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Coating thermal noise of a finite-size cylindrical mirror

Kentaro Somiya1 and Kazuhiro Yamamoto2,*
1Theoretical Astrophysics, California Institute of Technology, Pasadena, California, 91125

2Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstr. 38, 30167 Hannover, Germany
(Received 17 March 2009; published 20 May 2009)

Thermal noise of a mirror is one of the limiting noise sources in the high-precision measurement such

as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a

decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror

based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size

mirror in the limit of large thickness, and also agrees to an independent result based on the modal-

expansion method with a thin-mirror approximation. Our study will play an important role not only to

accurately estimate the thermal-noise level of gravitational-wave detectors but also to help in analyzing

thermal noise in quantum-measurement experiments with lighter mirrors.

DOI: 10.1103/PhysRevD.79.102004 PACS numbers: 04.80.Cc, 04.30.Db, 04.80.Nn

I. INTRODUCTION

Advancement in the reduction of technical noise and
isolation of seismic vibration has let a high-precision mea-
surement device like the interferometric gravitational-
wave detectors [1] be so sensitive that tiny thermal fluc-
tuation of the measurement surface can limit the sensitiv-
ity. It is important to develop a method to estimate the
thermal-noise level as accurately as possible. Our study
with a finite-size mirror is an upgrade of previous works for
coating thermal noise with some approximations. For mir-
rors currently planned to be used in the next-generation
gravitational-wave detectors, the difference is a few per-
cent between the results with our finite-size analysis and
with a conventional infinite-size analysis. Besides, our
analysis, for the first time, includes the effect of tempera-
ture fluctuations in the substrate and the coatings coher-
ently summed up, with which the estimation of thermal
noise will be more accurate at lower frequencies. The
difference from the previous results can be larger if the
mirror is thin. Thermal noise is also important in cold
damping experiments [2], where the purpose is to reach a
quantum limit with a low-mass mirror, which may tend to
be thin. In this paper, we show the calculation results of
coating thermal noise with a broad range of aspect ratios,
which agree to the previous results with an infinite-size
mirror in the thick limit, and also agree to the results with a
thin plate that are calculated using the modal-expansion
method. It is important to know the thermal-noise level in
the middle range so that an appropriate mirror can be used
in the various experiments.

There are two different ways that nonzero temperature
causes fluctuation of the surface of a mirror. The first one is
via volume fluctuation under fixed temperature called
Brownian thermal noise. Brownian thermal noise in the

power spectrum density (m=
ffiffiffiffiffiffi
Hz

p
) is proportional to the

square root of temperature
ffiffiffiffi
T

p
, besides the mechanical loss

has some temperature dependence. The second one is via
temperature fluctuation that converts into the surface fluc-
tuation through the thermal expansion and through the
change of the refraction index. Thermal noise through
the expansion is called thermoelastic noise [3], and thermal
noise through the change of the refraction index is called
thermorefractive noise [4,5]; the coherent sum of thermo-
elastic noise and thermorefractive noise is called thermo-
optic noise in Ref. [6]. Thermo-optic noise in the power
spectrum density is linearly proportional to T, besides
some parameters like the thermal conductivity or the ther-
mal expansion depend on the temperature.
Brownian thermal noise is related to the mechanical loss

angle �. A current gravitational-wave detector employs a
mirror made of silica coated by tantala-silica doublets, and
the loss angle of the silica substrate is several orders lower
than that of the coatings [7,8]. Thermo-optic noise is
related to the heat flow in the r direction (transverse to
the beam) and in the z direction (along the beam) of the
cylindrical mirror. Both contributions are to be taken into
account in the case without coatings [9], while the latter
becomes dominant with coatings according to the differ-
ence of the mechanical parameters of the materials [10]. In
this paper, we focus on the derivation of Brownian thermal
noise in the coatings and thermo-optic noise in the z
direction.
Historically, Brownian thermal noise of a mirror had

been analyzed using a so-called modal-expansion method
[11]. Gillespie and Raab demonstrated a calculation with
Hutchinson’s method to derive the contribution from each
mechanical mode of an axisymmetric cylinder [12]. The
contributions are added up with a weight function given by
the power distribution of the Gaussian beam that probes the
mirror. In 1998, Levin proposed an elegant way to analyze
thermal noise using the fluctuation-dissipation theorem
[13,14]. Thermal noise is given from the multiple of the
loss angle and the elastic energy of a mirror imaginarily*somiya@caltech.edu
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pushed by the Gaussian beam. Levin demonstrated a cal-
culation for substrate thermal noise with an approximation
that the mirror is an infinite half space, which is reasonable
as the beam size on the mirror is usually set sufficiently
small compared with the mirror radius to avoid the dif-
fractive loss. Bondu et al. calculated substrate thermal
noise of a finite cylinder using Levin’s method [15]. The
elastic energy of a monolithic substrate was derived with
the boundary conditions of a finite cylinder. Some of the
typos in Ref. [15] were corrected and a better boundary
condition was introduced later by Liu and Thorne [9].
Harry et al. extended the elastic equation with coating
layers on the substrate and calculated Brownian thermal
noise of coatings on an infinite mirror [8]. In this paper, we
will derive Brownian thermal noise of coatings on a finite
cylinder.

Thermoelastic noise, introduced in Ref. [16], is related
to the thermal expansion, and the fluctuation-dissipation
theorem is again useful to derive the expansion. Liu and
Thorne calculated thermoelastic noise of an uncoated sub-
strate associated with the heat flow both in the r and z
directions using Levin’s method [9]. Thermoelastic noise
of a coated material by the heat flow in the z direction was
calculated by Braginsky et al. with an approximation that
thermoelastic dissipation via nonzero relaxation time of the
heat flow at the coatings is instantaneous – thin-coating
approximation [3]. They calculated thermoelastic noise
both in the infinite case and in the finite case with the
thin-coating approximation. Fejer et al. calculated ther-
moelastic noise without the thin-coating approximation;
the heat equation was solved both in the substrate and in
the coatings, but the mirror was an infinite half space and
the expansion was approximated to be constant in z [10]. In
this paper, we will derive thermoelastic noise by the heat
flow in the z direction without the thin-coating approxima-
tion and with a finite cylinder.

Thermorefractive noise is calculated, even in this paper,
with the thin-coating approximation. More rigorous analy-
sis could be done, but it will require an individual treatment
of each layer with as many boundary conditions as the
number of layers (typically 15� 40), which shall remain
as a future work. Nevertheless, as will be shown in this
paper, thermorefractive noise is not as sensitive to the
thickness of the substrate as other two noise sources.

