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Abstract 

 

Disaster management has four phases: Mitigation, Preparation, Response, and Recovery. Policy 

makers emphasize on soft measures (i.e., training, evacuation drilling) for preparation and ignores the 

policies to diminish the suffering of victims after disaster. Victims need relief (i.e., food, water, shelter, 

medicine) to recover the losses after a disaster. Thus, Humanitarian Logistics (HL) becomes an 

underpinning task of disaster management for relief planning. The importance of HL is comprehended 

after the failure in relief distribution after recent disasters Indian Ocean tsunami 2004, Hurricane Katrina 

2005 and Haiti earthquake 2010. The response activities after disasters show the limitation of current 

logistical strategies. It is reported that human suffering and economical losses (due to productivity 

reduction) escalates due to poor HL. Moreover, recent studies find out that number and impact from 

disasters are increasing gradually. Earthquake is not predictable and entails complexity. Nonetheless, 

there are several bottlenecks in HL such as multiple layers of decision-making, shortsighted policy bias, 

strict control on relief of government, imperfect information aftermath of disaster, and lack of 

preparedness.  

An emerging surveillance on HL is coherent planning of resources in the preparation and utilization 

of those resources in the response. Herewith, response is a critical phase where decision–maker requires 

prescribing decisions on inventory, coordination and resources allocation. Due to unique features of HL, 
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it becomes a new branch of study and academician finds attention in suggesting systematic measures in 

HL. However, there are lacks of mathematical/ quantitative models in HL. 

This study provides three sequential mathematical models for relief operation to illustrate response 

strategies after earthquake. The three models are (i) Network model in pre-disaster stage, (ii) Relief 

ordering in response stage and (iii) Relief allocation in response stage. The network model integrates the 

pre- and post-disaster situations and comprises two mathematical formulations. The first formulation is a 

deterministic p-median model. This model provides the locations of inventory prepositioning for reaching 

victims quickly in the Asia-Oceania regions after earthquake. In this model, mean distance per capita is 

utilized for evaluating the performance of logistics network. It turns out that current UN-HRD (in 

Malaysia) is not optimally located in the ground of proposed criteria. The second formulation of network 

model is designed to introduce uncertainty in HL. A stochastic linear model under several constraints is 

proposed. The tackled uncertainties are demand, supply and facility failure. A case study is performed 

with earthquake scenarios in Bangladesh. The sensitivity analysis shows that a stochastic model is 

superior to a deterministic model in term of total expected cost. The transportation cost for distributing 

relief is lowest in stochastic model in comparison with deterministic and partial stochastic model. Besides, 

the inventory cost in stochastic model is the highest. However, the shortage cost in stochastic model is the 

lowest among all models.  

The second model analyzes the inventory ordering policy with given logistics network. The model 

combines two stochastic variables that are (1) lead–time and (2) demand. The underling principal of this 

model is that lead–time and demand are uniformly distributed. Decision maker has the information of 

minimum and maximum value of both parameters. The model creates a joint distribution of lead–time–

demand (LTD) and provides the prescription for inventory ordering policy via reorder quantity and 

reorder level. The case study of this model shows an unique reorder quantity exists for certain cost 

parameters. 
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The third model explains relief allocation in the domain of stakeholder’s behavior in HL. The 

seemingly different objectives of stakeholders are integrated in the framework of an agent-based model. 

The ontology of stakeholders is explored to analyze the relationship among stakeholders. Besides, 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is utilized to create hierarchy 

of urgency of relief requirement among affected areas. Finally, a new measure for HL performance 

evaluation is proposed, named ‘acknowledgement’. The case study of this model shows that relief 

allocation based on urgency generates higher acknowledgement value. Additionally, the model generates 

equal results if sufficient resources are available.     

Finally, this study proposes suggestions to the decision makers. Humanitarian depots in Asia-

Oceania region for delivering relief to victim aftermath of disasters need to be expanded to tackle the 60% 

of total disaster among the world. Therefore, Aid organizations need to procure relief item and to store in 

humanitarian depot before a disaster. Aid organizations also require planning for aftermath of disaster to 

avoid congestion at point of entry (i.e. airport) and to allocate relief effectively.  The study shows that 

human suffering cost is tradeoff with pre-disaster cost and cooperation among stakeholders can bring 

greater benefit for the social benefits. 
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Chapter One 

1. INTRODUCTION 

The need on the study originates due to poor performance in relief distribution after recent disasters. 

This study focuses on the uncertainty in humanitarian logistics (HL) in earthquake response. Throughout 

the study, uncertainty is analyzed in order to develop mathematical formulation. The modeling of 

uncertainty in HL is aimed to provide high quality relief in the form of food, water, shelter and medicine; 

this issue is addressed for both pre- and post-disaster activities. Note that this study suggests strategies for 

known uncertainty. It is expected that the outcomes of the study are helpful for both the aid organizations 

and the policy maker for designing response strategy in systematically and rationally. 

These factors motivate to identify the research need of formulating mathematical model for disaster 

response. This study uses linear programming model from Operational Research literature and Agent-

based model (ABM) from Artificial Intelligence to formulate mathematical model for supporting response 

strategy after large-scale earthquake. Finally, each model is verified numerically to show effectiveness 

and stability. 

The first section of this chapter presents the background of this study. The subsequent sections are 

dedicated to motivation and focus, to objectives, and to research methodology. The last section of this 

chapter discusses the description of the dissertation structure. 

1.1.  BACKGROUND  

The background of earthquake response in the domain of humanitarian logistics is explained in 

three sub-sections. 

1.1.1. Disaster Trend and Growing Needs of Humanitarian Aid 

The Center for Research on the Epidemiology of Disasters (CRED) preserves the database of 

different types of disasters. The CRED calls an event as the disaster, if the event causes at least one of the 

followings 

 10 or more people killed 

 100 or more people affected 

 Declaration of state of emergency 
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 Call for international assistance 

The definition of ‘disaster’ is used to prepare the disaster database by CRED. Figure 1-1 and Figure 

1-2 describe that the annual rate and the impact of disasters increase significantly in last decades. Four 

hundred forty natural disasters are reported in 2010; it tolls three hundred thousand human lives and 

leaves 280 million affected people. The economic damage from natural disaster is estimated more than 

$130 billion in year 2010 and over $350 billion in 2011. An assessment of United Nations (UN) in 2006 

also concludes that: "… though such figures tend to vary from year to year, overall trends suggest that 

disasters are becoming more frequent, severe and destructive".  

 

Figure 1-1: Number of natural disaster during 1975-2011 (source: CRED, 2013) 

Occurrence time and coverage area influence disaster response largely. The categorization of 

disaster helps to understand the extent of effect due to disaster. Figure 1-3 shows the categorization of all 

disasters. The horizontal axis represents time dimension and the vertical axis is coverage dimension. In 

the Figure 1-3, several terms are used that needs to be defined. ‘slow on-set’ disasters strike slowly; aid 

organizations obtain longer time to reach to potential victims in order to lessen the impact of the disaster. 

In contrast, ‘sudden on-set’ disasters allow little to no time to response to the victims. As an example, 

‘slow on-set’ disasters allow the potential victims to evacuate the affected area, while ‘sudden on-set’ 

disasters allow limited scope of evacuation. Similarly, ‘localized’ and ‘dispersed’ represent the relative 

affected area. There is no threshold value of area to distinguish between ‘localized’ and ‘dispersed’ and 

the classification is conditional on personal conviction. For example, tornado starts suddenly and leaves 

its footprint in localized area. On the other hand, drought starts slowly and affects dispersed geographical 

area. 
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Each disaster claims particular response actions. Evacuation for particular disaster should be rapid 

(for example, in case of nuclear disaster); in contrast, evacuation can be done gradually for flood. In 

addition, the difficulties in response actions are different from one quadrant in Figure 1-3 to another 

quadrant. Intuitively, the level of difficulty in response is less onerous in the case of localized –slow-onset 

disasters (i.e., third quadrant). The disasters inserted in the first quadrant in Figure 1-3 are the cause of 

higher level of difficulty in response actions. Earthquake as well as resulting tsunami is an example of this 

group and is the focus in this study.  

Furthermore, impact of earthquake and level of difficulty in response are higher in developing 

countries (Thomas and Kopczak, 2007) due to low level of disaster preparedness (i.e., low capacity, poor 

construction methods). The lack of capacity for disaster response of a developing country generates the 

necessity of assistance as well as reconstruction and development support after large-scale earthquake. As 

an example, a magnitude 7.0 Mw earthquake in Haiti in 2010 tolls 159,000 human lives (University of 

Michigan, 2010) while a magnitude 9.0 Mw earthquake in developed country Japan in 2011 tolls 15,883 

(NPAJ, 2013). The number of casualty signifies the effect of preparedness for disasters. However, aid 

organizations are solely motivated by humanity in responding disaster and do not consider country’s 

economy in making decisions. 

 

Figure 1-2: Number of affected people by natural disaster during 1900-2010 (source: CRED, 2013) 
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 Aid organizations collect fund from philanthropic donors and commit to use the fund for specific 

purpose. Global philanthropic aid become more than doubles over the 1990s, from $2.1 billion at the 

beginning of the decade to $5.9 billion in 2000 (Buchanan-Smith and Randel, 2002). Albeit the 

philanthropic market is expanding recently, it is not yet sufficient to meet global demand. To maintain 

and even improve the level of assistance to the victims, the disaster response effort requires becoming 

considerably more efficient and effective in terms of cost, time and quality. 

1.1.2. Comparisons between Commercial and Humanitarian  Logistics 

The word ‘logistics’ comes literally from the medieval Latin ‘logisticus’ of calculation, from Greek 

‘logistikos’, skilled in calculating, from ‘logizesthai’, to calculate, from ‘logos’, reckoning, reason. It 

means many things to many people. To business, it is defined as a planning framework for the 

management of material, service, information, and capital flows. To humanitarians, it comes with 

different aspect. Recently, Thomas and Mizushima (2005) defined humanitarian logistics as “the process 

of planning, implementing, and controlling the efficient, cost-effective flow of and storage of goods and 

materials as well as resulted information, from point of origin to point of consumption for the purpose of 

meeting the beneficiary’s requirements ”. 

Aid organizations are about thirty years behind their commercial sector counterparts. Just as the 

commercial sector, humanitarian organizations are recognizing the fact that humanitarian logistics: 

 

Figure 1-3: Classification of disasters (modified from Apte, 2009) 
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 is crucial to the performance (effectiveness and speed) of current and future operations and 

programs (Van Wassenhove, 2006) 

 serves as a bridge between disaster preparedness and response, between procurement and 

distribution, and between headquarters and the field (Thomas and Mizushima, 2005) 

 provides a rich source of data; since logistics department handles the tracking of goods, which 

can be used to analyze effectiveness (Thomas and Mizushima, 2005) 

After the awareness of importance of humanitarian logistics, aid organizations become interested to 

improve it. However, humanitarian logistics struggles with very special characteristics that make 

difficulty in improvement. The dominating characteristics of humanitarian logistics are as follows (Balcik 

and Beamon, 2008): 

 Unpredictability of relief demand (i.e., occurrence of disaster), in terms of timing, location, type, 

and scale 

 High stakes associated with adequate and timely delivery 

 Lack of resources (supply, people, technology, transportation, and money) 

 Differences in goals of stakeholders 

 Non-monetary profit after the distribution of additional unit of relief 

Table 1-1 : Properties of commercial and humanitarian logistics 

Item Commercial logistics Humanitarian logistics 

Demand forecasting Historical database Based on quick assessment 

Network structure Predetermined Dynamic 

Aim Generating profit Minimizing suffering 

Product value has monetary value Does not measure in monetary value 

Planning period Long time Generally, short time 

Fleet size Unlimited Limited 

Inventory type Strategic inventory Social inventory (Whybark, 2007) 

Preferred acquisition Low -cost source  Nearest source 

Benefit of inventory Higher service level Saving human lives  

Out of stock Waiting for scheduled arrival Finding the responsive supplier 
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The above-mentioned properties make the differences between commercial logistics and 

humanitarian logistics and impose the need of new models for humanitarian logistics.  The objective of 

humanitarian logistics is to provide relief to areas affected by large-scale disasters, to minimize the human 

suffering and death. On the other side, business logistics aims for generating monetary profit. Table 1-1 

shows the difference between commercial logistics and humanitarian logistics. Commercial and 

humanitarian logistics have dissimilarities in many aspects.  

1.1.3. The Overview of Earthquake Response 

Tufekci and Wallace (1998) suggest that disaster response efforts consist of two stages: pre-disaster 

and post-disaster response. Pre-disaster tasks include predicting and analyzing potential dangers and 

developing necessary action plans for mitigation. Post-disaster response starts while the disaster is still in 

progress. At this stage, the challenge is locating, allocating, coordinating, and managing available 

resources. FEMA (2009) describes disaster management in terms of four phases: Mitigation, Preparedness, 

Response, and Recovery (Green, 2002; Waugh, 2000; Godschalk, 1991; Waugh and Hy, 1990).  The 

four-phase approach covers all of the actions described in Tufekci and Wallace’s (1998) classification 

while providing a more focused view of disaster management actions. The performance of post-disaster 

response is highly dependent on pre-disaster actions. 

Figure 1-4 shows that pre-disaster activities for relief distribution are ignored in general. Stoddard 

(2004) founds that aid organizations follow the reactive strategy (i.e., takes actions after a disaster) 

instead of the proactive strategy (i.e., takes actions before a disaster). Therefore, victims do not get relief 

in earliest time. There is substantial gap between disaster and delivering relief to the victims. Furthermore, 

fund allocation is not balanced in all phases of disaster management. There are limited allocation of fund 

in three stages of disaster management namely mitigation, preparedness, and recovery. Pre-disaster 

activities are considered as the vital stage to improve the performance of response actions. The imbalance 

 

Figure 1-4: Current humanitarian logistics (in general) 
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in fund allocation and the delay to reach victims ultimately emphasizes the necessity of extensive research 

to improve the earthquake response.  

 

Figure 1-5: Relief flow  

*CDC = Central distribution center 

Figure 1-5 shows the activities and stages of relief flow. The warehouses where relief is stored for 

future disasters in other countries are known as ‘Humanitarian depot’. Storing relief in ‘Humanitarian 

depot’ is not globally popular and is absent in the figure.  Central distribution center (CDC) is generally 

located near point of distribution. In contrast, ‘local distribution center’ (LDC) establish at the affected 

areas after a disaster and relief is stored here for disaster still in progress. LDC is established temporarily. 

The humanitarian depot, CDC, LDC, the demand points, and the transportation create a humanitarian 

logistics network and it improves the ability for disaster response. The ability of aid organizations’ 

logistics directly influences the aim of aid organizations that is described as delivering right amount of 

goods in right time at right cost to right people. 

In preparedness, according to PAHO (2001) and Thomas (2001), preposition, or the storage of relief 

at or near the probable affected areas is the possible response strategy for reducing time-gap between 

disaster occurrence and delivering relief. The design of humanitarian logistics network, particularly 
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geographic location of depot and quantity of relief, is a vital action in preparedness stage. However, these 

issues are difficult to determine due to several stochastic parameters.   

While preparedness increases the probability of prompt-action and availability of relief, aid 

organizations require designing response plan integrating with humanitarian logistics network to reach 

victims as soon as possible after large-scale disaster. Aid organizations face uncertainty in different stage 

of relief as shown in Figure 1-6. Uncertainties are classified in three broad groups: demand uncertainty, 

supply uncertainty and network uncertainty. Demand uncertainty prevails in pre and post disaster 

environment. It is always difficult to identify the location of victims and requirements. On the other hand, 

supply and network uncertainty commence in post disaster. Supply uncertainty includes reduction of 

capability of supplier or fuzziness in total amount of donation. Lastly, network uncertainty includes 

transportation related and aid organizations related events. 

It requires logistical knowledge to overcome the complexities of response strategies. However, aid 

organizations do not apply the logistics knowledge in response actions. They bring relief (item) to the 

disaster sites without being concerned of outcome. The response strategy triggers high wastage of relief, 

shortage of storage capacity and uneven distribution among demand points. The aftermath is that some 

victims get abundant relief while others get nothing. 

 

Figure 1-6: Uncertain information in relief flow 
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Response plan consists of several management issues, for instance transport management, inventory 

management, demand management and supply management. Transport is the second largest cost to relief 

operations after personnel. The most wide used vehicle type in relief distribution is 4X4 vehicle and the 

total fleet size of 4X4 vehicles in large international humanitarian organizations is estimated between 

70,000 and 80,000 units (Martinez et al., 2010). Several studies propose mathematical model for 

transport management and suggest for utilizing modern technology for improving the usage to transport 

resources. However, aid organizations still manage transport resources in ad-hoc basis and hire transport 

on spot (Balcik and Beamon, 2008). Then, demand management that needs a consideration of cultural 

differences in disaster regions (Wichmann, 1999). Demand is unpredictable regarding timing, scale, and 

locations (Long and Wood, 1995). In case of supply management, aid agencies receive many unsolicited 

and sometimes even unwanted donations (Chomolier et al., 2003). These can include drugs and foods that 

are ended their expiry dates (Murray, 2005). 

Among them, inventory management gains less attention despite its importance. Aid organizations 

setup local distribution center in affected areas for distributing relief and need to have a plan for relief 

supplies. A local distribution center cannot place order (or request for relief) of unlimited quantity in a 

single ordering from the Humanitarian response depot due to transport bottleneck and supply limitation. 

In current response strategies, supplies arrive in disaster areas in unmanageable forms and clog airport 

and warehouses (Cassidy, 2003; Murray, 2005). The characteristics of logistical activities depict the 

importance of inventory management and aid organizations require ordering policies models to gear up 

the response actions.   

Another important aspect of response planning is resource allocation that arises in specific 

situations; particularly in a case of limited resources. After receiving relief at local distribution center 

from Humanitarian response depot (or from donation), aid organization requires making plan for effective 

utilization of relief. If degree of relief urgency is the criteria for relief distribution, the highest index 

victims should get first.  Indeed, aid organizations face difficulties in making hierarchy among victims 

due to uncertainty of information that leads to inefficient relief distribution.  

1.2. MOTIVATION AND FOCUS 

Natural and man-made disasters are always coupled with a series of negative consequences –

internal displacement of person, water and food shortage, inaccessibility, and break down of services and 

infrastructure damage/destruction (Hampton, 2000). Figure 1-1 shows that total number of disaster in last 

decade (2000 – 2010) is around 500 per year. These include the Iran (Bam) earthquake 2003, the Kashmir 
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earthquake 2005, the Indian Ocean tsunami 2004, the Hurricane Katrina 2005, the China (Sichuan) 

earthquake 2008, the Haiti earthquake 2010 and the great east Japan (Tohoku) earthquake 2011. CRED 

(2013) reports that affected people per year by disasters are about 200 million. According to recent 

studies, the rate and impact of disaster are expected to increase by a further multiple of five times over the 

next fifty years (Thomas and Kopczak, 2007).  

