T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	│ 研究ツールとしてのOpen Dynamics Engineの定量評価-4 脚歩行機械 │ TITAN-VIII 実機歩行との比較-	
Title	Quantitative Evaluations of Open Dynamics Engine as a Research Tool -Comparison of Joint Torque and Power Using Quadruped Robot TITAN-VIII-	
著者(和文)	遠藤玄, 有川敬輔, 広瀬茂男	
Authors	Gen Endo, Keisuke Arikawa, SHIGEO HIROSE	
出典 / Citation		
Citation(English)	, , , 3D3-4	
発行日 / Pub. date	2010, 9	
権利情報 / Copyright	本著作物の著作権は日本ロボット学会に帰属します。 Copyright (c) 2010 The Robotics Society of Japan.	

研究ツールとしての Open Dynamics Engine の定量評価 -4 脚歩行機械 TITAN-VIII 実機歩行との比較-

遠藤玄(東京工業大学) 有川敬輔(神奈川工科大学) 広瀬茂男(東京工業大学)

Quantitative Evaluations of Open Dynamics Engine as a Research Tool -Comparison of Joint Torque and Power Using Quadruped Robot TITAN-VIII-

*Gen ENDO (Tokyo Tech.), Keisuke ARIKAWA (Kanagawa Institute of Technology) and Shigeo HIROSE (Tokyo Tech.)

Abstract— A free rigid body dynamics simulator "Open Dynamics Engine" is quantitatively evaluated. We developed a quadruped robot "TITAN-VIII" model on the simulator and compare joint torque and power with hardware experiments during walking which takes 4 different walking postures.

Key Words: Open Dynamics Engine, TITAN-VIII

1. はじめに

近年の PC 性能の向上とゲーム産業の進展により, リアルなコンピュータグラフィクスを実現する動力学 エンジンの開発が進んでいる.代表的なものとしては Havok[1], PhysX[2], Bullet Physics[3] などがあるが, Russell Smith 氏によるオープンソースで初学者にも扱 いやすいフリーの動力学エンジン, Open Dynamics Engine (ODE)[4] は近年ロボティクス研究に利用され るようになって来た.Fig.1左は過去7年間の学術講演 会 Robomec¹, SI²の全発表数と ODE を用いた研究発 表の推移である.また Fig. 1 右は直近3年間の RSJ³, Robomec, SI の全発表の中で動力学シミュレータを研 究ツールとして使用している発表のうち, どのような シミュレータを利用しているか調査した結果である4. ODE が徐々に普及しており,現在では半分近くのユー ザシェアを有していることが分かる。

このように ODE が利用される理由は, 容易なイン ストールや分かりやすい API, 豊富なサンプルコード などが挙げられるが,国内での普及は何よりも出村の 詳細で分かりやすい Web サイト [5] と解説書の出版 [6] による貢献が大きい.

一方 ODE はもともとゲーム用の動力学エンジンで,

- **Fig.**1 Result of publication survey: number of publication (left), usage share of dynamics simulator (right)
 - 1日本機械学会ロボティクス・メカトロニクス講演会
 - 2計測自動制御学会システムインテグレーション部門講演会

3日本ロボット学会学術講演会

⁴調査は予稿集の全文検索データベースまたは PDF の検索機能 を用いてキーワードにより行った 計算の正確性よりも高速で安定な演算を重視しており, 精緻な数値解析には向かないとの指摘もある[7].とこ ろで Fig. 1 右で示した 96 件の発表のうち,実機開発 を目標とし実際に比較を行っている研究は15 件で,そ のほとんどは位置・速度レベルで実機と類似の結果が 得られたとの定性的考察に留まっており,精密な性能 評価は不十分な状況である.

我々の興味は ODE が実機開発を支援するに足るだけの精度と速度を持っているか否かである.そのためには位置・速度の定量性だけではなく、カやトルク、パワーといった物理量で、そのシミュレーションの妥当性を議論する必要がある.文献[8]では車輪型ロボットの段差踏破時の前輪押し付け力について実機との比較を行っているが、例えば脚型ロボットのような多自由度移動ロボットについてのトルクやパワーの定量的評価については筆者らの知る限り報告されていない.実機との詳細比較を行い ODE の動力学シミュレータとしての妥当性が検証されれば、従来の研究報告により高い信頼性を与え、また研究ツールとしてその利用がさらに盛んになるであろう.

