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Abstract

Most compensation methods to improve the robustness of speechrecognition

systems in noisy environments such as spectral subtraction, CMN, and MVN,

rely on the fact that noise and speech spectra are independent. However, the

use of limited window in signal processing may introduce a cross-termbe-

tween them, which deteriorates the speech recognition accuracy. To tackle

this problem, we introduce theq-logarithmic (q-log) spectral domain of non-

extensive statistics and proposeq-log spectral mean normalization (q-LSMN)

which is an extension of log spectral mean normalization (LSMN) to this do-

main. The recognition experiments on a synthesized noisy speech database,

the Aurora-2 database, showed thatq-LSMN was consistently better than the

conventional normalization methods, CMN, LSMN, and MVN. Furthe rmore,

q-LSMN was even more effective when applied to a real noisy environment in

the CENSREC-2 database. It significantly outperformed ETSI AFE front-

end.
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non-extensive statistics
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1. Introduction

Current automatic speech recognition (ASR) systems are able to achieve

good performance in quiet environments. However, their performance signif-

icantly degrades in noisy environments. The speech features are altered in

the presence of noise. This causes a mismatch between quiet training condi-

tions and recognition conditions, which are noisy. Environmental noises are

classified into two categories: additive noise and convolutive noise. Examples

of additive noise are street noise, train noise, computer fan, and the voice of

other persons. Examples of convolutive noise are reverberation and channel

distortions.

Robust speech recognition against noise has been an active area of re-

search for the last few decades. A number of methods have been developed

in this field. Their examples are spectral subtraction (Boll, 1979), vector Tay-

lor series (VTS) (Moreno et al., 1996) and parallel model combination (Gales

and Young, 1996). All these methods are based on an extensive statistics in

which additivity holds.

Common features used for speech recognition, such as Mel frequency cep-

stral coefficient (MFCC) and perceptual linear prediction (PLP), are derived

from short-time power spectra of speech. In short-time processing such as

short-time Fourier transform (STFT), the speech signal is processed in blocks

over which speech is assumed to be stationary. This block of speech is called

a frame. The length of a frame is usually between 5-30 ms. In the time

domain, the relation between noisy speech y(t), clean speech s(t), additive
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noise n(t) and convolutive noise h(t) can be written as the following:

y(t) = s(t) ∗ h(t) + n(t). (1)

Denoting x(t) = s(t) ∗ h(t), we can write (1) as the following:

y(t) = x(t) + n(t). (2)

By taking STFT, we can represent (2) in the frequency domain as follows:

Y (m, k) = X(m, k) +N(m, k), (3)

where k is the index of frequency bin (a total frequency componentsK = 256)

and m is the frame index and:

X(m, k) = |X(m, k)| exp (jθX(m, k)) , (4)

N(m, k) = |N(m, k)| exp (jθN(m, k)) . (5)

|X(m, k)|, |N(m, k)| are the magnitude spectra, and θX(m, k), θN (m, k) are

the phase spectra of filtered speech, i.e. the clean speech signal affected by

convolutive noise only, and additive noise respectively. From (3), we obtain

the power spectral representation of noisy speech as follows:

|Y (m, k)|2 =|X(m, k) +N(m, k)|2

=|X(m, k)|2 + |N(m, k)|2

+ 2Re [X(m, k)N∗(m, k)] , (6)
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where N∗(m, k) is the complex conjugate of N(m, k). Substituting (4) and

(5) into (6), we obtain:

|Y (m, k)|2 =|X(m, k)|2 + |N(m, k)|2

+ 2|X(m, k)||N(m, k)| cos (θX(m, k)− θN(m, k)) , (7)

where θX(m, k) − θN (m, k) is the phase difference between X(m, k) and

N(m, k). The last term of Eq. (7) is called a cross-term, which depends

on the phase difference between speech and noise. This cross-term is ignored

in most robust speech recognition methods under the assumption that speech

and noise are uncorrelated. Although this assumption is generally valid since

speech and noise are statistically independent, it does not hold when apply-

ing a short-time window (20-30 ms). Several studies have shown that the

cross-term does exist in short-time power spectra (Kadambe and Boudreaux-

Bartels, 1992; Jeong and Williams, 1992). The cross-term has been shown

to significantly degrade the performance of speech recognition (Deng et al.,

2004; Faubel et al., 2008). In addition, it is well known that a speech pattern

is a complex system. In a speech pattern, various long-term correlations ex-

ist among its different spectral components in complex ways in various time

scales. As a consequence, the additive relation between speech components

and convolutive noise may not hold in the log spectral domain.

It is common to combine additive noise removal methods such as spec-

tral subtraction with feature normalization methods such as cepstral mean

normalization (CMN) (Furui, 1981) to remove both additive and convolutive

noise. But as previously explained, speech and convolutive noise are not ad-
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ditive in general, and thus the cross term exist even when the additive noise

spectra are completely removed.

