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Abstract 
The effect of silica-capping on the afterglow property of Sr2MgSi2O7:Eu,Dy nanoparticles was investigated. 
Sr2MgSi2O7:Eu,Dy nanoparticles were prepared by laser ablation in liquid. Afterglow nanoparticles were capped 
with silica by using the Stöber method. A dense silica capping layer was obtained after 4 hours of reaction using the 
Stöber method. Silica-capping of the afterglow nanoparticles improved the particles’ afterglow property, which was 
degraded by nanosizing. Decay curves indicated that initial values were increased by silica-capping. At the same 
time, silica-capping decreased constant γ, which was related to trap parameters. The decrease in the value of γ 
reduced the slope of decay curve, which improved the afterglow property. We concluded that capping nanoparticles 
with silica improved the particles’ afterglow property by the passivation of surface defects and the prevention of 
energy transfer to water molecules. 
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1. Introduction 

Extensive studies have recently been conducted regarding afterglow materials because of their unique optical 
properties and various potential applications, such as security and operability in the dark. Since the afterglow 
material SrAl2O4,Eu,Dy, which does not feature radioactive materials, was discovered in 1996, it has been used in 
the faces of watches [1]. The afterglow mechanism, which involves the recombination of electrons and holes trapped 
in shallow energy levels at room temperature, has been extensively studied [1-6]. Sr2MgSi2O7:Eu,Dy is known to be 
a water-insoluble afterglow material [7-9]. 

Nanomaterials are also widely studied due to their promising physical properties. The nanosizing of afterglow 
materials would expand their application in various fields. We believe that Sr2MgSi2O7:Eu,Dy will be useful in 
bioimaging to reduce the problem of autofluorescence. Nanoparticles are produced using various methods. One 
promising method is laser ablation in a liquid [10-12]. Sr2MgSi2O7:Eu,Dy nanoparticles have been successfully 
formed by this method [13]. However, the optical properties of Sr2MgSi2O7:Eu,Dy nanoparticles are degraded due to 
nanosizing. This aspect has been improved upon by surface passivation with polyethylene glycol (PEG) [14]. 
However, the long-term stability of organic materials is still not adequate for practical use because PEG molecules 
are simply adsorbed onto the surfaces of nanoparticles. 

The nanosizing of materials increases particles’ specific surface area. Many defects exist on the surface and 
adversely affect the optical properties of particles by nonradiative relaxation through the energy levels of surface 
defects and/or energy transfer to water molecules [13,15]. Silica-capping is one of the most effective ways of 
passivating the surfaces of nanoparticles and improving their optical properties [16]. The Stöber method has been 
widely studied as a silica-capping technique; it involves hydrolysis and condensation reactions [17]. Capping 
nanoparticles with silica proceeds by the reaction between tetraethyl orthosilicate (TEOS) and water through 
heterogeneous nucleation, while the formation of silica nanoparticles proceeds through homogeneous nucleation. 
In this study, afterglow nanoparticles of Sr2MgSi2O7:Eu,Dy prepared by laser ablation in liquid were capped with a 
stable inorganic material, silica. The afterglow properties of the nanoparticles were improved by silica-capping. 
 
2. Materials and Methods 
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2.1. Materials 

A powder of the water-insoluble afterglow material, Sr2MgSi2O7:Eu,Dy, was purchased from Mitsubishi Chemical. 
Ethanol, 1-propanol, tetraethyl orthosilicate and ammonia solution were purchased from Kanto Chemical. These 
reagents were not further purified. 

2.2. Preparation of afterglow nanoparticles 

First, the target for laser ablation in liquid was fabricated as follows. The powder of the afterglow material was 
pressed in a stainless steel mold. This pellet was sintered in an electric furnace at 1100 °C for 1 hour. Argon was 
flowed into the tube of the furnace to prevent the oxidation of Eu2+. Second, afterglow nanoparticles were prepared 
by laser ablation in liquid. The target was placed in a cuvette in air. It was irradiated with a focused Nd:YAG laser 
beam (third harmonic generation, THG) in ethanol for 6 hours. The laser was a model M210 instrument (JDSU, 
wavelength: 355 nm, repetition rate: 7 kHz, pulse duration 50 ns). The focal length of the lens was 90 mm. The 
energy density of the laser beam on the top of the target was adjusted by varying the diameter of the laser beam. 

2.3. Capping afterglow nanoparticles with silica 

The silica-capping of nanoparticles was performed by the Stöber method. TEOS and ammonia water were added to a 
solution containing the nanoparticles of one batch production of laser ablation. The capping reaction proceeded 
under ultrasonication. The temperature of the solution was held at 20 °C. The reaction time of this process was 
varied. The reaction was ceased by the addition of 1-propanol. 

2.4. Characterization 
The X-ray diffraction (XRD) pattern of the particles was measured using an X-ray diffractometer (Bruker, D8 
Discover μHR). A silica-coated nanoparticle was observed by transmission electron microscopy (TEM, Hitachi 
High-Technologies, H-8100). The nanoparticle-dispersed solution was dropped onto a carbon membrane on a copper 
grid, and water was removed by drying in a vacuum oven. The optical properties of the silica-capped nanoparticles 
were investigated by fluorescence spectrometry (Hitachi High-Technologies, F-7000). 
 
