway. The total amount of data
per speaker was six minutes. The speaker-independent initial
acoustic model was a tied-state Gaussian mixture wiphone
HMM. & was first trained on 52 hours of clean speech data
from the Japanese News Article Sentences (JNAS) corpus [9]
that included both genders and then adapted to noisy speech
conditions by using 17935 CSJ utterances that were randomly
mixed with 28 types of noise from the JE& A-NMSSE cor-
pus that included car noises and seven different SNPs. The
HMM had 2000 states and Gaussian mixture with 16 compo-
nents per state. The dictionary size was 300 and a network
grammar based language model was used. Feature vectors
had 38 elements consisting of 12 MFCCs, their delta plus
delta log energy, and delta delta values. Spectral subtraction
was performed both in the estimation of the initial speaker
independent noisy speech model and recognition of the eval-
uation data. The adaptation was performed for each speaker,
and their word error rates were averaged.

&1 both of the conditions, the HTi toolkit [10] was used
for the MLLP adaptation. The MLLP was based on mean
transformations and was performed using regression class
trees with 32 leaf nodes. For the Ct adaptation, the default
threshold value of the toolkit was used to determine the num-
ber of wansforms. For the Ag adaptation, the threshold was
multiplied by /V for the normalization purpose. The decoding
was performed using the T9 decoder [11].

4, EXPERIMENTAL RESULTS

Figure 3 shows the word error rates when the academic pre-
sentations were used as the test set. The CU adaptation used
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adaptation. The zero-th iteration corresponds to the results of

the speaker independent model.

K = 20, and the Ag adaptationused K = 10, K' =6, N =8
following the parameter settings of the Ag-EM experi-
ments [4]. As a speaker independent initial model, ML and
MPE trained acoustic models were used. Both Ct and Ag
methods gave improvement over the conventional adaptation
for both of the initial models. Among them, Ctl adaprta-
tion gave better performance than Ag adaptation in this task.
The word error rate by the speaker independent ML initial
model was 21.1C and the relative word error reductions by
the baseline batch mode, Ct , and Ag adaptations were 13C,
18C, and 16C, respectively. Similarly, the word error rate
by the MPE initial model was 19.3C and the relative word
error reductions by the baseline, Ct , and Ag adaptations were
11C, 15C, and 13C, respectively. The improvements by the
Cit and Ag adaptations from the baseline adaptation were
both statistically significant for both of the ML and MPE
conditions.

Figure 4 is the result of the speaker adaptation using the
utterances from the real car environment. & can be seen that
Ct and Ag adaptations gave similar improvements from the
conventional batch mode baseline adaptation. A slight in-
crease of the error rate was observed for the Ct  adaptation
when the number of iterations was larger than four, which
was probably due to an over-training. This is because while
Ct adaptation separates the data used for the decoding and
model update steps, small dependencies still remain between
the i-th model update step and the (7 + 2)-th decoding step
through recognition hypotheses of the (i + 1)-th step. The
initial word error rate was 13.4C, and the relative word error
rate reductions by the baseline, Ct , and Ag adaptations after
eight iterations were 4.5C, 8.3C, and 9.3C, respectively.
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Fig. 4. Adaptation results using noisy speech from real car
environments.
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Fig. 5. CPU time in each adaptation method.

Figure 5 shows CPU time observed in the academic pre-
sentation recognition using the ML initial model. The CPU
times are per speaker and are averaged over all the decoding
steps and the update steps. As mentioned in Section 2, CV
adaptation has roughly the same computational cost for the
decoding step as the baseline conventional batch mode adap-
tation. The cost for the update step is proportional to K but
because adaptation is cheaper than decoding, the total cost
of the 20-fold CV adaptation was about only three times of
the baseline adaptation. On the other hand, the computational
cost of the Ag adaplation is generally higher than the baseline
adaptation in both of the decoding and update steps.

5. CONCLUSION

We have evaluated the unsupervised CV adaptation method
together with newly proposed unsupervised Ag adaptation
using both ML and MPE trained initial models for the clean
speech recognition task form the Corpus of Spontaneous
Japanese (CSJ) and using a noisy speech recognition task
recorded in real car environments. Experimental results
showed that both of the ensemble adaptation methods give
consistently higher recognition performance than the con-

ventional batch mode adaptation method. Among them,
CV adaptation was more advantageous than Ag adaptation
giving similar or better improvements with smaller compu-
tational cost. Future work includes improving the ensemble
adaptation methods utilizing confidence measures, and their
applications to other problems not limited to speech recogni-
tion.
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