In this paper, we propose q-log spectral mean normalization (q-LSMN) (Pard-

ede and Shinoda, 2011), which is an extension of the log spectral mean nor-

malization (LSMN) (Avendano and Hermansky, 1997) to the q-log spectral

domain. We further investigate the effect of q-LSMN in various conditions

and analyze its property in more detail in this paper.

A few studies have already employed the non-extensive statistics for

speech recognition. Rufiner et al. (2004) added Tsallis entropy, which is

defined in non-extensive statistics, and its relative change to the standard

MFCC features for capturing the dynamics of speech signals. Kobayashi and

Imai (1984) employed the q-log function as the spectral smoother for speech

features so that they are more robust especially in lower frequency regions.

Ito et al. (2000) also implemented the q-log function to provide a forward

masking scale for the dynamic cepstrums. In contrast to these studies, we

use the q-log function to model non-additivity in noisy speech features.

The remainder of this paper is organized as follows: In Section 2, we

describe some previous studies of robust speech recognition related to our

study. In Section 3, we explain the influence of the cross-term in the speech

features. In Section 4, we briefly review non-extensive statistics and its q-log

function. In Section 5, we explain our proposed method. In Section 6, we

describe the details of spectral subtraction which we implemented to remove

additive noise. In Section 7, we describe the experimental setup to evaluate

our proposed method. In Section 8, we present and discuss our experimental

results. Section 9 concludes this paper.
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2. Related studies

Various methods have been proposed in the past literature for improv-

ing the robustness of speech recognition in noisy environments. Generally,

they can be categorized into two groups: feature enhancement and model

compensation. In feature enhancement, the aim is to estimate clean speech

features in noisy speech by removing noise. Whereas, model compensation

methods adapt clean speech models to noisy conditions, by considering the

noise statistics. They can usually achieve better performance than feature

enhancement-based methods. On the other hand, they require higher com-

putational cost and more data than feature enhancement-based methods. In

addition, they should update models each time a new type of noise is in-

troduced. In this section, we first introduce several methods in extensive

frameworks, and we describe several variants that take into account the cor-

relation between speech and noise.

2.1. Feature enhancement

Spectral subtraction (Boll, 1979) is a popular method to remove addi-

tive noise in the spectral domain. In spectral subtraction, it is assumed

that the noise spectra are known. The clean speech estimate is obtained

by simply subtracting the noise spectra from the noisy speech spectra. Its

performance heavily relies on the accuracy of the estimation of the noise spec-

tra, and hence, it may not be suitable when noise is highly non-stationary.

CMN (Furui, 1981) is a well established method to remove convolutive noise.

It subtracts the long term average from a feature, on the assumption that

convolutive noise is stationary. LSMN (Avendano and Hermansky, 1997)
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is also based on the same principle as CMN. Their difference is the oper-

ational domain; CMN operates in the cepstral domain, whereas LSMN in

the log spectral domain. Viikki and Laurila (1998) proposed mean variance

normalization (MVN) which is an extension of CMN by including variance

normalization.

Many advanced methods have been proposed in recent years. Moreno

et al. (1996) introduced vector Taylor series (VTS) to approximate the mis-

match caused by noise. In this method, the parameters of noise distribution

(the mean and/or the variance) and the density distribution of noisy speech

are first calculated from the distribution of clean speech and that of the ob-

served noisy speech. The clean speech estimate is then obtained using MMSE

criterion. In ETSI advanced front end (AFE) (ETSI standard doc., 2002),

the two-stage mel-warped Wiener filter (Agarwal and Cheng, 1999) is imple-

mented for removing additive noise, and blind equalization (BE) (Mauuary,

1996) is employed for removing convolutive noise.

2.2. Model compensation approach

The simplest way to adapt to the noisy environment is by re-training the

speech recognizer using noisy speech. However, it requires a large amount of

training data. Besides, it is also difficult to obtain noisy speech for all possible

noisy environments. Parallel model combination (PMC) (Gales and Young,

1996) is a popular model adaptation method. In PMC, the distribution of

noisy speech is estimated by using the distribution of clean speech and noise.

A HMM for noisy speech is created by combining a clean speech HMM and

a noise HMM. VTS is another model compensation method (Acero et al.,

2000; Kim et al., 1998), which uses the statistics of noise obtained from the
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Taylor expansion.

2.3. Dealing with the cross-term

Since speech and noise spectra are independent from each other, they are

additive in the power spectral domain. However, the power spectrum of noisy

speech includes a cross-term between them in practice, hence the additivity

does not generally hold.

Several approaches have been proposed to compensate the cross-term. In

spectral subtraction methods, Zhu and Alwan (2002) found that the signal-

to-noise ratio (SNR)-based factor in nonlinear spectral subtraction (Berouti

et al., 1979; Lockwood and Boudy, 1992) related to the missing cross-term.

Some other approaches estimated the phase difference between speech and

noise. Deng et al. (2004) included the cross-term in the derivation of their

MMSE-based feature enhancement method, where the phase difference was

estimated by assuming it followed Gaussian distribution. Li et al. (2009) also

included the cross-term in VTS-based model compensation where the phase

difference was a fixed value determined empirically.

