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1. Introduction

Removing landmines is very costly, dangerous
and time-consuming, mainly due to high false alarm
rate (FAR) which is caused by many other metal frag-
ments (MF), such as exploded landmines and bul-
lets, existing in minefields with landmines [1]. Sev-
eral demining techniques exist [2] [3] and the semi-
autonomous mobile robot Gryphon (Fig.1) was devel-
oped to assist these operations. It is equipped with
a metal mine detector (MMD) and even though it
proved to be better than human operators [4] improve-
ments in FAR are still desired.

In case of Gryphon, a method using Spatially
Represented Metal Mine Detector Signal (SRMMDS)
is proposed in [5] for depth estimation and results
showed to be robust under both laboratory and real-
istic (testfield data) conditions.

2. Discrimination by SRMMDS

Gryphon scans an area swinging its arm sideways
in lines (1,2,...,m) advancing in steps between one line
and another. Detected signals are interpolated and
displayed to the operator (upper left image in Fig.1),
which different colors represent different signal inten-
sities. This signal (V(%)) is a 3D plot which is as-
sociated to the spatial position of the manipulator
and it changes drastically according to targets phys-
ical conditions such as depth, size, material, posture,
etc. The proposed discrimination method translates
signals to the maximum MMD value to the origin, ex-
tracts the main axis (direction of the signal with more
peaks and inflections), smooths the signal and simpli-
fies it into mathematical equations (Fig.2), permit-
ting quick comparison to a previous built database,
as shows [5] and eq.1. However, databases are built
under controlled conditions and in real operations de-
tected signals can contain some noise and discrimina-
tion is affected. Noises caused by the MMD oscillation
(mechanical vibrations) are be discussed in this paper.

Error(%) = /abs(f —g)/h %100 (1)

where f and g = polynomials to be compared
h = maz[[ abs(f),| abs(g)]
3. Experiments

The discrimination method presented in [5]
searches the closest data in the database outputting a
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Fig.1 Demining Robot Gryphon

V (%)
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Discrete signal
V(r) =agr(0)0 + a;r(0)1 + ... +apr(e)n

Interpolated signal

where ag, ay, ay, ... a, are polynomial coefficients

Fig.2 SRMMDS simplified into polynomials

target and depth information. 362 data is used, which
each one is removed from the database and used as
input so that the original data is not in the database
during the search. We input some different levels of
White Gaussian Noises to simulate mechanical noises,
keeping all other conditions unchanged. When input-
ing this noise (Fig.3), the control parameter is the
standard deviation “ST”, which higher values repre-
sent high errors and ST = 0.01, 0.05 and 0.1 were
adopted in this paper.

3:1 Depth Estimation Analysis

According to the closest data obtained from
database search, we have depth estimation as shown
in Table 1. From the results, one can observe that the
depth estimation errors tend to increase as the ST val-
ues increase. The average depth error for all tested
ST values kept small (sufficiently accurate for sup-
porting demining operations), but the maximum error
greatly increased (Fig.4). For ST=0.01 and ST=0.05,
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the maximum error are 84 and 45 mm, respectively.
For ST=0.01 it happened for only 1/261 valid data
while others kept bellow 45 mm (maximum error with
no noise case). For ST=0.05, the maximum error kept
similar to no noise case, happening for 3/261 targets,
but can be still considered good level for demining op-
erations. For ST=0.1, 8 data has errors higher than 45
mm, with maximum depth error 142 mm, what can
be considered high caused by changes in the maxi-
mum signal amplitude, main parameter for depth es-
timation. However, the resulting Error is also high
(19.3%) so that adopted safety margins consider the
target a potential mine, i.e., there are no risks for the
demining operation.

3-:2 FAR Analysis

For increasing safety during landmine/MF dis-
crimination, a dFipreshota parameter is introduced,
which represents the distance between the closest
landmine and MF from a target according to eq.l.
The variation in FAR according to ST is shown in
Fig.5. There is very little increase in FAR accord-
ing to ST since the search in the database is slightly
affected. For ST = 0, there are no False Negatives
(FN), but 2 FN happen for ST = 0.05 and 1 for ST
= 0.1 when dEip eshora < 10%. In short, adopting a
certain safety margin of dE;p,esnorg > 10% is enough
for generating no False Negatives.

No noise, Error = 1.5%

ST=0.01, Error = 1.0%
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Fig.4 Maximum depth error cases for each target,
with depths in parenthesis. Blue lines rep-
resent noisy inputs and red ones the closest
data in the database.
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Fig.5 Resulting FAR according to adopted ST levels
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Fig.3 Data with White Gaussian Noise

Table 1 Depth estimation results

Average Maximum
Depth Error Depth Error
(mm) (mm)
No noise 4 45
ST = 0.01 5.1 84
ST = 0.05 5.4 45
ST = 0.1 10.4 142

4. Conclusion and Future Work

0.05, while it presented higher errors for ST = 0.1, but
can be compensated by safety margins. FAR increase
as ST increases but adopting dEj,eshota > 10% False
Negatives are avoided.
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