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Regular Paper

A Compact Speech Decoder Based on

Pure Functional Programming

Takahiro Shinozaki,
†1,†2,†3

Masakazu Sekijima,
†1

Shigeki Hagihara
†1 and Sadaoki Furui

†1

The history of automatic speech recognition started with small vocabulary,
isolated word recognition tasks. It has now been improved to work for continu-
ous speech recognition tasks with a large vocabulary. One of the core software
in a speech recognition system is called a decoder, which takes speech feature
sequence as an input, searches for a word sequence that best matches to the
input, and outputs the sequence. Possible number of word sequences exponen-
tially increases according to the length of input speech. Therefore, an efficient
search strategy is required. Source code of existing decoders is complex and
amounts to more than 10000 lines. Because of the complexity of the software,
it is a bottleneck for speech researchers to modify an existing decoder to try
a new idea. Seeking for a new framework to compactly describe a decoder
for prototyping and educational purposes, we have applied the pure functional
programming. Our developed pure functional decoder is written in Haskell and
named ”Husky”. Thanks to the high abstraction ability of the pure functional
language, Husky has only 400 lines, which is significantly smaller than exist-
ing decoders. In this paper, we first briefly introduce the basics of the speech
recognition algorithm. Then, the design and implementation of Husky are de-
scribed. Finally, the performance of Husky is demonstrated by large vocabulary
continuous speech recognition experiments.

1. Introduction

Automatic speech recognition is a technique to convert spoken words to text.
Today’s speech recognition systems are based on noisy channel model1). That is,
we encode a word sequence to speech waveform through our throat and mouth
changing their shapes by muscles. Because the encoding always have variation,
the waveform varies even for the same word sequence. Speech recognizers receive
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†3 Moved to Chiba University

the waveform and try to guess the original word sequence based on statistical
models that model the relationship between word sequences and speech wave-
form. In 1960’s, the research of speech recognition centered on simple tasks like
recognizing a small number of (order of 10-100 words) isolated words2). After a
half century, now the speech recognition systems have been improved to handle
continuously spoken large vocabulary tasks (order of 10000 to 1000000 words).

With the accumulation of the technological progress, an emerging problem is
the complexity of software that implements the up-to-date speech recognition
systems. In order to investigate a new statistical model or a new idea in the
research of speech recognition, it is often required to modify existing software to
train statistical models and to perform recognition experiments. However, such
software is large and complex, and it takes a lot of time to understand where to
modify. This is a bottleneck for speech processing research and even a barrier
for researchers in related areas who are interested in speech recognition.

One possible approach to this problem is to prepare software libraries to ma-
nipulate statistical models used in speech recognition. By developing a program
based on the library functions, the required effort for the coding can be largely
reduced. However, it is difficult to design library functions predicting all possi-
ble future extensions. Therefore, it is often the case that the new idea requires
modifications of the library functions and this sometimes requires a lot of effort
when the library is large and complex.

Another approach is to develop a single software that supports a generalized
statistical framework that includes statistical models used in speech recognition
systems. Software that implements Bayesian network3) can be regarded as an
example of this approach. The framework of Weighted Finite State Transducer
(WFST)4) also provides a generalized framework to represent statistical models
and is used to implement speech decoders, which is a software to perform speech
decoding. Given such software, various statistical models can be investigated
without modifying its program code as far as they fit in the supported class of
models. However, once a new model or a training/decoding algorithm goes be-
yond the existing framework, a modification to existing software is again required
(eg.5) etc.). The WFST framework has also an effect to simplify the software
structure to implement decoders compared to other conventional approaches,



2

and thus reduces the effort to extend an existing code. However, existing WFST
decoders written in procedural languages are still have large code sizes.

Apart from speech recognition, pure functional programming has been studied
in the software engineering area as a next generation programming paradigm6).
In the functional programming, a program consists of functions where a func-
tion can be an argument of another function or can be a returned value. In the
pure functional programming, there is no side effect with function application
unlike the procedural programming. Because of this, lazy evaluation is easily
adopted as its evaluation scheme7). By using lazy evaluation, it is possible to
separate a structure of function’s relationship and the actual timing of computa-
tion. These properties of the pure functional programming provide mechanisms
for higher abstraction and modularization in software description. Moreover, the
pure functional programming is said to be advantageous in parallel processing in
the future since there is freedom in the order of function evaluation. While the
history of the research on pure functional programming is long, it is just recent
that practical pure functional programming has become possible.

