T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題	3次元建物GISを用いたLESによる東京街区の流体力学的パラメタリゼ ーション
Title	URBAN AERODYNAMIC PARAMETERIZATION FOR TOKYO DISTRICTS BY USING LARGE-EDDY SIMULATION WITH 3D BUILDING GIS
著者	宮本 崇史, 稲垣 厚至, 神田 学
Author	Takashi Miyamoto, Atsushi Inagaki, Manabu Kanda
出典 / Citation	土木学会水工学論文集 B1(水工学), Vol. 68, No. 4, pp. I_1801-I_1806
Citation(English)	, Vol. 68, No. 4, pp. l_1801 - l_1806
発行日 / Issue date	2012, 3
権利情報 / Copyright	本著作物の著作権は土木学会に帰属します。 Copyright (c) 2012 Japan Society of Civil Engineers.

3次元建物GISを用いたLESによる東京街区の 流体力学的パラメタリゼーション

URBAN AERODYNAMIC PARAMETERIZATION FOR TOKYO DISTRICTS BY USING LARGE-EDDY SIMULATION WITH 3D BUILDING GIS

> 宮本 崇史¹・稲垣 厚至²・神田 学³ Takashi Miyamoto, Atsushi Inagaki and Manabu Kanda

¹東京工業大学大学院 理工学研究科国際開発工学専攻(〒152-8552 東京都目黒区大岡山二丁目12-1)
²正会員 博士(工学) 東京工業大学大学院 理工学研究科(同上)
³正会員 工学博士 東京工業大学大学院 理工学研究科(同上)

This report aims to propose a new aerodynamic parameterization of the urban land surface parameters for mesoscale weather prediction models. Aerodynamic parameters in build-up area are calculated from an output of the large eddy simulation in which the airflow within the building canopy was explicitly resolved with fine grid spacing. Real urban morphologies in Tokyo were implemented in the simulation. Drag coefficients, which were calculated from the numerical simulation, became significantly larger than those from the conventional morphological models widely used. The influence of relevant geometric parameters such as the maximum building height and the deviation of building height on the aerodynamic parameters are discussed. On the base of discussion above, a new simple aerodynamic parameterization is proposed.

Key Words : Large eddy simulation, Roughness length, Displacement height, Maximum building height, Standard deviation of building height

1. はじめに

近年,都市集中豪雨やヒートアイランドといった都市 特有の各種大気環境問題が深刻化しており,それに対し てメソ気象モデルを用いた予測や影響評価などの研究が 盛んに行われているが,その多くは都市地表面を単一の 地表面カテゴリーとして扱い,建物幾何の違いを反映し ているとは言えない.

そこで著者らは、Macdonald et al.¹⁰の実験式を用い、東 京の詳細な建物GISからメソ気象モデル用の地表面パラ メータの算定を行い、集中豪雨解析などに応用してきた ^{2),3)}.しかし、この実験式は、バルクな地表面幾何パラ メータのみでメソ気象モデルの地表面パラメータを算定 できる利点はあるが、一様な建物高さ及び幾何配列に基 づいているため、複雑且つ多様な幾何形状を持つ都市の 効果を表現するには不十分である.

そこで、本研究では、建物周囲の詳細な気流計算を行うLES(Large Eddy Simulation)の結果を利用して、より簡便な幾何パラメータのみでメソ気象モデルの地表面パラ

メータの構築を試みる.具体的には、建物を陽的に解像 した流れ場のLESを行うことで、実際の都市幾何形状に 対応した正確な流体抵抗を算定し、得られた計算結果か ら運動量粗度z₀及びゼロ面変位dといった各種地表面パ ラメータの算定を行う.

その適用例として、本研究では東京都23区内から水平 1km四方の領域を80エリア選定し、個々の建物を陽的に 解像したLESによる数値計算を実施した.

考察では主に、各計算対象エリアで一意的に定まるバ ルクな地表面幾何パラメータである平均建物高さや最大 建物高さなどを用いて、Macdonaldの式では表現できな い最大建物高さ及び建物高さ分散が都市の流体抵抗に及 ぼす影響について検討を行い、それに基づいて実都市に 適用可能な簡便なパラメタリゼーションを提案する.

2. 地表面抵抗パラメータの算定方法

(1) LESでの抵抗算定方法

地表面の流体抵抗を算定する方法として、本研究では

運動量の鉛直プロファイルなどを用いず,領域全体での 運動量収支から直接算定する手法を用いる.