3. Non-additivity in noisy speech features

In this section, we examine the effect of the cross-term in the speech

features. In the log spectral domain, assuming that noise spectra are com-

pletely removed, speech and convolutive noise should be additive. However,

this relation does not hold and hence the cross term between them exist in

practice.

For this section, we omit the subscripts m and k. Let |N̂ |2 be the estimate

of noise power spectrum. We can obtain |X̂|2, which is the estimation of |X|2,
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as the following:

|X̂|2 = |Y |2 − |N̂ |2. (8)

Substituting (7) into (8) and denoting θ = θX − θN , we obtain:

|X̂|2 = |X|2 +
(

|N |2 − |N̂ |2
)

+ 2|X||N | cos θ. (9)

If we assume the noise spectrum is estimated correctly, that is |N |2− |N̂ |2 is

zero, Eq. (9) becomes:

|X̂|2 = |X|2 + 2|X||N | cos θ. (10)

Meanwhile, in the power spectral domain:

|X|2 = |S|2|H|2, (11)

where |S|2 and |H|2 are the power spectra of clean speech and convolutive

noise respectively. We can rewrite Eq.(10) as follows:

|X̂|2 = |S|2|H|2χ, (12)

where:

χ = 1 + 2
|N |

|S||H|
cos θ. (13)
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By taking the log of of Eq. (12) we obtain:

x̂ = s + h+ χ, (14)

where x̂, s, h, and χ are the log of |X̂|2, |S|2, |H|2, and χ respectively.

From (14), it can be seen that even though the additive noise spectra are

completely removed, the cross-term still exists. The cross-term introduces χ

in the log spectral domain. Hence, the additive relation between speech and

convolutive noise does not hold in this domain.

The cross-term in Eq. (13) is zero when the distance between the speech

and noise components in frequency space is greater than the frequency res-

olution in STFT (Kadambe and Boudreaux-Bartels, 1992). However, the

noise and speech spectra are usually close to each other, causing them to

overlap, in which case the resulting cross-term could be substantially large

in magnitude. Several studies have reported that it deteriorates the perfor-

mance of ASR. Deng et al. (2004) and Zhu and Alwan (2002) showed that

the clean speech estimate was not able to achieve the same accuracies as the

clean speech when the cross-term was ignored, even when the noise spectra

were perfectly estimated. Furthermore, Evans et al. (2006) reported that

the cross-term significantly reduced the performance of speech recognition

especially in the low SNR conditions.

In the conventional feature normalization methods, a normalized log spec-

trum is defined by:

s̃ = s− s. (15)
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By doing the same process to x̂, we obtain:

˜̂x = x̂− x̂

= (s− s) +
(

h− h
)

+ (χ− χ) , (16)

where:

χ =
1

M

M
∑

m=1

χ. (17)

Since we assume that convolutive noise is stationary and E{cos θ} = 0, then

h = h and χ = 0, and Eq. (16) becomes:

˜̂x = s̃ + χ. (18)

From Eq. (18), it is clear that the cross-term cannot be removed even when

the spectral subtraction and LSMN are ideally conducted.

4. Review of non-extensive statistics

In this section, we briefly describe the concept of non-extensive statistics.

Tsallis (1988) introduced a theory of non-extensive statistics in the field of

statistical mechanics. This theory generalizes Boltzmann-Gibbs statistics by

utilizing the q-exponential (q-exp) function and its inverse, the q-log function.

The q-exp function is defined as the following:

expq(x) = (1 + (1− q)x)
1

1−q , (19)
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and the the q-log is defined as:

logq(x) =
x1−q − 1

1− q
. (20)

These functions asymptotically approach exponential and natural logarith-

mic functions as q approaches 1. The q-log function for real number x is

illustrated in Fig. 1. It can be seen that logq(x) varies with parameter q and

approaches log(x) when q is close to 1.

A special property of q-log function is its pseudo-additivity, which is in-

troduced when q 6= 1 (Nivanen et al., 2003; Borges, 2004):

logq(xy) = logq(x) + logq(y) + (1− q) logq(x) logq(y), (21)

logq

(

x

y

)

=
logq(x)− logq(y)

1 + (1− q) logq(y)
. (22)

We can see that the q-log function is extensive when q = 1.

In this framework, entropy is redefined:

Sq = −k
∑W

i=1
p
q
i logq pi

= k
1−

∑W

i=1 p
q
i

q − 1
, (23)

where W is the number of states, k is the Boltzmann constant, pi is the

probability for each state, and
∑W

i=1 pi = 1. This entropy, Tsallis entropy, is

a generalization of Shannon entropy.

In Shannon theory, the total entropy of a system is the sum of its sub-

system’s entropies. In other words, Shannon entropy is an extensive entropy.
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It can be applied to those systems which have a known structure, e.g, the

number of subsystems and the relation between them. However, it cannot be

applied to complex systems where we do not know well about the subsystems

and their relation to each other.

Tsallis entropy is, on the other hand, a non-extensive entropy. The

pseudo-additivity properties of the q-log function are used to explain the

non-additive phenomenon in complex systems. Let A and B be two sub-

systems of a complex system X . Then:

Sq(X) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (24)

The third term of Eq. (24) represents the correlation between A and B, the

degree of which depends on the choice of q.

