
論文 / 著書情報
Article / Book Information

Title Compact speech decoder based on pure functional programming

Author Takahiro Shinozaki, Masakazu Sekijima, Shigeki Hagihara, Sadaoki
Furui

Journal/Book name Proc. APSIPA ASC 2011,   ,   ,

Issue date 2011,  10

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/


Compact Speech Decoder Based on
Pure Functional Programming

Takahiro Shinozaki∗ Masakazu Sekijima† Shigeki Hagihara† and Sadaoki Furui†
∗ Chiba University, Chiba, Japan

E-mail: shinot@chiba-u.jp Tel: +81-43-290-3256
† Tokyo Institute of Technology, Tokyo, Japan

Abstract—Current speech recognition systems are imple-
mented using very large and complex programs. This makes it
difficult to learn such systems and test a new idea in speech
recognition that requires program modification. Therefore, a
compact system suitable for educational and prototyping pur-
poses is required. We developed a very compact speech decoder
based on pure functional programming, which has been studied
in software engineering as a means to describe complex systems
in a highly abstracted manner. The decoder is based on weighted
finite state transducer and is described using less than 400
lines of codes. The performance of the decoder is demonstrated
with large vocabulary continuous speech recognition experiments
using a trigram language model and a cross-word triphone
hidden Markov model.

I. INTRODUCTION

To test a new statistical model or a new idea in speech
recognition, it is often required to modify existing software
to learn statistical models and to perform recognition exper-
iments. However, such software is large and complex, and it
takes a large amount of time to understand where to modify.
This forms a bottleneck for speech processing researchers
and even a barrier for researchers in related areas who are
interested in speech recognition.

One possible approach to this problem is to prepare software
libraries to manipulate probabilistic models used in speech
recognition. By developing a program based on the library
functions, the required time for coding can be largely reduced.
However, it is difficult to design library functions for predict-
ing all possible future extensions. Therefore, it is often the case
that a new idea requires modifications of the library functions,
and this may require a large amount of time when the library
is large and complex.

Another approach is to develop software that supports a
generalized probabilistic framework that includes statistical
models used in speech recognition systems. Software that
implements Bayesian network [1] or weighted finite state
transducer (WFST) [2] can be regarded as an example of this
approach. Given such software, various probabilistic models
can be investigated without modifying the program code as
long as they fit in the supported class of models. However,
once a new model or a training/decoding algorithm goes
beyond the existing framework, modification to an existing
code is again required (eg. [3] etc.).

In software engineering, pure functional programming has
been studied as a programming paradigm that has high ab-

straction and modularization ability [4]. In functional program-
ming, a program consists of functions in which a function can
be an argument of another function or can be a returned value.
In pure functional programming, there is no side effect in
terms of function application, unlike procedural programming
such as C and C++. Because of this, lazy evaluation is easily
adopted as the evaluation scheme [5]. By using lazy evaluation,
it is possible to separate a structure of a function’s relation-
ship and the actual timing of computation. These properties
of pure functional programming provide a mechanism for
higher abstraction and modularization in software description.
Moreover, it is said to be advantageous in parallel processing
in the future since there is freedom in the order of function
evaluation.

It is expected that a speech recognition system can be
described compactly in a highly abstracted manner by applying
pure functional programming. By using that system as a base-
line, any modification would be possible with minimum effort.
However, pure functional programming is quite different from
procedural programming as it does not have variables, and
it is not clear how it can be applied to describe a large-
vocabulary continuous speech recognition system. Therefore,
we empirically investigated the application of pure functional
programming to describe a speech recognition system. As the
first step, a pure function-based WFST decoder “Husky” is
implemented and evaluated.

The organization of this paper is as follows. The background
and current status of pure functional programming is briefly
described in Section II. Speech recognition based on WFST
is briefly reviewed in Section III. A few design points of our
developed pure functional decoder is discussed in Section IV.
Experimental conditions are described in Section V, and the
results are shown in Section VI. Conclusions and future work
are given in Section VII.

II. PURE FUNCTIONAL PROGRAMMING

In procedural programming, such as C and C++, a program
has a state represented by variables, which are updated step
by step in the program execution. Depending on the state, the
same function with the same arguments can result in different
values at different times.

In contrast to procedural programming, there are no vari-
ables in pure functional programming and the functions have
no side effect. Pure functional programming originated from

APSIPA ASC 2011 Xi’an



the lambda calculus and has a long history, but it has mainly
been of interest in academic research. However, with the
development of practical languages such as Haskell [6] and
Clean, it has recently started to be used in engineering.
The concepts that characterize pure functional programming
include pure functions, first-class functions, recursion, and
lazy evaluation. These concepts are briefly described in the
following subsections.