The structure of this paper is as follows: In Sec. II, we
explain the fluctuation-dissipation theorem, the elastic
equation, and the heat equation. In Sec. III, we use
Bondu’s solution to the elastic equation with a finite cyl-
inder and extend it with the coatings to calculate Brownian
thermal noise of the coatings. In Sec. IV, we extract the
expansion term from the last result and put it into the heat
equation to calculate thermoelastic noise. In Sec. V, we
show the heat equation for thermorefractive noise, and the
result will be combined with thermoelastic noise to make
thermo-optic noise, which is shown in Sec. VI. In

Appendix A, we show the results for Brownian thermal
noise and thermoelastic noise calculated with the thin-plate
approximation, which should agree to the results of the
finite-size calculations in the thin limit. In the end,
Appendix B is a list of the parameters.

II. OVERVIEW OF THE METHOD

A. Fluctuation-dissipation theorem

The conventional modal-expansion method and Levin’s
method are substantially equivalent methods to derive the
noise spectrum using the fluctuation-dissipation theorem.
In both methods, an imaginary force is applied to the
mirror. While the modal-expansion method first calculates
the thermal motion of the mirror in many elastic eigen-
modes and then adds them up with a weighting function for
the Gaussian beam, Levin’s method directly calculates the
dissipation and thermal noise without the modal decom-
position. In the main body of this paper, we use Levin’s
method. We also use the modal-expansion method in
Appendix. A to calculate thermal noise of a thin plate.
Since these two methods are quite different, the coinci-
dence of the results in the thin limit validates our
calculation.
The equality of the fluctuation and the dissipation is the

important part of the fluctuation-dissipation theorem; the
power spectrum of thermal motion is expressed by the
following equation:

Sxð�Þ ¼ 4kBT

�2
� Re½1=Zð�Þ�; (1)

where kB is the Boltzmann constant, and Zð�Þ is the
impedance of the system, which is given by

Zð�Þ ¼ Fð�Þ
_xð�Þ ¼

Fð�Þ
i�xð�Þ : (2)

The phase difference � between the imposed force F ¼
F0 cosð�tÞ and the resulting motion x ¼ x0 cosð�t��Þ is
called the loss angle. The averaged dissipated power is the
product of F and _x in the same phase:W ¼ F0x0��=2, so,
with Eq. (2), the power spectrum is rewritten as

Sxð�Þ ¼ 8kBTW

�2F2
0

�
¼ 8kBT

�F2
0

U�

�
: (3)

Here, U is the maximum elastic energy that can be gen-
erated by the imaginary force. The dissipation for
Brownian thermal noise is derived with the elastic equa-
tion, and the dissipation for thermoelastic noise is derived
with the heat equation.
The logic above should be retraced in the case of ther-

morefractive noise, although Eq. (3) still works as well.
Thermorefractive noise is no actual motion but is a phase
shift of the light due to the change of refraction index.
Thus, it is not the imaginary force but imaginary entropy
that should be added to the system to use the fluctuation-
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dissipation theorem. Adding the imaginary entropy, we can
derive the noise spectrum of the temperature fluctuation,
which can be converted into the fluctuation of the optical
length. See Ref. [14] for the detail. Note that we regard the
imaginary force, or imaginary entropy, to be static. This
should be good if the frequency of our interest is much
lower than the resonances of a mirror.

B. Elastic equation

The elastic energy is given by the product of the strain
tensor Eij and the stress tensor Tij, integrated over the

volume of interest

U ¼ 1

2

Z X
i;j

EijTijdV ði; j ¼ r; c ; zÞ: (4)

See Fig. 1 for the location parameters. The strain tensor
elements of a cylinder with the axisymmetric pressure on
the center are expressed by the displacement vectors ur and
uz as follows:

Err ¼ @ur
@r

; Ec c ¼ ur
r
; Ezz ¼ @uz

@z
;

Erz ¼ 1

2

�
@ur
@z

þ @uz
@r

�
;

(5)

and the stress tensor elements are as follows:

Trr ¼ ð�þ 2�ÞErr þ �ðEc c þ EzzÞ;
Tc c ¼ ð�þ 2�ÞEc c þ �ðEzz þ ErrÞ;
Tzz ¼ ð�þ 2�ÞEzz þ �ðErr þ Ec c Þ;
Trz ¼ 2�Erz: (6)

Here, � and � are so-called Lamé coefficients

� ¼ Y�

ð1þ �Þð1� 2�Þ ; � ¼ Y

2ð1þ �Þ ; (7)

with Y as Young’s modulus and � as Poisson’s ratio. The
other elements of the tensors are zero due to the axisym-
metry. The tensors should meet Newton’s second law and
Hook’s law. Consequently, the elastic equation in the static
case is summarized into two equations [17]

2ð1��Þ
�
@2ur
@r2

þ 1

r

@ur
@r

�ur
r2

�
þð1� 2�Þ@

2ur
@z2

þ @2uz
@z@r

¼ 0;

ð1� 2�Þ
�
@2uz
@r2

þ 1

r

@uz
@r

�
; (8)

þ 2ð1� �Þ @
2uz
@z2

þ @2ur
@z@r

þ 1

r

@ur
@z

¼ 0; (9)

which can be resolved into Bessel’s differential equations
for r. The solutions are given by Bondu et al. [15] with
some typos corrected by Liu and Thorne [9]. Boundary
conditions make a difference between the solutions with an
infinite-size mirror and with the finite-size mirror. We will
follow their calculation for the finite-size mirror and extend
it with the coatings in Sec. III.