The theory of nonextensive statistics has been employed in the study

of complex systems in many areas in physics such as cosmology (Plastino

et al., 2004), fractals (Olemskoi et al., 2010), nuclear physics (Wilk and

Wlodarczyk, 2002), and self-gravitating systems (Jiulin, 2007). This theory

has also been successfully applied to the other fields such as finance and

economics (Gradojevic and Gencay, 2011), biological system (Moret, 2011),

medicine (Bezerianos et al., 2003; Weili et al., 2009), and pattern recogni-

tion (Zhang and Wu, 2008).

One of the challenges in non-extensive statistics is to explain the phys-

ical meaning of the q, which is still not clear and highly debated. To our

knowledge, an automatic method for optimizing q has not been found. It is

empirically determined to fit the non-additive phenomena.
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5. q-log spectral mean normalization

5.1. Framework

In Section 3, it was shown that the cross-term, χ, is introduced in the

log spectral domain when a short time window is used in signal processing.

It significantly degrades the speech recognition performance. Inspired by

the theory of non-extensive statistics, we implement the q-log function to

provide a new domain, q-log spectral domain, which can effectively represent

phenomena with non-additive nature.

It is difficult to replace the whole extensive framework for the present

speech recognition systems with the non-extensive one, since the additivity

does not hold in this non-extensive framework and algorithms for model pa-

rameter estimation cannot always be provided. Here, we employ a plug-in

approach with the q-log spectral domain as an intermediate domain. In this

approach, first, the speech features are transformed into those in the q-log

spectral domain. Next, the features are normalized in this domain using

a new technique, q-log spectral mean normalization (q-LMSN). Then, the

normalized features are re-transformed back to the original spectral domain.

The rest of the speech recognition process remains the same as the conven-

tional process. In this way, we can utilize a method based on non-extensive

statistics within the present framework of the extensive statistics.

The block diagram of our front-end is shown in Fig. 2. The speech signal

is first framed using a 25 ms Hamming window with a 10 ms frame shift.

Then we perform STFT and take the square of each spectral component to

obtain the power spectra of the signal. We implement spectral subtraction to

remove the additive noise spectra. After q-LSMN is carried out, a standard
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MFCC feature extraction is performed.

It should be noted that non-additivity in the speech features not only

comes from the cross-term but also from other factors such as the nature of

speech pattern itself, which is also complex. Various long-term correlations

also exist among its different spectral components in complex ways in various

time-scales (Cohen, 2005; McAuley et al., 2005; Ming et al., 1996). Such

correlations may also be compensated by using our approach.

5.2. q-LSMN

In Eq. (18), we show that the conventional feature normalization methods

cannot remove the cross-term in noisy speech spectra. It still exists even when

the spectral subtraction and LSMN are ideally conducted. In this section,

we derive our method, q-LSMN, and show the effect of q-LSMN on reducing

the cross-term.

In spectral domain, LSMN is equal to normalizing the spectrum with its

arithmetical mean of the logarithm of |S(m, k)|2:

|S̃(m, k)|2 =
|S(m, k)|2

exp

[

1
M

M
∑

m=1

s(m, k)

] . (25)

Meanwhile, the arithmetical mean of the q-logarithm of |S(m, k)|2 is calcu-

lated as follows:

sq(k) =
1

M

M
∑

m=1

sq(m, k). (26)

By normalizing the spectrum with its arithmetical mean of the q-logarithm
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of |S(m, k)|2, we obtain:

|S̃(m, k)|2 =
|S(m, k)|2

expq

[

1
M

M
∑

m=1

sq(m, k)

] . (27)

For q = 1, Eq. (27) is the same as Eq. (25). By taking the q-log of Eq.(27)

we obtain:

s̃q(m, k) =
sq(m, k)− sq(k)

1 + (1− q)sq(k)
. (28)

Eq. (28) is q-LSMN formula. It is identical with LSMN when q = 1.

We investigate the effect of q-LSMN on the cross-term. For readability,

we drop the subscripts m and k from now on. We denote:

Z = |S|2χ. (29)

We can rewrite Eq. (12) as follows:

|X̂|2 = Z|H|2. (30)

By taking the q-log of Eq. (30), we obtain:

x̂q = zq + hq + (1− q)zqhq. (31)

where x̂q, zq, and hq are the q-log of |X̂|2, Z, and |H|2 respectively. x̂q is the

estimate of xq after spectral subtraction. By normalizing the spectra with

its long term average according to Eq. (28), and assuming convolutive noise
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is stationary, we obtain:

˜̂xq =
(zq − zq) (1 + (1− q)hq)

(1 + (1− q)zq) (1 + (1− q)hq)

=
zq − zq

1 + (1− q)zq

= z̃q, (32)

where:

zq =
1

M

M
∑

m=1

zq. (33)

From Eq. (32) it is clear that q-LSMN is robust against convolutive noise.