A. Pure functions

Pure functions have no side effect. In pure functional
programming, all functions are pure functions. Therefore,
a function always returns the same value when the same
arguments are given. This contributes to reducing bugs and
increasing freedom of the compiler for optimization.

A problem is how to deal with input/output (I/O). It is
necessary in practical programming to read data in a file.
However, if a “fileRead” function takes a file name as its
argument and returns the data in the file, the function is
no longer pure. This is because a returned value of the
function depends on the contents of the file, which is not an
argument of the function. In Haskell, this problem is solved
by using monads [7]. A monad is a kind of abstract data type
constructor used to represent computations. By using a monad,
Haskell separates I/O with other parts of the program and
maintains the pureness of the program.

B. First-class functions

Functions can be arguments as well as returned values of
other functions in functional programming. An example of
such a function in calculus is the derivative operator, which
takes a function and returns another function.

C. Recursion

There are no variables in pure functional programming.
Therefore, there is no syntax to represent a “for” or “while”
loop. Instead, iteration is accomplished via recursion. Re-
cursive functions invoke themselves to repeat an operation.
In general, recursion requires a stack to keep track of the
recursive function calls, which consumes memory. However, a
special case is tail recursion where the recursive call is made at
the end of the function. In this case, the stack is not necessary
and memory can be saved.

D. Lazy evaluation

When arguments of a function are evaluated before the
function is called, it is called strict evaluation. Conversely,
when evaluation of arguments is delayed until the last possible
moment, it is called lazy evaluation. Lazy evaluation con-
tributes to improving modularity by giving a means to separate
connections of functions and actual timing of the computation.
With lazy evaluation, it is possible to define a large or even
infinite data structure and pass it to other functions and still
achieve efficient execution. The match of lazy evaluation
with variable substitution is unfortunately not good, and it is
specifically used in pure functional programming. In Haskell,

the default is lazy evaluation but a programmer can also choose
strict evaluation.

III. SPEECH RECOGNITION BASED ON WFST

A weighted finite state transducer (WFST) is a finite state
machine with input and output tapes and transition weights.
It has successfully been applied to speech recognition [2].
Many of the statistical model components in speech recog-
nition systems, such as Hidden Markov Model (HMM) state
transitions and a N-gram language model, can be represented
as WFSTs. Moreover, they can be composed into a single
WFST using mathematically defined operations. By running
a dynamic programming (DP)-based search on the composed
WFST, decoding can be efficiently performed.

Figure 1 shows an example of a WFST that takes a sequence
of phone states as input and outputs a word sequence. When it
is applied to speech recognition, a sequence of feature vectors
is first extracted from the input speech signal. Typically, each
feature vector corresponds to a 10 ms window in the original
speech signal. Then, the acoustic likelihood of phone HMM
states that correspond to the input symbols of the WFST is cal-
culated for the feature vector at each time frame. The obtained
acoustic likelihood is merged with the existing arc weight,
which is usually derived from HMM state transitions and N-
gram probabilities. With the updated weight, a minimum cost
path that starts from the initial state is searched, consumes the
feature vectors one by one at each transition, and terminates
at the final state. The recognition output is a sequence of the
output word symbols along the path.

IV. DESIGN OF PURE FUNCTIONAL DECODER “HUSKY”

A. Specifications

Our functional decoder “Husky” is based on WFST and
implemented using Haskell. It takes an AT&T format WFST
definition file [2], an HTK format HMM state definition
file [8], a list of feature files, and a configuration file as
command line arguments. The I/O is implemented using a
monad. In the program, a data structure that represents all the
contents of a speech file is passed to a decoding function.
Because of lazy evaluation, however, the contents of the file
are actually read step by step.

B. Search algorithm

The decoding algorithm implemented in Husky is a frame
synchronous one-pass search. The search proceeds by expand-
ing a hypothesis list step by step from the first feature frame
to the last. Initially, the hypothesis list has a single element,
which is a pair of dummy arc to the initial state and a score
of 0.0. Summation of a weight and an observation score that
corresponds to the input symbols and a feature vector at that
time frame are then computed for all the arcs that start from
the ending nodes of arcs in the hypothesis list. After that, the
hypothesis list is updated. To reduce the computational cost,
the beam search strategy is used where the hypothesis with
accumulated scores that are too large compared to others are
removed from the hypothesis list.



Fig. 1. Example of WFST that converts phone state sequence to word sequence. In this case, input phone state label is either “b”, “i”, “g”, “t”, or “sil” and
output word symbol is either “bit” or “bat”. “-” indicates epsilon (null) symbol. Numbers associated with each arc is weight of transition. State 0 is initial
state and state 5 is final state.

