
論文 / 著書情報
Article / Book Information

Title Study of Framework Based on Roles for Application Development of
Service Robots

Author Arturo E. Ceron Lopez, Edwardo F. Fukushima, Satoshi Kitano, Gen
Endo

Journal/Book name IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO),
, , pp. 39-44

Issue date 2013, 11

DOI http://dx.doi.org/10.1109/ARSO.2013.6705503

URL http://www.ieee.org/index.html

Copyright (c)2013 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/ARSO.2013.6705503
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Study of Framework Based on Roles for Application Development of
Service Robots

Arturo E. Cerón López, Edwardo F. Fukushima, Satoshi Kitano and Gen Endo

Abstract— The modern approach for developing service robot
applications is by the use of robotics middleware. Various issues
are still present and several projects attempt to address them.
However, an important issue that impacts the developers and
integrators has not yet been thoroughly analyzed: usability.
The usability of the development tools needs to be improved;
it is required to access and work with service robots (and
their components) with the least effort possible. This issue
affects the introduction of service robots into the real world.
In this article, we propose the Framework for Integration of
Elements and Resources by Roles (FIERRo) to address the
usability problem by making the items needed by developers
and integrators as easily available and organized as possible.
Description of example applications include: modeling of two
independent robot systems, system development using and not
using the FIERRo (hypotheses were set), and a simulated GUI.
Social impact and future works are discussed thereafter.

I. INTRODUCTION

Frameworks for developing service robot applications have
passed through an intensive evolution process in recent
years. Various models and abstractions have been proposed,
each one of them aiming at particular goals for particu-
lar developer communities [1]. The modern approach for
developing service robot applications is through the use
of robotics middleware [1][2]. Examples include Robotics
Technology Middleware (RT-Middleware) [3], Robot Oper-
ating System (ROS) [4] and Microsoft Robotics Developer
Studio (MSRDS) [5]. By definition, robotics middleware is
an abstraction layer that is found between the operating
system and software applications; it sets the means for
reusing and interconnecting distributed software programs
in order to make them work in a collaborative and parallel
way [6]; an example of a robot system built using robotics
middleware is shown in Fig. 1.

However, the middleware approach still has many issues
regarding the various application development stages.
The stages may include: modeling, building, deployment,
knowledge exchange and maintenance. Recent projects
have proposed different approaches to address some of the
existing issues, including the following:

1) RoboDB [7]: Is an attempt for categorizing robots
(and related entities) by creating ontologies using robot’s
attributes, this is for reusing the information in a variety of

A. E. Cerón López, E. F. Fukushima, S. Kitano and G. Endo at
Tokyo Institute of Technology, Department of Mechanical and Aerospace
Engineering, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
aceron at robotics.mes.titech.ac.jp, fukusima at
mes.titech.ac.jp, kitano.s.ac at m.titech.ac.jp,
gendo at mes.titech.ac.jp

Fig. 1. Typical system diagram of an app. based in robotics middleware

environments. However, its reach is still limited to mainly
linking attributes from robot to robot.

2) Semantic Robot Space (SRS) [8]: A framework that
builds semantic configurations for robots in order to discover
and deploy context-aware services in a dynamic manner.
Although the approach claims to reduce maintenance costs
and allow an efficient data exchange among stakeholders in
a robot space, it does not address the usability of such an
environment when modeling and developing the system.

3) RoboEarth [9]: Project defining a language and
database repository for exchanging knowledge about actions,
objects and environments among robots. An API and engine
for a computing environment on a cloud are provided.
Despite this project having a complete repertoire of features,
it still does not discuss in detail the usability of the proposed
concepts for the developers and integrators.

4) AutomationML (AML) [10]: A standard markup lan-
guage that attempts to model and unify all kinds of informa-
tion used by engineering tools. For instance, it can describe
task information and spatial configurations in robots. Its
current main use is on industrial applications.
• Knowledge Integration Framework for Robotics [11]:

In this project, the AutomationML standard is used for
categorizing and distributing knowledge among robots
and their users. However, usability is not discussed.