By taking the q-log of Eq. (29) we obtain:

zq = sq + χq + (1− q)sqχq, (34)

where χq is the q-log of χ. Since E{cos θ} = 0, E{χ} = 0. While χq is

obtained by a nonlinear transformation from χ, we find that E{χq} is very

close to zero for 0 ≤ q ≤ 1. Therefore, the long term average of zq equals:

zq = sq. (35)
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By substituting (34) and (35) to (32), we obtain:

˜̂xq =
sq + χq + (1− q)sqχq − sq

1 + (1− q)sq

=
(sq − sq) + χq (1 + (1− q)sq)

1 + (1− q)sq

= s̃q +
1 + (1− q)sq
1 + (1− q)sq

χq. (36)

From (36), we can see that normalizing in the q-log spectral domain intro-

duces a weight to χq. For the spectral valleys, i.e. sq < sq, this weight

is smaller than 1, hence the cross-term is smaller. On the other hand, for

the spectral peaks, i.e. sq > sq, the weight is larger than 1. Removing the

cross-term in the spectral valleys may be more beneficial for speech recog-

nition than that in the spectral peaks. In the spectral valleys, noise and

the cross-term are more dominant. Hence, the SNR is lower. Meanwhile,

speech is more dominant in the spectral peaks. It could mask noise and the

cross-term (Schroeder et al., 1979) and hence reduce their effect.

The use of cube root (Hermansky, 1990) and power-law functions (Kim

and Stern, 2009) to replace the log function has been investigated previously.

These can be seen as special cases of our framework. The cube-root method

corresponds to q-LSMN at q = 0.66 and the power-law method corresponds

to q-LSMN at q = 0.9. Our method can be seen as an extension of these

methods to various q-values.
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6. Spectral Subtraction

We remove additive noise by implementing spectral subtraction (SS). It

is formulated as follows:

|X̂(m, k)|2 = max(|Y (m, k)|2 − αm|N̂(m, k)|2, β|Y (m, k)|2), (37)

where |X̂(m, k)|2 is the estimate of filtered speech spectrum, |N̂(m, k)|2 is

the estimated noise spectrum and αm and β are the control parameters. The

parameter αm is set to be a function of the noisy signal-to-noise ratio (NSNR)

for frame m with the following relation (Berouti et al., 1979):

αm =



























1 if NSNRm ≥ 20dB,

4− 3
20
NSNRm if −5dB ≤ NSNRm < 20dB,

4.75 if NSNRm < −5dB,

(38)

where NSNRm is formulated as:

NSNRm = 10 log

K
∑

k=1

|Y (m, k)|2

K
∑

k=1

|N̂(m, k)|2

. (39)

We set the spectral floor parameter, β, to 0.1.

For estimation of the noise spectrum, we implement the minima tracking

algorithm (Doblinger, 1995). First, we find |Ñ |2, the pre-estimation of noise
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power spectrum:

|Ñ(m, k)|2 =γ|N̂(m− 1, k)|2

+
1− γ

1− λ

(

|Ÿ (m, k)|2 − |Ÿ (m− 1, k)|2
)

, (40)

where |Ÿ (m, k)|2 is the smoothed noisy power spectrum that is calculated as

follows:

|Ÿ (m, k)|2 = δ|Ÿ (m− 1, k)|2 + (1− δ) |Y (m, k)|2. (41)

We use the values γ = 0.998, λ = 0.96 and δ = 0.9 in this paper.

Since noise is often nonstationary, it is important to keep updating the

noise spectrum. The decision when to update the noise spectrum is based

on a simple voice activity detector (VAD) algorithm proposed by Hirsch

and Ehrlicher (1995). It uses the ratio of the noisy spectrum and the noise

spectrum:

ξrel(m, k) =
ξ(m, k)− ξmin(m, k)

ξmax(m, k)− ξmin(m, k)
, (42)

where ξ(m, k) = |N̂(m,k)|2

|Y (m,k)|2
. The value of ξmin(m, k) and ξmax(m, k) are deter-

mined from 20 previous successive frames. The updating rules are:

|N̂(m, k)|2 =











|N̂(m− 1, k)|2 if ξrel(m, k) < T ,

|Ñ(m, k)|2 else,

(43)

where T is a threshold. We set T to 0.15.
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7. Experimental Setup

7.1. Databases

Our proposed method was evaluated using two databases, Aurora-2 (Hirsch

and Pearce, 2000) and CENSREC-2 (Nakamura et al., 2006). Both databases

are designed for concatenated digit recognition evaluation. These databases

have different environmental settings. While noise was added artificially in

Aurora-2, CENSREC-2 was recorded in real car driving environments.

7.1.1. The Aurora-2 database

In this database, eight types of noise: subway, babble, car, exhibition

hall, restaurant, street, airport and train station, were added to clean speech

artificially. There are two training conditions: the clean-condition training

and the multi-condition training. For the clean condition training, only clean

speech is used for training. For the multi-condition training data corrupted

with four types of noise: subway, babble, car and exhibition hall, at SNRs of

20 dB, 15 dB, 10 dB and 5 dB are used. We used only the clean-condition

training in this study. For testing, this database provides three test sets: A,

B and C. In Test Set A, the same noise as in the multi-condition training

were added to clean speech data. Test Set B uses the same utterances as

Test Set A but with different added noise (restaurant, street, airport and

train station). Both Test Sets A and B use G.712 channel characteristics.

