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Voting Approach in SMAP Adaptation for

Speaker Verification ∗

�Sangeeta Biswas, Marc Ferras, Koichi Shinoda and Sadaoki Furui

(Tokyo Institute of Technology)

1 Introduction

Practical application of automatic speaker veri-
fication demands high verification accuracy using
very short speech even in the text-independent case.
However, it is hard for a speaker verification system
to find clear speaker-specific characteristics from
very short speech when users are not bound to say
the same text all the times. For 10 seconds short
speech, Vogt et al. [9] proposed using speaker sub-
space MAP adaptation into factor analysis (FA)
modeling. Fauve et al. [2] proposed a well-tuned
speech detection front-end for improved frame se-
lection followed by eigenvoice modeling. Kenny et
al. [5] extended joint factor analysis (JFA) to model
within session-variability over a shorter time span.

We try to handle 10 seconds short speech by struc-
tural modeling of human voice characteristics using
structural maximum-a-posteriori (SMAP) adapta-
tion technique. The SMAP adaptation technique
was proposed by Shinoda et al. [8] in speech recog-
nition. In speaker verification, Liu et al. [6] and
Xiang et al. [10] successfully used it for speech seg-
ments of about 2 minutes long or shorter.

In SMAP adaptation, a tree structure is used to
model the acoustic space of all the speakers. How-
ever, during our work on speaker verification, we
notice that one particular tree structure is not al-
ways optimal for modeling the acoustic space of ev-
ery speaker. In this paper, we propose a voting ap-
proach as a way to combine decisions of multiple
systems with different tree structures. We expect
that this approach is more robust than SMAP adap-
tation with a single tree structure.

2 Speaker Modeling

In text-independent speaker verification, a GMM-
SVM system proposed by Campbel et al. [1], is
accepted as one of the state-of-art systems. This
system associates robustness of the GMM-UBM sys-
tem proposed by Reynolds et al. [7] with discrmi-
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native power of the SVM system. In this system, at
first a speaker-inpendent Gaussian mixture model
(GMM) is trained using hours of speech by hun-
dreds of speakers. This GMM is called a universal
background model (UBM). After training the UBM,
adaptation methods are used to make a speaker-
dependent GMM from UBM using a small amount
of speech data for the target speaker. For adap-
tation, the most popular method is the relevance
MAP proposed by Gauvain et al. [3]. After mak-
ing the GMM, a supervector is made by stacking
the mean vectors of the GMM. Supervectors for a
set of background speakers, used as negative data
in the support vector machine (SVM) classifier are
obtained in the same way. Then the supervectors
are used as inputs to a SVM with linear kernel to
train a GMM-SVM system for the target speaker.
For each test speech segment x, score is calculated
as follows:

S(x) = wx + b, (1)

where b is a constant and w is calculated as follows:

w =
N∑

i=1

αitix̂i, (2)

where N is the number of supportvectors, x̂i is the i-
th supportvector, ti is the class ID {1,-1} of x̂i, αi is
the Lagrange multiplier, αi > 0, and

∑N
i=1 αiti = 0.

3 SMAP Adaptation

In the SMAP-based method, at first, a tree is ob-
tained by clustering the Gaussian components of the
UBM. The root node of the tree represents the whole
acoustic space and each of the non-leaf nodes has a
Gaussian component that summarizes its child node
distributions. Each of the leaf nodes corresponds
to a Gaussian component in the UBM as shown in
Fig. 1. After building the tree, a speaker-dependent
model is obtained by using each non-leaf node as
prior information for its child nodes.
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The formulation of SMAP adaptation is simi-
lar to that of the relevance MAP, except that it
uses hierarchical priors and uses normalized pdfs
in the formulation. For the adaptation data X =
{x1, x2, ..., xT }, the SMAP estimate of the mean
vector is:

μ̂(p)
m = μ(p)

m +
∑1/2

m
ν̂(p), (3)

where μ
(p)
m is the unadapted mean vector for Gaus-

sian m of node p and ν̂(p) is the hierarchical prior
which is calculated as follows:

ν̂(p) =
Npν̃

(p) + τ ν̂(p−1)

Np + τ
, (4)

where Np =
∑T

t=1

∑M(p)

m=1
γ

(p)
mt is the average num-

ber of frames assigned to node pdf p and τ is the
MAP relevance factor that weights the priors at the
parent node p−1. γ

(p)
mt is the occupation probability

for Gaussian m at tree node p and time t. ν̃ is the
ML estimation of the mean vector of normalized pdf
of node p which is estimated as follows:

ν̃(p) =
∑T

t=1

∑M(p)

m=1 γ
(p)
mty

(p)
mt∑T

t=1

∑M
m=1 γ

(p)
mt

, (5)

where y
(p)
mt is computed from the adaptation data as

follows:
y
(p)
mt = Σ−1/2

m (xt − μ(p)
m ), (6)

When a sufficient amount of training data is not
available for a Gaussian component, it is not shifted
in relevance MAP. In SMAP adaptation, in such
case, it takes prior information from its parent Gaus-
sian. Accordingly, every Gaussian component is
shifted from its position in UBM. Fig. 1 shows a
schematic example, where {a, b, c} get prior infor-
mation from h, {d, ..., g} from i, and {h, i} from
j.