C. Heat equation

Either by adding the imaginary force or the imaginary
entropy, the imaginary heat is generated and the finite-
speed heat flow results in dissipation. The heat equation is

i��jðzÞ � �jr2�jðzÞ ¼ qjðzÞ; (10)

where �jðzÞ is the time-varying temperature that is a

Fourier transform of the temperature fluctuation �Tðz; tÞ,
�j ¼ kj=Cj is the thermal diffusivity (kj is the thermal

conductivity and Cj is the specific heat per volume [18]),

qjðzÞ is the heat source, and the subscript j indicates

substrate (s) or coatings (c). In the case of a coated mate-
rial, the dissipation of the heat flow in the z direction is
larger than the r direction, thus r in Eq. (10) shall be
replaced by @=@z. The heat flow �C@�=@z gives the dis-
sipation

W ¼ �C

T

�Z �
@�T

@z

�
2
dV

�
; (11)

¼ �C

2T

Z ��������@�@z
��������2

dV: (12)

Here, the bracket h i means the time average.
The heat source qj is different between the equations for

thermoelastic noise and thermorefractive noise. In the case
of thermoelastic noise, the heat source is the expansion due
to the imaginary force, and it can be derived from the law
of adiabatic temperature change [9,19]

qTEj ¼ �i�
�jYjT

Cjð1� 2�jÞ�j; (13)

where �j is the thermal expansion rate, and�j, the expan-

sion, is expressed by the strain tensor elements

� ¼ Err þ Ec c þ Ezz: (14)

In the previous studies [6,10], the expansion is regarded to
be constant in z. This is good for the coatings, while the z
dependence in the substrate, which is taken into account in

ψ

FIG. 1. A cylindrical mirror.
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our calculation, makes a nontrivial difference at low fre-
quencies. We will explain the details in Sec. IV.

In the case of thermorefractive noise, the heat source is
the change of the refraction index caused by the imaginary
entropy perturbation [5,6]

qTRc ¼ �i�
	eff

~�TF0

Cc

pðrÞ�ðzÞ; qTRs ¼ 0; (15)

where ~� is the wavelength of light, pðrÞ is the Gaussian
profile of the beam

pðrÞ ¼ 2


w2
0

e�2r2=w2
0 ; (16)

and 	eff is the effective temperature dependence of the
refraction index:

	eff ¼ n22	1 þ n21	2

4ðn21 � n22Þ
; (17)

with n1 and n2 as the refraction indices of two coating
materials (n1 > n2) and 	1 and 	2 as their temperature
dependence [20]. The delta function in Eq. (15) means that
the heat source exists in the very beginning of the coating
layers. See Ref. [5] for the details.

As is shown in Ref. [6], the heat sources through the
expansion and through the change of the refraction index
have opposite signs in the heat equation. Both the thermal
expansion rate � and the refraction-index change 	 are
positive constants, but the phase shifts due to the geomet-
rical expansion and the optical expansion are opposite.
Consequently, thermo-optic noise will be smaller than
thermoelastic noise or thermorefractive noise alone. We
will show the calculation result with a finite-size mirror in
Sec. VI.

D. Monolayer approximation

The calculation of thermal noise in this paper, as well as
other previous works, is based on the model that a single-
layer coating with the thickness of multilayer coatings is
attached on a substrate. For Brownian thermal noise, the
noise levels individually calculated with the silica coatings
and with the tantala coatings should be square summed.
For thermoelastic noise, as is done by Fejer et al. [10], we
should replace some groups of parameters by the averaged
value according to the following way:

ðXÞavg ¼ dS
d
XS þ dT

d
XT; (18)

where dk is the coating thickness of each material, d is the
total thickness, the subscripts S and T indicate silica and
tantala, respectively, and X, an operator to be averaged,
would be the heat source qc, the thermal diffusion �c in
Eq. (10), or the thermal conductivity �cCc in Eq. (12). For
thermorefractive noise, 	eff in Eq. (17) is already an aver-
aged quantity. In this paper, we use a single tantala coating
in Sec. IV and an averaged coating in Sec. VI.

We should note that using a monolayer coating is an
approximation even with the averaging. Although the
probe light is after all reflected by the coatings, some
fraction of it transmits through the first few layers before
reflected by a later layer. More rigorous calculation would
require solving the elastic equation and the heat equation
with as many boundary conditions as the number of layers,
and it would probably include some coherent cancellation
of the volume fluctuation and the fluctuation of the refrac-
tion index. We shall leave this to a future work.
In this paper, the optical length of each coating layer is a

quarter of the wavelength of the probing light. Recently,
Principe et al. has pointed out that the thermal-noise level
would decrease by tuning the layer thickness [21]. We shall
also leave this to a future work.

III. BROWNIAN THERMAL NOISE

Let us follow Bondu’s calculation to derive the strain
and stress tensors in a cylindrical substrate. The tensors of
coatings will be derived afterwards. The boundary condi-
tions are

Trzðr; z ¼ 0Þ ¼ 0;

Tzzðr; z ¼ 0Þ ¼ �F0pðrÞ;
Trrðr ¼ a; zÞ ¼ Trzðr ¼ a; zÞ ¼ 0;

Tzzðr; z ¼ hÞ ¼ Trzðr; z ¼ hÞ ¼ 0: (19)

The solution to the elastic equation [Eqs. (8) and (9)] with
the boundary conditions [Eq. (19)] is

ur ¼
X
m

AmðzÞJ1ðkmrÞ þ�ur; (20)

uz ¼
X
m

BmðzÞJ0ðkmrÞ þ�uz; (21)

with

km ¼ �m
a
;

�ur
F0

¼ �þ 2�

2�ð3�þ 2�Þ ðc0rþ c1rzÞ

þ �p0r

2�ð3�þ 2�Þ
�
1� z

h

�
;

�uz
F0

¼ ��

�ð3�þ 2�Þ
�
c0zþ c1z

2

2

�
� �þ 2�

4�ð3�þ 2�Þ c1r
2

� ð�þ�Þp0

�ð3�þ 2�Þ
�
z� z2

2h

�
þ �p0r

2

4�ð3�þ 2�Þh ;

and

c0 ¼ 6a2

h2
X
m

J0ð�mÞpm

�2m
; c1 ¼ �2c0

h
; p0 ¼ 1


a2
;

(22)

KENTARO SOMIYA AND KAZUHIRO YAMAMOTO PHYSICAL REVIEW D 79, 102004 (2009)

102004-4



where �m are zeros of the first-order Bessel function that
satisfy J1ð�mÞ ¼ 0, and

pm ¼ expð�k2mw
2
0=8Þ


a2J20ð�mÞ
; (23)

which satisfies

pðrÞ ¼ X
m

pmJ0ðkmrÞ þ p0: (24)

In Eqs. (20) and (21), Am and Bm are the functions of z

AmðzÞ ¼ �me
�kmz þ �me

þkmz

þ kmz

2

�þ�

�þ 2�
ð�me

�kmz þ 	me
þkmzÞ;

BmðzÞ ¼
�

�þ 3�

2ð�þ 2�Þ�m þ �m

�
e�kmz

þ
�

�þ 3�

2ð�þ 2�Þ	m � �m

�
eþkmz

þ kmz

2

�þ�

�þ 2�
ð�me

�kmz � 	me
þkmzÞ;

with the following constants:

�m ¼ pmð�þ 2�Þ
km�ð�þ�Þ

1�Qm þ 2kmhQm

ð1�QmÞ2 � 4k2mh
2Qm

;

	m ¼ pmð�þ 2�ÞQm

km�ð�þ�Þ
1�Qm þ 2kmh

ð1�QmÞ2 � 4k2mh
2Qm

;

�m ¼ � pm

2km�ð�þ�Þ
½2k2mh2ð�þ�Þ þ 2�kmh�Qm þ�ð1�QmÞ

ð1�QmÞ2 � 4k2mh
2Qm

;

�m ¼ � pmQm

2km�ð�þ�Þ
2k2mh

2ð�þ�Þ � 2�kmh��ð1�QmÞ
ð1�QmÞ2 � 4k2mh

2Qm

;

Qm ¼ expð�2kmhÞ:

The derivation is shown in Refs. [9,15]. Without �ur and
�uz, the solutions (20) and (21) would satisfy all the
boundary conditions but Trrðr ¼ a; zÞ ¼ 0. The additional
terms �ur and �uz make the difference approximately
zero. Actually, these terms become dominant in the noise
spectrum when we take the limit h � a.

Plugging Eqs. (20) and (21) into Eqs. (5) and (6), we get
the strain and stress tensor elements of the substrate. If we
put them into Eq. (4) and then into Eq. (3), the substrate
thermal noise would be calculated; the result is shown in
Ref. [9].

With the coatings, as is introduced by Harry et al. [8],
the boundary conditions between the substrate and the

coatings are

E0
rr ¼ Err; E0

c c ¼ Ec c ; E0
rz ¼ Erz;

T0
zz ¼ Tzz; T0

rz ¼ Trz;
(25)

where the elements with a prime (0) are for the coatings. At
the boundary and in the coatings, Eð0Þ

rz and Tð0Þ
rz are actually

zero. Since the coatings are thin, we can assume that the
strain and stress tensor elements are constant in terms of z.
After some algebra, the strain tensor elements of the coat-
ings are given as

E0
rr ¼

X
m

kmð�m þ �mÞ
2

½J0ðkmrÞ � J2ðkmrÞ� þ ð�þ 2�Þc0 þ �p0

2�ð3�þ 2�Þ ;

E0
c c ¼ X

m

kmð�m þ �mÞ
2

½J0ðkmrÞ þ J2ðkmrÞ� þ ð�þ 2�Þc0 þ �p0

2�ð3�þ 2�Þ ;

E0
zz ¼

X
m

� �1

�0 þ 2�0 kmJ0ðkmrÞ½�ð�m � 	mÞ þ ð�0 þ 2�Þð�m þ �mÞ�
�
� �0ð�þ 2�Þc0 þ ð��0 þ 3��þ 2�2Þp0

�ð3�þ 2�Þð�0 þ 2�0Þ ;

E0
rz ¼ 0; (26)
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then the stress tensor elements of the coatings are given as

T0
rr ¼ ð�0 þ 2�0ÞE0

rr þ �0ðE0
c c þ E0

zzÞ;
T0
c c ¼ ð�0 þ 2�0ÞE0

c c þ �0ðE0
zz þ E0

rrÞ;
T0
zz ¼ ð�0 þ 2�0ÞE0

zz þ �0ðE0
rr þ E0

c c Þ;
T0
rz ¼ 0: (27)

Putting these into

U0 ¼ 

Z a

0

Z d

0

X
i;j

E0
ijT

0
ijdzrdr ði; j ¼ r; c ; zÞ; (28)

and then into Eq. (3), we obtain the power spectrum of
coating thermal noise. Figure 2 shows the h dependence
and w0 dependence of the spectrum density

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxð�Þp

. One
can see that the noise level agrees to the result with an
infinite-size mirror, shown by dashed curves, with h suffi-
ciently larger than �a, and increases by h�2 as the mirror
becomes thin. The dotted curves in the top panel of Fig. 2 is
the result with the thin-plate calculation, which we intro-
duce in Appendix A. As h is sufficiently smaller than �a,
the results with a finite-size mirror and with a thin plate
coincide. Here, the frequency is 100 Hz, the mirror radius
is 2.5 cm, the beam radius in the top panel is 1 cm, the
thickness in the bottom panel is 2.5 cm, and the number of
the coating layers is 3 for tantala and 2 for silica; these are
the parameters for a quantum-measurement experiment at
Hannover [22].

Taking the limit a ! 1 and h ! 1, the strain and stress
tensors agree to what are shown in Ref. [8], and the noise
spectrum is given as

Sxð�Þ ¼ 4kBT

�

d


w2
0

� Y2
c ð1þ �sÞ2ð1� 2�sÞ2 þ Y2

s ð1þ �cÞ2ð1� 2�cÞ
Y2
s Ycð1� �2

cÞ
��c: (29)

For example, coating Brownian thermal noise of a mirror
in Advanced LIGO [23], a second-generation
gravitational-wave detector (a ¼ 17 cm, h ¼ 20 cm,
w0 ¼ 6:2 cm, and with 19 doublets of silica-tantala coat-
ings), with the finite-size analysis is �2:6% times smaller
than that with the infinite-size analysis.
Coating Brownian thermal noise can be numerically

obtained using the finite-element method, although it takes
longer. Yamamoto et al. calculated the w0 dependence of
coating Brownian thermal noise for a gravitational-wave
detector [24], and the result was identical to what we see in
the bottom panel of Fig. 2.