Figure 1-7 shows the causes for the importance of humanitarian logistics. The five causes are high 

stake of time, donors’ pressure, social responsibility, lack of resources at peak time, and competing 

among different agencies. ‘High stake of time’ represents that there are urgency of relief and the 

effectiveness of relief will be diminished if relief is delivered to victims late. Next ‘donors’ pressure’ 

suggests that the philanthropic donor expect the proper utilization of funds and can deny supporting aid 

organization in future if aid organization does not use the fund properly. Then, ‘competition among 

different agencies’ brings the idea of market mechanism where aid agency (organization) tries to attract 

donors and show the performance on effective utilization of funds. Then, ‘social responsibility’ embraces 

the ethics of relief distribution and the obligation of aid organizations to deliver quality relief to victims. 

Last, ‘lack of resources at peak time’ supports the claim in Figure 1-8 that the existing response strategy 

makes the shortage of relief item in peak period. The five-causes model highlights the importance of 

humanitarian logistics. 

 

Figure 1-7: Five- causes model for importance for humanitarian logistics 

Recently, the number of publication on humanitarian logistics has increased drastically. The number 

of publications and special issues on this topic has risen recently considerably, which indicates good 

pedagogics development. Academician gets attention in humanitarian logistics due to poor logistical 
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outcomes in recent disasters. Despite substantial number of publications on humanitarian aid and disaster 

relief appear; there are only limited mathematical models on humanitarian logistics. However, most 

articles on the topic of humanitarian logistics propose conceptual framework. These take the form of field 

reports and evaluations and cover one or more disaster response that highlight the general challenges and 

issues in HL, often accompanied by recommendations for further improvement (Beamon, 2004). Russell 

(2005), collaboration with the Fritz Institute, uses the Indian Ocean tsunami 2004 to carry out a survey 

among logisticians from the participating international organizations, with the aim of documenting 

common challenges and problems as a means of improving preparation for the next disaster relief efforts. 

They find out that aid organizations attain decisions on ad-hoc basis. Kovacs and Spens (2007) streamline 

the focus by reviewing humanitarian logistics research until 2005 and shows that logistics are still 

undervalued in disaster response. There are a few mathematical models for emergency response strategy 

to support decision-making. Despite mathematical models are essential, those models appear lately. Some 

of the models propose transportation routing and scheduling (Haghani and Oh, 1996; Ozdamar et al, 

2004), helicopter planning (Barbarosoglu et al., 2002; Barbarsoglu and Arda, 2004), medical aid location 

planning (Mete and Zbinsky, 2010), and Network planning (Akkihal, 2006; Balcik and Beamon, 2008; 

Ukkusuri and Yushimito, 2008). Beamon and Kotleba (2006) attempt man-made disaster for formulating 

inventory model. Caunhye et al. (2012) show that HL encounters more uncertainty than business logistics 

does. 

 

Figure 1-8:   Available relief in affected country (edited from Thomas, 2001) 
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Some of above mentioned studies have incorporated stochastic parameters of demand side. The 

uncertainties from supplier side and transportation side get less attention. It is obvious that a model must 

include uncertainties from demand side, supplier side, and transportation side. Thus there are still scopes 

to improve the models after incorporating stochastic parameters.  

 Tufekci and Wallace (1998) suggest that an effective emergency response plan should integrate 

both pre- and post-disaster stages within its objective; otherwise, strategy may lead to suboptimal solution 

to the overall problem. With this in the mind, this study integrates pre- and post-disaster actions to 

solve uncertainty specifically on inventory issues. Inventory issues are chosen since aid organizations 

face shortage of resources in critical phase (i.e., 48 hours to 72 hours immediate after disaster); it needs 

proper planning even in post-critical phase (i.e., after 72 hours of disaster occurrence). Figure 1-8 depicts 

the resources available at affected sites after disaster. During the assessment phase, aid organizations 

collects fund from donors and estimate relief demand. Longer duration for assessment and deployment in 

critical phase may harm the human lives and increases fatalities. This study proposes models to reduce 

delay and distribution cost in critical phase and propose inventory-prepositioning model. 

 The proper utilization of inventory is also burning issue in post-critical phase due to the facts of 

duplication of relief efforts in particular affected areas and the lack of relief in other affected areas. This 

issue becomes inevitable in a situation of scarcity of resources. Recent disaster relief operations were not 

efficient in using the available resources. Some affected areas get more relief and some affected areas get 

nothing. Relief must be distributed based on proper evaluation; otherwise, it may create social 

dissatisfaction and unrest. Indian Ocean tsunami (2004) and Haiti earthquake (2010) relief operations are 

the evidence of these claims. Unfortunately, aid organizations face difficulties in making hierarchy among 

victims which may lead to inefficient relief distribution which motivate to formulate model for inventory 

utilization through demand management 

1.3.  RESEARCH QUESTION AND OBJECTIVES  

The fast growing trends of number of disaster in a year, the unique differences of humanitarian 

logistics from commercial logistics, and the stochastic environment in using of funds necessitate the 

formulation of robust, flexible and simple response strategies to minimize the negative impacts of large-

scale disaster. Recently, aid organizations also begin to assess improving response strategies and utilizing 

the experiences for tackling future disasters. Specific circumstances (e.g., uncertainty in transport network 

and in demand) and internal information (e.g., resource availability, capacity constraints) are major 



13 

 

components for planning the response strategies. In this context, we address the following scientific 

problem in this research:  

How uncertainties in relief flow can be resolved to improve performance in HL after 

earthquake?  

Relief is the most essential item during response actions. Herewith, aid organization spends 

significant portion of money for logistics of relief distribution and there is still, unfortunately, large time 

gap between the disaster occurrence and the reaching victims. In this study, time and cost are the 

performance criteria. Accordingly, aid organizations need mathematical tools so that outcomes of actions 

are further observed/ assessed for improving response strategies. From the scientific problem stated above, 

the study defined the main objective as the conceptualization/ formulation of management of relief 

against uncertainty to reach victims effective and efficient way. In order to tackle the scientific problem 

stated above, we divided the research questions in three parts. They are:  

1. What logistical factors influence the performance in HL? 

2. How network design can improve the performance in HL? 

3. What post-disaster planning can improve the performance in HL? 

Based on our research agenda, this study aim to achieve following objectives: 

1.     To identify causes for poor performance of HL after earthquake 

2-1. To formulate a deterministic network model for multi-nations disaster response. 

2-2. To formulate a stochastic network model for single-nation disaster response. 

3-1. To clarify effects of uncertainty in relief ordering. 

3-2. To create relief operation model for aid organization and to simulate the performance of aid 

organization. 

Objective (1) identified decision-making difficulties in uncertain environment. While objective (2-

1) does not tackle the uncertainty explicitly, objective (2-2) explores demand and supply uncertainty for 

establishing a network for relief distribution. In this objective, network uncertainty is also introduced 

implicitly. Objective (3-1) and (3-2) are post-disaster planning. Objective (3-1) investigates uncertainty of 

demand and network (in the form of lead-time) for planning relief ordering. Lastly, objective (3-2) 

suggests policy for dynamic environment. Here, uncertainty is involved implicitly in demand calculation 

and presence of other aid organizations.  
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1.4.  METHODOLOGY   

The study has roots in practical problems facing the community. It formulates mathematical models 

that contribute to overcome the bottlenecks for practical problem. It employs Operational Research (OR) 

and Artificial Inteligence (AI), while necessary empirical foundation is created through literature review 

and on-line reports. Figure 1-9 illustrates the proposed study method, which is described below. 

This study interviewed World food program (WFP) and Disaster Risk Reduction section in UN-

ESCAP in September 2011. Interviewees were section chief, manager, and service employee. The 

discussion agenda was mainly difficulties in relief operation and future planning. Besides, a series of real 

disaster observations are conducted since 2010. They allow us to collect and analyze data towards the 

understanding of aid organizations response strategy. Thus, a complete relief deployment process is 

identified and it supports the background of mathematical model formulation. Nonetheless, it is found 

that the data gleaned through the case study have limited applicability for the assessing the models. In this 

context, some paramters are assumed for model testing. Therefore, the results provides only 

understanding for the response strategies. 

This study analyzes the effect of logistics network in relief distribution. Afterwards, relief ordering 

and allocation model capture the operational characteritics of the relief distributiom. This study proposes 

inventory prepositioning model or network model, inventory model and releif allocation model. The study 

proposes two pre-disaster models and two post-disaster models. While the relief ordering model explores 

 

Figure 1-9: Research method 
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the stochasticity of post-disaster environment, the relief allocaiton model is an operational model that 

analyze the dynamic environment of relief distribution after disaster. 

Pre-disaster tasks is seting network for inventory positioning. A deterministic linear programming 

model for network design is proposed in order to support quick response in multi-nationals after large-

scale earthquake. The historical database for Asia-Oceania regions is collected from EM-DAT. Another 

network model incorporates stochasticity to support the uncertain environment in a affected country. The 

model incorporates supply and demand uncertainty.  

The relief ordering (inventory model) and relief allocation, are explained subsequently. The 

inventory model adopt the stochastics logistical parameters and proposes strategies for ordering relief. 

Since data are not available/relieable after large scale earthquake, this model assume uniform distribution 

of parameters which allows decision maker finding solution through solving simple model. Relief 

allocation model incorporates the outcome of network model and inventory model. The model allocates 

the relief with given network and resources. Then, this model evaluates the performance of logistics 

systems.  The software and other properties of each model are tabulated in Table 1-2. 

 

Table 1-2: Properties of model 

Model Model type (software) Data Application 

Network model for 

multi nationals 

Deterministic (COIN-

OR LP code (clp)) 

EM-DAT • Before disaster for a region (e.g. 

Asia) 

• Historical disaster. 

Network model for 

single country 

Stochastic (Gurobi) On line reports • Before a disaster in a country  

• For scenario of disasters 

Relief ordering 

model 

First order differential 

equation (R) 

Interview, 

report 

• After a disaster in a country 

• Uncertainty in current disaster 

Relief allocation  

model 

Agent-based 

Model( NetLogo and R) 

Tohoku 

earthquake 

report 

• After a disaster in a country 

• Dynamic environment in current 

disaster 

 

Researching a complex topic like response strategy after large-scale earthquake poses a series of 

challenges. There are few academic papers available that aim of formulating mathematical models. This 

study proposes several models to analyze the process. Author admit that there are scope of debates on 

proposed models. However, those models can be good starting point for formulating advance models for 

humanitarian logistics. The contributions of this study are listed below 
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 The network model for multi-nations uses a new measure per capita-distance which is used to 

evaluate the vulnerability of each people. This measure can also be used for network models for 

other services such medical aid network, fire stations design. 

 The network model for single country includes supply uncertainty and demand uncertainty for 

strategic decisions. This model also incorporates facility failure probability. Despite failure 

probability is difficult to estimate, the incorporation of failure probability deserves attentions. 

Because many facilities are unable to deliver their services after disaster. Thus, this study may 

bring attention on this issue.  

  The inventory model makes this study significant. This model is transformed in closed form and 

solved it via open source software. It shows the computation methodology of two stocahstic 

variables. 

 The relief allocation model is a new tool in humanitarian logistics. This study proposed a new 

approach in agent based model framework for relief demand management. 

 The agent based model is also used for evaluating the performance of logistics systems. Here, a 

parameter is introduced for aggregrated value. 

This research also has several limitations. Since the contibutions of the study are model 

development, the study could not follow single disaster to analyze the models. Some parameters were not 

possible to measures based on real data. However, we tried to assume the parameters to represent real 

situaitons.  

1.5. DISSERTATION STRUCTURE 

This dissertation is divided into six chapters, as shown in Figure 1-10, in order to describe all the 

activities undertaken during the study. After this introductory chapter, literature review is presented in 

second chapter. Then, models are presented in three subsequent chapters.  

The second chapter explores the state-of-art of response strategies and the theoretical base of 

mathematical models. This chapter also meet the first objective this study. Additionally, it also shows the 

contribution of this study for improving the theoretical knowledge. 

The third chapter describes the link between pre- and post-disaster task. It illustrates the importance 

of preparedness for improving efficiency of post-disaster response. Two different network models are 

described aiming of improving efficiency of post-disaster response. The first model aims for reduction of 



17 

 

time gap between the time of disaster occurrence and that of arrival of relief. This study focuses on large-

scale earthquake, however, this model incorporate meteorological disaster as well as earthquake. Other 

model incorporates stochasticity of logistics parameter to show trade-off between pre- and post-disaster 

cost. This chapter fulfills four objectives of this study (objective 2-1 and 2-2) 

Building upon network and inventory quantity from chapter 3, the fourth chapter presents an 

inventory model, which embraces post-disaster circumstances. The novel approach combines stochastic 

lead-time and demand parameters, which are uniformly distributed. By adopting the algorithm proposed 

by Glen et al. (2004), the model computes the joint distribution of these two parameters.  This chapter 

accomplishes objective 3-1 of this study. 

The fifth chapter presents the relief allocation in post-disaster circumstances. It initially explores the 

stakeholders of humanitarian logistics and draws the conflict in objectives among stakeholders. Then, this 

study proposes an agent-based model, where the network built in chapter 3 and the resources accumulated 

in chapter 4 are plugged in. This model allocates resources among demand points and provides the value 

of performance of logistics. This chapter accomplishes objective 3-2 of this chapter.  

 

Figure 1-10:  Dissertation structure 
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Finally, the last chapter summarizes the study and all the steps taken to reach its outcomes: i) 

network design for quick response, ii) inventory management after disaster and iii) relief allocation after 

disaster. The study outcomes are summarized and both successes and limitations are reported. This 

chapter closes by highlighting the future study needs. 
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Chapter Two 

2. LITERATURE REVIEW 

Common logistical decisions in HL include - Where should the warehouse be located? Which 

product should be procured from which supplier? Which product should be stored? How much of which 

product should be kept? What transport mode/route should be used? What should the time gap between 

two consecutive relief deliveries be? Which facilities should be built? What should the relief allocation 

approach be? 

A certainty in disaster is that uncertainties appear in the decision-making processes in the context of 

HL. Altay and Green (2006) suggest that Operation Research/ Management Science (OR/MS) studies are 

recognized in disaster management for facilitating rational decisions. They provide a holistic review of 

the use of OR/MS methods in disaster management until 2004 and recognize the need for research in this 

area.  

The chapter ultimately builds the basic knowledge necessary to achieve the main objective of this 

study. In Section 2.1, the concept of disaster management is explored. Then, uncertainty in disaster 

management is explained in section 2.3. In section 2.4, the state-of-art of planning in preparedness and 

planning is presented. Section 2.5 and 2.6 explain the relief ordering model and relief allocation model.   

2.1. DISASTER MANAGEMENT 

Disaster Management (DM) has become a broad discipline dealing with risk management, response 

and recovery. It aims at either avoiding a disaster or reducing its impact on communities and economies. 

Several studies have been undertaken in the context of engineering, geology, psychology, policy making, 

resilience and many other disciplines to propose framework for DM. Outcome from different fields have 

helped to frame DM under specific management structures aiming at coordinated response. Logistics is 

recognized as critical activities in incident command system.  

2.1.1. Disaster Management Concepts 

A series of concepts is presented in this sub-section in order to explore different facets from 

Disaster Management. This subsection starts by defining disaster events and the four Disaster 

Management components, i.e. Mitigation, Preparedness, Response, Recovery.  
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2.1.1a. Disaster events 

All hazards are not disaster; some hazards are named as ‘disaster’ considering their impacts. In 

order to define disaster events, the definition of hazard is presented. Hazards are potential physical 

instances, phenomenon or human activity that can harm a community and damage to its infrastructure. 

The Cambridge Dictionary also associates hazards with danger (an instance likely to cause damage) and 

risks (probabilities of events to produce harm or create damage) (Cambridge, 2008) 

Disasters or extreme events are the result of the combination of hazards and vulnerabilities, which 

overwhelm community’s ability to cope with the situation; therefore, incurs in loss of life and/or damage 

to infrastructures. The situation can be motivated by the geophysical or biological environment (natural 

disaster) or by human action or error (man-made disaster). CRED (2009) summarize this conceptual topic 

by referring to extreme events as uncertain outcomes from either natural or man-made hazards, which 

creates potential damage and broad consequences to communities.  

Finally, an disaster event represents a present or imminent disaster or extreme event, which prompts 

co-ordinated actions among people and organizations in order to protect life and/or property or reduce 

death and/or damage. disaster events necessarily involve response and coordination towards risk 

reduction (for imminent disaster) or impact reduction (for present disasters). 

2.1.1b. Mitigation 

Mitigation involves pre-event actions taken in order to comprehend and reduce risks associated with 

hazards. The understanding of potential hazards reduces community’s vulnerability and increases its 

ability to cope with disasters situations. FEMA (2009) formally defines “Mitigation is the effort to reduce 

loss of life and property by lessening the impact of disasters. Mitigation is taking action now—before the 

next disaster—to reduce human and financial consequences later (analyzing risk, reducing risk, insuring 

against risk).” 

Numerous frameworks and projects propose different  paradigms for mitigation as it is 

acknowledged that future disasters cannot be exactly predicted. For instance, FEMA (2009) made 

available to the general public a standardized methodology and software (HAZUS-MH) containing 

models to estimate loses due to a number of events (e.g. earthquake, flooding, hurricane). In summary, 

mitigation can be defined as a group of actions taken before an extreme event in order to comprehend the 

relationships between communities (people and systems) and the surrounding physical environment. Such 

an approach has been already proven successful for disaster’s prevention and reduction.  
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2.1.1c. Preparedness 

The second DM component focuses on readiness or planning. The Cambridge Dictionary 

(Cambridge, 2008) defines the adjective ready as being prepared and suitable for immediate activity. 

According to basic premises from disaster preparedness, organization and people should exercise and plan 

in advance so they can be ready for immediate response.  

A common framework used for preparedness refers to previous planning, mutual assistance 

agreements, resource inventories, equipment and formal training. A practical three objective program is 

proposed by the IFRCRCS (2002) comprising the following: 

 To increase efficiency, effectiveness and impact of disaster response by developing regular 

training, system’s testing and establishing clear policies. 

 To strength community preparedness by supporting local population through National 

Programs; and 

 To develop activities addressing everyday risks faced by communities  

2.1.1d. Response 

The comprehension of risks (mitigation) along with response planning (preparedness) supports 

people and organizations to quickly and effectively respond to extreme events. It usually aims at reducing 

potential impacts associated with the occurrences of an extreme event according to specific situations, 

conflicting priorities and resources limitations. 

Response is defined as co-ordinated actions taken immediately before, during or shortly after a 

disaster occurs. They refer to short term activities aiming at managing the situation through public 

communication, search and rescue activities, medical assistance, evacuation, and well-being/hosting. 

These activities are performed under strict levels of co-ordinations so conflicting priorities and resources 

limitations can be properly taken into consideration before resources can be deployed.  

2.1.1e. Recovery 

Recovery targets the reparation and restoration of communities and systems up to acceptable levels 

of operationability after a disaster occurrences. Sullivan (2003) explores more this concept by describing 

recovery as activities undertaken immediately after the initial response, which bring self-sustainability to 

affected communities so external support frameworks and resources are no longer needed.  