主流方向をxとする.計算領域内におけるx方向の運動方程式は式(1)のように記述される.

$$\frac{Du}{Dt} = -\frac{1}{\rho} \frac{\partial P}{\partial x} - F_{\tau x} \tag{1}$$

ここで、 $F_{\tau x}$ はx方向のレイノルズ応力(内部応力)項、 ρ は空気の密度である.式(1)の両辺を領域全体で体積積分すると、

$$\frac{DU}{Dt} = -\frac{1}{\rho} \int_{V} \frac{\partial P_{st}(x, y, z)}{\partial x} dV - \int_{A} \tau(x, y) dA \quad (2)$$

Uは体積積分された主流方向速度 $(U \equiv \int_{V} u \, dV)$ を表し,

 P_{st} は静圧($P = P_{st} + P_{*}, P_{*}$: 圧力摂動), τ は局所的な 地表面応力抵抗を表す.

ここで, 圧力勾配が場全体で一様であると仮定し ($\partial P_{st}/\partial x = const.$),地表面での領域平均摩擦応力を τ_0 とすると, τ_0 は式(3)のように表せる.

$$\tau_0 = -\frac{1}{A} \left\{ \frac{dU}{dt} + \frac{V}{\rho} \left(\frac{\partial P_{st}}{\partial x} \right) \right\}$$
(3)

ここで、Aは計算領域の水平断面積、Vは体積を表す.

摩擦速度 u_* は式(3)から算定した τ_0 を用い,式(4)のように算定できる.

$$u_* = \sqrt{\tau_0 / \rho} \tag{4}$$

z₀及びdは、数値計算結果から得られた水平風速の鉛直 分布及び式(4)より算定したu_{*}を用い、式(5)で表される 対数速度分布にフィッティングさせることで算定した.

$$u = \frac{u_*}{\kappa} \ln\left(\frac{z-d}{z_0}\right) \tag{5}$$

κはカルマン定数であり、0.4とした.

(2) 地表面幾何条件から定まる地表面抵抗モデル式

数値解析により得られた z_0 及びdを、気象モデルに多 く用いられているMacdonaldの式¹⁾より算定された値と比 較する.この式は地表面幾何パラメータのみからdや z_0 を算定でき、それぞれ式(6),(7)のように記述される.

$$\frac{d}{H} = 1 + A^{-\lambda_p} (\lambda_p - 1) \tag{6}$$

$$\frac{z_0}{H} = \left(1 - \frac{d}{H}\right) exp\left[-\left(0.5\frac{C_D}{\kappa^2}\left(1 - \frac{d}{H}\right)\lambda_f\right)^{-0.5}\right]$$
(7)

ここで、 λ_p は建蔽率、 λ_f はフロンタルエリアインデックス(風上方向からみた場合の建物投影面積と敷地面積の 割合)、*H*は平均建物高さ H_{ave} である、*A*は4.43を用いた、 C_p は抗力係数であり、1.2とした、

このモデルの利点は単純な建物幾何パラメータのみか ら都市流体抵抗をモデル化している点にあり、そのため データが入手しやすく、現在最も汎用性のあるモデルと 言える.本論で提案するモデルも同様に、より簡潔な地 表面幾何パラメータを用いて都市における流体抵抗をモ デル化することを目的としている.

3. 地表面抵抗パラメータの算定方法

(1) 数値モデル

本研究では、ドイツのハノーバー大学気象学科と共同 開発した実都市用LES計算モデルであるPALM-CITY (Parallelized Large-eddy simulation Model for CITY⁴⁾を用い て、都市地表面パラメータ算定のための気流計算を行う. モデルの特徴として、地表面の建物幾何形状を陽的に解 像することができ、且つ並列計算に対応しているため大 規模な計算を得意とする.

(2) 計算条件

計算条件として,体積流量一定 (*DU*/*Dt* = 0),中立 成層状態で,コリオリカは作用しないものとする.上面 境界はfree-slip,水平境界は周期境界条件を用いる.こ れらの条件から,式(3)より地表面抵抗を算定することが 可能となる.

使用する建物幾何形状のデータは、東京都23区における2009年度の建物GISを用いた.計算の解像度は2mとした.数値計算領域は水平1000m × 1000m,鉛直方向の高さは600mとした.

初期水平風速は各計算領域の西側から3.0m s⁻¹を鉛直方向に一定値として与えた.積分時間は5時間とした.