IV. THERMOELASTIC NOISE

The heat source of thermoelastic noise is the expansion.
The expansion of the substrate is calculated to be

�s

F0

¼ X
m

ðkmAmðzÞ þ B0
mðzÞÞJ0ðkmrÞ

þ 2

3�þ 2�
ðc0 þ c1zÞ � p0

3�þ 2�

�
1� z

h

�
; (30)

with B0
mðzÞ ¼ dBm=dz. The expansion of the coatings is

calculated from Eq. (26) as

�c

F0

¼X
m

� �1

�0 þ 2�0 kmJ0ðkmrÞ½�ð�m �	mÞ

þ 2ð���0Þð�m þ�mÞ�
�

þ ð�þ 2�Þ2�0c0 þ ð2��0 � 3��� 2�2Þp0

ð�0 þ 2�0Þ�ð3�þ 2�Þ : (31)

These expansions appear on the right side of the heat
equation

i��j � �j

@2

@z2
�j ¼ �i�

�jYjT

Cjð1� 2�jÞ�j: (32)

The homogeneous solution of the heat equation, which is
the solution of the left-hand-side of Eq. (32) being zero, is

�Hj ¼ Aj sinhð�jzÞ þ Bj coshð�jzÞ; (33)

where Aj and Bj are coefficients that will be derived with

the boundary conditions, and �j is the complex propaga-

tion constant given as

FIG. 2. Top: the h dependence, and bottom: the w0 dependence
of Brownian thermal noise. They agree to the previous results in
the thin limit and the thick limit.
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�j ¼ ð1þ iÞ
ffiffiffiffiffiffiffiffi
�

2�j

s
: (34)

The particular solution of the heat equation is given to
cancel the right-hand-side of Eq. (32). Reference [10] uses
an approximation that both�s and�c are constant in z, so
that the particular solution is simply

�Pj �� �jYjT

Cjð1� 2�jÞ�j ðz ’ 0Þ;

and the noise spectrum for the infinite-size mirror is de-
scribed in an elegant form. In this paper, however, we shall
calculate the noise spectrum without this approximation.
The particular solution for the substrate without the ap-
proximation is

�Ps ¼ � �sYsTF0

Csð1� 2�sÞ
�X

m

i�

i�� �sk
2
m

ðkmAmðzÞ

þ B0
mðzÞÞJ0ðkmrÞ þ 2

3�þ 2�
ðc0 þ c1zÞ

� p0

3�þ 2�

�
1� z

h

��
: (35)

The particular solution for the coatings is simply

�Pc ¼ � �cYcTF0

Ccð1� 2�cÞ�c; (36)

with �c in Eq. (31).
The complete solution is the sum of the homogeneous

and particular solutions

�j ¼ �Hj þ �Pj : (37)

There are four boundary conditions to be met, which are
(i) the heat flow at z ¼ 0 is zero, (ii) the heat flow at z ¼ h
is zero, (iii) the heat flows from the coatings to the substrate
and from the substrate to the coatings are equal, and (iv) the
temperature at the border is also equal:

ðiÞ �cCc

@�c
@z

��������z¼0
¼ 0; (38)

ðiiÞ �sCs

@�s
@z

��������z¼h
¼ 0; (39)

ðiiiÞ �cCc

@�c
@z

��������z¼d
¼ �sCs

@�s
@z

��������z¼d
; (40)

ðivÞ �c ¼ �sðdÞ: (41)

The coefficients in the homogeneous solution are then
given as

Ac ¼ 0;

Bc ’ �1=�s þ ð�2 � �Pc Þ
coshð�cdÞ þ R sinhð�cdÞ ;

As ’ �ð�1=�sÞ coshð�cdÞ þ ð�2 � �Pc ÞR sinhð�cdÞ
coshð�cdÞ þ R sinhð�cdÞ e�sd;

Bs ’ �As; (42)

where

R ¼ �cCc�c

�sCs�s

¼
ffiffiffiffiffi
�c

p
Ccffiffiffiffiffi

�s
p

Cs

; (43)

and also �1 ¼ @�Ps =@zjz¼d ’ @�Ps =@zjz¼0 and �2 ¼
�Ps ðdÞ ’ �Ps ð0Þ, namely,

�1 ’ �sYsT

Csð1� 2�sÞ
�X

m

�i�k2m
i�� �sk

2
m

�ð�m þ 	mÞ
�þ 2�

J0ðkmrÞ

� 1

3�þ 2�

�
2c1 þ p0

h

��
;

�2 ’ �sYsT

Csð1� 2�sÞ
�X

m

i�km
i�� �sk

2
m

�ð�m � 	mÞ
�þ 2�

J0ðkmrÞ

� 1

3�þ 2�
ð2c0 � p0Þ

�
: (44)

Here, we use two approximations. One is to ignore the
terms with e��sh in the presence of other terms in Eq. (42);
this is fine as far as the target frequency is higher than the
inverse of the relaxation time of the temperature gradient.
The other is to ignore the difference between e�kmd and
unity as well as to ignore the terms with d=h in Eq. (44);
this is fine if the beam radius is not as small as the order of
d. Just in case, the following are the terms that could be
added to each term in Eq. (42):

~B c ¼ � e��sðh�dÞ � ½@�Ps =@zjz¼h�
�s½coshð�cdÞ þ R sinhð�cdÞ� ;

~As ¼ ~Bc½sinhð�sdÞ coshð�cdÞ � R coshð�sdÞ sinhð�cdÞ�;
~Bs ¼ ~Bc½coshð�sdÞ coshð�cdÞ � R sinhð�sdÞ sinhð�cdÞ�:

(45)

Plugging the coefficients in Eq. (42) into the homogeneous
solution [Eq. (33)], adding the particular solution [Eqs.
(35) and (36)], and then putting �s and �c [Eq. (37)] into
the following equation:

W ¼ 2

�cCc

2T

Z a

0

Z d

0

��������@�c@z

��������2

dzrdrþ 2

�sCs

2T

�
Z a

0

Z h

d

��������@�s@z

��������2

dzrdr; (46)

we obtain the thermoelastic dissipating power, which with
Eq. (3) gives the power spectrum of thermoelastic noise.
Taking the limit a ! 1 and h ! 1, and ignoring the z

dependence of the expansion in the substrate, the noise
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spectrum agrees to the result of Ref. [10]

Sxð�Þ ¼ 16kBT
2dð1þ �sÞ2�2

sCc


C2
sw

2
0�

~�2ðg1 þ g2Þ; (47)

with

~� ¼ �cCs

2�sCc

1

1� �c

�
1þ �c

1þ �s

þ ð1� 2�sÞYc

Ys

�
� 1;

g1 ¼ ðsinh
� sin
Þ=ð
�DÞ;
g2 ¼ Rðcosh
� cos
Þ=ð
�DÞ;
�D ¼ ð1þ R2Þ cosh
þ ð1� R2Þ cos
þ 2R sinh
;


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�d2=�c

q
:

(48)

The noise spectrum with g1 is the contribution of the
dissipation in the coatings [the first term in Eq. (46)] and
that with g2 is the contribution of the dissipation in the
substrate [the second term in Eq. (46)].