By applying the pure functional programming to describe a WFST based speech
recognition system, it is expected that the system can be described compactly
in a highly abstracted manner. By using that system as a baseline, any mod-
ification would be possible with minimum effort. However, the pure functional
programming is quite different from procedural programming as it does not have
variables, and it is not clear how it can be applied to describe a large vocabulary
continuous speech recognition system. In this study, we empirically investigate
the application of the pure functional programming to describe a speech recog-
nition system. A pure functional WFST decoder “Husky” is implemented and
evaluated.

The organization of this paper is as follows. The basics of speech recognition is
described in Section 2. Some central concepts of the pure functional programming
is briefly reviewed in Section 3. The design of our pure functional decoder is
shown in Section 4. Experimental conditions are described in Section 5 and the
evaluation results are shown in Section 6. Conclusions and future works are given
in Section 7.

2. Principles of automatic speech recognition

In a speech recognition system, speech features that represent speech charac-
teristics are first extracted from speech waveform. Then, a word sequence that
best matches to the speech features is searched based on statistical models. The
statistical models are kinds of knowledge of speech and language that are stored
in a computer. In the following, their principles are overviewed.

2.1 Feature extraction
Speech waveform obtained from a microphone is a one dimensional sequential

data as shown in Figure 1. To analyze the waveform, it is sliced into overlapping
fixed-length small segments. The typical length of the segment is 25ms and the
overlap is 15ms (in other words, each segment shifts at 10ms). The Fourier
transform is applied at each segment to obtain a power spectrum vector. A
graph obtained by the sequence of power spectrum vectors is call a spectrogram.
Figure 2 is an example of spectrogram obtained from the speech waveform shown
in Figure 1. The time-frequency power pattern represents speech characteristics.
For speech recognition, a couple of more transforms are applied to the spectrum
vector to better extract speech characteristics and a feature vector is obtained.
Typically, the dimension of the feature vector is around 20 to 40. Several features
have been investigated. One of the popular features is Mel-Frequency Cepstrum
Coefficients (MFCC)8).

When the shift of the segment is 10ms, 100 feature vectors are produced for
every second. Time step using the shift as a unit is called a frame. In other
words, there are 100 frames per second when the shift is 10ms.

2.2 Maximum a posteriori (MAP) decoding
Let X be a sequence of feature vectors x1, x2, · · · , xT and W be a sequence of

words w1, w2, · · · , wN , where T is the number of frames of the speech and N is
the length of the word sequence. It is assumed that all the words are members of
a vocabulary V . In the framework of maximum a posteriori decoding, the word
sequence that has the maximum a posteriori probability is searched9) as shown
in Equation (1). For continuous speech recognition, the number of words N is
not known and is decided as part of the search. The role of a speech decoder
software is to perform the argmax operation given an input X and output the
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Fig. 1 An example of speech waveform. The horizontal axis is time and the vertical axis is
amplitude of the signal.

Fig. 2 Spectrogram obtained from speech waveform shown in Figure 1. The horizontal axis
is time and the vertical axis is frequency.

searched word sequence W ∗.
W ∗ = argmax

W
P (W |X) (1)

≈ argmax
W

PΛ (W |X) (2)

= argmax
W

PAM (X |W )PLM (W ) (3)

≈ argmax
W,S

((
T∏

t=1

Pobs (xt|st)

)
Ptrn (S|W )

)
PLM (W ) (4)

Since the true probability P (W |X) is not known, it is approximated by a prob-
ability score PΛ (W |X) evaluated by using a speech model Λ as shown in Equa-
tion (2). Usually, it is decomposed as shown in Equation (3) using the Bayes’
theorem. PAM is referred to as acoustic model and it models the relationship
between word symbols (or phone symbols associated to the words) and feature
vectors. PLM is called a language model and it models how the word sequence
likely to occur in a language. Usually, hidden Markov model (HMM) is used as
the acoustic model10). When HMM is used, Equation (3) is further approximated
as shown in Equation (4), where S = s1, s2, · · · , sT is called a state sequence.
The HMM state st is an element of a state set {ps1, ps2, · · · , psM} where M is
the number of total states and psm is a state name. Pobs (xt|st) and Ptrn (S|W )
are referred to as state observation probability and state transition probabil-
ity, respectively. For the language model, N-gram model is often used11). The
parameters of these models are estimated using speech and text databases.