In Test Set C, MIRS channel characteristic is used with subway and street

noise. For all test sets, noise was added at SNRs of 20 dB, 15 dB, 5 dB, 0

dB and -5 dB.
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7.1.2. The CENSREC-2 database

This database is a Japanese spoken database. It has 11 environmental

conditions: the combinations of three vehicle speeds (idling, low-speed driv-

ing on city streets and high speed driving on expressways) and four kinds of

in-car environments (normal, with air conditioner on, with audio CD player

on, and with windows open). There were two types of microphones used:

HF (hands free) and CT (close talking).

For the evaluation, the CENSREC-2 database provides four evaluation

conditions. For Condition 1, the speech data for training and testing were

recorded in the same environment and using the same microphone (HF). For

Condition 2, the training data and test data were recorded with different

environments: idling condition for training and low speed and high speed

conditions for testing. Both testing and training data were recorded using

HF microphones. In this condition, the main cause of mismatch is additive

noise. For Condition 3, the training and testing data were recorded in the

same environments, but using different microphones. CT microphones was

used for recording the training data and HF microphones for the testing

data. In this condition, channel mismatch is the main cause of the perfor-

mance degradation. Lastly, for Condition 4, the training and test data were

recorded using different environments and different microphones. The idling

environment and CT microphones were used for training data, whereas for

testing, the data was recorded in low and high speed conditions and the HF

microphones were used. In this condition, both channel and additive noise

are the sources of mismatch.
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7.2. ASR configuration

For extracting the features, we applied 23 triangle mel-filterbanks and

extracted 12 MFCC’s coefficients and log energy as the static features. For

recognition, 38 dimensional MFCC features were used. They consist of 12

static MFCC features, their first and second-order derivatives, the first and

second order derivatives of log energy. We excluded the log energy from the

features.

We implemented an HMM-based speech recognition system. Each digit

was modeled by a left-to-right HMM with 16 states. Each state has 3 Gaus-

sian mixtures. Two pause models were used: “sil” and “sp”. The “sil” model

consisted of 3 states. Each state in the “sil” model has 6 mixtures. The “sp”

model consisted of a single state which was tied to the middle state of the

“sil” model.

We measured the recognition performance with the word accuracy rate

(%). For the Aurora-2 database, the average accuracy denotes the average

over SNR 0dB to 20dB, while for CENSREC-2, the average accuracy denotes

the average over all four evaluation conditions.

8. Experimental results and discussions

We first investigate the effect of q-LSMN on noisy speech. We examine

whether q-LSMN can reduce the non-additive term in noisy speech. Then,

we present our evaluation results of q-LSMN on the speech recognition per-

formance.
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8.1. The effect of q-LSMN on noisy speech

We investigated the nature of our proposed q-LSMN under the condition

that the additive noise was known (artificially added). We filtered 1001 clean

speech utterances of the Aurora-2 database (from first set of the test set A)

through three types of communication channel, G.712, MIRS, and IRS. Then,

q-LSMN was performed on both clean speech and filtered speech and the log

spectral distance (LSD) between them was calculated:

DLS =
1

KM

M
∑

m=1

K
∑

k=1

√

√

√

√

(

log
|S(m, k)|2

|Ŝ(m, k)|2

)2

. (44)

Fig 3 shows the LSD between clean speech and filtered speech after q-

LSMN. The LSD was smaller for some q 6= 1. These results indicated that

speech and convolutive noise might be non-additive in the log spectral domain

even without additive noise.

We added to the filtered speech (G.712 and MIRS) two types of additive

noise from JEIDA noise database (Itahashi, 1990), babble noise and white

noise. Noise was added from -5dB to 20dB with 5 dB increments. To ob-

tain the clean speech estimate, we first carried out spectral subtraction as in

Eq. 37 with αm = 1 and β = 0.01. We used “the true spectrum” of noise,

artificially added to the clean speech. We next normalized the spectra ob-

tained from spectral subtraction with their long term average. The resulting

spectra can be assumed as the clean speech and the cross-term as shown in

Eq. (18). We applied q-LSMN on the normalized spectra. We then calculate

the LSD between the estimated clean speech spectra after q-LSMN and the

normalized clean spectra.
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Fig. 4 and 5 show the LSD between the estimated clean speech spectra

and the clean speech spectra with and without q-LSMN for the spectral

valleys. We select the spectral valleys by choosing the spectra that satisfy

sq < sq for each utterance. The LSD between clean speech and its estimate

is smaller with q-LSMN than without it for some q 6= 1. We obtained 0.2

of the LSD improvement in average over all SNR conditions. These results

indicate the effect of q-LSMN on the cross-term.