It is to be noted that RoboDB, Semantic Robot Space,
RoboEarth and Knowledge Integration Framework for
Robotics had attempted to take advantage of the Semantic
Web Technologies by adopting the Resource Description
Framework (RDF) as modeling and categorization means,
while AutomationML provides their own standard. A re-
lated project to the topic is BRICS [12], which is a large
scale project aiming to structure and formalize the robot
software development process. However, an important issue
that impacts the developers and integrators has not yet

been thoroughly analyzed: usability. The usability of the
development tools needs to be improved; it is required to
access and work with service robots (and their components)
with the least effort possible, as well as making a robot
system usable to other developers.

II. USABILITY ISSUES

According to the ISO 9242 definition[13], usability is: the
effectiveness, efficiency and satisfaction with which specified
users achieve specified goals in particular environments. The
poor usability of the currently available development and
runtime tools is a key issue that can cause bottlenecks in
the development of robot systems, hindering the develop-
ment of real-life service robot applications. Every time a
technological improvement comes out, new procedures, tools
and other kind of instruments are introduced, usually in
addition to the previous ones. This brings new levels of
development for service robot experts, but at the same time
it introduces longer learning curves and compatibility issues
for software-hardware developers and integrators that are not
robot specialists, making it more difficult for them to enter
the service robotics world. They often require making use
of such robots (and their components) with the least effort
possible.

From the previously mentioned projects, a subjective
comparison was made between them, taking into account
8 selected features considered to be important for usability.
The comparison is based on the level of support given by
the projects to the selected features. The purpose of this
comparison is to get a general idea in terms of usability
for the system developer and integrator.

TABLE I
Comparison of project features related to usability

Feature

R
T

M

R
O

S

M
SR

D
S

R
oboD

B

SR
S

R
oboE

arth

A
M

L

Ontologi-
cal desc.

X M X O O O O

Config./
Mgmnt.

O O O X M M M

Deploy-
ment

O O O X M M M

Modeling
Lang.

X X O M X O O

Knowldg.
distrib.

M M M M M M M

Connecti-
vity

O O O X O O M

Indepen-
dency

M M M O M X O

Execution/
Runtime

O O O X O M X

The marks are as follows: O = Supported, M = Limited
support, X = Poor support.

An approach for describing and organizing a service robot
system, that helps to improve the usability of development

and runtime tools, is required. We have proposed a novel
framework that will serve for this purpose, as well as for
performing usability tests in the future. This article first
introduces the proposed framework, then an implementation
with some example applications are shown, and finally
conclusions and future work are discussed.

III. FRAMEWORK FOR INTEGRATION OF ELEMENTS
AND RESOURCES BY ROLES (FIERRo)

With this framework, we intend to address the usability
problem by making the items needed by developers and
integrators as easily available and organized as possible
(e.g. configuration files, manuals, 3D models, running ap-
plications, etc.). The general concept of this framework is
to dynamically create a flexible relational database, which
is based on elements and resources that are used during
the service robot’s application lifecycle. Items are mainly
elements and resources.

A. Basic abstractions

A set of basic abstractions has been considered for
referring to the involved components in this framework:

• Objects: Entity representing something in the robot’s
environment (internal and/or external).

• Elements: Constituents or building blocks of an entity
(e.g. a system, an object, etc.).

– Software Elements: Refers to a single software pro-
gram or a group of them that perform specialized
functions (e.g. accessing hardware or processing
information) for a service robot.

– Structured Data Elements: Semantically arranged
set of data. The sets can be merged and associated
to other sets for complementing the pertinent infor-
mation (e.g. alternate representations or states). It
can be used to represent hierarchical data, such as
constructs (e.g. position, velocity, etc.).