本報告では普及型4脚歩行ロボット TITAN-VIII を 対象とし,様々な姿勢で歩行させた際の関節トルク・パ ワーについて,実機による測定データと ODE の結果 を定量的かつ詳細に検討する (Fig. 2).その結果,十 分なパラメータの合わせこみと較正作業を施せば ODE は実用上十分な研究ツールになり得ることが確認でき たので,その検討過程と論拠を報告する.

Fig.2 Screen shot of TITAN-VIII simulator using ODE

2. ODEによるTITAN-VIIIシミュレータ

2·1 計算機環境

Windows XP SP3 を OS とする PC (Core2Quad 3.0GHz, 4GB メモリ) 上に開発プラットフォームとし て Microsoft Visual C++ 2010 Express をインストー ルし,それを用いて ode-0.11.1 をビルドした.導入は [9] の手順に従った.シミュレーションには精度の高い dWorldStep API を用いた.積分時間刻みを 1[ms] と し,後述のクロール歩行 10[sec] の計算に要する時間は およそ 60[sec] であった.

2·2 TITAN-VIII リンク系

剛体リンク系は標準のジオメトリである直方体と円 柱を用いて作成し,関節はヒンジで構成した.各リン クの大きさ・質量,関節位置は文献[10]と部品図から求 め,重心はジオメトリ中心にあるものと仮定した.ロ ボット全体の質量はバッテリを含め22[kg]である.

TITAN-VIII は膝関節と足首関節にワイヤ プーリ 系による平行リンク機構が導入されている.これらの 機構を剛体平行リンク機構でモデル化することも可能 であるが、いたずらに総剛体数を増やせば計算速度の 低下を招き好ましくない.そこで脚機構は通常のシリ アルリンク機構でモデル化し、ODE上で得られた関節 角速度・トルクを、ヤコビ行列を用いて事後的に平行 リンク脚機構の関節角速度・トルクに変換する方法を 取った.すなわちシリアルリンク系での関節角速度、ト ルク、脚先のヤコビ行列を $\dot{\theta}_s, \tau_s, J_s$ 、パラレルリンク 系でのそれらを $\dot{\theta}_p, \tau_p, J_p$ とすると、次式となる.

$$\dot{\boldsymbol{\theta}}_{\boldsymbol{p}} = \mathbf{J}_{\mathbf{p}}^{-1} \mathbf{J}_{\mathbf{s}} \dot{\boldsymbol{\theta}}_{\boldsymbol{s}} \tag{1}$$

$$\boldsymbol{\tau}_{\boldsymbol{p}} = \mathbf{J}_{\mathbf{p}}^{\mathbf{T}} (\mathbf{J}_{\mathbf{s}}^{\mathbf{T}})^{-1} \boldsymbol{\tau}_{\boldsymbol{s}}$$
(2)

2.3 関節サーボ

ODE には標準で関節にトルクを与える dJointAddHingeTorque() API, 目標速度を与える dJointSetHingeParam() API が用意されており, これらを用いて関節をトルク制御・速度制御するこ とが可能である.TITAN-VIII 実機はモータドライバ [11] によって位置レベルの PID 制御がされていること から,トルク制御のAPIとODE上で計測される関節 角度・角速度用いて関節サーボを実現することが出来 るはずである.しかしながら実際には挙動が不安定と なり,脚は目標位置軌道を追従することが出来なかっ た.原因は今のところ明らかではなく今後検証が必要 であるが,次善の策として位置偏差をゼロにするよう 関節を速度制御することで関節サーボ系をモデル化し た. $\theta_d, \theta_d, \theta, k_d$ をそれぞれ目標関節角速度,目標関節 角,実際の関節角,速度ゲインとすると次式となる.

$$\dot{\theta}_d = -k_d(\theta - \theta_d) \tag{3}$$

Table 1 Paramters for joint servo control

	$k_d \ [1/s]$	τ_{max} [Nm]
Hip J1	4.0	32.3
Thigh J2	4.0	40.2
Knee J3	4.0	25.7
Ankle J4	1.0	1.0

また速度制御の API には関節最大トルク τ_{max} を与えることができることから,文献 [10] の減速比とモータの停動トルクより Table 1 のように定めた. k_d については足首部は比較的摩擦の大きい受動関節であるため小さな値とし,他は実機の運動を参考に試行錯誤で適切な値を定めた⁵.

