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We propose a widegap II-VI semiconductor alloy, Mg, ,O, for the fabrication of
heteroepitaxial ultraviolet light emitting devices based on ZnO. @ais oriented MgZn; _,O

films were epitaxially grown by pulsed laser deposition on ZnO epitaxial films and sagpoo®
substrates using ceramic targets. Solid solution films were prepared with Mg contentxup to
=0.33, achieving a band gap of 3.99 eV at room temperature. MgO impurity phase segregated at
x=0.36. Lattice constants of Mgn; _, O films changed slightly{ 1%), increasing ina axis and
decreasing irt-axis direction with increasing. These films showed ultraviolet photoluminescence

at energies from 3.36<&0) to 3.87 eV £=0.33) at 4.2 K. ©1998 American Institute of Physics.
[S0003-695(198)04219-3

A heterojunction is one of the key structures for con-whereas clear MgO peaks f=0.13. The targets were
structing various electronic and optical devices using complaced at a distance of 4 cm from the substrate and ablated
pound semiconductors. Modulation of the band gap withby KrF excimer laser pulse@54 nm, 10 Hz, 20 nswith a
keeping the lattice constants similar to each other is essentifluience of 1 J/crh The films(~300 nm thick were depos-
for this purpose. For instance, a double heterostru¢re)  ited at a temperature of 600 °C inx8L0~° Torr of pure
composed of a thin well layer sandwiched between two baroxygen (99.9999%. Mg content in the MgZn; _,O films
rier layers has been utilized in laser diodes to facilitate rawas determined by inductively coupled plas(i@P) optical
diative recombination by carrier confineméritve recently — emission spectroscopy by dissolving the films in HN\€D-
reported that stimulated emission due to excitonic recombilution. The surface morphology of the films was examined
nation could be observed at room temperature by opticallpy means of contact-mode atomic force microscoplM).
pumping ZnO nanocrystalline thin films epitaxially grown on The crystal structure of the films was analyzed @y2¢
sapphire substrat@d_aser action with a very low threshold XRD and four-circle XRD(Philips, X" Pert-MRD with a

intensity (24 kWi/crR) took place using naturally occurring resolution of 0.005°. O.ut—of—plane and. in—plgne mosaicness
grain boundaries as cavity mirrotsFor fabricating a DH ~ Were evaluated by setting the Bragg diffraction angle to the

laser diode using a ZnO active layer, two critical materialsznO (0002 and (1101) reflections, respectively, where 1

challenges ar@-type doping and band gap engineering in stands for negative value of Miller index. Optical properties

alloy semiconductors. We concentrate on the latter in thig €re characterized by absorption and photoluminescence

letter spectroscopies. A continuous He—Cd laé&25 nm and a
In case of ZnSe-based lasers, theldg, S,Se_, al pulsed XeCl excimer las¢B08 nm, 10 Hz were used for the

. : . photoluminescence measurements.
loy W'gh X Up t0 0.4 has pgen used'for bar.ner and claddin Deposition rate of the films was G102 nm/pulse re-
layers? Wide range solubility of Mg in the zinc blend struc-

d b h hedral ioni di g@rdless Mg content in the targets. Figure 1 shows the Mg
tureﬂwas expgcte_ ecause the te+tra edra 6|on|c radius @bntent in the films as a function of that in the targets. The
Mg?* (0.57 A) is similar to that of ZA" (0.60 A).° Here, we

X : Mg content in the films was systematically larger than in the
propose a novel [1-VI oxide semiconductor alloy system,i, qets by a factor of 2.5. This difference can be attributed to