– Other Elements: May refer to a property, a file
and/or raw data.

• Resources: Data supplies and supportive subsystems
that can be drawn upon when required. Elements turn
into resources when their information or functionality
can be reached by other entities (e.g. an access point).

An example of element can be a box, it is a constituent
of the environment where the robot resides; although its
existence is known, no additional information can be drawn
from it. However, if it is known that the box can provide
energy to the robot (e.g. a battery), and there is information
on how to get its energy, then it becomes a resource.

The abstractions can be applied to different robotics mid-
dleware platforms, an example is provided in Table II.

B. Defining Roles

The framework is based on the concept of Roles. A
Role is understood as a customary function. A Role can

TABLE II
Abstractions used in different middleware platforms

Abstraction Softw. Elem. Str. Data Elem. Other Elem.
RTM RT-Comp. Ports Conf. files, etc.
ROS ROS Nodes ROS Topics Conf. files, etc.

MSRDS DSS Services Messages Conf. files, etc.

be formed by various robotic and environmental objects
involved into an action that will modify the robot’s behavior
and/or environment. The robot system can be defined
by a set of Roles. Then, a Role can be declared as in
Fig. 2, where “A” is the subject object performing some
“action”, the “action” refers to a Software Element (with
its corresponding configuration) which makes the necessary
processing that leads to the intended activity, and “B” is the
object to which the “action” is being applied (i.e. the direct
object). The subject and the direct objects are a collection
of elements and resources containing information which
describes them in the most complete way possible (e.g.
CAD files, config. files, data, etc.). In Fig. 3 an example of
a robot system represented with Roles is shown.

1) Clause types: In order to identify the direction of
information flow in a Role, three types of clauses are defined
as follows:
• Deliver: Subject “delivers” info. to the action and is

received (explicitly or implicitly) by the direct object.
• Receive: Subject “receives” (explicit or implicit) info.

from the action which is delivered by the direct object.
• Process: Combination of a receive and deliver clause.

Either the subject, direct object or both can “deliver”
and/or “receive” information.

Explicit information is the one that is accessible and can be
stored, while implicit info. is generated as consequence of the
action but is not accessible and cannot be stored. Examples of
clauses are given in Fig. 4, dashed arrows represent explicit
information and dotted arrows represent implicit info.

Fig. 2. Components and structure of a Role

2) Dependencies: There are cases where the performance
of an action implies the performance of previous or poste-
rior actions required to complete a known task. Two basic
dependency rules are proposed:
• In order to: Defines the possible continuation Roles

(which may depend on action context).
• Requires: Defines a previous Role that must be em-

ployed to perform a present one.

Fig. 3. Robot system represented with Roles (Roles are highlighted with
the transparent shapes).

Fig. 4. Examples of Clause types

IV. IMPLEMENTATION

Details about prototype implementations of the FIERRo
are described in the following subsections.

A. Using the Resource Description Framework (RDF)

An encoding standard for Roles, objects and actions is
used for implementing FIERRo. The RDF standard has been
selected. The RDF is a standard for encoding metadata and
other knowledge on the Semantic Web [14]. In this way,
structured information can be spread in a distributed and
decentralized manner. By using RDF, it is possible to break
down knowledge into discrete pieces, as well as making
inferences from the stated facts. In RDF, resources are stated
in the form of Uniform Resource Identifiers (URI); for
instance, the subject and action can be URIs, while the
direct object can be either a URI or a literal value. For
this implementation, the RDF/XML syntax specification was
used. As for the query engine, a database supporting the
SPARQL language or equivalent was suggested.

B. Diagram construction method

The following method is proposed for constructing a
system model diagram by using FIERRo:

1) List the objects that compose the robot and which are
present in robot’s environment (physical and virtual).

2) From the listed objects, list their composing elements,
if any. If an element has composing elements too, list
them as well.

3) From all the listed elements, list the ones that are
resources, if any.