We conducted a recognition experiment using the filtered speech, i.e.

speech contaminated with convolutive noise only. We applied q-LSMN using

0 ≤ q ≤ 1. The results are shown in Fig 6. We found that the performance

of speech recognition improved for some q 6= 1. These results suggest that

speech and convolutive noise are not additive in the log spectral domain as

they are usually assumed, while the differences in accuracy are marginal.

Table 1 shows the recognition results using the clean speech estimate.

The accuracies were lower than that for the clean speech. This result in-

dicated that there was still a mismatch even though the additive noise and

convolutive noise spectra were removed. From Eq. (10), it is obvious that

the cross-term is the source of this mismatch. This result agrees with the

previous studies (Deng et al., 2004; Faubel et al., 2008; Zhu and Alwan,

2002).

8.2. Evaluation of q-LSMN without spectral subtraction

Figure 7 shows the average word accuracies over test set A, B, and C of

the Aurora 2 database when q is varied from 0.0 to 1.0. For certain values

of q 6= 1, q-LSMN was better than q = 1, the case when q-LSMN became

identical with LSMN. The best accuracy was achieved at q = 0.7, with 21.9%
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error reduction rate over LSMN.

Figure 8 shows that the optimum q is different for each SNR condition

of the Aurora 2 database. The optimum q value was closer to 1 for the high

SNR and became smaller as SNR became lower except for −5 dB SNR. This

result is consistent with the fact that the cross-term became larger when

SNR was lower. These results coincided with the improvement in the LSD

on the spectral valleys in Section 8.1. Fig. 9 shows the optimum q for four

types of noise in test set A of the Aurora-2 database for each SNR condition.

This result suggests the optimum q is influenced by the noise types. Noises

in real environments affect each spectral band differently. As a result, the

cross-terms are different among different kinds of noise, and different q is

required to compensate for it.

Figure 10 shows the average word accuracies over Conditions 1, 2, 3,

and 4 of the CENSREC-2 database. The best performance was achieved

at q = 0.4. This value was different from that in the Aurora-2 database.

In real noisy environment, additive noise may have various different sources

and their transmission channels may be largely different. Hence, a lower q is

required to compensate for the cross-term.

Figure 11 shows the performance of q-LSMN for each evaluation condition

of the CENSREC-2 database. The word accuracies were largely improved

except in Condition 1. In Condition 1, training and testing conditions are

the same. Hence, there should be only a small mismatch, and the perfor-

mance improves only slightly from LSMN (q = 1). Larger improvements were

obtained in Condition 3 and 4 where there are channel differences between

training and testing.
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Table 2 summarizes the recognition results of q-LSMN and the other

conventional normalization methods. For both databases, the performance

of q-LSMN was consistently better than that of CMN and MVN. It reduced

errors by 20.1% and 18.2% respectively when q = 0.7 for Aurora-2, and by

38.5% and 27.2% respectively when q = 0.4 for CENSREC-2. These results

confirm that q-LSMN improves the robustness of ASR systems.

8.3. Evaluation of q-LSMN with spectral subtraction

The combination of q-LSMN with spectral subtraction further improves

the performance of the front-end as expected (Fig. 7 and 10). For both

databases, the optimum q-value was different from that without SS. When

SS was implemented, q = 0.8 was the optimum for Aurora-2, whereas q = 0.5

was the optimum for CENSREC-2. The cross-term becomes smaller as SNR

becomes higher. This may be the reason that the optimum q is smaller after

SS.

Table 3 summarizes the recognition results of q-LSMN and the other

conventional normalization methods after SS. For the Aurora-2 database,

q-LSMN reduced errors by 10.4% and 21.1% from CMN and MVN respec-

tively at q = 0.8. For CENSREC-2, q-LSMN reduced errors by 41.1% and

35.3% from CMN and MVN respectively at q = 0.5. We also compared our

method with ETSI AFE. ETSI AFE performed better than our method on

the Aurora-2 database. However, q-LSMN achieved better word accuracies

on the CENSREC-2 database. q-LSMN alone reduced errors by 26.1% from

ETSI AFE. Combination with SS reduced errors by 38.4% from ETSI AFE.

In ETSI AFE, blind equalization (BE) is used to remove convolutive noise.

In BE, the bias of each frame, which will be subtracted from the features,
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is calculated using pre-determined reference means and weighting factors

which depend on the log of the energy of the frame. The reference means

used in ETSI AFE correspond to flat spectra. In CENSREC-2, channel

mismatch is caused not only by the difference of microphones types used in

training and testing, but also by the change of distance between the speakers

and the microphones, which would cause the reference and actual means to

be different. Hence, BE may not suitable for the recording conditions in

CENSREC-2.

9. Conclusion

We propose q-LSMN, a feature normalization method in the q-log spectral

domain. The use of the q-log function enables us to represent nonadditiv-

ity of speech features, which exists when noise and speech are correlated.

