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We propose a new type of stochastic network evolution model based on annihilation, creation, and

coagulation of nodes, together with the preferential attachment rule. The system reaches a unique

quasistatistically steady state in which the distribution of links follows a power law, lifetime of nodes

follows an exponential distribution, and the mean number of links grows exponentially with time. The

master equation of the model is solved analytically by applying Smoluchowski’s coagulation equation for

aerosols. The results indicate that coagulation of nodes in complex networks and mean field analysis of

aerosols are similar in both the growth dynamics with irreversible processes and in the steady state

statistics. We confirm that the basic properties of the model are consistent with the empirical results of a

business transaction network having about 1� 106 firms.

DOI: 10.1103/PhysRevLett.108.168701 PACS numbers: 89.75.Hc, 05.10.Gg, 82.20.�w

Recently, network structures have been attracting a lot of
attention among physicists because such structures are
considered to be gateways for clarifying complex inhomo-
geneous interactions among many elements. The scale-free
network [1–5] is one of the universal key words in this area
of study, where the distribution of the number of links,
called the degree distribution, follows a power law.

The BA model [6,7] proposed by Barabási and Albert
was the first simple model of network growth realizing a
power law, introducing the concept of preferential attach-
ment, that is, a new link is more likely to be attached to a
node having a larger number of links, and many variant
models have since been introduced [6–12]. Although the
original BA model is applicable only for a monotonically
growing network, Moore et al. introduced annihilation of
nodes, and a power-law degree distribution was shown to
be realized when the rate of creation outweighs that of
annihilation [11].

Moore’s model has wider applicability; however, the
model can explain only power-law degree distributions
with exponents larger than 3. In the real world, there are
cases in which nodes appear and disappear like the situation
inMoore’smodel, but the degree distributions follow power
laws with exponents smaller than 3, as in the case of busi-
ness firm networks [13]. In the case of a business relation-
ship network in Japan, it is confirmed that the cumulative
degree distributions clearly follow power laws with expo-
nents of about 1.3 (i.e., the probability density exponent is
2.3) for both the money flow network and for its conjugate,
the material flow network [13]. Therefore, we need a new
model to understand the power laws.

The particle models of aerosol and colloids extensively
studied around 1990 provide new insights into the

mechanism of power-law mass distribution [14–18]. In
these models, the statistically steady state is realized by
the balance of particle numbers: an increase of particles
by continuous injection of small particles and decrease of
particle numbers by coagulation. In the process of coagu-
lation, the mass of the aggregated particle equals the sum
of the initial two particles. In this case, the mass distri-
bution in the steady state follows a power law with an
exponent in a wide range, which depends on the collision
probability [19,20].
Here, we propose a new model of network growth that

considers the coagulation process of nodes corresponding
to the merger of firms, in addition to annihilation and
creation. Similar ideas of merging nodes have already
been considered in the study of complex networks for
the purpose of coarse graining the structure of networks
[21–23]. However, here we introduce the real merging of
nodes as in the coagulation of aerosol masses. By solving
the model both numerically and analytically, we identify
in this Letter that the role of coagulation of nodes is
essential in the steady power-law distribution of the num-
ber of links for cases such as the power-law mass distribu-
tion of aerosols.
We start with a data analysis of the network structure

of business relationships. The data are provided by the
Japanese governmental Research Institute of Economy,
Trade and Industry (RIETI) and was collected by a credit
reporting agency in Japan, Tokyo Shoko Research, around
the year 2005. It covers nearly all active firms in Japan, and
the relationships are represented by a network diagram:
the number of nodes is N ¼ 961, 318, and the number of
directed links, showing the business partnerships repre-
senting money flows, is L ¼ 3, 783, 711.
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The first step toward construction of a growth model of
networks is to observe the distribution of firms’ lifetimes.
In Fig. 1(a) the cumulative distribution of lifetimes is
plotted in semilog scale, which shows it is well character-
ized by an exponential function, Pð� tÞ / expð�t=�Þ,
where � ¼ 18:8 years is the characteristic decay time.
There is a cutoff at a lifetime of 137 years simply because
the credit reporting agency started data collection in 1868.
This exponential distribution is roughly consistent with
the simple assumption that a firm disappears randomly
following a Poisson process.