4) From the listed resources, identify the Software Ele-
ments (if any) and list the actions performed by them.

5) Make associations among the objects using the listed
actions and store them as Roles (”A action B”).

6) From all the listed elements, list the ones that represent
data which may be transferred among objects and
describe it in Structured Data Elements form.

7) For the listed objects, construct a hierarchical tree
diagram using their composing elements. The same
applies for the elements that have composing elements.
In both cases, don’t include the Software Elements.

8) For the listed actions, construct a hierarchical tree
diagram using their related Software Elements.

9) Associate the Structured Data Elements with the ob-
jects and/or actions (that are interested in such data)
by putting them on their respective hierarchical trees.

10) Serialize the Roles, objects and actions into RDF files.
11) Merge all RDF files to build the entire system model.
12) In case of model update/refinement, iterate the method.

The method can be implemented by an algorithm that
automates this process in a computer program. A figure
showing the key parts for building the diagram is provided
in Fig. 5. The rounded rectangles represent objects, ovals
represent actions, darker rectangles represent Software Ele-
ments, lighter rectangles represent Structured Data Elements,
and white rectangles can represent other elements such as
files, properties or raw data. As for the connections, ar-
rowed connectors represent action flow and plain connectors
represent a relationship between an object or an action
with their respective elements. Since one of the purposes
of this framework is providing the modeling guidelines
for improving usability, level of detail among models may
change from modeler to modeler. Despite this, models can
be further detailed on the fly by other modelers that may
want to state or know more specific information about the
system through the definition and merging of Roles, and they
can use the same query mechanism independently from the
detail level or abstractions used. Additionally, when using
RDF files, it becomes compatible with the Semantic Web.

V. EXAMPLE APPLICATIONS

In order to validate the proposed framework (and its im-
plementation), it was applied into three example applications.

A. Example 1: Independent robot systems

In this example, two independent robot systems available
at our laboratory were modeled using the FIERRo. They
were the TITAN XIII and GRYPHON robot systems shown
in Fig. 6. Each of the robots has different purposes and archi-
tectures (software and hardware). TITAN XIII is a quadruped
robot intended for gait experimentation on irregular terrains

Fig. 5. Diagram using Roles.

[15]. GRYPHON is a robotic arm equipped with various
sensors and mounted on a buggy intended for humanitarian
demining operations [16]. The resulting diagrams for each of
the systems are shown in Fig. 7 and Fig. 8. The framework
provides the freedom of choosing the level of detail, in this
example the TITAN XIII system model has a greater level
of detail than the GRYPHON system model.

Fig. 6. Robots for modeling examples (left: TITAN XIII,right: GRYPHON)

B. Example 2: Working with the system

For this example, the TITAN XIII system was used. This
robot system can be described by the following relevant items
as shown in Fig. 7:
• Executable program containing a GUI for controlling

the robot (GUI.bat).
• Executable program that reads a Gamepad for control-

ling the robot (GameCtrl.exe).
• Simulation (using V-REP simulator [17]) (vrep.exe).
• Microcontroller program (uController).
• Serial ports (using virtual and real ports) (COM2,

COM4, COM5).
• Configuration files (config.ini).
• Project notes (describing some configurations) (param-

eter.txt, conf.txt).
• CAD Files (scene.stl, TITANXIII.stl).
• Source code files (main.cpp, control.c, main.py, TI-

TANXIII.ttt).
• Data (Position: Leg1, Leg2, Leg3, Leg4).