(3) 計算対象領域

図-1は、東京都23区内の領域を1km四方で分割し、全 エリア λ_p のと λ_f の関係を示したものである。この図を元 に、 λ_p 及び λ_f が0.2以上のエリアを中心に80エリア選定 した. 選定したエリアを黒丸で示す。

図-3 特徴的な運動量フラックスの鉛直プロファイル及び建物高さのコンター図

4. 結果及び考察

(1) 運動量フラックスの鉛直プロファイル

まず,各計算領域における流れの平均特性として, 地表面流体抵抗パラメータと直接関係している運動量 フラックスの鉛直分布について見てみる.図-3は全80 エリアの中からある特徴的な分布を持った3エリアの鉛 直プロファイルを示したものであり,それぞれ(a)品川 駅周辺,(b)渋谷駅周辺,そして(c)洗足駅(目黒区)周辺と なっている.コンター図は計算対象領域の建物高さの 分布となっており、高い建物ほど暖色系の色になるように描かれている.図の方位は上部が北となっている. 鉛直プロファイルの算定には、計算開始後から4時間半から5時間までの30分間の時間平均及び、各高度の水平断面平均より算定したものとなっている.

運動量フラックスの鉛直プロファイルの図中に描か れた実線(赤)と一点鎖線(青)はそれぞれ領域内の最大建 物高さH_{max}とH_{ave}を表し,黄色の帯は建物高さの標準 偏差を表す.これらと運動量のピークを比較すると, (a)の場合はH_{max}で運動量フラックスのピークが生じて いることが確認できる.これに対し,(b),(c)の順に運 動量フラックスのピーク高度はH_{max}から下方へ降りて いき, Have に近づく. また, 品川のケースではピーク の位置が明瞭に出ているが、後者については丸みを帯 びたプロファイルとなっており、ピークの高さが比較 的明確でない.一方,風洞実験などでよく行われる建 物高さが一様なケースでは H_{ave} (= H_{max})に運動量フ ラックスのピークが現れる.これの意味するところと して、 例えばdは地物が受ける応力重心の高さとして定 義される⁵が、本解析条件ではレイノルズ応力(運動量 フラックス)+地表面抵抗と水平圧力勾配が釣り合って おり, また水平圧力勾配は鉛直方向に一定であるため, 応力重心は運動量フラックスの鉛直分布によって決定 される. つまり, 品川のようなケースにおいてdはHave だけでなく、Hmaxにも大きく依存する可能性を示唆し ている.しかしながら,式(6)にはそのような幾何パラ メータは考慮されておらず、改良の余地があると考え られる.

では、運動量フラックスのピーク高度が明確に表れ ない場合の都市幾何形状がどのようになっているのか、 検討を行った.その原因として、渋谷ではH_{max}に近い 高度を持った建物の棟数及び敷地面積が非常に少なく、 約80%の建物が40m以下で形成されているという特徴が ある.そのため、大きな面積比率を占める40m以下の建 物が作るレイノルズ応力ピークと、高い建物が作る応 力ピークの強さが拮抗したため、それらを空間平均し た領域全体の運動量フラックスには明確なピーク値が 得られなかったのではないかと考えられる.つまり、 渋谷のケースと同様に、運動量フラックスに明確な ピーク値が見られなかったケースの共通点は、H_{max}と 同等な高さを持った建物が少なく、H_{max}に対して比較 的低い建物の面積比率が大きい場合である.

(2) ゼロ面変位*d* と運動量粗度*z*0

LESの計算結果から算定された z_0 及びdと, Macdonaldの実験式(式(6), (7))から算出された値を比較する. これらのパラメータは前述の通り対数則への フィッティングにより同定したものである.図-2は全 80エリアの計算対象領域における無次元風速分布であ り、横軸は計算開始後から4時間半から5時間までの30 分の時間平均及び水平断面平均値を摩擦速度で無次元 化したもの、縦軸は計算領域の高度をd,z₀を用いて規 格化した対数軸となっている.それぞれ無次元高度が 10~300程度の間で対数則に適合していることが確認で きる.少数の高層建物が存在する場合,粗度境界層高 度が大きくなることで対数速度境界層の消滅が懸念さ れるが、図に示した通り、本研究で用いた地表面幾何 形状、中立大気安定度、計算領域の条件では対数速度 分布とみなせる層が存在した.