Our evaluation using two types of databases, Aurora-2 and CENSREC-2

databases, showed the effectiveness of our approach. q-LSMN was better

than CMN and MVN in both databases. Our method outperformed ETSI

AFE on the CENSREC-2 database, where we gained up to 26.1% relative

improvement. This result may indicate that our method is more effective in

real environments. The combination of spectral subtraction with q-LSMN

was also better than the combination of spectral subtraction with CMN or

MVN. We believe that our method can be used complementary to any noise

removal methods other than spectral subtraction.

We should say that our non-extensive approach can not provide a clear

solution to the problems of non-extensivity of the noisy speech features, but

does provide an alternative approach to them. In some q 6= 1, it provides
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a better solution than the original extensive ones such as CMN and LSMN

from the viewpoint of efficiency and/or performance.

Our q-LSMN is based on non-extensive statistics. While it has been

shown to be successful in interpreting some physical phenomena that cannot

be fully explained by extensive statistics, the physical meaning of the q-value

has not yet been explored much. While we proved that the use of q different

from 1 is effective in robust speech recognition, the meaning of q in speech

processing is still not clear and should be investigated in future.

The optimal q-value may be different in different frequency bands since

noise affects each frequency band differently. While we used the same values

for all the bands in this study, the optimization of q-values to each band

might be promising. Another interesting topic would be the implementation

of other compensation methods in the q-log domain.
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Table 1: Word accuracy (%) of the Aurora-2 task when the cross-term is assumed to be
zero.

SNR (dB)
G.712 MIRS

Babble White Babble White

Clean 98.6 98.6 98.6 98.6
20 97.8 97.6 97.8 97.7
15 97.5 97.7 97.6 97.6
10 97.6 97.1 97.1 97.8
5 97.1 97.4 97.2 97.9
0 96.9 96.9 96.4 97.5
-5 95.2 96.1 94.3 96.3

Table 2: The word accuracy (%) of the Aurora-2 task and the CENSREC-2 task.

Methods
Aurora-2 CENSREC-2

Set A Set B Set C Ave. Cond 1 Cond 2 Cond 3 Cond 4 Ave.

No compensation 65.8 68.6 60.9 65.9 85.5 78.7 46.2 40.4 62.7

q-LSMN (q = 0.7) 72.2 76.9 71.1 73.8 88.7 84.4 70.1 57.9 75.3

q-LSMN (q = 0.4) 67.2 71.7 64.8 68.5 88.6 85.2 73.5 63.3 77.7

LSMN 64.7 70.2 62.8 66.5 88.3 83.3 64.4 48.7 71.1

CMN 65.7 70.5 63.9 67.3 85.9 77.7 52.9 38.9 63.6

MVN 68.3 69.3 64.9 68.0 85.5 82.5 63.2 46.0 69.3

Table 3: The word accuracy (%) of q-LSMN and the other methods after spectral sub-
traction for the Aurora-2 task and the CENSREC-2 task.

Methods
Aurora-2 CENSREC-2

Set A Set B Set C Ave. Cond 1 Cond 2 Cond 3 Cond 4 Ave.

SS 79.0 76.7 75.9 77.5 86.7 79.9 53.2 47.0 66.7

SS + q-LSMN (q = 0.8) 78.5 80.7 78.1 79.3 89.0 85.9 75.9 68.1 79.7

SS + q-LSMN (q = 0.5) 75.8 78.0 74.4 76.4 89.2 86.1 78.5 71.6 81.4

SS + LSMN 76.2 79.3 75.2 77.2 88.9 84.7 72.7 62.2 77.1

SS + CMN 76.2 78.4 75.2 76.9 86.7 79.7 59.5 47.6 68.4

SS + MVN 74.3 74.3 71.8 73.8 86.7 83.0 65.9 51.8 71.8

ETSI AFE 80.1 82.1 79.5 80.8 85.6 80.3 59.9 53.3 69.8

36



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

x

lo
g

q
(x

)

 

 

q=2
q=1.5
q=1
q=0.5
q=0

Figure 1: The q-logarithmic function of real variable x for different q-values.
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Figure 4: The log spectral distance between the clean speech estimate and the clean speech
with and without applying q-LSMN for the spectral valleys. The clean speech estimate
is obtained after employing spectral subtraction and normalization on the noisy speech
spectra. In this figure, babble noise is used as additive noise.
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with and without applying q-LSMN for the spectral valleys. The clean speech estimate
is obtained after employing spectral subtraction and normalization on the noisy speech
spectra. In this figure, white noise is used as additive noise.
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Figure 6: The word accuracies (%) of q-LSMN for filtered speech, i.e speech contaminated
with convolutive noise only.
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Figure 7: The word accuracies (%) of q-LSMN with and without spectral subtraction for
the Aurora-2 task for different q values.
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Figure 8: The word accuracies (%) of q-LSMN for various SNR conditions in the Aurora-2
task.
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Figure 9: The optimum q-values for four types of noise in Test Set A of the Aurora-2
database for various SNR conditions.
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Figure 10: The word accuracies (%) of q-LSMN with and without spectral subtraction for
CENSREC-2 task with different q values.
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Figure 11: The word accuracies (%) of q-LSMN for CENSREC-2 task for each condition
evaluation with different q values.
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