<table>
<thead>
<tr>
<th>Title</th>
<th>Well-width dependence of radiative and nonradiative recombination times in ZnO/Mg_0.12_Zn_0.88_O multiple quantum wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>C. H. Chia, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Applied Physics, Vol. 90, No. 7, 2001, 10</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright (c) 2001 American Institute of Physics</td>
</tr>
</tbody>
</table>

Powered by T2R2 (Tokyo Institute Research Repository)
Well-width dependence of radiative and nonradiative recombination times in ZnO/Mg$_{0.12}$Zn$_{0.88}$O multiple quantum wells

C. H. Chia, T. Makino, and Y. Segawa

Photodynamics Research Center, RIKEN (Institute of Physical and Chemical Research), Sendai 980-0845, Japan

M. Kawasaki, A. Ohtomo, and K. Tamura

Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Japan

H. Koinuma

Frontier Collaborative Research Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan

(Received 5 March 2001; accepted for publication 27 June 2001)

A set of ZnO/Mg$_{0.12}$Zn$_{0.88}$O multiple quantum wells (MQWs) with well widths, L_w, varying from 6.91 to 46.5 Å has been grown by laser molecular-beam epitaxy. We estimated the L_w dependence of the radiative and nonradiative recombination times of localized excitons at 5 K. Suppression of quantum efficiency can be avoided even in the MQWs having small L_w's studied in this work. Effects of excitonic localization are discussed in order to explain the L_w dependence of radiative recombination time at 5 K. © 2001 American Institute of Physics. [DOI: 10.1063/1.1396827]

ZnO-based semiconductors are recognized as very promising materials due to the potential application as many optoelectronic devices such as UV light-emitting diodes and laser diodes owing to their large binding energy of excitons (59 meV). As demonstrated by the practical light-emitter devices, many semiconductor devices must take advantage of multiple quantum well (MQW) structures for optimized device performance. Many efforts must be devoted toward the understanding, design, and fabrication of ZnO/MgZnO MQWs for light-emitter applications. For the design and fabrication of these MQW structures, one important issue is to maximize the quantum efficiencies (QE), i.e., to maximize the optical emission from the confined states in the well regions and to minimize the optical losses outside the well regions. It has been demonstrated recently that the optical and structural properties of ZnO/MgZnO MQWs were greatly improved by the employment of lattice-matched substrates (room-temperature spontaneous and stimulated emissions of excitons), negligible interdiffusion of Mg, and very flat heterointerface. It is also well known that structural parameters, including both barrier and well widths (L_w) of MQWs, have strong effects on the QE. The mechanisms of L_w dependence of the QE in ZnO/MgZnO MQWs have not yet been investigated. Thus, a systematic study on these MQWs to probe the underlying mechanisms related to the effects of L_w on the QE is needed.

In this study, a set of ZnO/Mg$_{0.12}$Zn$_{0.88}$O MQWs with L_w varying from 6.91 to 46.5 Å and a fixed barrier width of 50 Å has been grown by laser molecular-beam epitaxy. Combinatorial-concept aided techniques of our samples suppresses the variations in crystal growth conditions and hence the undesired uncertainty in the deduced spectroscopic results, simply because of the fact that all the nine samples were grown at one time in the same run. Picosecond time-resolved photoluminescence (TRPL) spectroscopy has been employed at 5 K to probe the L_w dependence of the QE. Suppression of the QE can be avoided even in the MQWs with L_w less than 10 Å, indicating the efficient carrier confinement inside the well regions.

The ZnO/Mg$_{0.12}$Zn$_{0.88}$O MQW samples with ten periods were directly grown on a 0001-oriented ScAlMgO$_4$ substrate under high vacuum condition, the lattice constant which matches that of ZnO with 0.09%. All the films had a c-axis orientation. The well widths of these nine samples were 6.91, 8.95, 12.9, 17.5, 23.5, 27.9, 37.0, 42.3, and 46.5 Å. The well and the barrier layer thicknesses were precisely determined from x-ray diffraction analysis. Excimer laser pulses were impinged to ZnO and Mg$_{0.12}$Zn$_{0.88}$O targets (99.999%). The growth temperature and oxygen pressure were 600 °C and 1 × 10$^{-5}$ Torr, respectively.

Picosecond TRPL spectroscopy was employed to study the optical properties of these MQWs. A frequency-tripled beam from a mode-locked Ti:Sapphire laser with a repetition rate of 82 MHz, a pulse duration of ≈ 1 ps, and a pumping power of 2–3 μW was used as an excitation source. The excitation energy was 4.946 eV, which is well above the band gap of barrier layers. The photoluminescence (PL) was temporally resolved using a streak camera in conjunction with a monochromator. The spectral and temporal resolutions were ≈ 0.3 nm and ≈ 30 ps, respectively.