The search space of the Equation (3) is prohibitively huge. For example, if
the vocabulary size |V | is 10000 and the number of words N is 10, the possible
number of word sequences is 1000010 = 1040. Therefore, an efficient search algo-
rithm is required that utilizes the structure of the speech model and adopts some
approximations. Many approaches have been investigated for this purpose12).
Among them, WFST based speech decoders4) are getting popular since WFST
gives mathematically organized flexible framework. Details of WFST-based de-
coding is described in the next subsection.

2.3 Weighted finite state transducer (WFST)
WFST is a finite state machine with input and output symbols, and transition

weights. Figure 3 shows an example of WFST that has {“sil′′, “b′′, “i′′, “g′′, “t′′}
as input symbols and {“bit′′, “bat′′, ε} as output symbols. A special symbol ε

represent the null symbol. Many of the statistical model components in speech
recognition systems can be represented as a WFST. Moreover, once they are
represented as a WFST, they can be composed to a single WFST using mathe-
matically defined operations.

When a WFST of HMM state transitions and a WFST of a N-gram language
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Fig. 3 An example of a WFST. In this case, an input phone state symbol is either “b”, “i”, “g”, “t”, or “sil” and an output word
symbol is either “bit” or “bat”. “-” indicates ε (null) symbol. A number associated to each arc is a weight of the transition.
State 0 is an initial state and state 5 is a final state.

model are composed in this order�1, the input symbol of the composed WFST
is an HMM state, and the output symbol is a word or ε. Let p be a path that
starts from the initial WFST state and ends at the final state. Also, let the input
symbol sequence along p be S = I (p) and the corresponding output symbol
sequence be W = O (p). Then, the WFST weight score accumulated along p

is equal to Ptrn (S|W )PLM (W ) because of the WFST construction. When it
is applied to speech recognition, state observation score Pobs (xt|st) is computed
and the result is combined with the WFST score to search the best word sequence
W ∗ as shown in Equation (5), which is equivalent to Equation (4).

P ∗ = argmax
P

(
T∏

t=1

Pobs (xt|st)

)
Ptrn (S|W )PLM (W ) ,

W ∗ = O (P ∗) (5)

In order to efficiently compute Equation (5), a graph called lattice is useful.
Figure 4 shows an example of a lattice. The horizontal axis of the lattice is the
feature vectors of an utterance aligned to time frames and the vertical axis is the
WFST state. In the lattice, node at k-th row and t-th column corresponds to

�1 When a pronunciation dictionary is used that defines a mapping from a word to its pro-
nunciation, it is also converted to WFST and is integrated.

k-th WFST state and t-th time frame. An arc from (k,t− 1) node to (k′,t) node
corresponds to a WFST arc from k-th WFST state to k′-th WFST state at time t.
The arc has the same weight as the corresponding WFST arc. The arc also has an
observation score Pobs (xt|s), where s is the input label of the WFST arc and xt is
the feature vector at time t. By multiplying these WFST weight and observation
scores along a path p on the lattice from the initial node (0,0) to the final node (K,
T ), a score that is equal to

(∏T
t=1 Pobs (xt|st)

)
Ptrn (S|W )PLM (W ) is obtained.

Therefore, finding a maximum score path on the lattice is equivalent to computing
Equation (5). By taking a log of the weight and the observation scores, the
products are converted to summations. By multiplying −1 to these log-domain
scores to negate, the problem is converted to finding a minimum score path. To
efficiently find the minimum score path, dynamic programming can be used.