2·4 接触点の設定

ODE では接触点に仮想的にジョイントを生成しその ジョイントに力を加えることで剛体の衝突や摩擦など をモデル化している.計算が発散せず,また脚先の滑 りを少なくするように以下のようにパラメータ設定を 行った.

dContact contact[10];
<pre>contact[i].surface.mode =</pre>
dContactSlip1 dContactSlip2 dContactSoftERP
<pre> dContactSoftCFM dContactApprox1;</pre>
<pre>contact[i].surface.mu = 0.5;</pre>
<pre>contact[i].surface.slip1 = 0.001;</pre>
<pre>contact[i].surface.slip2 = 0.001;</pre>
<pre>contact[i].surface.soft_erp = 0.2;</pre>
<pre>contact[i].surface.soft_cfm = 0.0001;</pre>

なお force-dependent-slip (dContactSlip1, 2)の設定 は本来車輪の横滑りを模擬するための設定であるが摩 擦四角錐近似のみの設定では関節トルクが発振する傾 向が見られたため,計算の安定性を重視して小さな値 を導入している.

3. ODE による関節トルク計測

関節トルクが正しく算出されているか確かめるため 基準姿勢で静止する際のトルクを検討した.基準姿勢 と胴体座標系を Fig. 3 に示す.赤矢印はトルク・角速 度の正方向を示している.

3·1 6 軸力計測 API

関節は速度制御されていることから関節に与えられたトルクを陽に求めることは出来ない.剛体1と2が関節(ヒンジ)でFig.4のように連結されているとき,

Fig.3 Standard posture and body-fixed coordinate system

Fig.4 A hinge joint connects body 1 and body 2 (adopted from [12])

 $^{^{5}}$ なお全体の挙動は k_{d} の値を 2 倍としてもほとんど変化なく, むしろ τ_{max} の値が支配的であった.モータは停動トルク 0.1864[Nm]の半分を連続で発生できるとし, 効率 50%の減速機構で減速されると仮定して τ_{max} を見積った.

Fig.5 Six-axis joint forces and torques on J3: measured by (f1, t1) (top), measured by (f2, t2)(bottom)

関節に働く 6 軸力を dJointGetFeedback() API によっ て計測できる.この API の引数である dJointFeedback 構造体は次のように定義されている [12].

typdef struct dJointFeedback{

dVector3 f1; // force that joint applies to body 1
dVector3 t1; // torque that joint applies to body 1
dVector3 f2; // force that joint applies to body 2
dVector3 t2; // torque that joint applies to body 2
}

ここで作用反作用の法則から同一座標系で以下の関 係を満たすはずである.

$$f1 = -f2, t1 = -t2$$
 (4)

基準姿勢時に膝関節 J3 が腿リンク(Body1), 脛リン ク(Body2)に及ぼす6軸力をFig.5に示す.僅かに 浮いている状態からシミュレーションを開始し,地面 に着地後1秒を時刻0とした場合の時系列変化を表わ している.物理現象を考えれば定常状態に達したとき J3に働く力はZ方向のみであるはずである.

測定の結果,力に関しては多少の計算誤差はあるもの の式(4)を満たしており, F_x , F_y はゼロに, F_z は脛よ リ上の部分の重力(22.0-2.0)/4*9.81 = 49.05[N]に収 束していることが分かる.ところが膝関節軸周りのトル クに関しては式(4)を満たしておらず,その値も4[Nm] と無視できないほどの大きな誤差がある.もし左右脚 の足首部に対称にY方向力が働き,内力を発生してい るのであれば大きな膝関節トルクも想定しうるが,別 途足首の6軸力を測定してみたところ,そのような内力 は観測されなかった.従ってdJointGetFeedback() には何らかの不具合がある可能性が示唆される.今後 原因を詳細に調査する必要があるが,t1,t2は各々異な る座標系を用いて算出されていて,その座標変換に誤 りがあるのではないかと現時点では推察している.