We confirmed in our previous study that the L_w dependence of the excitonic emission energies in the ZnO well regions (varying from 3.382 to 3.514 eV at 5 K) could be...
interpreted as being due to the quantum confinement effect for the excitons. Spectral distribution of PL decay curves in the nine MQW samples possessing various L_w were measured at 5 K. Almost all the decay curves could be fitted with a single exponential function.

Figure 1 shows the time-integrated PL spectra (solid traces) and PL decay time constants as a function of emission energies (closed circles) taken at 5 K for four representative MQWs with the L_w of 6.91 [a], 12.9 [b], 17.5 [c], and 42.3 Å [d], respectively are shown. The dashed curves are the theoretical ones fitted by Eq. (1).

![FIG. 1. Time-integrated PL spectra (solid traces) and PL decay time constants as a function of emission energies (closed circles) taken at 5 K for four representative MQWs with the L_w of 6.91 Å (a), 12.9 Å (b), 17.5 Å (c), and 42.3 Å (d), respectively are shown. The dashed curves are the theoretical ones fitted by Eq. (1).](Image)

where E_0 shows the degree of the depth in the tail state and E_{me} is the characteristic energy representing the absorption edge. The best fits could be obtained (dashed curves in Fig. 1) using the following parameters: $\tau_{PL}(6.91\,\text{Å})=187$ ps, $\tau_{PL}(12.9\,\text{Å})=117$ ps, $\tau_{PL}(17.5\,\text{Å})=111$ ps, $\tau_{PL}(42.3\,\text{Å})=88.3$ ps, $E_0(6.91\,\text{Å})=6.5$ meV, $E_0(12.9\,\text{Å})=3.9$ meV, $E_0(17.5\,\text{Å})=3.3$ meV, $E_0(42.3\,\text{Å})=3.3$ meV, $E_{me}(6.91\,\text{Å})=3.496$ meV, $E_{me}(12.9\,\text{Å})=3.417$ meV, $E_{me}(17.5\,\text{Å})=3.402$ meV, and $E_{me}(42.3\,\text{Å})=3.379$ meV, respectively.

Figure 2 shows the lifetime of localized excitons (τ_{PL}, closed circles) and E_0 (closed triangles) as a function of the L_w. It is found that both the τ_{PL} and E_0 are a monotonically decreasing function of L_w. We tried to deduce the L_w dependence of the radiative (τ_{rad}) and nonradiative (τ_{nonrad}) recombination times. Combined analysis of temperature (T) dependences of PL decay times and of spectrally integrated PL intensity was carried out. Figure 3 shows the temperature variations of the lifetime of localized excitons (τ_{PL}, closed squares) for a typical ZnO MQW ($L_w=8.95$ Å). The PL intensity versus T follows an $\exp(\eta/\kappa T_0)$ law with $T_0\sim 20$ K in this MQW. Since the measured PL decay time is simply given by $\tau_{PL}=\tau_{rad}\tau_{nonrad}^{-1}+\tau_{nonrad}^{-1}$, we obtain a lower bound to the radiative recombination time $\tau_{rad}\sim \tau_{PL}/\eta$ by assuming that η equals 1 at $T=0$ K and follows the aforementioned exponential law.

![FIG. 2. Well-width dependences of localization depth (E_0, closed triangles) and recombination times, τ_{PL} (closed circles), τ_{rad} (open circles), and τ_{nonrad} (open squares) are shown. The solid curves are the visual guides.](Image)
define localized states of excitons. One can notice that the thermal release effect from the localized to delocalization effect is absent in quantum wells, due to low temperatures.

The larger the localization effect, the larger the critical temperature (T_c) for smaller L_w (large E_0) is larger than $\tau_{\text{rad}}(T \lesssim T_c$ and L_w). Assuming that the oscillator strength remains unchanged irrespective of L_w, Piezoelectric field effects are unnecessary to be considered due to the negligible strains between the well and the barrier regions. It is necessary to systematically estimate the T dependence of τ_{rad} for MQWs having various L_w in order to clarify the radiative recombination mechanism in ZnO MQWs. Such experimental studies are under way.

The L_w dependence of τ_{nonrad} is discussed. Usually, the nonradiative recombination (τ_{nonrad}) is shortened in the MQWs with small L_w because of the degraded film qualities and carrier leakage outside the well region. However, it can be safely concluded that efficient carrier confinement inside the well region could be realized in the entire L_w ranges adopted here.

In summary, a set of ZnO/(Mg,Zn)O MQWs with a well width varying from 6.91 to 46.5 Å has been grown by laser molecular-beam epitaxy. The quantum efficiencies of these MQW samples have been studied by picosecond TRPL spectroscopy. The radiative recombination time, τ_{rad}, was a monotonically decreasing function of L_w, while the nonradiative one, τ_{nonrad}, was nearly independent of the L_w. The former dependence can be explained as being due to the thermal release effect of excitons from localized to delocalized states. Avoidance of the QE suppression even in the case of small L_w below 10 Å is highly desirable for UV light-emitter device applications.

This work was partially supported by the Proposal Based Program of NEDO (Grant No. 99S12010), Japan.