3. Results and Discussion 

The XRD pattern of the target is shown in Figure 1. It corresponds to that of Sr2MgSi2O7. It indicates no 
transformation of the host material during heating for target fabrication. The photoluminescence (PL) spectrum of 
the target also corresponds to that of the sample powder. These results indicate no transformation of the luminescent 
center, Eu2+. 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1. XRD spectra of the target. 

Figure 2 shows TEM images of the silica-capped nanoparticles. The dark portion would indicate the afterglow 
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nanoparticles. The shape of silica in Figure 2a (reaction time: 1 hour) was rod-like, while that in Figure 2b (reaction 
time: 4 hours) was densely packed. After a capping reaction time of 4 hours, a silica-capping layer would closely 
adhere to the surface of the nanoparticles and be able to protect the particles against water molecules. Figure 2c 
shows a high-magnification image of the silica-capped nanoparticles. The afterglow nanoparticles were completely 
covered with a silica layer. 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2. TEM images of silica-capped nanoparticles. Silica-capping reaction time: a) 1 hour (low magnification), b) 
4 hours (low magnification) and c) 4 hours (high magnification). 

The PL spectrum of the afterglow nanoparticles in ethanol is shown in Figure 3. A broad, strong peak at 
approximately 466 nm is attributed to the 3d transition of Eu2+, which was sensitive to the host material. This peak 
corresponds to the luminescence of the target. Second-order scattering of excitation (276 nm) was observed at 
approximately 560 nm. A weak peak at approximately 607 nm is also shown in Figure 3. The emission in the 
vicinity of 600 nm is due to the magnetic dipole transition 5D0 → 7F1, which is insensitive to the site symmetry [18]. 
The emission at approximately 610-630 nm is due to the electric dipole transition 5D0 → 7F2, which is induced by 
the lack of inversion symmetry of the Eu3+ site and is much stronger than that of the transition to the 7F1 state [18]. 
The peak at approximately 607 nm in Figure 3 is related to the electric dipole transition of Eu3+ because the crystal 
structure of Sr2MgSi2O7 is tetragonal with space group P421m (No. 113) [19]. Eu2+ in the Sr2MgSi2O7 matrix would 
slightly be oxidized by the thermal effect of laser ablation in ethanol. However, the PL properties of the 
nanoparticles mainly depend on the Eu2+ ions, much like the target. 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3. PL spectrum of afterglow nanoparticles of Sr2MgSi2O7:Eu,Dy at an excitation wavelength of 276 nm. 

The effect of the Stöber method reaction time on the afterglow properties of the nanoparticles is illustrated in Figure 
4. The reaction time varied from 0 to 4 hours. The decay curves plot the afterglow intensity as a function of time 
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after blocking the excitation. The afterglow property obeys the following equations [20]: 

( )nt tII γ+= 10)( ,   (1) 

tanN /=γ ,    (2) 

where the afterglow intensity is I(t), the initial value is I0, time is t, the trap concentration is N, the probability that a 
trapped carrier will be thermally led into the band is a and the number of carriers per unit volume in the trap level is 
nt. The data in Figure 4 was fitted as indicated by the solid lines. Figure 5 plots the initial values of equation (1) I0 as 
a function of the reaction time. The initial value I0 increased with increasing reaction time. The differences among 
the decay curves in Figure 4 mainly depended on the difference between the initial values I0. The constant γ, which 
is related to the trap concentration N, indicates the probability that a trapped carrier will be thermally led into the 
band a, and the number of carriers per unit volume in the trap level nt determines the slope of the decay curve during 
the initial stage. The slope is steep if γ is large, while the slope is gentle if γ is small. Figure 6 shows the value γ of 
equation (1) as a function of the reaction time. At a capping reaction time of 0 hour (without capping), the value γ is 
large, which indicates fast decay. However, at a capping reaction time of 4 hours, the value γ is small, which 
indicates slow decay. Both parameters I0 and γ indicated that a long capping reaction time improved the afterglow 
property of the nanoparticles. A valid mechanism of the degradation of the afterglow property would be deactivation 
through surface defects and/or energy transfer to water molecules. TEM observation indicated that a long capping 
reaction time could allow for the dense capping of the nanoparticle surfaces with silica. The dense capping layer 
would passivate the surface defects and prevent energy transfer to water molecules. Therefore, long capping reaction 
times led to a significant improvement in the afterglow property of the nanoparticles. 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4. Afterglow properties of silica-capped nanoparticles. The reaction time varied from 0 to 4 hours 
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 Fig. 5. Afterglow parameter I0 as a function of the silica-capping reaction time. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Afterglow parameter γ as a function of the silica-capping reaction time. 
 
4. Conclusion 
Afterglow nanoparticles of Sr2MgSi2O7:Eu,Dy were prepared by laser ablation in ethanol. They were capped with 
silica by using the Stöber method. Silica-capping improved the afterglow property of the nanoparticles. The increase 
in reaction time of silica-capping led to the dense capping of nanoparticles. In general, the non-radiative relaxation 
through surface defects, and the energy transfer from surface to water molecules reduce optical properties. Surface 
passivation such as capping decreases the influences and improves optical properties usually. Therefore, the initial 
value and the slope of afterglow properties were improved. We concluded that the capping layer passivates surface 
defects and prevents energy transfer to water molecules, thus improving the afterglow property of the nanoparticles. 
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