3·2 関節トルクの算出

前節の結果から,APIによるトルクの算出には不備 があるものの,並進力の算出は正しいと思われる.従っ て並進力を元に関節トルクを算出することとした.幸 いTITAN-VIIIの脚機構は平行リンク機構であること から,先端部のトルクは根元の関節トルクに影響を及 ぼさない.求めたい関節トルクを τ_i (胴体に近い関節よ りi = 1, 2, 3),関節の位置・並進力・軸方向の単位ベク トルをそれぞれ \mathbf{r}_i , \mathbf{F}_i , \mathbf{u}_i と置くと次式で算出できる.

$$\tau_i = ((\mathbf{r_{i+1}} - \mathbf{r_i}) \times \mathbf{F_{i+1}}) \cdot \mathbf{u_i}$$
 (5)

あるいはより一般的に関節トルクauを脚先力ベクトルと転置ヤコビ行列 $\mathbf{F}, \mathbf{J}^{\mathrm{T}}(\boldsymbol{\theta})$ を用いて以下の関係から求められる.

$$\boldsymbol{\tau} = \mathbf{J}^{\mathbf{T}}(\boldsymbol{\theta}) \mathbf{F} \tag{6}$$

4. TITAN-VIII 実機による計測

TITAN-VIII 実機の歩行姿勢とパワー出力関係の計 測については文献 [13] に詳しいが,以下概要を記す.

4·1 計測装置

歩行時の機械的なパワーを計測するため,各関節の 発生トルクと角速度を計測する.トルクの計測にはFD トルクセンサ[14]を用い,ギアヘッド出力軸が発生し ているトルクを正確に計測することが可能である.関 節角速度の計測はモータドライバ[11]に搭載されてい る電子ガバナ回路の出力を利用した.これらを全駆動 関節12自由度に装備し計測を行った.

4·2 步行姿勢

歩行時の消費パワーはたとえ重心位置と歩行速度が 一定であっても、電力回生を行わない限り、歩行姿勢に よって変化する、特にモータが発電機として働く「負 のパワー」が発生する場合、他のアクチュエータがそ れを相殺する「正のパワー」を発生せねばならず、アク チュエータ間でパワーの受け渡しが起こり、結果とし てより多くのパワーを消費する「負のパワー」が発生 しないような関節駆動法を"Gravitationally Decoupled Actuation (GDA)"と呼び[15]、TITAN-VIIIではそれ を満たすよう基準歩行姿勢が選択されている。

歩行姿勢により消費パワーが変化することを確かめる ため Fig. 6 に示す A, B, C, Dの歩行姿勢で計測を行っ た.いずれも左前脚先位置 Z = -0.243[m] とし,脚軌 道は胴体座標系で歩幅 0.18[m],遊脚は高さ 0.05[m] と なるサイクロイドで与えた.デューティー比 0.75,周期 4.8[sec] のクロール歩容で歩行速度は 0.05[m/s] である.

A (X=0.201[m], Y=0.301[m])

B (X=0.301[m], Y=0.201[m])

C (X=0.401[m], Y=0.251[m]) D (X=0.201[m], Y=0.301[m]) Fig.6 Walking posture A, B, C and D

Fig.7 Joint torque comparison

5. 結果の比較

歩行姿勢 A, B, C, D で歩行させた 1 周期分について, 左前脚のトルクとパワーの時間変化を Fig. 7, 8 にそ れぞれ示す.時刻 0 から 1.2[sec] までは遊脚期であり, 各脚が接地するタイミングを点線で表わした.

まずトルクの推移を見ると実機実験では Joint2 の 1.4, 3.8[sec] をピークとする大きな変動が見られる.一 方 ODE の結果ではこのときほぼ一定値を取っている. これは実機の場合,ボディが完全剛体ではないため遊 脚することにより撓み,遊脚側に沈み込むことに起因 すると考えられる.これにより地面は脚先から見て相 対的に高くなり,結果,着床時に強く踏み込む動作を 行う.この際,Joint2には大きなトルク変動が起こる. 一方 ODE ではボディは完全剛体であるので,脚先は 軌道計画通り小さな Z 方向速度で着床することからこ のような差が生じると思われる.この点を除けば,関 節トルク推移の傾向と最大値は歩行姿勢を問わず良く 一致していると言える.