2.1.1f. Logistical activities in four stages 

Table 2-1 summarizes the activities in four stages of disaster management 
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Table 2-1: Activities in four stages of disaster management 

Mitigation Preparedness 

 Zoning and land use controls to prevent 

occupation of high hazard areas 

 Barrier construction to deflect disaster forces 

 Active preventive measures to control 

developing situations 

 Building codes to improve disaster resistance 

of structures 

 Tax incentives or disincentives 

 Controls on rebuilding after events 

 Risk analysis to measure the potential for 

extreme hazards 

 Insurance to reduce the financial impact of 

disasters 

 

 Recruiting personnel for the emergency 

services and for community volunteer groups 

 Emergency planning 

 Development of mutual aid agreements and 

memorandums of understanding 

 Training for both response personnel and 

concerned citizens 

 Threat based public education 

 Budgeting for and acquiring vehicles and 

equipment 

 Maintaining emergency supplies 

 Construction of an emergency operations 

center 

 Development of communications systems 

 Conducting disaster exercises to train 

personnel and test capabilities 

Response  Recovery 

 Activating the emergency operations plan 

 Activating the emergency operations center 

 Evacuation of threatened populations 

 Opening of shelters and provision of mass care 

 Emergency rescue and medical care 

 Fire fighting 

 Urban search and rescue 

 Emergency infrastructure protection and 

recovery of lifeline services 

 Fatality management 

 Disaster debris cleanup 

 Financial assistance to individuals and 

governments 

 Rebuilding of roads and bridges and key 

facilities 

 Sustained mass care for displaced human 

and animal populations 

 Reburial of displaced human remains 

 Full restoration of lifeline services 

 Mental health and pastoral care 

Source: Altay and Green, 2006 
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2.1.2. Disaster Management in the Context of Humanitarian Logistics 

Increasing natural disasters have led to heightened interest in identifying and reducing the 

vulnerability of infrastructure networks (Auerswald et al., 2005). In a disaster situation, local and central 

government agencies as well as civil organizations mobilize their resources immediately to rescue victims 

and to supply medical care, machinery, and relief commodities to the affected areas. In addition to the 

time-critical operations carried out by the agencies, some residents will be on the roads trying to evacuate 

the affected areas while others will try to reach the area to provide humanitarian aid and to help their 

relatives. As a result, the proper functionality of the transportation network is essential for the success of 

the rescue and relief operations. It is commonly observed that a disaster may render some of the links of 

the transportation network non-functional, leading to the blockage of some routes and/or 

disconnectedness of some areas in need of aid. Above mentioned issues inspire to include humanitarian 

logistics in disaster management. 

Humanitarian logistics focuses on particular task in disaster management and aims in providing 

relief. Humanitarian organizations are supposed to make decision under certain humanitarian principal 

including Humanity, Impartiality, Neutrality, Independence, and Empowerment. Short description of 

these principals has given below 

 Humanity: Human suffering should be addressed wherever it is found. The dignity and rights of 

all victims must be respected and protected 

 Impartiality: Humanitarian assistance should be provided without discriminating as to ethnic 

origin, gender, nationality, political opinions, race or religion. Relief of the suffering of 

individuals must be guided solely by their needs and priority must be given to the most urgent 

cases of distress. 

 Neutrality: Humanitarian assistance should be provided without engaging in hostilities or taking 

sides in controversies or a political, religious or ideological nature 

 Independence: The independence of action by humanitarian agencies should not be infringed 

upon or unduly influenced by political, military or other interest. 

 Empowerment: Humanitarian assistance should strive to revitalize local institutions, enabling 

them to provide for the needs of the affected community. Humanitarian assistance should provide 

a solid first step on the continuum of emergency relief, rehabilitation, reconstruction and 

development.  

 It utilizes the knowledge of transport modeling, disaster management and commercial logistics. 

The inclusion of humanitarian logistics in disaster management has drawn a new research prospect, which 
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is under investigation in this thesis. There are necessities of mathematical model for humanitarian 

logistics and this study proposes mathematical models for relief distribution for uncertain environment. 

2.2. FAILURE IN DISASTER RESPONSE 

The failure in disaster relief response is observed after each major disaster in the world. Several 

studies identify the reasons of failure from different ground, particularly highlight the complexity in 

decision making. Sobel and Lesson (2006) utilize public choice theory to identify six problematic 

incentive structures confronted by government actors when managing the disaster caused by Hurricane 

Katrina in United States of America (USA). The private sector’s response to Hurricane Katrina was swift 

and effective when compared to the government’s response. Companies like Wal-Mart, Home Depot, and 

State Farm insurance made preparations for the impending disaster weeks before Katrina hit, and were 

willing and able to bring resources to bear on the disaster area days before government agencies could 

manage to do so. In contrast, government recognition and response to Katrina was confused, chaotic and 

much slower. The widespread example of successful private action in equivalent circumstances after 

Katrina clearly demonstrate that there government failures were not endemic to the situation – they were 

potentially avoidable under the right incentive structure. The reasons of failure in disaster response are 

mentioned below.  

1. Many layers of decision makers: Government agencies like FEMA suffer from a problem 

of too much government oversight. When disaster relief is centralized and managed by 

government, it necessary become bureaucratized. In this situation, action requires the 

permission of many different and often unrelated individuals. At each layer of the 

bureaucratic process is a key political decision maker who can stall the process, since his 

sign-off is required before any proposed action can be considered at the next level of 

political decision making. Thus, agencies like FEMA may face bureaucracy in different 

levels. For instance, FEMA prepares for response to victims after the president of the 

country declares a disaster.  

2.   Fear of criticism: Government agencies like FEMA follow the rule of “wait and see” that 

prone to commit type-II error. In statistics, two types of errors are identified : type-I error 

and type-II error . Type-I errors involve mistakes that result from under cautiousness. If 

USA Food and Drug Administration (FDA) approves a new drug, which turns out to make 

millions seriously ill, FDA has committed a type-I error. The visibility and public backlash 

is larger for type-I error. In contrast, type-II error involve mistakes that result from over 
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cautiousness. If the FDA fails to approve a drug that could save thousands of lives, FDA 

has committed a type-II error. However, the harm is not easily associated with the FDA. 

Both type-I and type-II errors can result in injuries or harm to the public. But, type-II error 

is less visible and  thus much less likely to result in admonishment. If government agencies 

waits to response to disaster victims, it might be blamed for acting slowly. But this blame is 

far less than what it might receive if it response to victims immediately, before an effective 

plan were totally worked out. Thus, over cautiousness in disaster response causes delay in 

disaster response. 

3. Shortsighted policy bias: Political decision makers are biased toward current over future 

benefit. It causes the failure to invest current resources for future benefit. It is called 

‘shortsighted policy bias’.  This biasness contribute the massive destruction of 

transportation and communication infrastructure.  

4. Delayed acceptance of foreign aid:  There are always hesitation and delay in making 

decision on acceptance of foreign aid. Many international donors expressed frustration over 

the delay in shipment approval to the U.S. (Chua et al., 2007). The government of Myanmar 

blocked the entry of international relief to the country after Cyclone Nargis 2008. The 

Myanmar government agreed to accept international relief 21 days after the landfall of 

cyclone (Belanger and Horsey, 2008). 

5. Government approval: The most disturbing stories of government failure in New Orleans 

after Hurricane Katrina were those of government forcibly preventing both for-profit and 

non-profit disaster relief suppliers from helping those in need, and confiscating the 

resources of those who did enter with supplies (Sobel and Leeson, 2006). In this incident 

IFRC “begged to be allowed to go in [New Orleans] to do the distribution” of essential 

relief supplies, but were prevented by government officials from doing so (Sobel and 

Leeson, 2006). The intervention of government hampers the flow of relief distribution. 

6. Information conflict: Paramount of any disaster relief response is timely and accurate 

information. An organization need to know what was needed, who needed it, and when and 

where it was needed in what amounts. There are two reasons why a government agency 

cannot get accurate information. These are (1) the victims needing assistance had no 

incentive to truthfully reveal their preferences. However, State and local officials have an 

incentive to request a larger than efficient amount of resources when they are not bearing 

the cost. Thus State and local officials requests more relief than the efficient amount  and 
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(2) Government provide relief for free of cost, there are no prices to guide resource 

allocation decisions or profit and loss signals on the basis of which to evaluate 

government’s actions. The government agencies generally fail to understand the economic 

behavior of relief and to identify the characteristics of demand. The question arise after it 

that how to make best use of dispersed information to coordinate demands with available 

supply. 

7. Collapse of responders: The damage of responders after disaster causes failure of disaster 

response. For example, the National Response Plan of USA designates the National Guard s 

the military’s first responders to the crisis. The National Gurad at Louisiana were 

preoccupied with protecting their headquarters and rescuing soldiers who could not swim 

(Chua et al., 2007). They lost 20 vehicles which could have carried soldiers around the city 

(Lipton et al.,2005). Similarly, the UN headquater in Haiti was damaged after earthquake 

2010. 

8. Lack of preparedness:  A key cause of response failure is little knowledge of the nature 

and impact of disasters. Therefore, local people and aid organizations ignore the importance 

of preparedness. The importance of early warning system, education program, emergency 

protocols and drills were absent in most of disaster affected areas.  

9. Failure in vulnerable identification:  The aid organizations face difficulties in identifying 

the most vulnerable in the aftermath of disaster.  Besides, women, the elderly, children and 

the physically incapacitated needs especial attention in disaster response. 

10. Lack of need assessment coordination: In establishing the urgent provisions required 

following a disaster, thorough, “need assessment” is by its very nature normally fraught 

with logistical and coordination difficulties. The majority of the needs assessment were 

made separately by the international aid agencies for their own particular requirement. Aid 

organizations prefers working independently in relief distribution. These causes ineffective 

and inefficient relief distribution. The UN Office for Coordination of Humanitarian Affairs 

(OCHA) leads the coordination between aid organizations after Indian Ocean tsunami 2004. 

There were nearly 72 coordination meeting per week in Banda Aceh (Indonesia) alone 

(Perry, 2007). However, the success of  coordination  among aid organizations was 

questionable.  
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11. Lack of logistical expertise: Perry (2007) found that disaster relief response have to 

overcome several logistical challenges. A major problem during Indian Ocean tsunami 2004 

was the sheer quantity and associated chaos of donated relief supplies, magnified by the 

shortage of logistics expertise and lack of warehouse capacity, moving equipment and 

suitable transport.  

An available cadre of logisticians has been seen to be a crucial part of disaster response, as part of 

needs assessment and for procuring, transporting and distributing the relief supplies. Logisticians are 

essential contributors to the planning and decision-making process and the aid agencies should give 

importance to increased logistical capacity building. It makes sense that more logisticians be trained 

locally in vulnerable regions. Local sourcing is also helpful because the supplies bought will be according 

to the needs of the local people and it boosts the local economy. Logistics coordination is also imperative 

to prevent agencies having competing supply chains causing duplication and wastage of resources. 

2.3. DECISION MAKING IN UNCERTAINTY  

Solving purely technical (quantitative) problems is comparatively simple, compared to tackling 

problems encountered in humanitarian logistics that are associated with social, economic, cultural, and 

ethical concerns, requiring subjective interpretations, vis-a-vis rational and objective answers. In addition, 

most planning problems are poorly structured, defying straightforward analysis. For example, a technical 

problem of inventory management could be closely linked to economic problem, with social, ethical, and 

political implications. Naturally, there is no clear cut boundary, and the ‘‘technical’’ problem we thought 

we originally faced is now transformed into a cluster of problems, often called a ‘‘problematique’’, 

because it has properties that none of its parts have.  

Another theme that has haunted logisticians in almost every sector of planning is the problem of 

uncertainty. Uncertainty arises from several sources. First, there is the uncertainty that stems from a lack 

of knowledge about the disaster that is, sometime, called ‘black swan’ and the consequent inability to 

predict the outcome of possible actions. Second, there is the uncertainty arising from an inability to 

predict the effect of disaster and particularly identifying the damaged transport link aftermath a hazard. 

Third, there is the uncertainty arising from inability to predict the victims and the degree of relief urgency.  

The problem of uncertainty is concerned with three basic questions: (a) how do decision makers 

conceptualize uncertainty? (b) how do decision makers cope with uncertainty? and, (c) what are the 

relationships between different concepts of uncertainty and different methods of coping? (Lipshitz and 

Strauss, 1997).  



28 

 

Conceptualizing uncertainty in planning is highly subjective in the sense that different individuals 

may experience different doubts regarding identical situations about the future. The conception of 

uncertainty is also case-specific depending on its effects on the proposed action, resulting in confusion. It 

is useful to examine a set of common planning situations stemming from different means-ends 

configurations, as shown in Table 2-2, based on Thompson’s research (1967).  

It will be readily seen that if there is certainty about both means and ends connected with a specific 

project, then decision making boils down to a computational exercise, falling in cell A. If on the other 

hand, our goals are certain but our technologies (or strategies) to attain our ends are limited, then 

decision-making entails a good deal of professional judgment, represented by cell B. Cell C represents the 

situation when the use of proven strategies, coupled with uncertain goals, calls for compromise among 

contending actors for coming up with an acceptable solution. And lastly, when there is uncertainty about 

both our goals as well as our means, then probably what is called for is inspirational leadership or random 

groping, depending on how complicated the problem is, and this situation is represented by cell D. 

Planners have described this cell as ‘‘the land of the lost or crazy’’, because this is where the ‘‘wicked 

problems’’ reside that is very similar to the situations faced in HL. 

2.3.1. Uncertainty in Relief Distribution  

The study team did field survey for gathering knowledge of HL and interviewed five logistics 

experts from WFP and UN-ESCAP. The interviewee discussed about the difficulty in relief operation and 

cooperation with other agencies. This section summarizes the uncertainty observed during the field survey. 

The uncertainty for HL is classified into two broad groups: disaster uncertainty and environmental 

uncertainty. Environmental uncertainty is further subdivided into three groups: demand uncertainty, 

provider uncertainty, and network uncertainty.  The properties of each group are presented below: 

Disaster uncertainty: Global warming is the major cause for increasing the frequency and severity 

of weather-related hazards (Arnold et al., 2005). Some hazards can be predicted and this includes 

Table 2-2: Means-end configuration  

 

Means 

Ends (goals and objectives) 

Certain Uncertain 

Certain (A) Computation (C) Compromise 

Uncertain (B) Judgment (D) Chaos 

(source: collected from Khisty and Arslan, 2005)  
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avalanches, droughts, famines, hurricanes, and tornadoes, among others. In contrast, some disasters 

cannot be predicted and this includes earthquakes. World Bank identifies natural disaster hotspots, areas 

at relatively high risks of losses from one or more natural hazards (Arnold et al., 2005) and assigns 

hotspot index for each zone. Arnold et al. (2005) identify that some places in the world are vulnerable to 

multiple disasters –for example, India and New Zealand, are subject to both earthquakes and 

meteorological disasters. The hotspot index for each location will change with the inclusion of various 

disasters in the analytical model. 

 One common assumption of disaster occurrence is that a disaster will strike only a single place 

(Balcik and Beamon, 2008; Mete and Zabinsky, 2010; Huang et al, 2010) and other places will remain 

unaffected. However, this assumption is not always true, disasters may strike different places 

simultaneously, or several hazards may successively affect the same place in a short amount of time. For 

instance, the relief requests of the Pakistan flood (2010) and the Haiti earthquake (2010) overlapped and 

the relief operation during the Pakistan therefore faced a significant amount of shortages. Another 

example is that, Cholera broke out in Haiti during the relief operation for the Haiti earthquake (2010).   

Demand uncertainty: Demand estimation is a crucial task aftermath of a disaster. The complexity 

in demand assessment arises about what, and how much is needed and who needs what. The situations 

become complicated with the presence of artificial demand (i.e., requests for aid from people who are not 

disaster-affected). It becomes traumatic in poor country. If hazards affect the poor society, donors face 

difficulties in distinguishing disaster-generated-needs (i.e., affected by disaster) from regular-needs (i.e., 

non-affected by disaster).  

 

Figure 2-1: Uncertainty classification 
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 According to field survey in Bangladesh, donor organizations use their local-knowledge to predict 

the relief demand, and NGOs that do not have branch offices in hazard areas face difficulties in 

identifying demand locations and quantities. Some NGOs admits that victims in accessible areas get more 

relief than those in remote areas. 

It is understandable that local-knowledge is crucial for preliminary assessment of demand. However, 

local-knowledge is a fuzzy term and provides subjective value. Sometime, it generates information-chaos 

and decision makers are unable to obtain the actual value of demand. The importance of local-knowledge 

for demand assessment is recently realized.  

The issue of local-knowledge motivates this study to propose a relief operational model. The model 

assumes that local-knowledge is obtainable and reliable.  

Provider uncertainty: Provider uncertainty represents situations in which donors are unable to 

reach victims because of their own failure (i.e., facility failure, shortage of work force, shortage of relief 

item). It is generally accepted that facilities are everlasting and will not fail. However, it is not always true. 

For example, the Pakistan flood (2010) damaged the food in warehouses and health facilities. The World 

Food Program also lost its aid commodities during the relief operations. The Haiti earthquake (2010) 

damaged the warehouse of the Haitian Red Cross societies’. In addition to facility failure, operational 

difficulties may also serve as provider uncertainties -for instance, trucks are often stopped and looted or 

deviated from their intended destinations during disaster relief (Cassidy, 2003). WFP’s warehouses were 

looted during relief operations.  

An adequate workforce is a necessary component of a functional system. However, skilled staff is 

always in short supply during disaster response (Van Wassenhove, 2006). The aid distribution experience 

for Hurricane Katrina shows that there were limited numbers of aid workers available in field (Holguin-

Veras et al., 2007). In contrast, our survey in Bangladesh shows different results from that of Van 

Wassenhove (2006). According to our survey, there were sufficient numbers of volunteers available to 

take part in relief distribution and assistance. A large number of volunteers came from different districts 

of Bangladesh. According to NGOs, the reason behind this success was probably the presence of many 

NGOs in Bangladesh. 

Despite there are several evidence of provider failure, this issue does not gain attention in disaster 

management. This study takes account of it and incorporate provider failure parameter in relief location 

model. 
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Network uncertainty: Transport network uncertainties represent the most common issue in relief 

distribution and are crucial for humanitarian logistics. Network information is not readily available in the 

aftermath of a disaster and it therefore takes several days to obtain route-maps. Uncertainties arises from 

several sources. For instance, (1) Unexpected events can also occur while vehicles are en route. Vehicles 

require maintenance after driving for hours on rough and damaged roads. (2) The service network 

(including work-shops or filling stations) creates additional difficulties for vehicle operation. (3) Road 

accessibility changes frequently and unpredictably due to the features of the terrain. (4) A number of 

commercial transport providers voluntarily support relief work aftermath of large-scale disasters. These 

organizations (commercial transport providers) are not secured by any contracts with aid organizations. 