�

1 decode :: WFST −> HMMSTATE −> FEATURESEQ −> LATTICE
2 decode wfst hmmStates featureSeq = decodeSub featureSeq ( initializeLattice ( initialState wfst) )
3 where decodeSub featureSeq2 lattice
4 | featureSeq2 == [] = lattice −− Returns resulting lattice when all the frames are processed
5 | otherwise = decodeSub ( tail featureSeq2) ((expand wfst hmmStates x activeHypotheses) : lattice )
6 where activeHypotheses = pruneHypothesis (head lattice )
7 x = head featureSeq2

Fig. 2. Pseudo Haskell code for one-pass beam decoding.

A pseudo Haskell code is shown in Figure 2. The main
“decode” function takes a WFST definition, a set of HMM
state definitions, and a feature sequence as arguments (line 2
in the code) and applies a sub function “decodeSub”, which is
a tail recursion. “Expand” expands the hypothesis list, and the
result is appended to the lattice of that stage (line 5). For each
recursive application of decodeSub, the feature frame proceeds
one by one. When all the feature frames are processed, a
lattice is returned (line 4). Output word sequence is obtained
by backtracking the lattice from the last frame to the first.

C. Data structure

As stated above, there are no variables in pure functional
programming, and it is impossible to update a variable value.
This means, if a specific element of an array must be updated,
a new array must be generated where all but one element has
a different value from the original one. When the array is
large, this wastes huge amount of memory and CPU time.
One solution is to use monad to update arrays, and the
other is not to use arrays. By using data structures such
as lists and trees, it is possible to generate a whole new
structure with one element being updated in the appearance,
and share a large part of its body with the original in the
backyard. Despite the disadvantage, arrays are still useful in
pure functional programming when it is used as a constant.
Once it is initialized, read access to an element of an array is
efficient as it is O (1).

In Husky, the WFST network and the HMM state definitions
are stored in arrays as they are constant during the decoding
once they are initialized. The hypothesis list is implemented
as a tree, since it needs to be continuously updated.

In decoding, an observation score is repeatedly computed

for the same HMM state and the same feature vector. There-
fore, it is important to have a caching mechanism. One solution
is to prepare an array at each frame whose element is the ob-
servation score for an HMM state. With lazy evaluation, only
the referred elements are actually computed. Another solution
is to use a library function that implements memoization [6],
which has the same effect. The latter strategy is adopted in
Husky.

V. EXPERIMENTAL SETUP

A standard evaluation set of the Corpus of Spontaneous
Japanese (CSJ) [9] consisting of ten academic presentations
given by male speakers was used as a test set. The length
of each presentation is about 10 to 20 minutes and the total
duration is 2.3 hours. A tied-state Gaussian mixture triphone
HMM with 32 mixtures per state was used as the acoustic
model. The HMM had 3000 states in total and was trained
with the MPE method [10] using 254 hours of academic oral
presentations from the CSJ training data. Feature vectors had
39 elements comprising 12 MFCCs and log energy, their delta,
and delta delta values. The language model was a trigram
(3-gram) model trained from 6.8 M words of academic and
extemporaneous presentations from the CSJ and the dictionary
size was 30 k. The HMM was trained using the HTK toolkit,
and WFSTs were made using the AT&T toolkit [2]. The WFST
composed from the HMM state transitions and the language
model had 25 M nodes and 49 M arcs. To compile Husky, the
Haskell compiler GHC ver 6.10.4 was used.

VI. EXPERIMENTAL RESULTS

Table I shows the break down of the code size of Husky.
The main body of the Husky program including the main,



TABLE II
COMPARISONS OF DECODERS IN TERMS OF CODE SIZE AND RECOGNITION PERFORMANCE. WORD RECOGNITION ACCURACY IS RATIO THAT EXPRESSES

HOW MANY WORDS IN SPEECH IS CORRECTLY RECOGNIZED. REAL TIME FACTOR (RTF) IS RATIO OF CPU TIME AND LENGTH OF INPUT SPEECH.
LARGER RTF INDICATES LARGER CPU COST.

Decoder Language Type Code size (lines) Word recognition accuracy (Acc) Memory (bytes) Real time factor (RTF)
Julius C Heuristic 100 k 79.8% 400 M 8
T 3 C++ WFST 30 k 81.2% 400 M 3
Husky Haskell WFST 400 81.1% 40 G 62

TABLE I
NUMBER OF LINES IN HUSKY’S SOURCE CODE

Category Lines
Data structure definitions 43
IO functions 95
Main and search functions, etc. 119
Comments, blank lines 125
Total 382

search, and Gaussian mixture likelihood evaluation functions
are described with less than 120 lines in total. Even including
comments and blank lines, it is less than 400 lines. This
compactness is a characteristic of Husky and is advantageous
for educational and prototyping purposes.