次にパワーの推移であるが,実機実験のJoint2では やはり遊脚接地時に大きなパワーを消費しており,こ れは前述の理由によると思われる.興味深いのはFig.8 において時刻2.4~4.8[sec]の間のJoint2,3のパワー推 移である.歩行姿勢Aでは実機・ODEともほとんどゼ ロであるのに対し,*B*,*C*,*D*の姿勢ではJoint2が正の パワーを発生するとJoint3が同じ大きさの負のパワー を発生していることが分かる.適切でない歩行姿勢で はアクチュエータ間でパワーの受け渡しが生じること が分かる.遊脚の着床時の差を除けばODEによるパ ワーの推移や大きさは実機の結果と良く一致している と言える.

6. まとめ

本報告では TITAN-VIII の歩行時の関節トルク・パ ワーについて, ODE が適切にシミュレーションできる かどうか,定量的に検討を行った.その結果, APIの一 部に不具合があると思われるものの,十分なパラメー タ調整と関節トルク測定の工夫を施せば実機実験の結 果を良く反映することが分かった.従って実機開発に 有用なツールになり得ると筆者らは結論付ける.

現段階では原因が究明出来ていない不具合もあるが,

Fig.8 Joint power comparison

ODEはオープンソースであることから改良が可能である、今後の検討課題としたい、

謝辞

動力学シミュレーションが PC 上で簡単にしかも無 償で行えるようになるとは,10年前であればとても考 えられないことである.Open Dynamics Engine を開 発した Russell Smith 氏と継続開発を続けている ODE コミュニティに深い敬意と謝意を表したい.また ODE の詳細な解説と情報提供を行っておられる金沢工業大 学出村公成先生に深く感謝いたします.

参考文献

- 1] "Havok" http://www.havok.com/
- [2] "NVIDIA PHYSX"http://www.nvidia.co.jp/objec t/physx_new_ip.html
- t/physx_new_jp.html
 [3] "Game Physics Simulation"
 http://bulletphysics.org/wordpress/
 -] "Open Dynamics Engine" http://www.ode.org/
- [5] "demura.net ロボットの開発と教育" http://demura.net/ode
- [6] 出村公成:"簡単!実践!ロボットシミュレーション Open Dynamics Engine によるロボットプログラミング",森 北出版, 2007.
- [7] http://demura.net/9ode/486.html
- [8] 照井,保科,平野,中野:"コンプライアンスを持つ車輪型 移動ロボットの段差踏破性向上の研究 第3報",第10 回システムインテグレーション部門講演会(SI2009), pp.654-655, 2009.
- [9] ⁱODE 0.11.1 のインストール法(Visual C++ 2008EE)"http://demura.net/9ode/3864.html
- [10] K. Arikawa, S. Hirose: "Development of Quadruped Walking Robot TITAN-VIII", in Proc. IROS'96, pp.208-214, 1996.
- [11] 福島,妻木,広瀬: "PWM 制御方式 DC サーボモータ 駆動回路の開発",第 13 回日本ロボット学会学術講演会 予稿集, pp.1153-1154, 1995.
- [12] "Open Dynamics Engine v0.5 User Guide" http://www.ode.org/ode-latest-userguide.html
 [13] 有川敬輔: "歩行ロボットの最適化歩行姿勢に関する研
- [13] 有川敏輔: "歩行ロホットの最適化歩行姿勢に関する研究",東京工業大学博士論文,甲第4321 号,2000.
- [14] 広瀬,加藤: "フロートディファレンシャル型トルクセン サの開発", Robomec '98, 1CI2-6, 1998.
- [15] 広瀬, 梅谷: "歩行機械の脚形態と移動特性", バイオメ カニズム学会編 バイオメカニズム 5(動物の機構と制御), pp.242-250, 1980.