They can withdraw their support during any stage of the relief operation. (5) According to the field survey 

in Bangladesh, NGOs do not possess vehicles and hire vehicles instead. They, if situation allows, share 

transportation with other NGOs or donors.  

This study does not include network uncertainty in mathematical model explicitly. Rather, the 

models assumes that the capacity of transport network is decreased due to disaster and the logistics cost 

will be increased after disaster.  

2.3.2. Modeling of Uncertainty in Humanitarian Logistics 

Many studies aimed at formulating the uncertainty for logistics last couple of decades and some 

approach are also proposed for HL to cope with different uncertainties. Table 2-3 summarizes the general 

classification of modeling approaches of uncertainty. Three different modeling approaches, namely 

analytical model, intelligent artificial based model and simulation model are used to solve uncertainty. 

Each model is equally popular to researcher for representation of uncertainty.  This study utilizes 

stochastic programming for network model, probabilistic distribution model for relief ordering model and 

multi-agent based model for relief allocation model.  

Table 2-3: Classification of the general types of uncertainty models in HL 

Analytical model 

Hierarchy processes 

Mathematical programming (LP, MILP, NLP, DP, 

and MOP)
a
 

Stochastic programming 

Value function 

Enterprise modeling 

 

Intelligent artificial based model 

Expert system 

Simulation model 

Monte Carlo technique 
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Fuzzy set theory 

Fuzzy logic 

Neural network 

Genetic algorithm 

Multi-agent system 

Probabilistic distribution 

Heuristic method 

Network modeling 

Queuing theory 

Dynamic system
 

a
LP = linear programming, MILP = mixed-integer linear programming, NLP = nonlinear programming, DP = 

dynamic programming, MOP = multi-objectives programming 

Now, this section explores representations of random variables that are presented in logistics 

decisions in different implementation stages. The detailed descriptions are as follows: 

Disaster uncertainty:  Balcik and Beamon (2008) propose a model for identifying inventory 

locations for global responses. They use a mixed-integer model based on demand scenarios and show 

trade-off between pre- and post-disaster budgets. They utilize historical earthquake epicenter to predict 

the probability of disaster in a particular location.  Fiedrich et al. (2000) propose a dynamic programming 

model for allocating resources during search-and-rescue period after an earthquake aiming to minimize 

the number of fatalities. They compute the probability of demand from past earthquakes reports. This 

study includes the probability of an additional disaster during search-and-rescue period, named second 

disaster. The impact of secondary disaster is computed by multiplying the probability of failing to 

stabilize an area by the number of people. 

This study combines the historical database of earthquake and meteorological disaster for Asia-

pacific zone. Additionally, the network model for preparedness in a single country utilizes earthquake 

data of Bangladesh.   

Demand uncertainty: Drezner et al. (2006) propose a model for casualty collection points and use 

the deterministic approach for a mini-max regret multi–objective model. The proposed model aims to 

minimize the maximum percent deviation of individual objective function values. Beamon and Kotleba 

(2006) develop an operational model of inventory ordering strategies in which demand is characterized as 

uniformly distributed. Lodree and Taskin (2008) address the inventory planning problem encountered by 

donor organizations using variants of the news-vendor model. Proactive actions to maintain inventory 

levels are compared with financial investment in an insurance policy. Demand is described as having a 

uniform distribution in the model. Salmeron and Apte (2010) use a stochastic optimization model for 

resource planning prior to a disaster. The model includes different degree of severities in different regions 

after a hurricane. The degree of severities differentiates the demand in one zone to another zone. Sheu 

(2010) proposes a model of data-fusion for treating multi-source information. 
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It is found that demand is represented by three different approaches. First approach is deterministic, 

second is scenario probability and third is uniform distribution. Scenario probability is designed based on 

historical data of relief operation and is used for logistical decisions in preparedness (i.e. 2
nd

 stage of 

disaster management.). On the other hand, uniform distribution, implicitly, is persuaded the application of 

local knowledge after math of disaster and is used for logistical decision in Response (i.e. 3
rd

 stage of 

disaster management).   

Provider uncertainty: Tamura et al. (2000) describe the value function for investment under the 

risk of low-probability and high-consequence disasters. They use different disaster scenarios to improve 

infrastructure stability, minimize the probability of death, and minimize the cost of restoring damaged 

infrastructure. Ukkusuri and Yushimito (2008) propose a facility model that incorporates the reliability of 

each link and identify the facility as the most reliable path. Doerner et al. (2009) propose a model for 

existing public facilities in coastal areas, taking the risks of inundation by tsunamis into account. They 

use multi-objective optimization model: the first objective is the weighted mean of maximum coverage, 

the second is the minimization of tsunami risks, and the third is the minimization of costs. Huang et al. 

(2010) propose a model for large-scale emergencies and assume that most facilities in a city may stop 

functioning. They use a dynamic programming approach for the location of a path network and show the 

differences between the p-center and the p- large scale disaster center problem (LSECP) models. They 

observe that facility failure increases the objective values by 20% - 30% on average and that relative 

differences decrease according to the number of facilities, therefore, they suggest the location of more 

facilities. Lin et al. (2010) use HAZUS-MH software to create earthquake scenarios and analyze the effect 

of depot location, number of vehicles, and number of clusters on relief distribution. 

Network uncertainty: Academic studies suggest using helicopter to reach victims due to network 

uncertainty. Ozdamar (2011) optimizes helicopter operations in the last mile of relief distribution with the 

objective of minimizing the total mission time under the aviation constraint. Barbarosoglu and Arda 

(2004) propose a two-stage stochastic programming model to plan first-aid commodities for disaster-

affected areas based on random demand. Furthermore, uncertainty arising from the vulnerability of the 

transportation network is presented in scenarios approaches 

2.3.3. Drawback in Uncertainty Modeling 

In addressing uncertainty, different modeling approaches have been adopted and models are 

implemented in different stages of disasters. Most models incorporate uncertainties in demand and some 

incorporate supply uncertainties and network reliability. However, there are still ways to incorporate 
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uncertainty to generate a practical model. I have also found that practitioners face difficulties in making 

logistical decisions in several environments that have not been considered in logistics models. I have 

tabulated the differences between research and practice in table 4. The differences are presented based on 

our classifications of uncertainties. Some representative issues are mentioned in each group. It is hoped 

that researchers can continue to push the boundaries of modeling uncertainty in HL through the 

incorporation of the problems that occur during relief operations. 

Table 2-4: Comparison of uncertainty presentation in real case and modeling 

 Real case Modeling  

Disaster uncertainty   

1. Disaster location Can be multiple locations One place  

2. Number of disasters at 

particular time 

Can be multiple disasters Single disaster 

3. Disaster probability Unknown Deterministic 

Demand Uncertainty   

1. Victim location Depends on topography of area Deterministic 

2. Product need Need is dynamic Deterministic in general 

3. Demand urgency Relief shortage force to 

consideration of victim 

severity 

It is not highlighted in general  

4. End link Victims also value social 

conditions 

Victim come to DC to receive aid 

(or stay in shelters) 

5. Required product type Unsolicited products present Known 

Provider Uncertainty   

1. Road safety Trucks are sometime looted  Roads are always safe 

2. Volunteers Skilled staff are in short supply No shortage of volunteers 

3. Facility failure Facilities can be affected by 

disasters 

Facilities are not affected by 

disasters 

Network uncertainty   

1. Vehicle parameters Vehicles are hired on the spot Deterministic 

2. Customs processing Complicated process Not considered 

3. Vehicle fleet Dynamic Deterministic in general 

4. Road capacity Dynamic Deterministic 

5. Lead time Does not gain attention Combined with demand 

6. Temporary facility Government- suggested place 

or depending on logistics cost 

or other reason 

Depending on logistics costs 
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2.4.  PLANNING IN PREPAREDENESS AND RESPONSE 

Stoddard (2004) shows that aid organizations follow the reactive strategy (i.e., takes actions after a 

disaster) instead of the proactive strategy (i.e., takes actions before a disaster). Therefore, there is 

substantial gap between the time of disaster and that of delivering relief to the victims. Prepositioning of 

inventory is generally suggested solution for reducing time gap. International community suggests also 

for proper planning of response for efficiency of logistical operation. This sub-section explores the state-

of-art for strategies for reducing time gap.  

2.4.1. Facility Location Model in Preparedness 

Facility location models are several types on the criteria of their objectives, constraints, solutions, 

and other attributes. Different classifications of facility location models for distribution systems have been 

proposed in the literature (Klose and Drexl, 2004). The short description of different types of model are 

described below. 

 Topological characteristics: Topological characteristics of the facility and demand sites lead to 

different location models including continuous location models (Plastria, 2004), discrete network models 

(Daskin, 1995), hub connection models (Campbell, 1996). In each of these models, facilities can only be 

placed at the sites where it is allowed by topographic conditions.  

Features of facility: Features of facilities also divide location models into different kinds. For 

instances, facility restrictions can lead to models with or without service capacity. Capacity constraints 

also cause variations in location models (i.e., un-capacited or capacited).  Location models can be further 

divided by the type of supply chain considered (i.e,. single-stage model vs. multi-stage model). Single-

stage models focus on service distribution system with only one stage, whereas multi-stage models 

consider the flow of service through several hierarchical levels.  

Input parameter: Another popular way to classify the location models is based on the features of 

the input parameters to the problem. In deterministic models, the parameters are forecast with specific 

values and thus the problems are simplified for easy and quick solutions. However, for most real-world 

problems are unknown and stochastic/probabilistic in nature. Stochastic location models capture the 

complexity inherent in real-world problems through probability distributions of random variables or 

considering a set of possible future scenarios for the uncertain parameters. 

Objectives: The objective is an important criterion to classify the location models. Covering models 

aim to minimize the facility quantity while providing coverage to all demand nodes or maximize the 
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coverage provided the facility quantity is pre-specified. The objective of covering models is to provide 

‘coverage’ to demand points. A demand point is considered as covered only if facility is available to 

service the demand point within a distance limit. P-center models have an objective to minimize the 

maximal distance (or travel time) between the demand nodes and facilities. They are often used to 

optimize the locations of facilities in the public sector such as hospitals, post offices and fire stations. In 

the location literature, the P-center model is referred to as the min-max model since it minimizes the 

maximal distance between any demand points and its nearest facility. P-median models attempt to 

minimize the sum of distance (or average distance) between demand nodes and their nearest facilities. 

Companies in the private sector often use P- median models to make facility distribution plans so as to 

improve their competitive edge. This study modifies the P-median model. Therefore, the state-of-art of P-

median model is provided below. 

P- median model: While the average distance decreases, the accessibility and effectiveness of the 

facilities increases. This relationship applies to both private and public facilities such as supermarkets, 

post offices, as well as emergency service centers, for which proximity is desirable. The P-median 

model, introduced by Hakimi (1964), takes this measure into account and is defined as: determine the 

location of P facilities so as to minimize the average distance between demands and facilities. Carbone 

(1974) formulates a deterministic P median model with the objective of minimizing the distance traveled 

by a number of users to fixed public facilities such as medical or day care centers. Recognizing the 

number of users at each demand node is uncertain, the author extended the deterministic P-median model 

to a chance-constrained model. The model seeks to maximize a threshold and meanwhile ensure the 

probability that the total distance is below the threshold is smaller than a specified level α. Berlin et al. 

(1976) investigated two P-median problems to locate hospitals and ambulances. The first problem pays 

major attention to patient needs and seeks to minimize the average distance from the hospitals to the 

demand points and the average ambulance response time from ambulance bases to demand points. In the 

second problem, a new objective is added in order to improve the performance of the system by 

minimizing the average distance from ambulance based to hospitals.  

This study proposes a modified P-median model that uses weighted distances from the facility to 

the demand point. The parameters are considered deterministic and the supply chain consists of single 

stage. Topologically, the model is discrete network model and puts potential facility location on the nodes.  

The P-median model extends to stochastic model afterward. The supply uncertainty and demand 

uncertainty are introduced in the model. Accordingly, the objective function and the constraints are 

modified to represent the humanitarian logistics properties.    
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2.4.2. Relief Distribution in Response 

The distribution system used in humanitarian logistics may depend on each situation’s 

characteristics. Response planning consists of several management issues, for instance transport 

management, inventory management, demand management and supply management. Transport is the 

second largest cost to relief operations after personnel. The most wide used vehicle type in relief 

distribution is 4X4 vehicle and the total fleet size of 4X4 vehicles in large international humanitarian 

organizations is estimated between 70,000 and 80,000 units (Martinez et al., 2010). Several studies 

propose mathematical model for transport management and suggest for utilizing modern technology for 

improving the usage to transport resources. However, aid organizations still manage transport resources in 

ad-hoc basis and hire transport on spot (Balcik and Beamon, 2008). Then, demand management that 

needs a consideration of cultural differences in disaster regions (Wichmann, 1999). Demand is 

unpredictable regarding timing, scale, and locations (Long and Wood, 1995). In case of supply 

management, aid agencies receive many unsolicited and sometimes even unwanted donations (Chomolier 

et al., 2003). These can include drugs and foods that are past their expiry dates (Murray, 2005). Few 

studies have paid serious attention to quantitative inventory modeling for relief operation 

2.4.2a. Relief ordering to LDC 

Typically, relief transfers through different stages of the logistics network via a series of long-haul 

and short-haul shipments. According to Figure 2-2, the stages in relief flow within a disaster-affected 

country are point of entry, central warehouse, local distribution center (LDC) and demand points. Since 

there are several stages and activities in relief flow, it requires longer time for transferring relif from 

origin to destination, In other words, the lead-time (i.e., the gap between the time of placing order and the 

time of receiving the product) for relief flow is considerably long.  The larger lead-time (and cost issues) 

motivates for modeling inventory model.  

 

Figure 2-2: Stage of relief flow (modified from UNDP, 1993) 

Inventory management needs to address both existing inventory within the organization and ‘in-

country sources of supplies which can be accessed at short notice’ (Long and Wood, 1995).Though 

commercial logistics considers the lead-time as an important factor of service level, lead-time does not 

gain attention in humanitarian logistics. Commercial inventory management is a core logistics function 

which is dominated by ‘pull’ systems. In contrast, Whybark (2007) asserts that disaster relief follows 

‘push’ strategy in initial situation and turns into ‘pull’ system later to catch up with disaster situations. 
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UNDP (1993) suggests that manager needs to consider lead-time in making decision of relief ordering in 

either ‘push’ system or ‘pull’ system.   

Beamon and Kotleba (2006) address the problem of man-made emergencies (such as war). The 

inventory model is noble in humanitarian logistics and assumes that lead-time is deterministic. The 

stochastic demand is uniformly distributed. Ozbay and Ozguven (2007) analyzed the inventory problems 

associated with supporting hurricane survivors living in shelter. They assume that lead-time-demand 

(LTD) is a multivariate normal distribution. 

Typically, inventory model assumes single stochastic parameter (i.e., either lead-time or demand) 

(Beamon and Kotleba, 2006) and proposes the solution in ‘closed form’. However, no paper (in the 

knowledge of author) proposes closed form for two stochastic parameters. This study proposes an 

inventory model that assumes stochastic lead-time and demand; it proposes the solution in ‘closed form’. 

2.4.2b. Relief allocation to demand points 

The significance of studies on relief allocation to areas suffering from disasters had been addressed 

previously (Knott, 1987; Long and Wood, 1995), followed by the emergence of diverse linear 

programming models proposed for emergency logistics planning model (Fiedrich et al., 2000; 

Barbarosoglu, et al., 2002; Ozdarmar et al. 2004). Therein, a number of researchers tended to formulate 

the resulting relief transportation issues as multi-commodity multi-modal flow problems with time 

windows (Haghani and Oh, 1996). By incorporating knowledge-based rules into a linear programming 

model, the issue of vehicle scheduling for supplying bulk relief of food to a disaster area has been 

addressed in Knott (1987). Brown and Vassiliou (1993) developed a sophisticated real-time decision 

support system using optimization approaches, simulation techniques as well as the decision maker’s 

judgement for both relief resource allocation and assignment following a disaster. Considering the multi-

commodity supply problems under emergency condition, three linear programming formulation are 

proposed in Rathi et al. (1992), where the routes and the supply amount carried on each route are assumed 

to be known in each of the given origin–destination  (O–D) pairs. Their purpose, in reality, is to assign a 

limited number of vehicles loading multiple types of goods in given pairs of origins and destinations such 

that the induced multi-commodity flow problem is solved within minimal penalties caused by delivery 

inefficiency, e.g., early and late delivery as well as shipping on non-preferred vehicles.  

In Fiedrich et al. (2000), a dynamic combinatorial optimization model is proposed to find the 

optimal resource rescue schedule with the goal of minimizing the total number of fatalities during the 

search and rescue (SAR) period, which refers to the first few days after the disaster. Although the model 

proposed by Fiedrich et al. (2000) aims merly to deal with rescue resource allocation problems, their 
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approach is unique in the estimation of fatality probabilities in various rescue scenarios during the SAR 

period. The work of Fiedrich et al (2000) motivates to work further in the same research direction. 

However, no systems allow the next and more important step, namely decision on allocating relief 

of the available resources to the demand points for long term. Additionally, the above-mentioned models 

lack the properties of agents’ behaviors. Humanitarian logistics consists of several actors/agents that need 

to be addressed in decision-making. This study applies the agent-based model for relief allocation. 

Based on the above discussion, Figure 2-3 shows the position of the study in literature in 

humanitarian logistics. 

 

Figure 2-3: Study position in literature 

2.5.  STOCHASTIC INVENTORY MODEL FOR RELIEF ORDERING 

The control and maintenance of inventories of physical goods is a common problem to all sector of 

a given economy. Two fundamental questions that must be answered in controlling the inventory of any 

physical goods are when to replenish the inventory and how much to order for replenishment. The <Q, r> 
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inventory model attempt to answer the two question under a variety of circumstances and are widely used 

in business and industry. This model aims to reduce inventories without hurting the level of service. 

Safety stock is a function of the cycle service level, the demand uncertainty, the replenishment lead-time, 

and lead-time uncertainty. For a fixed-cycle service level, a decision maker thus has three factors that 

affect the safety stock – demand uncertainty, replenishment lead-time and lead-time uncertainty  

The reduction of lead-times and their variability is a key element of process improvement and vast 

literature are available for corporate logistics. Here, some key finding from corporate logistics are 

reported, since no literature is published on this topic for humanitarian logistics. 