Figure 5 is a pseudo code for a dynamic programming based minimum score
path search algorithm. The scores mentioned in the code are the negative log
score. In the code, lattice arc is a data structure that include input/output
symbols and the weight of the corresponding WFST arc. The function “Insert”
inserts (arc, score) pair to the hypothesis list according to the ending node of the
arc. That is, if there is no arc with the same ending node in the list, it simply
add the pair to it. However, if an arc with the same ending node already exist in
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Fig. 4 An example of a lattice. In the lattice, node at k-th row and t-th column corresponds to k-th WFST state and t-th time
frame. An arc from (k,t − 1) node to (k′,t) node corresponds to a WFST transition from k-th state to k′-th state at time
t. The zero-th feature vector is a dummy.

the list, it holds either of the pairs with smaller score. The function “Expand”
returns new (arc, score) pairs for arcs starting from the ending node of the given
arc. The new score is a sum of the score of the original pair, WFST weight score
of the new arc, and observation score for the input label and the feature vector
at that time frame. The function “Append” appends a list of hypothesis to the
current partial lattice. The process proceeds step by step according to the time
frame. When all the frames are processed, the minimum score path is obtained
by backtracking the lattice by choosing the arc with the lowest accumulated score
one by one along the ending node to the initial node. This algorithm is called
frame synchronous one-pass search.

In real application to speech recognition, a handling of ε input symbol is also
required. When there is a WFST arc with an ε input symbol, a transition occurs
without consuming a time frame, which corresponds to a vertical transition in
the lattice.

3. Pure functional programming

In the procedural programming, such as C and C++, a program has a state
that is represented by variables, and the variables are updated step by step in the
program execution. Depending on the state, the same function with the same
arguments can result in different values at different times.
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1 // Initialize a hypothesis list hyps with a single element (0,0) .
2 hyps := (); // list of a pair of ( lattice arc , accumulated score)
3 lattice := () ; // list of hyps
4 Insert(hyps, (dummyInitArc, 0.0)); // dummy arc to the initial lattice state (0,0) with score 0.0.
5 // Main loop
6 for t:=1 to T do
7 begin
8 hypsTmp := ();
9 for h in hyps do

10 begin
11 Insert(hypsTmp, Expand(h, x[t]));
12 end;
13 hyps := hypsTmp;
14 Append(lattice, hyps);
15 end;
16 bestPath := Backtrack(lattice);

Fig. 5 A pseudo code for a dynamic programming based minimum score path search algorithm.

In contrast to the procedural programming, there is no variable in the pure
functional programming and the function has no side effect. It is originated from
the lambda calculus and has a long history, but it has mainly been interested
in academic research. However, with the development of practical languages
such as Haskell13) and Clean, it has recently started to be used in engineering.
The concepts that characterize the pure functional programming include pure
functions, first-class functions, recursion and lazy evaluation. They are briefly
described in the following subsections.

3.1 Pure functions
Pure functions have no side effect. In the pure functional programming, all

functions are pure functions. Therefore, a function always returns the same
value when the same arguments are given. This contributes to reduce bugs and
increases freedom of the compiler for optimization.

A problem is how to deal with input/output (I/O). It is necessary in practical

programming to read data in a file. However, if a “fileRead” function takes a file
name as its argument and returns the data in the file, the function is no longer
pure. This is because a returned value of the function depends on the contents
of the file, which is not an argument of the function. In Haskell, this problem is
solved by using monads14). A monad is a kind of abstract data type constructor
used to represent computations. By using a monad, Haskell separates I/O with
other part of the program keeping the pureness of the program.

3.2 First-class functions
In the functional programming, functions can be arguments as well as returned

values of other functions. An example of such a function in calculus is the deriva-
tive operator, which takes a function and returns another function.

3.3 Recursion
In the pure functional programming, there is no variable. Therefore, there is

no syntax to represent “for” or “while” loop. Instead, iteration is accomplished
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via recursion. Recursive functions invoke themselves to repeat an operation. In
general, recursion needs a stack to keep track of the recursive function calls and
consumes memory. However, a special case is tail recursion where the recursive
call is made at the end of the function. In this case, the stack is not necessary
and memory can be saved.