As a second step, we observe the effect of preferential
attachment. To observe the preferential attachment rate
from the data, we categorize the business firms in the net-
work into two groups: old firms (those founded before
2004) and new firms (those founded 2004 or after). We
construct the network structurewith the old firms and check
the degrees of business partners one-by-one for each entry
of a new firm to determine QðkÞ, the probability of con-
necting to an old firm with degree k in the money flow
network representation. Then, we divide this probability by
NðkÞ, the number of nodes with degree k, and the prefer-
ential attachment rate �ðkiÞ is defined as QðkÞ=NðkÞ. We
observe the following integrated attachment rate function
to reduce fluctuation, as introduced by Jeong et al. [24]:

�ðkÞ ¼
Z k

0
�ðkÞdk� k�: (1)

As shown in Fig. 1(b), the obtained�ðkÞ is approximated by
power laws for both in-degree and out-degree with expo-
nents �in ¼ 2:09 and �out ¼ 2:05, which are close to 2,
demonstrating that the preferential attachment rate is
actually proportional to the average number of links for
real business firms.
The third step is to observe the relation between the

number of links and the lifetime. In Fig. 2(a), the value of
degrees averaged over the bins of a lifetime is shown as a
function of the lifetime in the semilog plot; the results
imply that the degree grows exponentially with the life-
time, kðtÞ / expðAtÞ, where A ¼ 0:017. This exponential
growth observed in the real network is not consistent with
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FIG. 1 (color). (a) Cumulative distribution of firm lifetime as a
semilog plot [the dotted line gives expð�t=18:8Þ], and (b) the
rate of preferential attachment defined by Eq. (1) in a log-log
plot (blue circles for in degrees and red crosses for out degrees;
the dotted line indicates the relation with � ¼ 2).
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FIG. 2 (color). (a) Relation between lifetime and average
degree in a semilog plot [blue circles for in degrees and red
crosses for out degrees; the dotted line shows exponential growth
expð0:017tÞ] and (b) the cumulative distribution of degrees in a
log-log plot (blue line for in degrees and red dotted line for
out degrees; the black dotted line indicates a power law with
� ¼ 1:3).

FIG. 3 (color). (a) Schematic figures showing the three basic
processes for nodes: annihilation, creation, and coagulation.
Links are gathered in the coagulation processes. (b) Numerical
results in the case of c ¼ 0:3, N0 ¼ 105, T ¼ 107. Examples of
the time evolution of the cumulative distribution of the number
of links in a log-log plot. Solid lines show the time evolution
starting with all isolated nodes, t ¼ 5� 105 (light-blue line) and
t ¼ 107 (blue line). Dotted lines show the time evolution starting
with the complete graph, t ¼ 2� 106 (orange dotted line),
t ¼ 107 (red dotted line). The black dotted line is a guide to the
eye consistent with the power law shown in Fig. 2(b). (c) Lifetime
and average degrees under the same conditions with Fig. 3(b) in a
semilog plot corresponding to Fig. 2(a) [blue circles for in degrees
and red crosses for out degrees; the dotted line indicates an
exponential growth equivalent to expð2:3� 10�6tÞ] correspond-
ing to the value A ¼ 0:017 in the real network. (d) Cumulative
distribution of the number of links in the steady state for general
cases withN0 ¼ 104 from an ensemble average of 10 realizations.
Analytical solutions are plotted as dotted lines and Monte Carlo
simulation results are plotted as solid lines, with c ¼ 0
(no coagulation) in orange, c ¼ 0:1 in pink, c ¼ 0:2 in light
blue, c ¼ 0:3 in green, c ¼ 0:4 in red, and c ¼ 0:5 (maximum
coagulation) in blue. The black dashed lines indicate the two
analytical solutions in the limit of infinite nodes.
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that of the BA model, in which the mean degree is known
to grow proportionally to the square root of the lifetime [6].