A larger lead-time results in a larger leadtime-demand, so it is necessary to require a higher base-

stock level to compensate the higher possibility of stock-out. However, a larger leadtime does not 

necessarily result in a higher average cost. In contrast, high variability of lead-times increases average 

cost. If the lead-times in two system have the same mean but the lead-time in system 1 is more variable, 

that leads the optimal average cost in system 1 is higher. In contrast, optimal base-stock level is 

dependent on penalty cost (p) and holding cost (h) (Song, 1994). Another important fact that a more 

variable lead-time lead to a more variable leadtime-demand  

 

Table 2-5: The effect of lead-time uncertainty 

 Lead-time (L) 

 Stochastically larger More variable 

Optimal base-stock level Larger 
Higher if 0

 hp

p
 

Lower, otherwise 

Minimum average cost Higher for exponential L 

Higher or smaller in general 

Larger 

 

Typically, a normal approximation has been used to estimate the relationship between safety stock 

and demand uncertainty, replenishment lead-time and lead-time uncertainty. According to Eppen and 

Martin (1988), this approximation is often justified by using an argument based on the central limit 

theorem. The normality assumption is unwarranted in general and this procedure can produce a 

probability of stocking out that is egregiously in error. Tyworth and O’Neill (1977) also address this issue 
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in a detailed empirical study and reveal that “the normal approximation method can lead to large errors in 

contingency stock”.  

This study propose a model to overcome the complexity in solving stochastic lead-time and demand.  

2.6. AGENT-BASED MODEL FOR RELIEF ALLOCATION 

Agent-based model is a relatively new approach to modeling complex systems composed of 

interacting, autonomous agents. Application of agent-based modeling span a broad range of areas and 

disciplines. Applications range from modeling agent behavior in the stock market and supply chain, to 

predict the spread of epidemics and the threat of bio-warfare, from modeling the adaptive immune system 

to understanding consumer purchasing behavior, from understanding the fall of ancient civilizations to 

modeling the engagement of forces on the battlefield or at sea and many others.  

2.6.1. Structure of Agent-based Model 

A typical agent-based model has three elements: 

 A set of agents, their attributes and behaviors. Agents are endowed with behaviors that 

allow them to make independent decisions. There is no universal agreement in the literature 

on the precise definition of an agent beyond the essential property of autonomy.  Casti 

(1997) argues that agents should contain both base-level rules for behavior and higher-level 

rules that are in effect ‘rules to change the rule’ 

 A set of agent relationships and methods of interaction. The two primary issues of 

modeling agent interactions are specifying who is, or could be, connected to who, and the 

mechanisms of the dynamics of the interactions.  One of the tents of complex systems and 

agent-based modeling is that only local information is available to an agent. Three is no 

central authority that either pushes out globally available information to all agents or 

controls their behavior in an effort to optimize system performance.  

 The agents’ environment. Agents interact with their environment in addition to other agents. 

The environment may simply be used to provide information on the spatial location of an 

agent relative to other agents or it may provide a rich set of geographic information, as in a 

GIS. An agent’s location, included as a dynamic attributes, is sometimes needed to track 

agents as they move across a landscape, contend for space, acquire resource, and encounters 

other situations (Macal and North, 2010). 



42 

 

The structure of agent based model is shown in Figure 2-4.  

2.6.2. Agent-based Model Implementation 

Agent-based modeling can be done using general, all-purpose software or programming languages, 

or it can be done using specially designed software and toolkits that address the special requirements of 

agent modeling. Spreadsheets, such as Microsoft Excel, in many ways offer the simplest approach to 

modelling. It is easier to develop models with spreadsheets than with many of the other tools, but the 

resulting models generally allow limited agent diversity, restrict agent behavior.  

General computational mathematics systems, such as MATLAB, can also be used quite 

successfully; however, these systems provide no specific capabilities for modelling agents. General 

programming languages, such as Python, Java, and C
++

 and C also can be used, but development from 

scratch can be prohibitively expensive given that this would require the development of many of the 

available services already provided by specialized agent modeling tool.  

 

Figure 2-4: The structure of typical agent-based model (Epstein and Axtell, 1996) 

 

Figure 2-5 represents the comparison of available software for agent-based model implementation. 

There are three common approaches for model implementation, depending on how much support the 

implementation environment provides for the modeler: (1) the library-oriented approach, (2) the 

integrated development environment (IDE) approach and (3) the hybrid approach. 
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In the library-oriented approach, the agent modelling tool consists of a library of routines organized 

into an application programming interface (API). Examples include the Java archives used by Repast for 

Java, MASON, the binary libraries used by Swarm; and the Microsoft.NET assemblies used by Repast for 

the Microsoft.NET framework.  

The IDE approach to project specification uses a code or model editing program to organize model 

construction. Example includes NetLogo.  

The hybrid approach to project specification allows modelers to use the environment as either a 

stand-alone library or a factored multiple-file IDE. Examples include Repast Simphony and AnyLogic.  

 

 

Figure 2-5: Software comparison 

 

2.7.  SUMMARY  

HL entails complex planning that is associated with social, economic, temporal, technological, 

cultural, and ethical concerns. It requires subjective interpretations vis-a-vis rational and objective 

answers. HL is not a sole discipline but a combination of multiple disciplines. In this study, I have 
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identified that logistics models are required to include social and other factors. This chapter describes the 

uncertainties that are present in HL. 

Demand uncertainty is a common parameter in HL modeling. Logistics modeling can be extended 

to include several other parameters to improve relief distribution systems. Quantitative models ignore the 

various forms of disaster uncertainties, such as multiple disasters in the same area, multiple disasters in 

different zones, etc. In addition, demand segregation through urgency is required to distribute limited 

resources. Moreover, the standing of relief providers is not a salient issue and is always ignored in 

quantitative modeling. Another equally important issue is the incorporation of realistic network 

conditions in developing models.  

It is noteworthy that uncertainty has not been modeled in detail because of the difficulty of making 

such a model practical. Incorporating multiple layers of uncertainty can quickly lead to intractable 

complex models. There are also challenges in providing the capacity to use these models in a field 

situation with limited time and computing power. 
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  Chapter Three 

3. RELIEF POSITIONING IN PREPAREDNESS 

Preparedness in anticipation of disasters involves prepositioning of assets. The common questions 

arise in preparedness: where should assets be located? and How much they should be stored?  Both 

questions are linked to facility location problem. Two situations can be generated in solving the problems: 

(1) Whether there are some existing facilities or not (2) All parameters are known definitely or not (i.e., 

stochastic or deterministic). 

This chapter analyzes above-mentioned situations and proposes two mathematical models. First 

model is proposed to explore the effect of existing facilities in preparedness. This model assumes 

deterministic parameters.  

The second model introduces stochastic parameters and analyzes the benefits of including stochastic 

parameter. This model provides robustness in the facility. Designing robustness of facility that will not 

only be well suited based on the current requirement, but should continue to be the best sites for all 

scenarios. The model incorporates supply uncertainty, demand uncertainty and provider uncertainty.  

3.1.  IMPORTANCE OF INVENTORY POSITIONING  

The inventory prepositioning is helpful to response victims after all disasters, particularly sudden-

onset disasters. The Figure 1-8 shows that fewer amounts of resources were available in affected areas in 

the aftermath of sudden on-set disaster. The more quickly commodities reach the victims, the better the 

chance of mitigating disaster related harm. Reducing delivery time in this crucial period is the objective 

of prepositioning in humanitarian logistics. It significantly affects the probability of survival of the 

victims (Sheu, 2007; Balick and Beamon 2008). Generally, 72 hours after earthquake is known as critical 

period because survival probability of earthquake victims reduces significantly after the critical period.  

Figure 3-1 explains the effect of asset positioned before disaster. Natural disaster affects 

humanitarian, economic and ecology ical sector of a country. Humanitarian effects include loss of life, 

affected people and psychological post-disaster effects; Ecological effect comprises the loss of arable land, 

forests and damage to ecosystems. Economic effects are usually grouped into three groups: direct (i.e., 

physical damage of infrastructure), indirect (i.e, production loss due to physical damage of infrastructure) 

and macroeconomic (i.e., loss of gross domestic product (GDP)).  
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The recovery from disaster impacts requires assistance from others. The assistance can save the 

lives of victims and turns the victims’ to work-force again. According to Figure 3-1, the optimally 

inventory prepositioning reduces distance between the relief and the victims’ locations. Thus, it reduces 

lead-time of first wave of relief. However, several factors (for instance visa processing) increase lead-time. 

After arrival of relief, victims get means for resuming regular activities. The country resumes economic 

productivity after recovering from disaster impact. Finally, the importance of pre-positioning lies in the 

reduction of the lead-time and of the relief shortage.  

 

 

Figure 3-1: Anticipated impact of strategic inventory prepositioning (source Author) 

3.2. CURRENT STATE OF GLOBAL PREPOSITIONED 

The World Food Programme (WFP) is the largest humanitarian aid-agency in the world. The WFP 

manages the United Nations Humanitarian Response Depot (UNHRD) in five places around the world 

(Figure 3-2): Subang, Malaysia; Dubai, UAE; Accra, Ghana; Brindisi, Italy; and Panama City, 

Panama. UNHRD is capable of sending relief anywhere in the world within 24-48h to meet the needs of 

people affected by natural disaster and complex emergencies (WFP, 2013). The UNHRD hubs allows 

managing inventory for other aid organization. With the help of UNHRD, World Vision International 

(WVI) creates a logistics unit for emergency response named global prepositioned resource network 

(GPRN). GPRN maintain non-food item (NFI) for up to 225,000 beneficiaries in eight strategically 

located global warehouses (including five from UNHRD) around the world (in Figure 3-3): Denver, 

USA; Panama City, Panama; Frankfurt, Germany; Brindisi, Italy; Dubai, UAE; Brisbane, Australia; 
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Kuala lumpur, Malaysia; and Accra, Ghana. These warehouses are operated and managed by numerous 

partners, including WVI’s support offices, the UNHRD, various consortia and corporate partners. One 

depot has granted coverage areas and it covers in general several countries. In contrast, several aid 

organizations keeps inventory for single country. For instance, Australian Government and three 

humanitarian relief agencies started the Joint Emergency Stores Warehouse in Brisbane on October 29, 

2008. The joint arrangement of the facility will lower administration costs, ensuring more aid is delivered 

to those who need it. The warehouse will contain about 100 tonnes of supplies, valued at approximately 

$1 million (Ausaid, 2012).   

 

 

Figure 3-2: Map of UNHRD hub Figure 3-3: GPRN of World Vision 

3.3. RELIEF CHAIN 

Humanitarian logistics is the process of planning, implementing and controlling the efficient, cost-

effective flow and storage of goods and materials, as well as related information, from the point of origin 

to the point of consumption for alleviating the suffering of vulnerable people (Thomas, 2001). Figure 3-4 

illustrates the activities of relief distribution from the ‘point of origin’ to the ‘point of consumption’. The 

key properties of the Figure 3-4 are explained below.  

Inventory prepositioning implies that ‘the point of origin’ is vendor’s location and ‘the point of 

consumption’ is victim location. Additionally, the segment of relief chain from vendor’s location to 

‘humanitarian response depot’ accomplishes before disaster. Likewise, the segment from ‘humanitarian 

response depot’ to victim location accomplish after disaster. Here after ‘humanitarian response depot’’ are 

named as ‘facility’. The transportation from vendor location to facility is not time sensitive action, rather 

cost sensitive since it takes place before disaster. 
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The time sensitive activities commence after disaster. It is customary that disaster-affected country 

ask international organizations to assist. The aid organizations evaluate the appeal and estimate the 

demand. After appeal is granted, the pre-stocked commodities load on truck and shift to nearby airports.  

 

Figure 3-4: Relief chain 

Herewith, sufficient documents (i.e., invoice, consignee documents, and visa) are required and the 

preparation of documents is a source of delay to response. The waiting time at port of entry will be 

prolonged in the case of incomplete documents. After customs processing, the commodities are carried to 

central distribution center. The delivery chain ends with distribution of aid to the victims. As relief 

demand is unpredictable, there is possibility of supply and demand mismatch. Unused aid or non-

consumable aids are returned. The reverse flow of aid is named as reverse logistics. 

 Some activities in Figure 3-4 reduce through assumptions for mathematical formulation. To make 

the model tractable, the activities in delivery chain are simplified.  

 One assumption about facility location is that it is located adjacent to an airport. Facility adjacent 

to airport reduces the travel-time by decreasing the ‘in-transit’ to airport. This assumption is 

supported by the World Food Program (WFP) policies. WFP follows this strategy to establish 

UNHRD in five locations. Ghana UNHRD is established near Kotoka International airport, 
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Malaysia UNHRD is near Subang Military airport; Italy in military airport, Panama in Tocumen 

International airport and UAE in Dubai international airport. 

  The Custom processing time is consistent across the range of disaster and geographic location of 

facility. The transportation time inside a disaster-affected country (i.e., after entering the port of 

entry) is also not dependent on the geographic location ‘prepositioned stock pile’. The activities 

of custom processing and last mile distribution are relaxed in this model. 

 

 

Figure 3-5: Modified relief chain 

After application of the simplification of activities, Figure 3-4 turns to Figure 3-5 that depicts 

staging of inventory in relief chain. It also shows the importance of preparedness strategy for multi-

nationals and in a single country. Both prepositioning are importance for quick response to the victims. 

The models for both strategies are explained below with some more assumptions.  

3.4. INVENTORY POSITIONING FOR MULTI-NATIONALS (IPMC) 

3.4.1. Mathematical Formulation 

The transportation time inside a disaster-affected country (i.e., after entering the port of entry) is 

unconnected on the geographic location ‘prepositioned stock pile’. Therefore, the relief chain is 

simplified and is presented in Figure 3-6. The simplified relief chain consists of facility location (i), in 

transit inventory on air cargo and destination country (j).  

 

Figure 3-6: Simplified relief chain 
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 Assumptions for the model is asserted below 

 Relief is transported by air-cargo to port of entry and all air-cargo is flown in same speed (500 

km/hr). 

 There is no capacity limitation of a facility. 

 Total affected people in stricken area is the proportional to demand for aid. 

Based on these assumptions, this study proposes a p-median facility location model (Hakimi, 1964). 

This model seeks to place p facilities strategically among the candidate locations. It consists of finding 

optimal location for p facilities to meet specified demands at the lowest possible logistics cost. The p-

median problem uses the average distance between service and demand points to determine the servicing 

costs of a given location. The p-median problem is also known as the binary program.  

ijij
Ii Jj

j xdf 
 

min  (3-1) 

Subject to, 

Jjx
Ii

ij 


1  (3-2) 

py
Ii

i 


 (3-3) 

JjIiyx iij  ,  (3-4) 

}1,0{, iij yx  (3-5) 

In this formulation, fj represents demand at location j. yi is a binary variable for showing open site 

and xij binary variable to allocate location j to open facility i. 

Eq. (3-2) satisfies the victims demand from one facility only (i.e, single allocation model). The 

model aims to satisfy full demand that can be delivered from any open facility. While Eq. (3-3) provides 

freedom to decision makers who make decision of total number of facility that can be opened (or sited). 

Eq. (3-4) ensures that an unopened facility cannot assign to any demand points. Finally, Eq. (3-5) is the 

binary constraints of the model. 

A metric is proposed for evaluating the efficiency of logistics decisions. The metric is mean- 

distance-per-capita that is calculated by using Eq. (3-6) 
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 In this model, distance (interchangeably time) and demand are the two controlling parameters. The 

computation method of both parameters is presented below.  

3.4.1a. Response time 

The Earth is sphere in shape, which prohibits using straight distance of two points. The distance (dij) 

is calculated by using Haversine method that generates the great circle distance between any pair of 

latitude (𝜑) and longitude (𝜆) coordinates on a sphere. 

)1,(2tan2 aaRad   (3-7) 
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sin 2

21
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a  

(3-8) 

Where 𝛥𝜑 and 𝛥𝜆 represent the difference between latitude and longitude difference between two 

points and R is earth equilateral radius (6377 km). It assumes that port-of-entry of a country is the country 

capital and coordinates for each capital is collected through Google. Here, transportation time is a linear 

function of distance to the demand point and is calculated by Eq. (3-9). 

 

 

3.4.1b. Demand 

Relief demand is a function of several parameters. Researchers attempts to estimate relief demand 

by using proxy variable. Arnold et al (2005) recognize high-risk geographic areas based on historical 

worldwide disaster frequency and mortality data, population data, and economic indicator. Balcik and 

Beamon (2008) use mortality as an proxy for demand. FEMA’s Hazus software is an assessment tool that 

can estimate losses from potential hurricane, earthquake and flood.  

This study assumes that demand is a function of ‘total affected’ people due to a hazard. The ‘total 

affected’ is summation of ‘injured’, ‘homeless’, and ‘affected’. Definitions of injured, homeless and 

affected are provided below (EM-DAT, 2013): 

 Injured: People suffering from physical injuries, trauma or an illness requiring medical 

treatment as a direct result of a disaster 

speed

distance
time  

(3-9) 

http://www.emdat.be/glossary/9#term106
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 Homeless: People needing immediate assistance for shelter 

 Affected: People requiring immediate assistance during a period of emergency; it can also 

include displaced or evacuated people. 

 Maximum value of total affected generated historically from different disasters represents demand 

of the concerned region. This value corresponds to demand. 

affectedhomelessinjuredaffectedtotal   
(3-10) 

)max( jregioninhazardonebyaffectedtotalllyhistoricalf j   

(3-11) 

The total affected people for each hazard from 1980 to 2011 in a country are collected and the 

maximum value for single disaster in each country from this list is identified. 

Demand data is aggregated for a country to make the calculation tractable. Demand for the country 

is aggregated in capital city of the country. It is customary that aid organizations use port of entry at 

capital to facilitate the customs processing. It is important to note that segregation of large countries (i.e., 

China and India) in different regions may provide better results. Note that disaggregated demand data is 

utilized in the model of inventory positioning for single country.  

3.4.1c. Calculation steps 

The analysis consists of two steps: free form and status–quo. The descriptions of this two steps are 

provided below: 

 Free form assumes that there are no existing facilities available. In placing facilities in this 

analysis, optimality is sought such that the sum of the length of all delivery chain paths is 

minimized. 

 Status-quo takes the account of presence of UNHRD location. Status-quo adds a constraint 

Eq. (3-12) in the model. The status-quo intends to maximize the utilization of existing 

facilities.  

facilitiesexistingiyi 1  
(3-12) 

It is highly probable that the network configurations differ for two different analysis methods. The 

criterion for measuring efficiency of new network is mean distance per capita that is calculated using Eq. 

(3-6). The value of mean distance per capita is limited to equal or less than 500 km per capita that is 

approximately one-hour transportation time. This metric is the desired service level.  

http://www.emdat.be/glossary/9#term102
http://www.emdat.be/glossary/9#term69
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3.4.2. Case study 

The proposed model is implemented for Asia–Oceania zone. EM-DAT database is a great source 

for gathering disaster related information. EM-DAT database stores data about country, disaster group, 

disaster type, date, killed, injured, homeless, affected, total affected, estimated damage.  

3.4.2a. Motivation for selecting case study area  

Disaster trend shows that the number and the impact of disasters in worldwide are not evenly 

distributed. Figure 3-7 and Figure 3-8 compare disaster situation in different continents. Asia-Oceania 

region is facing 60% of total disaster (IFRC, 2010). Total affected in this region is higher than any other 

continents. 90% of total affected during 2002-2010 lives in this region.      

 

 

Figure 3-7: Occurrence of reported natural disasters by continent: 1950–2011 (CRED Crunch, 

2013) 

 

Figure 3-8: Compartive impacts of disaster by continent: 2002–2011 (CRED Crunc, 2013) 
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Disasters that contribute to the greatest impact in Asia–Oceania regions are storms and earthquake. 

