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Noise Influence Analysis in Landmine Discrimination by Curve
Characterization Method ∗

*Alex Kaneko (Tokyo Tech), Gen Endo (Tokyo Tech), Edwardo F. Fukushima (Tokyo Tech)

1. Introduction

Removing landmines is very costly, dangerous

and time-consuming, mainly due to high false alarm

rate (FAR) which is caused by many other metal frag-

ments (MF), such as exploded landmines and bul-

lets, existing in minefields with landmines [1]. Sev-

eral demining techniques exist [2] [3] and the semi-

autonomous mobile robot Gryphon (Fig.1) was devel-

oped to assist these operations. It is equipped with

a metal mine detector (MMD) and even though it

proved to be better than human operators [4] improve-

ments in FAR are still desired.

In case of Gryphon, a method using Spatially

Represented Metal Mine Detector Signal (SRMMDS)

is proposed in [5] for depth estimation and results

showed to be robust under both laboratory and real-

istic (testfield data) conditions.

2. Discrimination by SRMMDS

Gryphon scans an area swinging its arm sideways

in lines (1,2,...,m) advancing in steps between one line

and another. Detected signals are interpolated and

displayed to the operator (upper left image in Fig.1),

which different colors represent different signal inten-

sities. This signal (V(%)) is a 3D plot which is as-

sociated to the spatial position of the manipulator

and it changes drastically according to targets phys-

ical conditions such as depth, size, material, posture,

etc. The proposed discrimination method translates

signals to the maximum MMD value to the origin, ex-

tracts the main axis (direction of the signal with more

peaks and inflections), smooths the signal and simpli-

fies it into mathematical equations (Fig.2), permit-

ting quick comparison to a previous built database,

as shows [5] and eq.1. However, databases are built

under controlled conditions and in real operations de-

tected signals can contain some noise and discrimina-

tion is affected. Noises caused by the MMD oscillation

(mechanical vibrations) are be discussed in this paper.

Error(%) =

∫
abs(f − g)/h ∗ 100 (1)

where f and g = polynomials to be compared

h = max[
∫

abs(f),
∫

abs(g)]

3. Experiments

The discrimination method presented in [5]

searches the closest data in the database outputting a

1*This work was supported by JSPS KAKENHI Grant
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Fig.1 Demining Robot Gryphon
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V(r) = a0r(θ)0 + a1r(θ)1 + ...  + anr(θ)n

where a0, a1, a2, ... an are polynomial coefficients

Fig.2 SRMMDS simplified into polynomials

target and depth information. 362 data is used, which

each one is removed from the database and used as

input so that the original data is not in the database

during the search. We input some different levels of

White Gaussian Noises to simulate mechanical noises,

keeping all other conditions unchanged. When input-

ing this noise (Fig.3), the control parameter is the

standard deviation “ST”, which higher values repre-

sent high errors and ST = 0.01, 0.05 and 0.1 were

adopted in this paper.

3·1 Depth Estimation Analysis

According to the closest data obtained from

database search, we have depth estimation as shown

in Table 1. From the results, one can observe that the

depth estimation errors tend to increase as the ST val-

ues increase. The average depth error for all tested

ST values kept small (sufficiently accurate for sup-

porting demining operations), but the maximum error

greatly increased (Fig.4). For ST=0.01 and ST=0.05,
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the maximum error are 84 and 45 mm, respectively.

For ST=0.01 it happened for only 1/261 valid data

while others kept bellow 45 mm (maximum error with

no noise case). For ST=0.05, the maximum error kept

similar to no noise case, happening for 3/261 targets,

but can be still considered good level for demining op-

erations. For ST=0.1, 8 data has errors higher than 45

mm, with maximum depth error 142 mm, what can

be considered high caused by changes in the maxi-

mum signal amplitude, main parameter for depth es-

timation. However, the resulting Error is also high

(19.3%) so that adopted safety margins consider the

target a potential mine, i.e., there are no risks for the

demining operation.

3·2 FAR Analysis

For increasing safety during landmine/MF dis-

crimination, a dEthreshold parameter is introduced,

which represents the distance between the closest

landmine and MF from a target according to eq.1.

The variation in FAR according to ST is shown in

Fig.5. There is very little increase in FAR accord-

ing to ST since the search in the database is slightly

affected. For ST = 0, there are no False Negatives

(FN), but 2 FN happen for ST = 0.05 and 1 for ST

= 0.1 when dEthreshold ≤ 10%. In short, adopting a

certain safety margin of dEthreshold ≥ 10% is enough

for generating no False Negatives.
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Fig.3 Data with White Gaussian Noise

Table 1 Depth estimation results

Average
Depth Error

(mm)

Maximum
Depth Error

(mm)
No noise 4 45
ST = 0.01 5.1 84

ST = 0.05 5.4 45
ST = 0.1 10.4 142

4. Conclusion and Future Work
This work used White Gaussian Noise for analyz-

ing the influence of random noises in discrimination

by SRMMDS. The method is robust for depth esti-

mation for the analyzed standard deviations 0.01 and
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Fig.4 Maximum depth error cases for each target,
with depths in parenthesis. Blue lines rep-
resent noisy inputs and red ones the closest
data in the database.
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Fig.5 Resulting FAR according to adopted ST levels

0.05, while it presented higher errors for ST = 0.1, but

can be compensated by safety margins. FAR increase

as ST increases but adopting dEthreshold ≥ 10% False

Negatives are avoided.
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