A difference between our result and the result in
Ref. [10] according to the z dependence of the expansion
in the substrate could be compensated by adding substrate
thermoelastic noise of an infinite-size mirror derived with
the thin-coating approximation in Ref. [3]

Sxð�Þ ¼ 16kBT
2ð1þ �sÞ2�2

s�sffiffiffiffi



p
Csw

3
0�

2
: (49)

Here, we use the term substrate thermoelastic noise as what
is caused by the heat source in the substrate due to the z
dependence of the expansion, while coating thermoelastic
noise is by the heat source at the interface of the substrate
and the coatings due to the difference of the materials. Note
that both are contained in the �s term and are dissipated in
the substrate. Therefore, those two kinds of thermoelastic
noise in the substrate should be coherently summed up, and
our calculation offers a proper treatment by taking into
account the z dependence of the expansion in the substrate.
Equation (49) is derived from the dissipation of the heat
flow both in the r and z directions. Since our calculation
contains only that in the z direction, which is the more
significant one for coating thermoelastic noise, we shall
resolve Eq. (49) into two parts. Following the derivation of
substrate thermoelastic noise shown in Ref. [9], we can
easily find out that the dissipation of the heat flow in the r
direction and that in the z direction are equal, thus

SðrÞx ð�Þ ¼ SðzÞx ð�Þ ¼ 8kBT
2ð1þ �sÞ2�2

s�sffiffiffiffi



p
Csw

3
0�

2
: (50)

Figure 3 shows the h dependence of thermoelastic noise
at two different frequencies. In the top panel, at 100 Hz, as
h becomes small, the result with a finite-size mirror co-
incides to the level of substrate thermoelastic noise of a
thin plate. We can see a nontrivial difference in a broad
middle range between the result with our finite-size analy-
sis and previous results with the approximations. In the

bottom panel, at 10 kHz, as h becomes small, the result
with a finite-size mirror coincides to the level of coating
thermoelastic noise of a thin plate. The result with a finite-
size mirror coincides to the result with an infinite-size
mirror as h becomes large. Substrate thermoelastic noise
contributes more when the measurement frequency is low,
the mirror is thin, and/or the coating is less. Note that the
noise level with the finite-size analysis is larger than the
square sum of coating thermoelastic noise and substrate
thermoelastic noise due to their correlation.

V. THERMOREFRACTIVE NOISE

The heat source of thermorefractive noise is the change
of refraction index. The heat equation for thermorefractive
noise is

i��c � �c

@2

@z2
�c ¼ �i�

	eff
~�TF0

Cc

� e
�z=‘

‘
pðrÞ;

i��s � �s

@2

@z2
�s ¼ 0;

(51)

where we have replaced the delta function to e�z=‘=‘ with
an arbitrary small length ‘, which does not appear in the
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FIG. 3. Thermoelastic noise at 100 Hz (top panel) and at
10 kHz (bottom panel). The solid curve is thermoelastic noise
of a finite-size mirror caused by the heat both in the coatings and
the substrate. The black dotted curve is thermoelastic noise
caused by the heat in the coatings and the gray dotted curve is
the one by the heat in the substrate; both are with the thin-plate
calculation. The dashed curves are thermoelastic noise of an
infinite-size mirror. Substrate thermoelastic noise is calculated
only from the dissipation of the heat flow in the z direction.
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final result as far as it is sufficiently small. The boundary
conditions with a finite-size mirror are same as
Eqs. (38)–(41). The particular solution is

�Pc ¼ �i�

i�� �c=‘
2

	eff
~�TF0

Cc

e�z=‘

‘
pðrÞ

’ i�	eff
~�TF0

�cCc=‘
e�z=‘pðrÞ;

�Ps ¼ 0; (52)

and then the coefficients of the homogeneous solution,
which is in the same form as in Eq. (33), are derived

Ac ¼ i�
	eff

~�TF0

�cCc�c

pðrÞ;

Bc ¼ �i�
	eff

~�TF0

�cCc�c

pðrÞ�1R coshð�cdÞ þ �2 sinhð�cdÞ
�1R sinhð�cdÞ þ �2 coshð�cdÞ ;

As ¼ i�
	eff

~�TF0

�cCc�c

pðrÞ R�0

�2 coshð�cdÞ þ �1R sinhð�cdÞ ;

Bs ¼ � 1

�0

As; (53)

where

�0 ¼ 1� expð�2�shÞ
1þ expð�2�shÞ ð’ 1Þ;

�1 ¼ coshð�sdÞ � �0 sinhð�sdÞ;
�2 ¼ �0 coshð�sdÞ � sinhð�sdÞ:

(54)

As �0 ’ 1, thus �1 ’ �2, Eq. (53) can be more simplified.
In fact, after the simplification, none of the coefficients
contains h. The thermorefractive-noise level with a finite-
size mirror is then almost same as that with an infinite-size
mirror

Sxð�Þ ¼ 2
ffiffiffi
2

p
kBT

2ffiffiffiffiffi
�

p �2

�D

1ffiffiffiffiffi
�c

p
Cc

1


w2
0

	2
eff

~�2; (55)

where

�2 ¼ ð1þ R2Þ sinh
þ ð1� R2Þ sin
þ 2R cosh
; (56)

and �D has been given. We introduce �2 earlier than �0 and
�1, which will be shown in Sec VI, in order to keep the
same notation as Ref. [6].

VI. THERMO-OPTIC NOISE

It has been pointed out by Evans et al. that thermoelastic
noise and thermorefractive noise should be coherently
added with proper treatment due to their common origin;
it is now called thermo-optic noise [6]. In Secs. IV and V,
we have studied the behavior of these two kinds of noise
and derived the individual noise levels, but what should be
used for the noise estimation is the result in this section.
The heat equation of thermo-optic noise has both thermo-

elastic heat source and thermorefractive heat source on the
right-hand side:

i��c � �c

@2

@z2
�c ¼ �i�

	eff
~�TF0

Cc

� e
�z=‘

‘
pðrÞ

� i�
�cYcT

Ccð1� 2�cÞ�c;

i��s � �s

@2

@z2
�s ¼ �i�

�sYsT

Csð1� 2�sÞ�s:

(57)

The homogeneous solution is in the same form as Eq. (33).
The particular solution for the coatings is

�Pc ¼ i�	eff
~�TF0

�cCc=‘
e�z=‘pðrÞ � �cYcT

Ccð1� 2�cÞ�c; (58)

and the particular solution for the substrate is the same as
what we have derived for thermoelastic noise [Eq. (35)].
The boundary conditions with a finite-size mirror are same
as Eqs. (38)–(41). Let us use the approximations (45) and
(54), which have been proven to be safe in the individual
calculations for thermoelastic noise and thermorefractive
noise. The coefficients of the homogeneous solution are
then given as