Asia bears more than 800 thousand affected people per storm, caused by short-lived/small to meso scale 

 

Figure 3-9: Total affected in study area (1980-2011) 

 

Figure 3-10: Total affected in Oceania (1980-2011) 
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atmospheric process. The mean affected per storm in Africa, America and Europe is 78 thousand, 44 

thousand and 23.75 thousand respectively.  

The mean affected people in Asia per earthquake disaster are more than 100 thousand that is larger 

than other parts of world. Figure 3-9 and Figure 3-10 show the demand characteristics of each region. The 

highest impact from each disaster in this zone has led to intense pressure on the aid organizations to 

improve operational effectiveness of disaster relief efforts in this zone. An interview with WFP manager 

reveals that WFP plans to expand the response capacity in Asia-Oceania zone. 

3.4.2b. Data 

The study area is grouped in 29 regions conditional on geographic location.  Twenty-five regions 

among the total regions represent twenty-five countries in Asia and the remaining four regions belong to 

Oceania.  

Since Oceania consists of hundreds of islands, Oceania is clustered in four groups: Australia and 

New Zealand, Polynesia, Melanesia, and Micronesia. Note that, this study does not include UN defined 

Western-Asia considering proximity from two UNHRD depots: one is in Dubai and another one is in Italy. 

The study area regions are shown in Table 3-1. The third column represents the population of the region 

in the year 2012 that is collected from World Bank database. The fourth column represents the maximum 

number of ‘total affected’ people by an earthquake during the period 1980 – 2011. The fifth column 

represents the maximum number of ‘total affected’ people by a storm during the period 1980 – 2011. 

Table 3-1: Zonal data for population and disaster impact (1980-2011) 

id country 
population 

(thousand) 

max total affected in 

a year for earthquake 

max total affected in a 

year for storm 

c1 Australia 22,327 5,025 2,860,414 

c2 Bangladesh 164,425 15,200 15,439,149 

c3 Bhutan 708 20,016 65,000 

c4 Brunei 407 0 0 

c5 Cambodia 14,138 0 178,091 

c6 China 1,338,300 47,437,647 107,403,094 

c7 East Timor 1,171 0 8,730 

c8 India 1,170,938 6,321,812 13,870,008 

c9 Indonesia 232,517 3,215,982 10,000 

c10 Japan 127,380 543,187 331,039 

c11 Lao PDR 6,436 0 1,000,000 
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3.4.2c. Results 

Free form: Free form analysis is performed for earthquake and storms in the beginning. The 

number of facilities is determined to meet desired service level that is equal or less than 500 km per capita. 

The required number of facilities to meet the desired service level for earthquake is two (Figure 3-11). 

The potential locations are c6 and c8. Two facilities ensure the mean distance per capita is 464 km that 

meet the desired service level.  

In case of single facility (i.e., p = 1), the model suggests to establish a facility at c6. The facility at 

c6 make the mean distance per capita is 1131 km. The maximum distance of demand point from facility 

location is 9024 km.  

The similar analysis for storms is carried out. The minimum required facility to meet desired service 

level is four (Figure 3-13). The potential locations for storms are c6, c28, c8, c1. The mean distance per 

capita is 397 km/person that meet the desired service level. The maximum distance of demand point from 

nearest facility is 3288 km. 

c12 Malaysia 27,914 5,063 41,000 

c13 Maldives 314 27,214 23,849 

c14 Melanesia 8,800 14,100 117,500 

c15 Mongolia 2,701 0 1,071,000 

c16 Myanmar 50,496 21,277 2,420,000 

c17 Micronesia 546 71 8834 

c17 Nepal 29,853 7,367 165 

c18 New 

Zealand 

4,371 301,845 2,000 

c19 Korea, 

Dem. Rep. 

23,991 0 88,625 

c20 Pakistan 173,383 5,128,309 1,650,000 

c21 Papua new 

Guinea 

6,888 20,200 162,140 

c22 Philippines 93,617 1,632,072 12,221,663 

c23 Polynesia 668 5,585 195,000 

c24 Singapore 5,140 0 0 

c25 Korea, Rep. 48,875 0 627,180 

c26 Sri Lanka 20,452 1,019,306 375,000 

c27 Taiwan 23,071 108,918 2,307,523 

c28 Thailand 68,139 67,007 1,894,238 

c29 Vietnam 88,362 0 15,651,884 
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 Status quo: Status quo model conditions that the UNHRD in Malaysia (c12) is functioning (i.e., 

yc12 = 1). Since aid organization can use UNHRD to stock the commodities, the extension of network is 

designed with respect to c12.  

  

 

  

 

 

 

 

 

 

 

 

. 

 

 

 

 

Figure 3-11: For earthquake (free form) Figure 3-12: For earthquake (status quo) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: For storm (free form) Figure 3-14: For storm (status quo) 
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With the single facility at c12, the mean distance per capita for earthquake reveals 4110 km/per person 

(Figure 3-12). After addition of one new facility at c6, the mean distance per capita for earthquake 

decreases to 885 km/person. In contrast, after addition to one facility at c6, the mean distance per capita 

for storm was 1020 km/person (Figure 3-14). Both measures are more that desired service level which is 

500 km/ per capita. To achieve this target, another facility at c8 is required. 

3.4.2d. Sensitivity 

The improvement (i.e., reduction in distance) of service level achieved after adding single facility to 

the system is calculated as the ‘mean distance per capita’ of current iteration minus the ‘mean distance per 

capita’ from the previous iteration. A steeper slope indicates a more significant impact in the reduction of 

per capita distance. It is observed that each additional facility makes a lesser impact. It shows the trend of 

diminishing return on positions. The slope of curve in Figure 3-15 and Figure 3-16 indicate the marginal 

impact of each additional position to the system. The status quo situation has substantial impact after 

adding second facility in the network.  

 

 

 

 

Figure 3-15: Diminish return on position for 

earthquake 

Figure 3-16: Diminish return on position for 

storms 
 

Table 3-2: Diminish return on position for 

earthquake 

Number of 
facility 1 2 3 4 

status quo 

 
-3224 -612 -62 

free form 
 

-667 -251 -31  

Table 3-3: Diminish return on position for 

storms 

Number of 
facility 1 2 3 4 

status quo 

 
-2685 -419 -128 

free form 
 

-573 -259 -145 
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Figure 3-17shows the three optimal locations for earthquake response in the case of free form. 

These three points are India, China and Indonesia. The prepositioned facilities correlate with the demand 

points.  

 

Figure 3-17: Three optimally located position (earthquake) on free form 

 

3.4.2e. Effect of deterministic model 

Disaster data reveals that the vulnerability of Asian countries for sudden on-set disasters is the 

highest in the world. Among the Asian countries, China is the utmost affected country by both earthquake 

and storms. India and Pakistan are the second and third most affected country for earthquake hazard 
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respectively. In contrast, data of storms shows different trend where second and third most affected 

countries are Bangladesh and Vietnam respectively.  

Since humanitarian organization responses to all type of disasters, while designing the logistics 

network, the decision maker requires to consider both the storm and the earthquake. Because, one country 

is highly vulnerable for earthquake, another is for storm. 

The model is evaluated by using two criteria mean distance per capita and maximum distance. In 

the case of single facility (i.e., p = 1), the facility at c6 can minimize the mean distance per capita while 

the facility at c1 can minimize the maximum distance from facility to demand point. Herewith, it is 

required to mention that according to the analysis it shows that Malaysia UNHRD is not in optimal 

location. However, facility location decision also depends on other criteria such as land availability, 

political stability, transportation network etc. as well as mean distance per capita criteria. Since other 

criteria are difficult to measure (if not impossible), this study employs mean distance per capita to show 

prepositioned sensitivity for immediate response. 

3.5.  INVENTORY POSITIONING FOR SINGLE COUNTRY (IPSC) 

This section explains a model for inventory positioning for single country (IPSC).  

3.5.1. Similarities and Dissimilarities between IPSC and IPMC 

The IPMC and IPSC models have several similarities and dissimilarities. The similarities of the 

models are as follows: 

 Both models are used for planning purpose in pre-disaster stage. 

 Both models aim to reduce the gap between the disaster occurrence and the arrival of relief. 

 Both models determine the inventory location and quantity. 

 Both models show tradeoff between pre – and post –disaster cost. 

The differences between IPMC and IPSC are as follows 

 The IPSC incorporates uncertainty of different parameters. 

 There are no bottlenecks of port-of-entry delay in IPSC model. 

 IPMC determines the location of humanitarian depot (i.e., 1
st
 stage in Figure 3-18). In 

contrast, IPSC determines the Relief distribution center (i.e., 2
nd

 stage in Figure 3-18). 
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3.5.2. Network Setting and Assumptions for IPSC 

The IPSC is useful for both country government and aid organizations. The decision maker is 

assumed risk-neutral. Risk-seeker ignores the importance of distribution center. On the other hand, risk-

averse decision maker prepare to redundant resources. The redundancy is not justifiable due to limited 

budget for preparedness activities. In this regard, risk-neutral behavior may provide reasonable solution 

for preparedness activities. The decision makers seek optimal location of relief distribution centers 

(RDCs), where resources already exist and /or can be pre-positioned. The proposed disaster humanitarian 

logistics network becomes of three stages and two echelons as shown in Figure 3-18 which is the 

modification of Figure 3-5.  

The first stage is the set of humanitarian response depot or donation (here forth named as supplier’s 

location), the second stage contains RDCs and the last stage consists of demand points. Concerning the 

selection of the RDC locations from a set of candidate RDCs, certain issues have to be addressed, namely 

(1) the storage capacity of the RDCs (2) the distance to the affected people that keeps the transportation 

costs at minimum and (3) post-disaster supply with respect to supplier capacity.  

 

Figure 3-18: Simplified relief chain for single country 

Before introducing the mathematical formulation, the assumptions for the model are described  

below:  
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 The capability of suppliers may be partially disrupted by a disaster due to transport bottleneck. 

 All affected area (node) are candidate for the pre-positioned of RDCs. 

 Transportation cost is not scenario dependent. 

 Each demand point may be served by multiple RDCs. 

 Two disaster events will not occur simultaneously. 

 The relief demand is dependent on population density and earthquake intensity. 

With the above assumptions in place, total cost minimization for the network model is adopted. 

Although cost minimization is not sole objective of humanitarian logistics, total cost is a good measure to 

compare different outcomes.  

3.5.3. Mathematical Formulation 

In this section, two-stage, stochastic mixed-integer model is introduced. This is a location model 

with the features of linearity and robustness. This model is explained in two steps. First framework of the 

model, system properties and introduction variables are presented. In the second step, mathematical 

model starting with basic stochastic model is illuminated.  

3.5.3a. Model framework 

In the aftermath of a disaster, there will be demand for relief at specific locations Kk . However, 

the demand for commodity c at location k is not known definitely at the planning stage and is assumed 

scenarios dependent. Uncertainty is represented through the use of a set S of discrete scenarios indexed 

by Ss , each with a probability of occurrence, ps. The definition of a scenario s includes the forecasted 

demand dkcs by commodity c and location k.   

Relief can be pre-positioned at a location j if RDC is made available there. For costing purpose, we 

define facilities to be in one of discrete set, L, of size categories, indexed by Ll . The overall capacity 

(e.g. square meter of available space) of a RDC in category l is Nl and choosing to open a RDC of size 

category l in location j incurs a fixed cost, Fjl. Let zjl be a binary decision variable equal to 1 if there is a 

RDC of capacity category l located at node j , and 0 otherwise. This is one of first stage decision in the 

two-stage model. 

If a RDC is made available at location j various commodities can be stocked there, subject to the 

capacity limits of the RDC. Let bc be the unit volume for commodity c and qijc be the amount of 
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commodity c pre-positioned at location j supplied from supplier i. The qijc is another first stage decision in 

the model. A decision to stock a particular commodity results in a unit procurement cost, PCc. commodity 

of type c is not used in scenario s, denoted, ojcs, incurs additional cost, kc (accounting for general 

inventory holding cost or overflow cost). On the other hand, if demand for particular commodity cannot 

be met, denote kc , as the shortage cost of commodity c.  

After a disaster, the inventory of the various commodities is distributed across demand points. To 

reflect the connection between the RDC location and the demand points of the problem, we assume that 

the demand locations and potential RDC locations are at nodes in the transportation network. In general, 

the set of locations of interest may be a subset of all the nodes in the network, and transportation links (i, 

j) are assumed to be elements of an arc set A, with Ii , Jj . Let 
'
cTC  be the transporting cost of 

commodity c from supplier to RDC and 
'
cTCR is the transportation cost from RDC to affected area. Let 

xijcs be the amount of commodity c procured from supplier i and transferred to RDC j in the scenario s. 

Following is the explanation of variables, parameters and sets. Units are stated within square 

brackets (.) at the end of each of the definitions. Table 3-4 is the collection of all sets definition. Table 3-5 

is the definition of all parameters. dkcs, ps and ics  are scenario dependent parameters. 

 

 Table 3-4: Indices and index sets 

Set Definition 

C set of commodities indexed by Cc   

I set of suppliers indexed by Ii   

J set of candidate RDCs indexed by Jj   

K set of affected areas indexed by Kk  

L set of size of RDC indexed by Ll   

S set of scenarios indexed by Ss  

Now model parameters 

Table 3-5: Deterministic and stochastic parameters 

Type Symbol Definition 

Pre-disaster 

parameter 

Fjl fixed cost of opening a RDC of size l at location j ($) 

Nl capacity of RDC size l 

cb  volume of a unit commodity c (m
3
) 

SCic delivery capacity of supplier i of commodity c 

PCc  procuring cost of a unit commodity c before disaster ($ per unit) 
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Table 3-6 is the list of decision variables. Here, zjl and qijc are first stage decisions of the model and 

the remaining variables in Table 3-6 are second stage variables. 

Table 3-7 represents two analogous variables that are introduced for simplification of the model 

Table 3-7. Combination of analogous variables 

Symbol Definition 

Bt pre-disaster cost (i.e., Eq. (3-17) 

As summation of post-disaster procurement cost and transportation cost (i.e., Eq. (3-19))  

 

3.5.3b.  Formulation 

At first, the basic structure of the model is explained for simplifying the presentation of the model. 

Then the full model is introduced.  

)],,([min  tQEBt   
(3-13)  

cTC  transportation cost for a unit commodity c before disaster ($ per unit of c) 

Post-disaster 

parameter 

'
cPC  procuring cost of a unit commodity c after disaster ($ per unit of c) 

'
cTC  transportation cost for a unit commodity c after disaster from supplier to 

RDC($ per unit of c) 
'
cTCR  transportation cost for a unit commodity c after disaster from RDC to 

affected area ($ per unit of c) 

kc  unit overflow cost for commodity c at affected area k ($ per unit of c at k) 

kc  unit shortage cost for commodity c at affected area k ($ per unit of c at k) 

λ parameter for post-disaster deviation-cost  

γ parameter for balance control ($) 

M a very large positive number 

Stochastic 

parameter 

dkcs amount of demand for commodity c at affected area k in scenario s (unit) 

ps probability of scenario s 

ics  ratio of capacity of commodity c at the supplier i in scenario s 

 Table 3-6: Decision variables 

Variables Definition 

zjl 1 if RDC with capacity category l is located at candidate RDC j; 0 otherwise 

qijc amount of commodity c procured from supplier i and stored at the RDC j () 

skcs amount of shortage commodity c observed in scenario s at affected area k 

okcs amount of extra commodity c delivered in scenario s at affected area k 

xijcs amount of commodity c transferred from supplier i to RDC j in scenario s 

yikcs amount of commodity c transferred from RDC j to affected area k in scenario s. If j=k, it 

represents both RDC and affected area in same location 

s  cost variability for scenario s  

jcs  amount of deviation of commodity c at RDC j in scenario s 
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Subject to, 

bAt   
(3-14) 

WytTh  )()(   (3-15) 

0t  
(3-16) 

The objective function Eq. (3-13) expresses the cumulative cost. First term in Eq. (3-13) represents 

pre-disaster cost (Bx) and second term represents post-disaster cost )],([  xQE . The pre-disaster cost 

consists of setup cost, procurement cost, and transport cost. Thus pre-disaster cost is 





CcJjIi

ijccc
LlJj

jljl qTCPCFCzBt
,,,

)(  
(3-17) 

Then, the post-disaster cost is scenario-dependent cost that includes procurement cost, 

transportation cost and deviation-cost. If the deviation-cost is equivalent to zero, the expected post-

disaster cost is greater or equal to the summation of procurement cost and transportation cost. So 





Ss

ss ApxQE )],([   
(3-18) 

where, 

))((
,,

'

,,

''
jkcs

CcKkJj
cijcs

CcJjIi
ccs yTRCxTCPCA 



  
(3-19) 

 If the deviation-cost is equivalent to non-zero, the deviation-cost generates from two sources. One 

source of deviation cost is the differences of post-disaster cost from the average post-disaster cost for all 

scenarios. The treatment of this sort of deviation-cost is adopted from Li (1996) and is added s in Eq. 

(3-18). Another source of deviation-cost is the balance constraint of commodity. Mulvey and Ruszczynski 

(1995) suggested adding jcs  to treat the deviation-cost. In this way, the model gains robustness 

characteristics. After the addition of deviation-cost in the Eq. (3-18), it becomes 

 
 


CcJjSs

jcss
Ss

s
Ss

ssss
Ss

ss pApApApxQE
,,

]2)[()],([   (3-20) 

As shown above, the objective function of the stochastic model becomes as follows with addition of 

penalty cost  

 
 


CcKk

kcskckcskc
CcJjSs

jcss
Ss

s
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Ss
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,,,

)(]2)[(min  (3-21) 
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Subject to, 

Balance control: 

SsCcJjyqx jcs
Kk

jkcs
Ii Ii

ijcijcs   
 

,,  
(3-22) 

RDC location: 





Ll

jl Jjz 1  
(3-23) 

SsCcJjzMdy
Ll

jljcsjjcs  


,,  
(3-24) 

SsCcJjzMy
Ll

jljkcs
Kk

 


,,  
(3-25) 

SsCcJjzMx
Ll

jlijcs
Kk

 


,,  
(3-26) 

RDC capacity constraint: 

JjzNqb
Ll

jllijc
CcIi
c  

 ,

 
(3-27) 

Post-disaster demand management: 

SsCcKkJjdzMy
Ll

kcskljkcs  


,,,)(  
(3-28) 

Post-disaster supplier's capacity: 

SsCcIiSCx icics
Jj

ijcs 


,,  
(3-29) 

Mean absolute value: 

SsApA
Ss

ssss  


0  
(3-30) 

Non-negativity constraint: 

LlJjz jl  ,}1,0{  
(3-31) 

LlCcKkJjIiyxq jcssjkcsijcsijc  ,,,,0,,,,   
(3-32) 
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Penalty function: 

SsCcKkosdyy kcskcskcs
Jjk

jkcskkcs  


,,0  
(3-33) 

The above mentioned two-stage model makes the trade-off between the pre-disaster costs and the 

post-disaster costs. The objective function of the model is Eq. (3-21) and the constraints include Eq. 