3.4 Lazy evaluation
When arguments of a function are evaluated before the function is called, it

is called strict evaluation. Conversely, when evaluation of arguments is delayed
until the last possible moment, it is called lazy evaluation. Lazy evaluation
contributes to improve the modularity by giving a means to separate connections
of functions and actual timing of the computation. With lazy evaluation, it is
possible to define a large or even infinite data structure and pass it to other
function, and still get efficient execution. The match of lazy evaluation with
variable substitution is unfortunately not good, and it is specifically used in
the pure functional programming. In Haskell, a programmer can choose the
evaluation strategy. The default is lazy evaluation.

4. Design of a pure functional decoder “Husky”

4.1 Specification
Our functional decoder “Husky” is based on WFST and implemented using

Haskell. It takes an AT&T format WFST definition file4), an HTK format HMM
state definition file15), a list of feature files, and a configuration file as command
line arguments. The I/O is implemented using a monad. In the program, a data
structure that represents whole contents of a speech file is passed to a decoding
function. However, because of the lazy evaluation, contents of the file is actually
read step by step.

4.2 Search algorithm
The decoding algorithm implemented in Husky is a frame synchronous one-

pass search that is described in Section 2.3. The search proceeds by expanding a
hypothesis list step by step from the first feature frame to the last. Initially, the
hypothesis list has a single element of a pair of dummy arc to the initial state and a
score 0.0. Then, summation of a weight and a observation score that corresponds
to the input symbols and a feature vector at that time frame are computed for

all the arcs that start from the ending nodes of arcs in the hypothesis list. After
that, the hypothesis list is updated. To reduce the computational cost, the beam
search strategy is used where the hypothesis having too large accumulated scores
compared to others are removed from the hypothesis list.

A pseudo Haskell code is shown in Figure 6. The main “decode” function
takes a WFST definition, an HMM state definition, and a feature sequence as
arguments (line 2 in the code), and it applies a sub function “decodeSub” which is
a tail recursion. “expand” expands the hypothesis list, and the result is appended
to the lattice of that stage (line 5). For each recursive application of decodeSub,
the feature frame proceeds one by one. When all the feature frames are processed,
a lattice is returned (line 4). Output word sequence is obtained by backtracking
the lattice from the last frame to the first.

4.3 Data structure
In the pure functional programming, there is no variable and it is impossible

to update a value of a variable. This means, if a specific element of an array
need to be updated, a new array needs to be generated where all but one element
has a different value from the original one. When the array is large, this causes
huge waste of memory and CPU. One solution is to use monad to update arrays,
and the other is not to use arrays. By using data structures such as lists and
trees, it is possible to generate a whole new structure with one element being
updated in the appearance, and share large part of its body with the original
in the backyard. Despite of the disadvantage, arrays are still useful in the pure
functional programming when it is used as a constant. Once it is initialized, read
access to an element of an array is efficient as it is O (1).

In Husky, the WFST network and the HMM state definitions are stored in
arrays as they are constant during the decoding once they are initialized. The
hypothesis list is implemented as a tree, since it needs to be continuously updated.

In decoding, observation score is repeatedly computed for the same HMM state
and the same feature vector. Therefore, it is important to have some caching
mechanism. One solution is to prepare an array at each frame whose element is
observation score for an HMM state. With the lazy evaluation, only the referred
elements are actually computed. Another solution is to use a library function
that implements memoization13) that has the same effect. The latter strategy is
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1 decode :: WFST −> HMMSTATE −> FEATURESEQ −> LATTICE
2 decode wfst hmmStates featureSeq = decodeSub featureSeq (initializeLattice ( initialState wfst))
3 decodeSub featureSeq2 lattice
4 | featureSeq2 == [] = lattice −− Returns resulting lattice when all the frames are processed
5 | otherwise = decodeSub (tail featureSeq2) ((expand wfst hmmStates x activeHypotheses):lattice)
6 where activeHypotheses = pruneHypothesis (head lattice)
7 x = head featureSeq2

Fig. 6 Pseudo Haskell code for one-pass beam decoding.

adopted in Husky.