Ac ¼ i�
	eff

~�TF0

�cCc�c

pðrÞ;

Bc ’ �1=�s þ ð�2 þ�1Þ
coshð�cdÞ þ R sinhð�cdÞ ;

As ’ �ð�1=�sÞ coshð�cdÞ þ ð�2 þ�2ÞR sinhð�cdÞ
coshð�cdÞ þ R sinhð�cdÞ e�sd;

Bs ’ �As; (59)

where

�1 ¼ �cYcT

Ccð1� 2�cÞ�c � i�	eff
~�TF0

�cCc�c

pðrÞ½sinhð�cdÞ
þ R coshð�cdÞ�;

�2 ¼ �cYcT

Ccð1� 2�cÞ�c þ i�	eff
~�TF0

�cCc�c sinhð�cdÞpðrÞ: (60)

One can see that the coefficients in Eq. (59) coincide to
those in Eq. (42) if a thermorefractive constant 	eff is
supposedly erased, and they coincide to those in Eq. (53)
if thermoelastic constants �c and �s are erased.
As we have done in the previous sections, plugging �s

and �c with the coefficients in Eq. (59) into the following
equation:

W ¼ 2

�cCc

2T

Z a

0

Z d

0

��������@�c
@z

��������2

dzrdrþ 2

�sCs

2T

�
Z a

0

Z h

d

��������@�s
@z

��������2

dzrdr;

we obtain the thermo-optic dissipating power, which with

COATING THERMAL NOISE OF A FINITE-SIZE . . . PHYSICAL REVIEW D 79, 102004 (2009)

102004-9



Eq. (3) gives the power spectrum of thermoelastic noise.
Taking the limit a ! 1 and h ! 1, and ignoring the z
dependence of the expansion in the substrate, the noise
spectrum agrees to the result of Ref. [6]

Sxð�Þ ¼ 2kBT
2

�

1


w2
0

1

Cc

1


d

1

�D

½�0ð��dÞ2 � �1��d

� 	eff
~�
þ �2ð	eff

~�
Þ2�; (61)

where

�� ¼ 2�sð1þ �sÞCc

Cs

~�; (62)

and

�0 ¼ 2ðsinh
� sin
Þ þ 2Rðcosh
� cos
Þ;

�1 ¼ 8 sin



2

�
R cosh




2
þ sinh




2

�
:

(63)

See Eq. (48) for ~�, and Eqs. (48) and (56) for �D and �2,
respectively.

With the averaging, some of the constants in Eq. (61)
should be replaced as follows:

�� ! � �� ¼ ��c � 2�sð1þ �sÞCc

Cs

; (64)

with

�� c ¼
�
�c

1þ �s

1� �c

�
1þ �c

1þ �s

þ ð1� 2�sÞYc

Ys

��
avg

; (65)

and

Cc ! �Cc ¼ CS

dS
d
þ CT

dT
d
;

�c ! ��c ¼ 1
�Cc

�
1

�SCS

dS
d
þ 1

�TCT

dT
d

��1
;

(66)

then 
, �c, and R should be replaced to the averaged
constants with these new Cc and �c.

The averaging can be done for the calculation with a
finite-size mirror as well. With proper treatment, �1 and
�2 are replaced to

��1 ¼ 1

Cc

�
�cYcT

1� 2�c

�c

�
avg

� i�	eff
~�TF0

�cCc�c

pðrÞ½sinhð�cdÞ

þ R coshð�cdÞ�;
��2 ¼ 1

Cc

�
�cYcT

1� 2�c

�c

�
avg

þ i�	eff
~�TF0

�cCc�c sinhð�cdÞpðrÞ: (67)

Replacing Cc, �c, 
, �c, and R to the averaged constants
shown above as well, we obtain the noise spectrumwith the
multilayer coatings of adequate accuracy.

Figure 4 shows the noise spectra of thermo-optic noise
with a finite-size mirror and an infinite-size mirror. Here,
the averaged coatings are used. Compared with the result
with an infinite-size mirror [6], thermo-optic noise with a

finite-size mirror is larger at low frequencies and smaller at
high frequencies according to the difference in thermoelas-
tic noise, while thermorefractive noise is same.
It is worth noting that there is a small, conceptual

difference in the treatment of the two kinds of heat source
for thermo-optic noise between this paper and Ref. [6].
Rigorously speaking, it is an imaginary force that should
be injected to calculate thermoelastic noise, and it is
imaginary entropy to calculate thermorefractive noise. In
Ref. [6] it may seem like the entropy is injected for both
purposes, and in our paper it may seem like the force is
injected for both purposes. In fact, which imaginary quan-
tity is injected does not matter since the conversion from
the temperature fluctuation to displacement noise on the
surface can be simply done by multiplying some constants.
This is true as far as the stress inside the coating is uniform,
or in other words, all the light is regarded to be reflected at
the surface of the first coating layer.

VII. SUMMARY

We demonstrated the calculation of Brownian thermal
noise and thermo-optic noise (thermoelastic noiseþ
thermorefractive noise) of the coatings on a finite-size
cylindrical mirror. We used a method developed by
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FIG. 4. Thermo-optic-noise spectrum of each mirror in a
Fabry-Perot arm cavity of Advanced LIGO detector [23]. The
mirror radius is 17 cm and the mirror thickness is 20 cm. The
beam radius is 5.5 cm on the input test mass and 6.2 cm on the
output test mass. The input test mass has 8 doublets, and the end
test mass has 19 doublets of silica-tantala coatings.
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Bondu et al. based on the fluctuation-dissipation theorem
to calculate the elastic response of the mirror, and extended
it with the coatings. Comparisons with the previous calcu-
lations of thermal noise with an infinite-size mirror and
with the independent calculation with a thin-plate validate
our results with a finite-size mirror. We showed how
Brownian thermal noise and thermoelastic noise increase
if the mirror becomes thin. We treated all the heat sources
in the coatings and the substrate coherently, and the results
give us the most accurate estimate of coating thermal
noise.
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APPENDIX A: THERMAL NOISE OF ATHIN
PLATE

We calculate thermal noise of a thin plate based on the
study by Yamamoto et al. [25]. The noise level can be
calculated with the modal-expansion method easily as the
contribution of higher order modes is extremely small in
the case of a thin mirror. This method is quite independent
from the method we have shown in the main body of this
paper, and the agreement of the results validates the cal-
culation with a finite-size mirror.