(3-22)–(3-33). The objective function consists of pre-disaster cost, post-disaster cost and deviation cost. 

The deviation cost can be formulated in different ways. The proposed model utilizes two different types 

of deviation cost for the sake of tractability. 

Eq. (3-22) is a balance control constraint of the in-coming flow and the out-going flow of relief. 

One RDC cannot delivery relief more than the summation of inventory and post-disaster procurement. 

The constraints Eq. (3-23) – (3-26) represent feasibility of RDC locations and deliver-ability from RDC. 

The constraint Eq. (3-24) explains that one RDC will not deliver more than the demand in same location. 

The Eq. (3-27) bound maximum storage limitation. It cannot be more than the RDC capacity. Eq. (3-29) 

bounds the post-disaster procurement and right hand sight of this constraint is scenario dependent. In 

other words, supplier’s capacity is scenario-dependent. Supplier capacity can be reduced for several 

reasons including transport network disruption and damaged of product at supplier. The Demand 

management Eq.(3-28) restricts the flow more than the demand at affected area. The Eq. (3-30) shows 

post-disaster cost variability. This constraint aims to reduce the post-disaster cost variation in different 

scenarios. The Eq. (3-31)–(3-32) are non-negativity and variable type restriction. The penalty function Eq. 

(3-33) adds penalty for either shortage or extra-inventory.  

 Both Eq. (3-33) and objective Eq. (3-21) contain shortage unit (skcs), and over-supply unit (okcs) and 

Eq. (3-33) is equality constraint. These properties force us to add artificial variables and using 'two phase' 

or 'big M' (Scharge, 1991) method to solve the model. However, those methods will add many extra 

variables. To solve the model, we have changed the objective function and penalty function in line with 

Yu and Li (2000).  

The objective function turns to 
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(3-34) 

 

The Eq. (3-33) turns to  
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SsCcKkdyy
Jjk

kcskcsjkcskkcs  


,,0  
(3-35) 

SsCcKkkcs  ,,0  
(3-36) 

The Eq. (3-33) transforms to Eq. (3-35) introducing single variable δkcs. After transformation of the 

Eq. (3-33), the variables skcs and okcs turns to single variable δkcs and thus the number of variables are 

reduced in the whole system. The Eq. (3-36) is added to ensure the positive value. In the final model, the 

objective function is Eq. (3-34) and the constraints are Eq. (3-22)–(3-32) and Eq. (3-35)–(3-36).  

The stochasticity is introduced in the model via scenario generation. One interesting benefit of it is 

that the stochastic model can be converted in an equivalent deterministic model. After converting to 

equivalent deterministic model, the model can be solved by algorithms that are proposed for linear 

optimization model. This model is implemented on open-source solver Gurobi. However, it is important 

to develop model specific solver for result reliability. 

3.5.4. Case Study 

3.5.4a. Study area 

This model selects Bangladesh for case study that is surrounded by several active tectonic faults. 

These are Himalyan arc, Shillong and Dauki fault system in the north, Burmese arc and accretionary 

wedges in the east and Naga–Disang–Haflong thrust zone in the north-east. The earthquake records 

suggest that since 1900 more than 100 moderate to large earthquake occurred in Bangladesh, out of which 

65 events occurred after 1960. The increase in earthquake activity in Bangladesh is an indication of fresh 

tectonic activity of propagation of fractures from adjacent seismic zones (Khan et al., 2001). In a study by 

Villacis et al. (1999) on 20 cities of the world, Dhaka appeared to have one of the highest values of 

earthquake disaster risk index (EDRI) mainly due to its inherent vulnerability of building infrastructure 

which lacks earthquake resistant features, high population density and poor emergency response and 

recovery capability. Alam et al. (2011) analyzed the earthquake scenarios in Bangladesh and we consider 

four scenarios, s1… s4 with occurrence probabilities of 0.4, 0.3, 0.2 and 0.1 respectively. Alam et al. 

(2011) reported five scenarios for representing earthquake scenarios. We remove one scenario from the 

list that has the lowest earthquake magnitude; because, there is no relief demand after the lowest 

magnitude earthquake. In this way, we keep the number of variables tractable without losing the 

generality. 
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According to Figure 3-19, we consider three suppliers, named supp1, … , supp3 (Dhaka, Chittagong, 

and Rajshahi). They are the major cities of the country and are the hubs for supplying product all over the 

country. Seven demand points (i.e., nodes), named dem1, … , dem7 (Dhaka [Dhk], Chittagong [Ctg], 

 

Figure 3-19: Location of earthquake epicenter in Bangladesh period 1750 to 

2000 (source: United States geological survey; adapted from Khan et al, 2001 ),node 

and supplier added. 
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Rajshahi[Raj], Rangpur[Ran], Barisal[Bar], Khulna[Kul], and Sylhet[Syl]) are the most crowded cities in 

the country and are spread geographically over the entire map in Figure 3-19. Since city is highly 

vulnerable for distress from earthquake, demand points are selected within cities only. The demand in 

sub-urban areas are combined with demand in city. 

3.5.4b. Data 

Two commodities, namely prod1 (water) and prod2 (shelter), may be pre-positioned in storage 

facilities. One unit of prod1 consists of 1000 liter of water and one unit of prod2 is equivalent of 1000 

unit of shelter. We assume the RDC sizes are available with specific cost as shown in Table 3-8. RDC 

setup cost depends on the storage capacity.  

Table 3-8: RDC fixed cost and capacity 

Size Fixed cost (Fl) (10
3
$) Capacity (Nl) (10

3
 m

3
) 

small 500 10 

medium 800 16 

large 1200 24 

Procurement price and transportation cost per unit distance are calculated based on local currency. 

On-line reports are used for data gathering. Procurement price in post-disaster situation is more than that 

of pre-disaster situation. Transportation cost in post-disaster is also higher than the pre-disaster 

transportation cost. The higher cost in post-disaster situations can also be considered as proxy of delay 

cost and human suffering. Costs of different items are shown in Table 3-9. 

Table 3-9: Unit procurement price, transportation cost, and volume 

Commodity Procurement price 

(103$/unit) 

Transportation cost 

(103$/unit-km) 

Unit volume  

(m3/unit) 

prod1 0.5 0.6 4.5 

prod2 20 1.8 120 

The demand for each scenario is assumed by using the population density and earthquake intensity, 

collected from Alam et al. (2011). Note that there is no well accepted methodology for relief demand 

estimation and researchers (Akkihal, 2006, Balcik and Beamon, 2008) suggest using historical relief 

demand for earthquake disaster. The demand data are shown in Table 3-10. 
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Table 3-10: Demand data 

 Dhk 

(prod1, 

prod2 ) 

Ctg 

(prod1, 

prod2 ) 

Raj 

(prod1, 

prod2 ) 

Ran 

(prod1, 

prod2 ) 

Bar 

(prod1, 

prod2 ) 

Kul 

(prod1, 

prod2 ) 

Syl 

(prod1, 

prod2 ) 

s1 (319,106) (222,74) (238,79) (225,75) (0,0) (0,0) (579,193) 

s2 (476,143) (1339,446) (0,0) (0,0) (75,25) (30, 10) (20,7) 

s3 (76,10) (187,62) (0,0) (0,0) (100,33) (100,33) (0,0) 

s4 (177,59) (166,55) (990,330) (1654,551) (21,7) (20,7) (94,31) 

In the response phase, the available supplier's capacity is scenario dependent and is shown in Table 

3-11. It is assumed that supplier’s capacity changed for both commodities.  

Table 3-11: Fraction of available supplier's capacity 

 Dhk Ctg Raj 

s1 0.94 0.95 0.9 

s2 0.95 0.95 1.0 

s3 1.00 0.99 1.0 

s4 0.99 1.00 0.9 

The post-disaster procurement prices are assumed to be 1.5 times of the pre-disaster procurement 

price and the increment of procurement price also represents delay of delivery of the commodity. The 

post-disaster unit transportation cost from supplier to RDC is assumed to be 1.8 times of that of the pre-

disaster phase and from RDC to affected area is 2.0 times. These data are assumed to be fixed among 

scenarios. The cost of transportation between nodes is dependent of distance between two nodes. The 

distances between different nodes are collected by using car-route option from the Google Map. It is 

natural that unit overflow cost (θ) is lower than the unit shortage cost (Ø). The unit overflow cost is 

assumed to be kept equal to pre-disaster procurement price of the corresponding commodity. The unit 

shortage cost is assumed to be the ten times the pre-disaster procurement price of the corresponding 

commodity (Raws and Turnquist, 2010.) The value of λ is equivalent to two. It is a weight parameter for 

difference between the mean-value of As and the As for each scenario among different scenarios. 

3.5.5. Results 

In this section, the behavior and the results of proposed model is presented. The problem is solved 

using the mixed-integer linear programming solver 'Gurobi' from neos-server (Czyzyk et al, 1998). 

Gurobi uses branch and cut algorithm for solving mixed-integer problem. The results are described in this 
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section. Table 3-12 shows that three of five opened RDC are specialized for storing prod1 and prod2. The 

remaining two RDC do not maintain inventories and assist relief distribution in different scenarios. The 

total cost of designing the distribution network is 8.3 million dollar. 

Table 3-12 also explains the quantity of each commodity that will be stored in pre-disaster period. 

The supplier city (Table 3-11) in which a RDC is located can take advantage of its relief commodities 

from supplier to RDC in lower cost. One exception is in Sylhet where supplier is not present but 

established the RDC and maintain inventory. Table 3-13 represents the relief distribution in scenario 4. 

 The sensitivity with the number of RDC is presented in Figure 3-20. It can be seen that the 

objective value decreases when the possible number of RDCs increases until a certain number. After 

passing the threshold number, the objective value increases again. Thus it concludes that the best value of 

RDCs is five. In order to arrive at an appropriate solution such that the decision maker will be able to see 

trade-off between the pre-disaster cost and the post-disaster cost. 

Table 3-13: Relief commodities transferred from RDCs to demand points (for Scenario 4) 

 Dhk 

(pd1,pd2) 

Ctg 

(pd1,pd2) 

Raj 

(pd1,pd2) 

Ran 

(pd1,pd2) 

Kul 

(pd1,pd2) 

Bar 

(pd1,pd2) 

Syl 

(pd1,pd2) 

Dhk (177,59) - - (146,0) - - - 

Ctg - (166,55) (0,7) - (21,0) - - 

Raj - - (550,100)  

 

(254,200) 

 

- - - 

Syl - - - - - - (94,31) 

 

Kul - - - - (0,7) 

 

(21,7) 

 

- 

In Figure 3-21 and Figure 3-22, sensitivity analysis is performed for solution and model robustness 

against the multiplier of gamma. Figure 3-21 shows expected cost increases exponentially by increasing 

Table 3-12: Location and inventory 

RDC Size prod1 prod2 

Dhk small 323 10 

Ctg small 184.5 62 

Raj small - - 

Syl small 20 7 

Kul small - - 
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the value of gamma. On the other hand Figure 3-22 demonstrates the penalty cost pcϕkcγ will eventually 

drop to zero with an increase in the value of gamma. Both figures indicate that decision maker can choose  

 

 

Figure 3-20: Sensitivity of total cost with the No of open RDC 

 

Figure 3-21: Sensitivity of solution robustness 

with respect to gamma 

 

Figure 3-22: Sensitivity of model robustness 

with respect to gamma 
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gamma value based on the preference. It is suggested to decision maker to select higher gamma value to 

avoid risk of shortage of relief. Then, we have performed the sensitivity of lambda (λ) value. The model is 

run for lambda values of ‘1’, ‘2’, ‘3’, ‘5’, and ‘10’. The objective value of model does not differ 

noticeably because we have only four scenarios. 

To highlight the role of uncertainty in modeling, three models results (1) deterministic demand and 

deterministic supply (DDS), (2) deterministic demand and stochastic supply (DDSS), and (3) stochastic 

demand and stochastic supply (SDSS) are compared. In DDS model, we assume that demand and supply 

parameters are known certainty. While DDSS model is designed with assumption that demand parameter 

are known certainly (demand parameters (dkcs) are not scenario dependent), SDSS model represents 

complete stochasticity of demand (dkcs) and supply (ρkcs) parameters. This comparison is made to show the 

benefit of considering stochastic parameters. To quantify the cost saving by considering the various 

sources of uncertainty, each typical model is solved for the case problem and results are shown in Figure 

3-23. The cost of relief distribution is much higher than the SDSS. The DDS model have little cost benefit 

is scenario three. The remaining three scenarios cause much higher cost in DDS compare with all 

uncertain models. The similar phenomenon is also observed in DDSS model which gains lower cost 

compare with DDS model. It can be said that stochastic model gain cost benefits. This result also supports 

the benefit of risk-neutral behavior of decision maker. Risk-averse decision would be highly costly for 

scenario 3. By doing this analysis, we can also calculate the value of stochastic solution (VSS). The VSS 

provides relative advantage of stochastic model. In situations in which one cannot gather more 

information about the future, however, it may be more pertinent for decision makers to know how well 

the deterministic model solutions perform relative to solutions from more complicated stochastic 

programs (Birge, 1982).  

stochasticticsdeterminis CCVSS   (3-37) 

where, first term in right hand side of Eq. (3-37) represents average solution of DDS model and 

second term is that of SDSS model. In the example, the VSS is 0.34 million dollar. 

In the last, Figure 3-24 shows the components of the average cost in three different models 

explained above. The SDSS model incurs higher inventories cost compare with other two models. The 

SDSS model gain benefit in post-disaster situations and transportation cost is much lower in SDSS model. 

The penalty cost is also much lower in SDSS model that shows the robustness of this model. 

The stochastic nature of supply and demand parameters are formulated in this study and 

implemented in a narrow set of experiments. The results show that this consideration can gain cost 

benefits over deterministic models. Although stochastic models require a large number of data sets and to 
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solve the complex model, it is worth to apply stochastic model in strategic logistics planning for relief 

distribution. Additionally, model is sensitive to number of scenarios.  However, scenario generation is out 

of scope of this study.  

 

3.6. SUMMARY 

This chapter shows the importance of inventory positioning and the current state of global 

prepositioned. It shows that inventory positioning brings beneficial in disaster response, particularly 72 

hours after disaster. The current state of global prepositioning of UNHRD is capable delivering relief 

anywhere in the world within 24-48 hours to meet the needs of victims.  

After exploration of inventory positioning network, this chapter explain the international relief 

delivery chain that consists of several stages. This chapter also simplifies the delivery chain with some 

reasonable assumptions and proposes a deterministic model, named IPMC. This model introduces a 

unique metric, named ‘mean distance per capita’. The model also utilizes maximum distance from 

demand point to humanitarian depot for worst case scenarios. Disaster data from  EM-DAT is utilized to 

show the effectiveness of the model. This model shows that the humanitarian depot in Malaysia is not in 

optimum location for Asia-Oceania zone. The model also suggested humanitarian depot locations for 

expansion of the network. 

 

Figure 3-23: Comparison of different models 

in different scenarios 

 

 

Figure 3-24: Comparison of cost items in 

different models 
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After analyzing the international relief chain, this chapter explores the potential locations of 

inventory positioning within a country. The IPSC model is introduced for finding suitable locations of 

inventory positioning (i.e., RDC). The IPSC model incorporates the demand and supply uncertainty. This 

model and the solutions have robustness feature. In contrast, IPMC model is a deterministic model. 

Deterministic model is suitable for contexts, where all parameters are known certainty. Deterministic 

model is easy to solve and highly sensitive to parameter changes. On the other hand, stochastic model is 

superior over deterministic model in terms of rational decision. Stochastic model is difficult to solve and 

requires sufficient amount of data. In the IPSC model, stochastic parameters were presented under 

scenario approach. The first stage decisions were location of RDC and inventory level in each RDC, and 

the second stage decisions were distribution of relief in different locations and procurement of relief. The 

IPSC model aims to minimize the penalty cost, distribution cost with the operational constraints. This 

model showed the trade-off between the pre-disaster cost and the post-disaster cost. The model also 

selects two RDCs (Raj and Kul) that do not maintain inventory. It is worth to mention that this model is 

easy to solve via open-source solver and decision maker does not need to spend money for buying 

commercial software to solve the model. 

The case study was performed to provide insights of the model. Sensitivity analysis was also 

performed to show the validity of the model. The IPSC model showed that decision maker could save 

0.34 million dollar by adopting stochastic model over deterministic model. Some parameter values, for 

instance penalty factor, robustness factor, and oversupply cost, are subject to decision maker's view to 

risk. Risk adverse decision maker can select higher value of parameter. Finally, the IPSC model is a 

generic model and possible to extend for business logistics. However, network model with supply 

uncertainty is highly appropriate for humanitarian logistics. 
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Chapter Four 

4. RELIEF ORDERING IN RESPONSE 

Victims require food, medicine, tents, sanitation equipment, and other necessities, often for prolong 

period (Whybark, 2007). An advantageous relief management plan is essential to meet the demand of 

victims for prolong time. Inventory management is an important tool for relief management. This aspect 

has been neither well researched nor clearly understood so far (Whybark, 2007).  

Inventory management is not an isolated tool and is dependent on preparedness, particularly on 

network of inventory prepositioning. The previous chapter proposes a model for designing network 

against random relief demand and identifies the causes of delay in delivery of relief to victims. This 

chapter analyzes the effect of uncertainty on demand and delivery-time in relief ordering and proposes a 

model for inventory management after disaster.  

4.1.  CHARACTERISTICS OF INVENTORY MANAGEMENT 

The military sector, at first, introduced the importance of inventory management that is a matter of 

life and death during enemy attack. It is unlikely to know exact timing and size of enemy attack. The 

enemy can destroy strong military team unless the military maintain proper planning of troop deployment 

and of locating the troop. After the innovation by the military sector, the knowledge of inventory 

management is applied in various sectors. For example, hospitals utilize the knowledge for minimizing 

the stock-out of blood. The manufacturing sector and service industries borrow the idea of inventory 

management couple of decades ago. Inventory management for manufacturing sector aims for reducing 

the probability of stock-out of product and for improving the service level under the constraint of total 

cost. Despite the importance of inventory management, it is evident that most organizations do not fully 

understand the complexities of inventory management (Silver et al., 1998), since, inventory management 

involves with the product, supply chain and some external specifications. Some specifications for 

inventory management are given below: 

 Product has fixed expiry date or not. 

 Demand is lost or not if cannot met on time. 

 Warehouse has limited capacity or not. 
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 Demand can arise in any location of the network of the warehouses. Warehouse is an 

element of a network or not. 

 Product supplies are stable or not. 

Inventory management has been highlighted on its application in the context of commercial 

logistics (Kovacs and Spens, 2009). There are several differences between commercial logistics inventory 

management (CLIM) and humanitarian logistics inventory management (HLIM) in terms of planning and 

designing.  