5. Experimental setups

A standard evaluation set of the Corpus of Spontaneous Japanese (CSJ)16)

consisting of 10 academic presentations given by male speakers was used as a
test set. The length of each presentation is about 10 to 20 minutes and the total
duration is 2.3 hours. A tied-state Gaussian mixture triphone HMM with 32
mixtures per state was used as the acoustic model. The HMM had 3000 states
in total and was trained by the MPE method17) using 254 hours of academic
oral presentations from the CSJ training data. Feature vectors had 39 elements
comprising 12 MFCCs and log energy, their delta, and delta delta values. The
language model was a trigram (3-gram) model trained from 6.8M words of aca-
demic and extemporaneous presentations from the CSJ and the dictionary size
was 30k. The HMM was trained by using the HTK toolkit and WFSTs were
made using the AT&T toolkit4). The WFST composed from the HMM state
transitions and the language model had 25M nodes and 49M arcs. To compile
Husky, the Haskell compiler GHC ver 6.10.4 was used.

6. Experimental results

Table 1 summarizes basic characteristics of the pure functional WFST decoder
Husky. As for comparison purpose, julius18) and T 3 19) decoders are also listed.
Julius is a decoder that is distributed with its source code written in the C
language. It has been developed for 20 years and widely used in the world. T 3

is a relatively new decoder based on WFST and written in C++. Note these
decoders support different functions so it is not fair to directly compare their
source code sizes. Especially, julius equips rich peripheral functions to support
various applications. Nevertheless, their code sizes are shown in the table. As
can be seen in the table, the code size of Husky is only 400 lines whereas it is
100k for julius and 30k for T 3. Despite of the difficulty of the direct comparison,
it can be seen that the code size of Husky is extremely small compared to the
other decoders. The Husky and T 3 decoders are both based on WFST and they
are similar with that point. The main difference of Husky and T 3 in terms of
supported functions is that on the fly WFST composition is only implemented
in T 3 20) at this stage.

In terms of word recognition accuracy, which is a ratio that expresses how
much of words in speech is correctly recognized, Husky gave 81.1% for the test
set. This was almost the same as the accuracy 81.2% given by T 3. These ac-
curacies were slightly better than 79.8% given by julius. On the other hand,
in the current Husky implementation, it took 40 Gbyte memory and 62 times
of real time to process the test set. These numbers are much larger than other
decoders. One reason of the large memory and the CPU cost is that memory
allocation and garbage collection (GC) is repeated behind data passing among
functions. Another reason might be a problem in the GC routine in GHC as we
have encountered segmentation faults several times depending on default heap
memory size specified through the RTS option, which should never occur in pure
functional programming regardless of how the application program is written.
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Table 1 Comparisons of decoders in term of code sizes and recognition performance. Word recognition accuracy is a ratio that
expresses how much of words in speech is correctly recognized. The real time factor (RTF) is a ratio of CPU time and
the length of input speech. Larger RTF indicates larger CPU cost.

Decoder Language Type Code size (lines) Word recognition accuracy (Acc) Memory (byte) Real time factor (RTF)
Julius C Heuristic 100k 79.8% 400M 8
T 3 C++ WFST 30k 81.2% 400M 3
Husky Haskell WFST 400 81.1% 40G 62

Table 2 Number of lines in the Husky’s source code

Category Lines
Data structure definitions 43
IO functions 95
Main and search functions, etc. 119
Comments, blank lines 125
Total 382

Table 2 shows the break down of the code size of Husky. The main and search
functions are described with less than 120 lines. Even including comments and
blank lines, it is less than 400 lines. This compactness is the characteristics of
Husky and is advantageous for prototyping and educational purposes.

7. Conclusion

In order to efficiently implement speech recognition systems while maintaining
flexibility for future modification, application of the pure functional program-
ming has been investigated. It has been shown that a decoder can be described
with less than 400 lines including comments and blank lines. Speech recogni-
tion result shows that it achieves the same word accuracy as the state-of-the-art
system. Future works include improving the computational efficiency and ex-
tending the system for model training and adaptation. The efficiency could be
improved by utilizing a stream fusion method, tuning the evaluation strategy,
and implementing some general graph operations as an intrinsic library.

The source of the functional decoder “Husky”, a manual, and sample data
are available at Takahiro Shinozaki’s home page. The URL as of March 2011 is
http://www.furui.cs.titech.ac.jp/~shinot/
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