The developer needs to perform certain maintenance ac-
tivities, such as editing files, running programs, configuring

Fig. 7. TITAN XIII system model

Fig. 8. GRYPHON system model

them and troubleshooting the system. For this, the developer
needs to organize the project in a way that becomes easier
to perform the previously mentioned activities. Here two
cases were considered: working without FIERRo and with
FIERRo, where we are stating the hypotheses for each of
the cases that will serve as starting points for the future
experiments:

1) Working without FIERRo: Without the proposed
framework we expect a developer, who is not robot specialist,
to have a difficult time building a model which integrates all
the details of the robot system. It is expected from them to
do something that resembles the following: creating a series
of folders to place the files, trying to use a development
framework (e.g. Eclipse IDE with some additional plugins)
for organizing and manage the project, or taking a look at one

of the specialized solutions (e.g. RT-Middleware and ROS).
Our hypothesis for this part is that only one of those solutions
may not be enough as discussed previously, and probably
the users will end combining by themselves the available
solutions in the best of the cases, where the resulting usability
of the project is poor.

2) Working with FIERRo: By using FIERRo, the process
for modeling the system will be simplified and will have the
merit of identifying the objects and their actual resources
(e.g. the path of an executable file, an ftp or http address, a
port, etc...), letting other resources and modelers locate them
and make use of them with less detours. The hypothesis here
is that less time (measured in seconds) and effort (measured
in steps) are required for modeling the system by using
FIERRo than without using it, increasing usability.

C. Example 3: Simulation of a Graphical User Interface
(GUI) to access parts of the system

Once the system was modeled using FIERRo like in the
example 1, a simulated GUI was made using the generated
RDF files, which were merged using an RDF engine. Such
GUI displays the diagram that represents the model as in Fig.
7. Since all the resources in the model point to some sort
of resource, when clicking with the mouse on one of them,
the pertinent file, executable program, or webpage is opened,
giving the user access to such items. Moreover, through the
GUI, data can be queried using an SPARQL engine. Query
format is in the form of ”Obj. A + relation + Obj. B”, where
any of them can be the item to list, e.g.:
• ”X” command Motors = Who/What commands the

Motors?
Answer: ”GUI” and ”Joystick”

• Joystick command ”X” = Who/What is the Joystick
commanding?
Answer: ”Motors”

• command resource ”X” = Which are the resources of
command?
Answer: ”GUI.bat”, ”GameCtrl.exe” and ”Position”

A refined version of the simulation is now being developed
in order to test the hypotheses stated in example 2.

VI. CONCLUSION

In this article, we have discussed usability issues regarding
modern development and integration tools for service robots.
Projects like RobotDB, Semantic Robot Space, RoboEarth,
AutomationML and robotics middleware solutions were stud-
ied and compared in order to get an image of the current
situation of their usability as development/runtime tools. The
usability of such tools needs to be improved; developers and
integrators need to access and work with service robots (and
their components) with the least effort possible. We have
proposed the Framework for Integration of Elements and
Resources by Roles (FIERRo) as an attempt for increasing
the usability of the development and integration tools for
service robots, and for performing usability tests in the fu-
ture. Description of example applications include: modeling
of two independent robot systems, system development using
and not using the FIERRo (hypotheses were set for the
possible outcome), and a simulated GUI.

The usability problem affects the introduction pace of
service robots into the real world. We have the belief that
by studying the development of a framework targeting the
application development of service robots, that increases the
usability for the developers and integrators (especially for
the ones that are non-software professionals), has a social
impact because these kind of robots can be introduced at
an accelerated pace, and at the same time the quality of
the applications can increase, since greater time will be
spent on developing the actual application rather than dealing
with usability problems of the employed tools, platforms
or frameworks. Thus, the quality of life of people can be
increased by using well-developed service robot applications.

Future works include framework improvements, experi-
ments to quantify the usability, implementing the frame-
work on the Intelligent Cross-Platform Interface (ICPI) [18]
(interface for connecting and managing various robotics
middleware platforms), and defining a higher level hardware-
oriented framework, which automates software management,
targeted for non-software professionals.

ACKNOWLEDGMENT
This work was partially supported by JSPS KAKENHI

Grant Number 25303012. The first author acknowledges
support from Instituto de Innovación y Transferencia de
Tecnologı́a (I2T2), Consejo Nacional de Ciencia y Tecnologı́a
(CONACYT) and Roberto Rocca Education Program.