Mg,Zn, -, O, which has excellent optical properties and g tact that the vapor pressure of ZnO and Zn is much larger
similar lattice constants to those of ZnO. _ than that of MgO and Mg at the substrate temperaitute:
Mg,Zn, O thin films were grown on sapphif®00)  rejated species can easily desorb from the growing surface
substrates, polished on both sides, by pulsed laser depositigihg |ead to the condensation of Mg-related species on the
in an ultrahigh vacuum chambé&Predetermined amounts of gyrface.
ZnO (5 N) and MgO(4 N) powders were mixed, calcined, Single-phase thin films having wurtzite structure and
and sintered to form targets with Mg content ranging fromc-axis orientation could be prepared withup to 0.25, as
x=0 tox=0.18. The x-ray diffractiotXRD) spectra of the  verified by XRD analysis. When Mg content was larger than
targets showed no detectable MgO peaks #o£0.10, (.36, small peaks due to an impurity phd¢kll) oriented
MgO] were observed. At=0.33, very weak signal could be
dE|ectronic mail: ohtomo@oxide.rlem.titech.ac.jp detected where MgQ@22) peak should appear. However the
YAlso a member of CREST, Japan Science & Technology Corporation.  intensity was much smaller than Z(@02 peak by factor
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of 104, therefore, the solubility limit of MgO in ZnO for 00 01 02 03 04 05
the films prepared in this study should be as large as 33 Mg Content (x)

N . e .
mol %. The thermOdynamIC SO|UbIIIty limit of MgO ",1 Zn0 FIG. 2. Mg content dependences of #hreandc-axis lattice parameters and
has been reported to be less than 4 mol %, according to thge cell volume of Mgzn, ,O films. Segregation of the MgO impurity
phase diagram of the ZnO-MgO binary systérnThe phase was observed fae0.33 of Mg content.

Mg,Zn, _,O films reported here can therefore be considered

as metastable phases. Pulsed laser deposition is a suita%er the spectra to fit the data assuming afe(hv — E,)
growth method fo_r fabricating such metastable phase ﬁlm?‘elationship, wherex is the absorption coefficient aridy gis
because of the high peak energy of the laser light, Targe&]e photon energy. The band gap is shown as a function of

material is -ir)stantaneously evaporated_ during the:\ Iaseih the inset of Fig. 4E, linearly increased up to 4.15 eV for
pulses, providing gas phase precursors with a fairly high eNy<x<0.36, indicating? that the Mg@n, O alloy is a suit-

(0] .
ergy (several tens of e)* '_I'he precursors arrive at the sub- a6 material for potential barrier layers in ZnO-based de-
strate surface and are rapidly cooled, crystallizing at the su jices having the band gap offset as large as 0.85 eV
strate temperature. The nonequilibrium nature of this crystal Figure 5 shows photoluminescence and absorption spec-
growth enabled us to fabricate solid solution films weII,[ra taken at 4.2 K of samples with<0.33, where single

above the thermodynamic solubility limit. phase films could be grown. With increasingthe lumines-

Lattice constE}nts measured by the.fou_r-circle XRP arecence peak shifted to higher energy. The luminescence peak
plotted as a function of the Mg content in Fig. 2. Theaxis

; . i of pure ZnO film k=0) had slightly lower energy than
length gradually increases, while theaxis length decreases ge ofa andB exciton peaks clearly visible in the absorp-

with incgeasing Mg content. Consequently, the cell volumejo, spectrun? This emission can be attributed to a bound
[3v3/2a°c] hardly changed, agreeing with the fact that ionic gy ¢jton emission linel(), i.e., the recombination of excitons

radii of Zr** and M@ have similar values. Since the lattice trapped in shallow impurity levels. The alloy film witk

constants still showed gradual change upxte0.33, where g 03 showed a luminescence peak at an energy close to the
impurity MgO phase started to appear in XRD, we can con-

clude that the solubility limit under these conditions was
betweenx=0.25 and 0.33. 12 T T

An in-plane(0002 o scan and an out-of—plar(&TOl) ¢ - M9o.16Z0.610
scan of ax=0.19 film are shown in Fig. 3. Full width at half 1.00 E 4 ]
maximum (FWHM) values of (0002 and (1101) rocking ol
curves were 0.13° and 0.55°, respectively. These values are T ;:8‘28302) ‘T"sz‘r’f(‘)“(ﬁm) ]

comparable to the highest quality pure ZnO films of about
the same thickness prepared in our laborat(@y2° and
0.51°, respectively The in-plane crystal orientation was de-
termined to be MgZn,; _,O(1100)lla-Al ,05(1120), which is
the same as that of Zn@/Al,0; and GaNé&-Al,0,. 1!