4 Voting Approach

Different speakers have different acoustic spaces
depending on factors such as their language, ac-
cents or pronunciation particularities. It is there-
fore reasonable to think that the optimal tree struc-
ture differs from speaker to speaker. In other words,
some tree structures may be adapted more efficiently
to some speakers than others. Our preliminary ex-
periments indicated that decisions involving certain
speakers are slightly sensitive to the chosen tree
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Fig. 1 Example of a tree structure of Gaussian
components in SMAP. Each of a, b, ..., g is Gaussian
component of UBM. h, i and j are parent Gaussians
of {a, b, c}, {d, ..., g} and {a, ..., g}, respectively.

structure. In this paper, we propose a simple voting
approach to combine decisions of multiple systems
with different tree structures as a way to mitigate
this problem. To proceed, we construct a set of K

SMAP adapted systems with different tree struc-
tures and:

1. For each trial x, ask yes(Y )/no(N) vote to each
of the K systems

V(x) =

{
Y if S(x) ≥ θk,

N if S(x) < θk,
(7)

where S(x) is the score of trial x and θk is the
speaker independent threshold of system k.

2. Count each type of votes, N{V(x)=Y } and
N{V(x)=N}.

3. Take final decision true(T )/false(F ) about
each trial as follows:

D(x) =

{
T if N{V(x)=Y } ≥ N{V(x)=N},
F Otherwise

(8)
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5 Experimental Setup

We made a GMM-SVM system. The performance
of our speaker verification system was measured by
carrying out experiments on the 10sec4w-10sec4w
task of the 2006 NIST SRE. In this task, the length
of each training and test segment is approximately
10 seconds. There are 2971 true trials and 30584
false trials for 731 speakers among which 316 are
males and 415 are females.

Regarding feature extraction, we first removed the
non-speech part from the speech segments using the
information in the transcript files. We broke each
segment into frames of 30 ms long with a frame
rate of 100 frames/sec. We pre-emphasized each
frame with a pre-emphasis factor of 0.97 and ap-
plied a Hamming window. We computed 15 Percep-
tual Linear Prediction (PLP) coefficients and Mel-
Frequencey Cepstral Coefficients (MFCCs), aug-
mented with energy, first and second-order deriva-
tives, resulting 48 features per frame. Cepstral mean
subtraction was applied to remove static channel ef-
fects. We trained one gender-independent UBM and
two gender-dependent UBMs using 4806 speech seg-
ments from NIST SRE 2004 training database. Each
speech segment was 2.5 minutes long on average.
Among 4806 speech segments, 242 speech segments
of male speakers and 362 speech segments of female
speakers were selected as speech segments of back-
ground speakers.

We chose two groups of SMAP adapted systems.
In the first group, there were eight systems using
binary trees and in the second group there were 15
systems using 15 different tree structures where each
node had odd number of children. The performance
measure was the Equal Error Rate (EER). To calcu-
late the EER of our proposed voting method-based
system, the scores of majority group were linearly
fused. The threshold θk of SMAP adapted system k

was optimized a posteriori using the test set, based
on the minimum detection cost (MDC) used in the
NIST 2006 SRE [4].

6 Result

At first, we conducted an experiment on rele-
vance MAP-adapted GMMs with 32 Gaussian com-
ponents. By setting the relevance factor equal
to 10, we found that the system using gender-

dependent UBM was better than the system using
gender-independent UBM, and PLP outperformed
MFCC. We also noticed that the performance of
our MAP adapted system improved, when we in-
creased the number of Gaussian components until
512 and decreased the relevance factor to 1, and
when we did not use the delta-delta coefficients.
For SMAP adapted system, we used the gender-
dependent UBM with 512 Gaussian Components,
32 dimensional PLP feature vector (i.e. 15 PLP +
15 ΔPLP + E + Δ E), and set the relevance factor
to 1.

Fig. 2 shows the EER of our MAP and SMAP
adapted systems when the length of speech segments
of background speakers was 2.5 minutes on average.
The general trend was that the EER decreased as
the number of nodes of the trees got larger. For
both groups, voting approach outperformed the best
SMAP adapted system as well as relevance MAP
adapted system although the performances of most
of the binary tree based systems were worse than the
relevance MAP adapted system. We also noticed
that the large diversity of selecting tree structures
improved the effectiveness of voting approach. From
the MAP baseline system, we obtained an additional
gain of 1.58% EER for Group-1 and 3.97% EER for
Group-2. Therefore, for the further experiments, we
used the tree structures of Group-2.

We noticed that, as the length of the speech seg-
ment of background speaker decreased from 2.5 min-
utes, the overall EER of relevance MAP and SMAP
adapted systems decreased. However, it is not clear
yet why relevance MAP adapted system started out-
performing over SMAP adapted system for shorter
background speech. The MV curve of Fig. 3 shows
that by using our voting approach it is possible
to get all times better performance from SMAP
adapted system.

7 Conclusion

We have proposed a voting technique to optimize
the tree structure for each speaker in SMAP adap-
tation. We tested it on a speaker verification task,
namely the 10sec4w-10sec4w condition of the 2006
NIST SRE which is an inherently difficult task due
to the short length of the speech segments. We
showed that the voting technique is effective al-
though relative gain is small. As a future work, we
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Fig. 2 EER for GMM-SVM systems using MAP
and SMAP adaptation on the 10sec4w-10sec4w task
of 2006 NIST SRE. The design of a tree is written as
n1 − n2 − ...− nl where nl represents the maximum
number of child nodes belonging to each node of the
l-th layer.

would investigate other score fusion strategies such
as those based on neural network or logistic regres-
sion. We would also like to find out the reason of the
worse performance of SMAP adapted system than
MAP adapted system when the length of speech seg-
ment of background speakers decreases.
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