図-4は $d \ge z_0 \in H_{ave}$ で無次元化したものであり、 λ_p に 対してプロットした. また, 図-3に示した品川, 渋谷, 洗足駅周辺エリアをそれぞれ赤,青,緑で示し, Hagishima et al.^のに記載されている建物高さが一様なケー スを紫で示す.まず数値計算結果のd/Haveに着目する と,多くのケースにおいて数値計算から算定した *d*/H_{ave}の値の方がMacdonaldの式に比べて大きくなるこ とが分かった. 更に, いくつかのケースではd/Haveが1 を超えており、dがHaveより大きくなっている. これに ついて、まずMacdonaldの式より大きな値になった理由 として, Macdonaldの式では建物高さが一様な場合を考 慮しているため、建物高さ分散がある場合ではそれを :過小評価しているものと考えられる. また, d/Haveが1 を超えることの妥当性について考えると、品川のケー スで見たように、レイノルズ応力ピークはHameより十 分大きなHmaxで決定される場合があるため、dの高さ がHaveを超える可能性は十分に考えられる.また、建 物高さ分散を持たせた風洞実験結果でもd/Hameが1を超 える結果が報告されている⁷. ことさらに,渋谷と品川 の数値計算結果を比較すると、渋谷よりもλρの小さい 品川のd/Have 値の方が高いという結果になっており, 式(6)から推定されるd/Haveの大小関係としては逆の結 果となっている.しかしながら、図-3に示した運動量

図-4 (a) d/H_{ave} と λ_p , (b) z_0/H_{ave} と λ_p の関係

フラックスピークの高さを考えると,品川の方がピー クの高さが高いことから,この結果は妥当であると考 えられる.

次に z_0/H_{ave} について見てみると、同じ λ_p であっても λ_f が増加すると、 z_0/H_{ave} の値も増加していることから、 Macdonaldの式(7)と同様な傾向を示しているといえる. また、 λ_f が小さい場合は式(7)による推定値と近い値を 示しているが、 λ_f の増加に伴い両値の差異が大きく なっている.この原因として、同じ H_{ave} 、 λ_p 、 λ_f で あっても、建物高さにばらつきが存在することによっ て、運動量交換が促進され、地表面抵抗の強さを表す z_0 が増大したためと考えられる.建物高さ分散が z_0 を 増大させることはLES数値実験ⁿや屋外模型都市実験 COSMO⁸、風洞実験[®]の結果とも整合するが、いずれも 実都市とは異なる単純化された模型都市の結果である.

(3) 建物高さの分散を考慮したz₀の推定式の提案

図-5に建物高さのばらつきを考慮に入れた z_0/H_{ave} と バルクな地表面幾何パラメータに関する図を示す. 図 中の×で示すデータは, Hagishima et al.^のに記載されて いる建物高さ分散のある地表面幾何における風洞実験 結果である. また、 \triangle で示すデータは,式(7)を用いて 算出した値であり、 z_0/H_{ave} が小さい方から $\lambda_p = \lambda_f =$ 0.4, 0.3, 0.2を代入し得られた値である. 図-5より, z_0/H_{ave} が($H_{ave} + \sigma_H$)/ H_{ave} の λ_f/λ_p 乗に対してほぼ直 線関係となることが示されている. 横軸のバルクな幾 何パラメータは様々な組み合わせを試した結果最も適 合性の良かった経験的なものである. ただし,式(7)か ら算出した z_0/H_{ave} よりも小さい値を示している領域も ある. これは,建物群を直方体の一様配列とみなす式 (7)を実市街に適用する限界と思われる.

0.5 y = 0.18(x - 1)0.4 0 0 0.3 z_0/H_{ave} 0.2 0.1 8 С 0.0 2 1.5 2.5 3 1 3.5 $\{(H_{ave} + \sigma_H)/H_{ave}\}^{(\lambda_f/\lambda_p)}$

図-5 z_0/H_{ave} と{ $(H_{ave} + \sigma_H)/H_{ave}$ }(λ_f/λ_p)の関係

図-5の関係に基づき, H_{ave} , λ_p , λ_f に加えて, 建物高 さ分散 σ_H を考慮した新しい粗度を式(8)に示す.

 $z_{0} = 0.18H_{ave} \left[\{ (H_{ave} + \sigma_{H})/H_{ave} \}^{(\lambda_{f}/\lambda_{p})} - 1 \right]$ (8)

式(8)を用いて算定したz₀とLESの計算結果から算定した z₀(*LES*)との比較を図-6に示す.なお,式(8)を用いて算 定したz₀が式(7)を用いて算定したz₀よりも小さい場合 は,式(7)を用いて算定したz₀をプロットした.なぜな ら,式(8)は建物高さにばらつきが無い場合は角括弧内 の値がゼロとなってしまう.すなわち,建物高さが均 一な地表面幾何に対する粗度式(7)と矛盾せず,連続 性・整合性を持たせるためである.図-6より,z₀が小 さい場合だけでなく,10を超える場合においても非常 に良い精度で推定出来ていることが分かる.この結果 から,バルクな地表面幾何パラメータのみで建物高さ のばらつきを考慮したz₀の推定が可能となった.