Figure 4 shows transmittance spectra measured at room
temperature by conventional ultraviolet-visible spectrometer. 0.0 R —
As can be clearly seen, the absorption edge shifted as a func- -2.0 -1.0 0.0 1.0 2.0
tion of x whenx=0.36, saturating at higher Mg concentra- Angle (deg.)
tion. These results are in good agreement with the appeag;; X-ray diffraction rocking curves showin@002 w and (1101) ¢

ance of the MgO impurity phase detected by XRD. FOrscans of a Mg;ezng 5,0 film. The width of the peaks are comparable to the

evaluating the band gaﬁé), we employed am? VSE, plot  highest quality pure ZnO films.
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T T T ‘ ' served in alloy semiconductot$where carriers feel differ-
R“ggﬁ':é};o x=0.45 ent potentials depending on the local concentration and/or
100 P- 0.33 arrangement of the substituting elements. This effect is larger
36 ] in ZnO than in llI-V semiconductors, because the Bohr ra-
= sol »s dius of excitons in ZnO is as small as 18 A and the excitons
.o | are therefore more sensitive to local inhomogeneity. On the
e I A4 lower energy side of the emission peaksxst0.14 samples,
£ 60} ] 0.07 - small peaks can be seen at a constant intefgabut 70
E I b e o meV) as denoted by filled triangles in Fig. 5. These peaks
§ aof & L can be attributed to the LO-phonon repli¢asindicating
o %’ er j high quality of the films in terms of crystallinity and optical
20-— : z: o ) ;M o ] properties. Thus, M@n;_,O films can be considered not
- segregation | only as barrier layers for the ZnO active layer, but also as an
L *%00 01 0z 03 04 0s ultraviolet light emitting material, the luminescence energy
op Moty LA of which can be tuned from 3.36x£0) to 3.87 eV &
15 20 25 30 35 40 45 =0.33) by adjusting the Mg contenxk).

Photon Energy (eV) For fabricating ZnO/MgZn,_,O quantum well struc-
tures and superlattices, it is important to regulate the film
surface and interface flatness. The alloy films deposited di-
rectly on sapphire had relatively rough surface compared to
pure ZnO films. The root mean squdrms) roughness of the

x=0.33 film was 10 nm. The film wit,k=0.36 showed

absorption edge. This is probably due to the screening effectnany particles on the surface probably due to MgO precipi-
where excitons are no longer trapped at intrinsic impuritiedates. However, by inserting a buffer ZnO filt00 nm), the
because the Mg ions become the major impurity. Whken surface of the aII_oy films X=<0.33) became as smooth as
=0.07, the luminescence peaks showed stokes shift to tpbat of pure ZnO films and the rms value for roughness of the
lower energy side of the absorption edge. The broadeningC0-nm-thick film was as small as 1 nm. This surface

and stokes shift of the luminescence peak are frequently ogMmoothness is acceptable for fabricating superlattices and
quantum well structures.

In summary, we have fabricated #n, ,O films by
pulsed laser deposition. The optical band gap and photolu-
minescence peak can be tuned to the larger energy side while
maintaining high crystallinity and without significant change
of the lattice constants.

FIG. 4. Transmittance spectra of &, ,O films measured at room tem-
perature. The inset shows the band g&p)(determined from the spectra
assuming am?e (hv— E,) dependence, whereandhv are the absorption
coefficient and the photon energy, respectively.

Mg,Zn, 0
4.2K

x=0.33
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