References
[1] W. Smart, ”Is a Common Middleware for Robotics Possible?”, IROS

2007 workshop on Measures and Procedures for the Evaluation of
Robot Architectures and Middleware (2007).

[2] N. Mohamed, J. Al-Jaroodi and I. Jawhar, ”Middleware for Robotics:
A Survey”, 2008 IEEE International Conference on Robotics, Automa-
tion, and Mechatronics, pp. 736-742 (2008).

[3] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and Y. Woo-Keun,
”RT-middleware: distributed component middleware for RT (robot
technology)”, 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.3933-3938 (2005).

[4] M. Quigley et al., ”ROS: an open-source Robot Operating System”,
ICRA Workshop on Open Source Software (2009).

[5] Microsoft Robotics: Microsoft Robotics Developer Studio 4.
http://www.microsoft.com/robotics/. Accessed on Feb. 2013.

[6] A. Elkady and T. Sobh, ”Robotics Middleware: A Comprehensive
Literature Survey and Attribute-Based Bibliography”, Journal of
Robotics, vol. 2012, Jan. 2012, Article ID 959013, 15 pages.

[7] A. Juarez, J. Hu and L. Feijs, ”RoboDB: An Application of Semantic
Web Technologies to Robotics”, Eindhoven University of Technology,
(2011).

[8] M. Jang, J. Sohn and Y. Cho, ”Building Semantic Robot Space based
on the Semantic Web”, 16th IEEE International Conference on Robot
& Human Interactive Communication, pp.499-504 (2007).

[9] M. Tenorth, A. Perzylo, R. Lafrenz and M. Beetz, ”The RoboEarth
language: Representing and Exchanging Knowledge about Actions,
Objects, and Environments”, 2012 IEEE International Conference on
Robotics and Automation (ICRA), pp.1284,1289 (2012).

[10] AutomationML: Home.
https://www.automationml.org. Accessed on February 2013.

[11] J. Persson et al., ”A Knowledge Integration Framework for Robotics”,
Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK) , pp.1068-1075, (2010).

[12] R. Bischoff et al., ”BRICS - Best practice in robotics, Robotics
(ISR)”, 2010 41st International Symposium on and 2010 6th German
Conference on Robotics (ROBOTIK), pp. 968-975, (2010).

[13] W3C: Usability - ISO 9242 definition.
http://www.w3.org/2002/Talks/0104-usabilityprocess/
slide3-0.html. Accessed on January 2013.

[14] W3C: RDF Primer.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. Ac-
cessed on February 2013.

[15] S. Kitano, G. Endo and Hirose, S.; ”Development of Light Weight
Sprawling-type Quadruped Robot TITAN-XIII and its Dynamic Walk-
ing”, Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (2013), in-press.

[16] E. Fukushima, M. Freese, T. Matsuzawa, T. Aibara and S. Hirose, ”Hu-
manitarian Demining Robot Gryphon: Current Status and Objective
Evaluation”, International Journal on Smart Sensing and Intelligent
Systems, vol.1(3) pp. 735-753, (2008).

[17] Coppelia Robotics: V-REP virtual robot experimentation platform.
http://www.coppeliarobotics.com/. Accessed on May 2013.

[18] A. Ceron Lopez and E. Fukushima, ”Proposal of Intelligent Cross-
Platform Interface for Robotics Middleware”, Proceedings of the 2012
IEEE International Conference on Cyber Technology in Automation,
Control and Intelligent Systems, pp.382-387 (2012).

http://www.microsoft.com/robotics/
https://www.automationml.org
http://www.w3.org/2002/Talks/0104-usabilityprocess/slide3-0.html
http://www.w3.org/2002/Talks/0104-usabilityprocess/slide3-0.html
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.coppeliarobotics.com/