1. Brownian thermal noise

With the modal-expansion method, the noise spectrum
of the thermal motion in the first mode is given by

Sxð�Þ ¼ 4kBT

m1!
2
1Qeff

1

�
; (A1)

where m1 and !1 are the effective mass and the resonant
frequency of the first mode, respectively, and Qeff is the
effective Q value of the coatings, which can be derived
from the intrinsic loss angle and a compensation factor to
adjust the elastic energy in the coatings to the total elastic
energy [26]:

1

Qeff

¼ 3Ycd

Ysh
�c: (A2)

In the case of the thin-mirror analysis, contributions from
the higher order modes are negligible, so that we can just
calculate the contribution from the first mode. The elastic
equation is

� h2Ys

12ð1� �2
s Þ
42 $1ðrÞ ¼ ��s!

2
1$1ðrÞ; (A3)

with$1ðrÞ as the one-dimensional displacement of the first

mode and �s as the density of the substrate. The boundary
conditions are [27]

d

dr

�
d2$1

dr2
þ 1

r

d$1

dr

���������r¼a
¼ 0;

d2$1

dr2
þ �s

r

d$1

dr

��������r¼a
¼ 0;

(A4)

which gives the resonant frequency as

!1 ¼ �2
1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ysh

2

12�sð1� �2
s Þ

s
; (A5)

where �1 ¼ 2:9493 is a solution of

2ð1� �sÞ
�1

J1ð�1Þ � J0ð�1Þ � J1ð�1Þ
I1ð�1Þ I0ð�1Þ ¼ 0; (A6)

with Jnð�1Þ and Inð�1Þ as the Bessel function and the
modified Bessel function of the first kind, and then $1 is
given as

$1 ¼ J0

�
�1

r

a

�
� J1ð�1Þ

I1ð�1Þ I0
�
�1

r

a

�
: (A7)

The effective mass is calculated from

m1 ¼
R
�sj$1j2dV

jR$1pðrÞdSj2
: (A8)

Plugging Eqs. (A2), (A5), and (A8) into Eq. (A1), we
obtain the spectrum of Brownian thermal noise in the
coatings of a thin plate.

2. Thermoelastic noise

Let us first derive thermoelastic noise caused by the heat
in the coatings. Here, we use the thin-coating approxima-
tion, and also we assume a monolayer tantala coating. The
solution of the heat equation can be resolved into the sum
of functions that meet the boundary conditions that the heat
flow should be zero at z ¼ 0 and z ¼ h, then,

�s ¼
X
n

An

ffiffiffi
2

h

s
cos

�
n
z

h

�
: (A9)

Plugging this into the heat equation, we get

An ¼ �i�

i�þ �sðn
=hÞ2
�effYsTd

Csð1� 2�sÞ��
ffiffiffi
2

h

s
;

�eff ¼ �c

Ycð1� �sÞ
Ysð1� �cÞ � �s

Cc

Cs

;

� ¼ � 1� 2�s

1� �s

h

2

�
d2$1

dr2
þ 1

r

d$1

dr

�
:

(A10)

The dissipation power is then given as

W ¼
Z �sCs

2T

��������@�s@z

��������2

dV; (A11)
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and the total energy is

Etot
1 ¼ Ysh

3

24ð1þ �sÞð1� �sÞ
�Z ��������d

2$1

dr2
þ 1

r

d$1

dr

��������2

rdr

� 2ð1� �sÞ
Z ��������d

2$1

dr2
1

r

d$1

dr

��������rdr
�
: (A12)

As the lost energy in one period is the total energy multi-
plied by 2
�, the loss angle of the first mode caused by the
heat source in the coatings is given as

�coa
1 ¼ W

!1E
tot
1

¼ Ys�
2
effT

Cs

1þ �s

1� �s

6d2

h2
B1

X
n

��n2

ð��Þ2 þ n4
;

(A13)

where � ¼ h2=ð�s

2Þ and

B1 ¼
Z ��������d

2$1

dr2
þ 1

r

d$1

dr

��������2

rdr

�Z ��������d
2$1

dr2
þ 1

r

d$1

dr

��������2

rdr

� 2ð1� �sÞ
Z ��������d

2$1

dr2
1

r

d$1

dr

��������rdr
��1

; (A14)

which is numerically calculated to be 1.47 232.
Substituting 1=Qeff in Eq. (A2) to �coa

1 , we obtain coating
thermoelastic noise. Note that the thin-mirror approxima-
tion let some errors in the result with a thin plate at high
frequencies due to the thin-coating approximation; for
example, at frequencies higher than �1 kHz with a ¼
17 cm, h ¼ 5 cm, w0 ¼ 6:2 cm, and N ¼ 19. It is not a
problem in Fig. 3 as the number of coatings is only 3.

For thermoelastic noise caused by the heat source in the
substrate, the loss angle of the first mode is given as

�sub
1 ¼ Ys�

2
sT

Cs

1þ �s

1� �s

B1

��

1þ ð��Þ2 ; (A15)

the derivation of which is shown in Ref. [28]. Substituting
1=Qeff in Eq. (A2) to �sub

1 , we obtain substrate thermo-
elastic noise.

APPENDIX B: LIST OF THE PARAMETERS

(i) Coating loss angle �c

SiO2 : 1:0� 10�4, Ta2O5 : 4:0� 10�4

(ii) Thermal conductivity kj
SiO2 : 1:38 W=m � K, Ta2O5 : 33 W=m � K

(iii) Thermal expansion rate �j

SiO2 : 5:1� 10�7=K, Ta2O5 : 3:6� 10�6=K
(iv) Specific heat per volume Cj

SiO2 : 1:64�106 J=K�m3, Ta2O5 : 2:1�106 J=K�m3

(v) Thermal diffusivity �jð¼ kj=CjÞ
(vi) Young’s modulus Yj

SiO2 : 7:2� 1010 N=m2, Ta2O5 : 1:4�1011 N=m2

(vii) Poisson ratio �j

SiO2 : 0:17, Ta2O5 : 0:23
(viii) Refraction index nj

SiO2 : 1:45, Ta2O5 : 2:06
(ix) Temperature dependence of the refraction index 	j

SiO2 : 8� 10�6=K, Ta2O5 : 14� 10�6=K
(x) Density �

SiO2 : 2200 kg=m3

(xi) Wavelength of light ~� 1064 nm (Nd:YAG laser)
(xii) Temperature T 300 K
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