(4) 建物高さの分散を考慮したdの推定式の提案

図-7に建物高さのばらつきを考慮に入れたdに関する図 を示す. 横軸の $\{H_{max} - (H_{ave} + \sigma_H)\}/H_{max}$ は, ゼロ に近いほど,建物高さのばらつきが小さく均一な建物 高さであることを示すのに対し,1付近では周囲の建物 と比べて非常に高い建物が単独で存在するような地表 面幾何形状を示している.図-7に示す3本の近似曲線は λ_p の範囲を3つに分類することで、 λ_p による影響を示し たものである.これらの近似曲線のy切片は λ_p の各範囲 での平均値(小さいものから0.2, 0.3, 0.4)を式(6)に代入し 得られた値を用いた.また,近似曲線のy=0時の値の変 化は、y=0時における解の大きい方の値をそれぞれ算出 し、各々の λ_p との関係から二次関数近似を用いて推定

図-6 z₀の比較, (O:式(8)及び式(7)から算定, △:式(7)の みで算定)

図-7 $d/H_{max} \geq \{H_{max} - (H_{ave} + \sigma_H)\}/H_{max}$ の関係、(O: 計算対象領域、×:Hagishima et al.⁶、 Δ :式(6))(図中 の λ_p の範囲が低い方から黒、赤、青で色分け)

した. これら3つの近似曲線を用いて推定したdを図-8 に示す.式(6)から算定したdと比較を行うと、図-7から 推定した近似曲線を用いることで、LESの計算結果から 算定したdと近い値となった.

5. 結論

本研究では、建物形状を陽的に解像した流れ場に対 するLESを行うことで、実際の都市幾何形状に対応した 正確な流体抵抗を算定し、得られた計算結果からz₀及 びdの算定を行い、Macdonaldのモデル値と比較した. 以下に得られた知見を挙げる.

- ・数値計算結果を用いて算定した $d/H_{ave} \ge z_0/H_{ave} を$, 式(6),(7)を用いて建物幾何形状から算定した d/H_{ave} , $z_0/H_{ave} \ge 比較すると,殆どのケースにおいて数値$ 計算結果から算定した値の方が大きな値を示した.これは,建物高さの不均一性による影響である.
- 運動量フラックスのピークはH_{max}に引きずられる 傾向が強い. H_{max}付近の建物の面積比率が計算領 域に対して小さい場合,レイノルズ応力のピークは 下層の建物高さに引きずられる.
- 各計算対象エリアで一意的に定まるバルクな地表面 幾何パラメータを用いて、建物高さのばらつきが存 在する場合においても適用可能な流体力学的パラ メータの推定式を提案した.

謝辞:本研究は,文部科学省の委託事業「気候変動適 応研究推進プログラム」において実施されたものです. ここに謝意を表します.

図-8 *d*の比較, (○:図-7の近似曲線から算定した値, △:式 (6)から算定)

参考文献

- Macdonald, R. W., Griffiths, R. F., Hall, D. J. An improved method for estimation of surface roughness of obstacle arrays, *Atmos. Environ.*, Vol.32, pp.1857–1864, 1998.
- 2)下重亮,仲吉信人,神田学:都市の幾何形状と地形によって生じる海風の収束が東京の夏季局地的集中豪雨発生に及ぼす影響,水工学論文集,Vol.53, pp.277-282, 2009.
- 下重亮,仲吉信人,神田学:都市要因を考慮した夏季関東 における都市型集中豪雨の多事例解析,水工学論文集, Vol.54, pp.349-354, 2008.
- Letzel M. O., Krane, M. and Raasch, S.: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale, *Atmos. Environ.*, Vol.42(38), pp.8770-8784, 2008.
- Raupach, M. R., Antonia, R. A. and Rajagopalan, S.: 1991, 'Rough-Wall Turbulent Boundary Layers', *Appl. Mechs. Revs.*44. 1-25.
- Hagishima, A., Tanimoto, J., Nagayama, K. and Meno, S.: Aerodynamic parameters of regular arrays of rectangular blocks with various geometries, *Boundary-Layer Meteorol.*, Vol.132(2), pp.315-337, 2009.
- Kanda, M.: Large eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures, *Boundary-Layer Meteorol.*, Vol.118, pp.151-168, 2006.
- Manabu Kanda and Takanobu Moriizumi, Momentum and heat transfer over urban-like surfaces, *Boundary-Layer Meteorol.*, Vol.131(3), pp.385-401, 2009.