Table II summarizes the basic characteristics of Husky.
For comparison, Julius [11] and T 3 [12] decoders are also
listed. Julius is a decoder that is distributed with its source
code written in C language. It has been developing for 20
years and used worldwide. T 3 is a relatively new decoder
based on WFST and written in C++. As can be seen in the
table, the code size of Husky is much smaller than that for
Julius (100 k lines) and for T 3 (30 k lines). Although it
should be noted that the design goals and supported functions
of Julius and T 3 are different from Husky. In particular,
Julius is equipped with rich peripheral functions to support
various applications. The Husky and T 3 decoders are similar
in that both are based on WFST. A difference is that on-
the-fly WFST composition is only implemented in T 3 [13]
at this stage. Nevertheless, it can be said that Husky is the
most compact decoder implementation that works as a large-
vocabulary continuous speech recognizer.

In terms of word recognition accuracy, which is a ratio that
expresses how many words in a speech are correctly recog-
nized, Husky had an accuracy of 81.1% for the test set. This
was almost the same as that of accuracy T 3 (81.2%). These
accuracies were slightly better than that of Julius (79.8%).
On the other hand, in the current Husky implementation, it
took 40 Gbytes of memory and 62 times of real time to
process the test set. These numbers are much larger than other
decoders. One reason of the large memory and CPU cost is that
memory allocation and garbage collection (GC) is repeated
behind data passing among functions. Another reason might be
a problem in the GC routine in GHC as we have encountered
segmentation faults several times depending on the default
heap memory size specified through the RTS option, which
should never occur in pure functional programming regardless
of how the application program is written.

VII. CONCLUSION

We developed a WFST decoder called Husky based on
pure functional programming for educational and prototyping
purposes. We showed that a decoder can be described with
less than 400 lines including comments and blank lines.
Speech recognition result shows that it achieves the same word
accuracy as a state-of-the-art system. Future work includes
improving the computational efficiency and extending the
system to model training and adaptation. Efficiency may be
improved by using a stream fusion method, tuning the evalu-
ation strategy, and implementing general graph operations as
an intrinsic library. Implementing online adaptation using the
lazy evaluation framework is also of interest. Husky’s source
code is available at the first author’s home page.

ACKNOWLEDGMENT

This research has been partially supported by JST, Research
Seeds Program, and Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (B) 21300062.

REFERENCES

[1] J. Bilmes, GMTK: The Graphical Models Toolkit, University of
Washington, Electrical Engineering.

[2] M. Mohri, F. C. N. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech and Language,
vol. 16, no. 1, pp. 69–88, 2002.

[3] S. Watanabe, T. Hori, and A. Nakamura, “Large vocabulary continuous
speech recognition using wfst-based linear classifier for structured data,”
in Proc. Interspeech, 2010, pp. 346–349.

[4] J. Hughes, “Why Functional Programming Matters,” Computer Journal,
vol. 32, no. 2, pp. 98–107, 1989.

[5] P. Hudak, “Conception, evolution, and application of functional pro-
gramming languages,” ACM Comput. Surv., vol. 21, no. 3, pp. 359–411,
1989.

[6] S. Thompson, Haskell : the craft of functional programming, Addison
Wesley, March 1999.

[7] P. Wadler, “Comprehending monads,” in Mathematical Structures in
Computer Science, 1992, pp. 61–78.

[8] S. Young et al., The HTK Book, Cambridge University Engineering
Department, 2005.

[9] T. Kawahara, H. Nanjo, T. Shinozaki, and S. Furui, “Benchmark test
for speech recognition using the Corpus of Spontaneous Japanese,” in
Proc. SSPR2003, 2003, pp. 135–138.

[10] D. Povey and P.C. Woodland, “Minimum phone error and I-smoothing
for improved discriminative training,” in Proc. ICASSP, 2002, vol. I,
pp. 105–108.

[11] A. Lee, T. Kawahara, and S. Doshita, “An efficient two-pass search
algorithm using word trellis index,” in Proc. ICSLP, 1998, pp. 1831–
1834.

[12] P. R. Dixon, D. A. Caseiro, T. Oonishi, and S. Furui, “The TITech large
vocabulary WFST speech recognition system,” in Proc. IEEE ASRU,
2007, pp. 443–448.

[13] T. Oonishi, P.R. Dixon, K. Iwano, and S. Furui., “Optimization of on-
the-fly composition for wfst-based speech recognition decoders,” IEICE
Transactions, pp. 1026–1035, Jul 2009.