Combining the above two empirical exponential rela-
tions, we can naively derive a power-law cumulative
degree distribution Pð� kÞ / k��, where � ¼ 1=ðA�Þ,
� ¼ 3:1; however, this value is not consistent with the
exponent for the real degree distribution, � ¼ 1:3, as
shown in Fig. 2(b). Apparently, the combined effects of
random annihilation and growth by preferential attachment
are not sufficient to capture the scale-free nature of a
network in the real world. For this reason, we add one
more effect to the evolution of the network, that is, the
merger of two business firms or the purchase of a small
firm by a big firm, both represented by node-node coagu-
lation in the network representation, as schematically
shown in Fig. 3(a).

We now introduce a simplified model of the growth of a
business network in the following way. We start with N0

nodes with any configuration of links and evolve the sys-
tem by choosing one of the following three events stochas-
tically for T time steps.

Annihilation.—A randomly chosen node is removed,
along with all links connected to this node.

Creation.—A new node having two links (one is an out
link and the other is an in link) is added. Each link is
connected to a node chosen randomly following the pref-
erential attachment.

Coagulation.—A randomly chosen node is merged with
a partner node randomly chosen following the preferential
attachment. All the links connected to the nodes are also
rewired to the partner node. If two identical links appear
after this rewiring, those identical links are merged to
produce a single link.

The occurrence probabilities of these events are a, b,
and c, respectively, satisfying aþ bþ c ¼ 1. This is
because the number of nodes decreases in the event of
annihilation and coagulation, whereas it increases in the

event of creation. An additional condition, b ¼ aþ c ¼
0:5, is required to realize a kind of statistically steady state
in the number of nodes; without this condition, the number
of nodes would either monotonically decrease or increase
on average. In this model, we define the preferential attach-
ment rate to be proportional to the degree plus 1, which
makes it possible for an isolated node to grow.
Figures 3(b) and 3(c) show numerical simulation results

for the case of c ¼ 0:3, the initial number of nodes
N0 ¼ 105, and the number of time steps T ¼ 107.
Because of the effects of the random occurrence of annihi-
lation and coagulation, the distribution of the lifetime of
nodes is confirmed to follow an exponential distribution
with a factor 5:02� 10�6. By comparing the exponent with
that of the real network already shown in Fig. 1(a), we can
estimate that 1 yr in the real network corresponds to 10 600
steps in our simulation. The time evolution of the distribu-
tion of the number of links is shown in Fig. 3(b), starting
with two extreme initial link configurations: all bare nodes
having no links, and the complete network, that is, all pairs
of nodes are linked in both directions. We can observe that
the effect of the initial condition gradually vanishes and the
statistics of links converge to those of a steady state by time
step 107. In the steady state, the link number distributions
both for in links and out links follow power laws with
exponent about 1.3, consistent with the real network. As
shown in Fig. 3(c), we can confirm that the basic property of
exponential growth of the mean number of links is repro-
duced automatically in this steady state.
The steady state distribution depends on the value of

coagulation rate parameter c, as shown in Fig. 3(d). For
small values of c, the link number distribution converges
to a distribution close to an exponential distribution,
whereas for larger values of c, the steady distribution is
well approximated by a power law. We can show this basic
property analytically by solving the master equation for
the in-degree probability density at time t, Pðk; tÞ:

Pðk; tþ 1Þ � Pðk; tÞ ¼ a

�
kþ 1

N
Pðkþ 1; tÞ �

�
k

N
þ 1

N

�
Pðk; tÞ

�
þ b

�ðk� 1Þ þ 1P
j
ðkj þ 1Þ Pðk� 1; tÞ � kþ 1P

j
ðkj þ 1ÞPðk; tÞ þ

�k;1

N

�

þ c

�Xk
k0¼0

Pðk� k0; tÞ 2k0 þ 1P
j
ð2kj þ 1ÞPðk

0; tÞ � X1
k0¼0

Pðk; tÞ 2k0 þ 1P
j
ð2kj þ 1ÞPðk

0; tÞ

� X1
k0¼0

Pðk0; tÞ 2kþ 1P
j
ð2kj þ 1ÞPðk; tÞ

�
: (2)

Here, the effects of the three basic processes, annihilation,
creation, and coagulation, have coefficients a, b, and c,
respectively, in the right-hand side. This equation belongs
to the class of Smoluchowski equations which describe
irreversible mass aggregation processes of colloids or
aerosols under the mean field approximation. Namely,

the aggregation of links caused by the merging process
of nodes in a complex network is mathematically equiva-
lent to the mass aggregation process caused by irreversible
collisions of particles.
We solve this master equation analytically for two

extreme cases: no coagulation (c ¼ 0) and maximum
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coagulation (c ¼ 0:5). In the case of no coagulation, we
have the following steady state equation by substituting the
mean degree conservation, b� ahki ¼ 0, into the master
equation, Eq. (2). As there are no nonlinear terms, for the
no coagulation case, Eq. (2) can be solved analytically by
introducing the generating function

PðkÞ � ðkþ 2Þ�ð0; ðkþ 1Þ log2Þ� 2�k; (3)

where �ðx; dÞ is the incomplete gamma function. For large
values of k, the distribution function of degree decays
exponentially, which is consistent with our numerical
simulation.

In the case of maximum coagulation (c ¼ 0:5), it is
known that this type of Smoluchowski equation has a
power-law solution, PðkÞ � k���1, when the coagulation
kernel for particles with masses k1 and k2 is proportional to
1, k1k2, or k1 þ k2 [25]. Assuming the functional form as a
power law, we can confirm that Eq. (2) is satisfied only in
the case of � ¼ 1. Namely, the steady state solution in the
maximum coagulation case is given by the cumulative
distribution Pð� kÞ � k�1, which is consistent with
numerical simulation, as shown in Fig. 3(d).

We can solve the steady state solution of Eq. (2) analyti-
cally using the computer algebra system Mathematica with
the boundary condition Pðkmax þ 1Þ ¼ 0, where kmax is the
largest value of the number of links. For comparison, we
performed Monte Carlo simulation with the same parame-
ter sets in parallel and we numerically estimated the
parameter values needed to solve Eq. (2), hki and kmax. In
all cases, the analytical solutions and the results of
Monte Carlo simulation agreed very well, as shown in
Fig. 3(d). In all cases, the link number distribution decays
exponentially for very large k, but there exists a range of k
which can be approximated by a power law. This is a
typical property of mass distributions of random coagula-
tion systems with injection, such as the case of aerosols.
The determined distribution which best agrees with the real
link distribution, Fig. 2(b), is the case of c ¼ 0:3. We
cannot conclude whether the apparent power-law expo-
nent, � ¼ 1:3, is a genuine value; however, the master
equation, Eq. (2), definitely describes the essence of the
growth dynamics of the coagulation of nodes in a complex
network.

To summarize, we have shown that in the growth of a
complex network, the effect of coagulation plays a central
role, along with those of random annihilation, creation,
and preferential attachment. Previous theoretical studies of
complex networks revealed the importance of one-by-one
rewiring of links [7]; here, we found that massive simulta-
neous rewiring of links caused by node-node coagulation is

very effective, especially in the real world example of a
business firm network. We expect that there are other net-
work systems in which the effect of node-node aggregation
is not negligible, and the balance of coagulation and cre-
ation governs the statistically steady state.
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