 The difference between these two sectors arises from decision-making domain. Commercial 

logistics always aims for monetary profit that is the driven force of business. In contrast, 

HL encompasses humanitarian domain that is shown in Figure 4-1. The domain consists of 

humanity, neutrality and impartiality. In other words, aid organizations attempt to help 

victims without being influenced by the outcome of a conflict with their intervention, and 

will not favor one group of beneficiaries over another.  

 Humanitarian logisticians cannot get the updated information since it is probable that 

transport network and information network are disrupted due to disaster.  

 

Figure 4-1: Humanitarian domain (space) (source: Van Wassenhove, 2006) 

 There is little application of historical database for the estimation of relief demand. The 

impact of disasters is dependent on socio-economic culture of the affected regions.  

 In general, HL activates after disruption of communication networks. As a result, a logistics 

manager cannot anticipate the actual arrival of relief. 
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Inventory management is considered an inseparable tool for improving customer service. It 

integrates supply chain properties and other externalities under the constraint of total cost. HLIM gains 

interest recently due to unique features after large-scale disaster.  

4.2.  CHALLENGES IN HLIM 

Lead-time and demand are the two major parameters that are highly influenced by the supply chain 

specifications. Lead-time is defined as the interval between the placement of an order and the arrival of 

ordered goods. It consists of several actions (such as transportation, order preparation, order delivery and 

so on) and has the properties of randomness. The randomness and the length of the lead-time magnify the 

importance of inventory management. It observes that lead-time is long during earthquake relief 

operations, according to the internal report of International Federation of Red Cross and Red Crescent 

Societies’ (IFRC). Table 4-1 the Indian Ocean tsunami relief response lead-time was 30 days; in 

comparison, the lead-times for the Pakistan and the Yogyakarta earthquake relief operations were 

significantly reduced. As humanitarian relief lead-time is governed by several factors (e.g. transportation, 

order preparation, and order delivery), its duration cannot be predicted with certainty.  

Relief demand is also stochastic in day-to-day relief operation. There are several sources/reason for 

stochasticity of demand. First, some fraction of victims recovers soon and others are not. The recovery 

trend makes difficulty in demand estimation. On the other hand, some victims migrate to other places or 

to other relief distribution points.  

The share of logistics cost during relief operation depicts the urgency of inventory management. It 

appears that the logistics cost (e.g. items, transport, and storage cost) in past earthquake relief operations 

constituted a significant share of the total cost. However, service level (defined as % of people gets the 

relief) is not in satisfactory level yet. For instance, only 28.02% of Indian Ocean tsunami victims get a 

partial or full assistance from IFRC and 30.77% is during Pakistan earthquake relief operation. 

Table 4-1: Comparisons of the IFRC’s performance in Indian Ocean tsunami, Pakistan and 

Yogyakarta earthquake 

 

Indian Ocean 

Tsunami 

100,000 families 

Pakistan 

earthquake 

95,000 families 

Yogyakarta 

earthquake 

65,000 families 

Families receiving at least partial 

package by 2 months 
28,021 29,229 53,112 
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4.3.  LEAD-TIME AND DEMAND CHARACTERISTICS 

Three popular demand distribution types cited in relevant literature are uniform distribution, normal 

distribution, and Poisson distribution (Bagchi et al., 1986). Poisson distribution cannot demonstrate relief 

demand characteristics since it calculates the gap between two discrete events. In contrast, normal 

distribution (the most popular distribution function) requires a large amount of data to define its shape and 

parameters (kurtosis, mean, standard deviation, and asymmetry). As HL has limited historical data, 

normal distribution is not an appropriate analysis method for HLIM. 

The stochastic characteristics of disaster scenarios pose another modelling challenge. For example, 

large-scale earthquakes destroy houses and displace a large number of people, either for immediate 

shelter or for better opportunities. These displaced people, who are called Internally Displaced Persons 

(IDP) (UN, 1995), may not visit the same POD every time when collecting relief. Hence, the variable 

nature of IDP activities to PODs represents the stochastic properties of relief demand at each POD. 

Average number of families served per 

day 
445 555 613 

% goods delivered from the region 13% 68% 100% 

Days to activate end to end supply chain 18 10 3 

Order lead time (requisition to delivery) 

in days 
30 23 16 

% of appeal items mobilized and 

delivered at 2 months 
55% 38% 74% 

Average distance of relief items (km) to 

families 
11,805 2,962 1,617 

Operations total costs at 2 months not available 55,944,027 10,505,962 

% logistics cost at 8 months (items + 

transport + storage value) 
– 86% 87% 

Cost to deliver relief package per family 

at 2 months 
– 824 142 

Cost to deliver relief package per family 

at 8 months 
– 450 142 

source: Justin Cuckow, The effect of the IFRC Regional Logistics concept on the efficiency of relief  

item delivery for the population affected by the Yogyakarta earthquake, Internal IFRC case study,  

August 24th 2006 (collected from Gatignon et al. 2010) 
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Additionally, data collection methods for demand forecasting also emphasize the stochastic 

properties of relief demand. Modern data collection technology is not readily available after large-scale 

earthquakes. While social networking media (e.g. Facebook, Google, and Twitter) are potentially viable 

alternative post-disaster data collection methods, traditional sources (e.g. electronic and print media, 

Rescuer) are still the major data suppliers in such scenarios (Sheu, 2007). The numerical values of 

collected data from different sources are not identical, but rather interval-based.  

With this in mind, a uniformly distributed relief demand parameter is the most reasonable model to 

apply to the lead-time after an earthquake disaster. It is clear that lead-time after a large-scale earthquake 

cannot be predicted quickly. Lead-time is combination of ordering time, collection time and 

transportation time. It is not possible to predict actual duration of each activity. For example, 

transportation time is highly unpredictable due to disruption of transport network after earthquake. 

Country government makes effort to improve transportation network aiming to ease relief flow. However, 

congestion in transportation network makes delay in receiving relief. Due to high complexity in this issue, 

uniform distribution is a reasonable assumption for lead-time. In addition, uniform distribution 

parameters can be easily estimated by efficiently assessing local knowledge, since the parameters are 

subjective estimates of the minimum and maximum value. 

Furthermore, this study assumes both lead-time and demand are independent. This assumption, while 

unsuitable for CLIM, can be pertinent to HLIM. In CLIM, an order for a large quantity of product (i.e. a 

high-demand product) that requires longer manufacturing can result in mutually dependent lead-time and 

demand. However, this is not the case with HL. Aid organizations delivering disaster relief after large-

scale earthquakes, such as the 2010 Haiti earthquake and the 2004 Indian Ocean tsunami, did not 

experience relief shortages; sufficient relief commodities were available at point-of-entry or near the 

affected area. Though transportation management was a major challenge in these relief operations, this 

can be solved via proper transport planning. The major barrier to relief delivery in these disaster scenarios 

was transportation management, not relief availability (Holguín-Veras et al., 2012). 

The uniform distribution parameter can be easily estimated by quickly assessing the local knowledge 

since the parameter is a subjective evaluation of the minimum and maximum relief demand. This property 

increases the applicability the proposed model after large-scale disaster. 
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4.4.  MODEL 

4.4.1. System Characteristics 

Figure 4-2 shows the two-stage system for distributing relief to disaster survivors; It is a simplification 

of the system of Figure 1-9. There are two stocking points: the first stocking point, located at the 

earthquake-affected area, is known as the point-of-distribution (POD); the second stocking point, located 

at an unaffected area, is called the central warehouse in this study.  

 In this two-stage supply chain model, the POD follows a continuous inventory review strategy to place 

orders with the central warehouse. It is assumed that the central warehouse is capable of delivering the 

requested amount of relief. The on-hand inventory at POD at the time of order placement with the central 

warehouse is r1, which is expected to meet LTD. The placing of an order at the inventory level r1 is called 

a ‘systematic order’ in this case. If the inventory level at POD reaches the threshold limit before the 

arrival of the systematic order, the logistics manager places an additional order — called an ‘exigent 

order’ — in an effort to prevent shortages. Thus, the threshold limit of the inventory at POD is r2. Then, 

without losing generality, the limit of the two inventory levels is 0 ≤ r2 < r1. 

When lead-times are stochastic, orders may not be received in the same sequence as they were placed. 

This phenomenon, known as an ‘order crossover’, complicates analysis. To address this problem, it is 

usually assumed that orders do not cross in time (Hadley and Whitin, 1963; Kaplan, 1970; Tijms and 

Groenevelt, 1984) or that not more than one order is outstanding at any point in time (Moinzadeh and 

Nahmias, 1988). This study assumes that an exigent order will arrive earlier than a systematic order; since 

an exigent order is delivered by an expediting service (e.g. by air or special convoy) rather than 

systematic services, it incurs a higher cost than that of a systematic order. The exigent supply source is 

assumed to be within the affected country or in a nearby country.  

 

Figure 4-2: The schematic representation of an earthquake relief inventory model 

In this study, we explore a strategy to prevent shortage without having to resort to an exigent order. For 

the purposes of analysis, we assume an infinite time horizon for the relief operation. While all relief 
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operations in practice have a termination point, our model assumes the relief operation will continue as 

long as there is relief demand, and internally adjusts the decision variables as demand changes. It should 

be noted here that the assumption of infinite time horizon affects only the modelling formulation, since no 

order will be issued if there is no demand. The system properties and parameters are described below in 

detail. 

4.4.2. Mathematical representation of LTD 

Let t be a random variable of systematic-order lead –time, with range of minimum tm and maximum 

tM . The expected value E[t] and variance var(t) of t, are given by 

)(
2

1
][ tttE Mm   

(4-1) 
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(4-2) 

Assuming that t is independent of the demand rate d and that d is also a random variable with the 

range of minimum dm and maximum dM, the expected value (E[d]) and variance (var(d)) of d are 

computed by using an equation similar to (4-1) and (4-2). Since t and d are independent, the properties of 

the product of lead-time and demand can be shown readily. Let D be LTD that is the product of lead-time 

and demand, then the mean of D is given by 
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The variance of D is  
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Now, we derive the joint probability distribution of D. According to Dougherty (1990), the joint 

probability of two independent random variables t and d, then 

)()()( 21 xdprxtprDf   (4-6)  

Since the lead-time is uniformly distributed; the probability of occurrence of each point within the 

range will have an identical value. Hence, the probability of t = x1 is 
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Similarly, the probability of d = x2 is 
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Now, substituting Eq. (4-7) and Eq. (4-8) into Eq. (4-6), we get the probability distribution function 

(pdf) for D as follows: 

))((

1
)(

ttdd
Df

mMmM 
  

(4-9) 

 Since lead-time and demand are ranged in the intervals (tm ,tM) and (dm, dM), respectively, the product of 

lead-time and demand is always positive. The study has adopted the algorithm proposed by Glen et al. 

(2004) to compute the distribution of the product of two uniformly distributed random variables. The joint 

probability distribution function (PDF) of d and t can be defined on a rectangular product space. The 

rectangular space is divided in regions depending on the values of d and t. Each region in the rectangular 

space is bounded by two hyperbolas. The boundary of each region corresponds to a different interval of D 

 

Figure 4-3: The regions of D for case 1 

 

Figure 4-4: The regions of D for case 2 

 

Figure 4-5: The regions of D for case 3 

 

Figure 4-6: The regions of D for case 1A 
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for the family of hyperbola given by td=D. Given D, the interval of integration consists of those values of 

d for which the curve td=D intersects the rectangle {(t,d): tm < t < tM , dm < d < dM}. 

 

Since t and d are independent of each other, three different cases can occur under the condition of dm 

≠ 0, tm ≠ 0, case 1 is dmtM  < dMtm; case 2 is dmtM  > dMtm; and case 3 is dmtM  =  dMtm . Table 4-2  provides a 

list of region’s boundary of each case to compute the cumulative probability of D. Case 1A is a special 

form of case1 where dm ≠ 0,tm=0. The cumulative distribution function (CDF) of D has three distinct 

sections, and hence three regions, in cases 1 and 2. However, the CDF of D consists of two sections for 

cases 3 and 1A. Figures 2 to 5 represent the graphical illustration of the different integral limits of the 

regions of the four cases, respectively. In the following part of this paper, we have explained case 1; the 

other cases can be computed analogously. 

4.4.3. Mathematical Formulation of HLIM 

4.4.3a. Estimation of shortage per cycle 

In this section, we derive the expression for expected shortage per cycle. Here, t with PDF g(t) and d 

with PDF f(d) are continuous random, the PDF of td = D is for Fig 2 is (Glen et al, 2004) 
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The PDF of D represents the desired probability of not running out of stock in any one ordering 

cycle. Note that systematic-order is placed when the inventory at POD touches r1,  in other word it is 

Table 4-2:The integral limit for different combinations of demand and lead-time range 

 
case 1: 

dmtM < dMtm ; 

dm≠0, tm≠0 

case 2: 

dmtM > dMtm ; dm≠0, 

tm≠0 

case 3: 

dmtM = dMtm ; dm≠0, 

tm≠0 

Case 1A: 

dm ≠ 0,tm=0 

Region 1: dmtm < D < dmtM dmtm < D < dMtm dmtm < D < dmtM 0 < D < dmtM 

Region 2: dmtM < D < dMtm dMtm < D < dmtM not exist not exist 

Region 3: dMtm < D < dMtM dmtM < D < dMtM dmtM < D < dMtM dmtM < D < dMtM 
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expected that D is equal or less than r1, D ≤ r1. The PDF of t and d are replaced by Eq. (4-9). By adopting 

the similar approach of Wanke (2008), Eq. (4-10) is expanded to estimate the cumulative probability of 

observed D to be equal or less than r1 which is defined as service level (SL).  

Region 1:  
t

r

d

r

t

m

m m

d

dddtDfrSL

1
1

)()( 1  

(4-11) 

)ln)(( 1
1

1 dtr
dt

r
rDf mm

mm

  

(4-12) 

region 2:   
t

r

t
r

r

t

t
r

d

t

t

m

M

m

M

m

M

m

d

dddtDfdddtDfrSL

1

1

1
1

)()()( 1  (4-13) 

))(ln))()((( 1
1

1
tt

t

r

t

t
rd

t

r
ttDf mM

Mm

M
m

M

mM   (4-14) 

Region 3:   
d

t
r

r

t

t
r

d

t

t

M

M

m

M

m

M

m

d

dddtDfdddtDfrSL
1

1
1

)()()( 1  

(4-15)  

))(ln))()((( 1

1

1
1

rtd
t

t

r

td
rd

t

r
ttDf MM

M

mM
m

M

mM
M   

(4-16)  

 

Accordingly, the expected shortage per cycle (B) is given by (Silver and Peterson, 1998 ) 
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The double integration over each region defined in rectangular product space in Figure 4-3  
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The integrations are in closed form, and the integration result only for region 3 is shown. The 

integration of the other two regions can be performed analogously.  

4.4.3b. Estimation of the average number per cycle and cycle length 

The expected inventory level in a cycle induces holding cost. Lau and Lau (2002) compared 

different methods for estimating the average inventory level in a (Q, r) system. While they assumed either 

a deterministic lead-time or a deterministic demand in all cases, we propose an approximation method to 

estimate the expected inventory levels for simultaneously stochastic lead-time and demand. The 

formulation of expected inventory level for each region, which largely depends on r1, is shown below. 

The expected inventory per cycle denotes the area under the inventory line in Figure 4-7. As illustrated in 

Figure 4-7 an order cycle consists of two distinct periods: L, the replenishment systematic order lead-time, 

and t0, the time between the arrival of one systematic order and the next. As demand of relief is stochastic, 

the reduction rate of inventory may not be constant. However, for the simplicity of the model, it is 

assumed that the reduction rate of inventory is strictly decreasing in constant rate. In addition, cycle 

length is not fixed in the system. It is dependent on observed demand. As demand and lead-time are 

stochastic, the cycle length is also become stochastic. Cycle length shows complex distribution. 

 

Figure 4-7: Expected inventory level in cycles with no EOs 
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D appears to be equal to (or less than) r1 with probability (SL(r1)). Here μ represents the average 

demand. First two-terms of Eq. (4-22)  computes the average inventory level during period L and 

remaining two terms are during period t0 in Figure 4-7. 
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The average cycle length is also derived from Figure 4-7. Let T denote the average length of a cycle.  
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Here, we have shown that the cycle length for r1 lies in region 3. The cycle lengths for r1 in regions 

1 and 2 can be computed analogously. 

4.4.3c.  Expected total cost  

The expected cost in cycle TC (Q1,r1) comprises the systematic-order’s fixed cost (f1), as well as 

variable cost (c1), the inventory holding cost (h), and the shortage cost (s). Then TC (Q1,r1) is given by  

][][),(
11111

BsEohhEQcfrQTC   (4-26)  

To obtain the expected cost per unit time (ECUT), the total cost is divided by the expected cycle 

length. 
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The partial derivative of the ECUT with respect to Q1 is  
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Solving Eq. (4-29), (see the appendix for details), the optimal Q1 is given by 

)2))1][())321(212( 1(())1][()12( 1((
1

1 rDEhAAAhcAhArDEhcAhA
h

Q    

(4-29) 

where,  

)(
2

1
][ dddE mM   

(4-30) 

])[( 111 DEr
h

cA 


 
(4-31) 

][)lnln)()((
1

11

2
11

12 tE
r

td
trtr

d

r

dt

r
ttrDfA

MM
mM

MmM

mM   
(4-32) 

][])[))((
18

)(

)
626

)(
6

)(
22

)(((

1
3333

322
1

3
133

2
221

2
1

13

BsEDErddtt
Df

tdtrd

d

r
tt

d
tt

rdtr
DfhfA

mMmM

mMmM

M

mM
m

mM
mM









 

(4-33) 

The Eq. (4-29) generate two values. The value of Q1 is always positive; negative value of Q1 must 

be ignored, if appears. In the case of two positive value of Q1, the value that is larger than r1 will be 

selected.  

4.4.4. Multi-commodity Inventory Algorithm 

We present the algorithm for the multi-commodity inventory model. Multi-commodity inventory 

model may gain benefit of cost sharing of joint replenishments (Goyal and Satir, 1989). If there is no 

ordering cost reduction after joint replenishment, each commodity inventory policy is planned using a 

single commodity inventory model. On the other hand, if ordering cost is dependent on the number of 

orders placed in one period, multi-commodity model is beneficial over single commodity model.  

Simmons (1972) proposed an algorithm for solving the problem. Let f1 to be not fixed and varies 

from one scheduling period to the next, depending on the number of orders placed in each scheduling 
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period. We further assumed that f1 can be evaluated or approximated with satisfactory degree for any 

given set of reorder quantities; that is, in functional notations, we assumed that  

),...,,( 211 nQQQzZf   
(4-34) 

where Z is constant for ordering cost, and z (Q1, …, Qn) represents either an ordinary analytical 

function or a convergent computational algorithm.  

In order to find the optimal (ri, Qi) policies in our joint setup cost environment, Eq. (4-34) must hold. 

The value of f1 that was used in Eq. (4-29) to calculate the optimal order quantities is recalculated after 

plugging the value of (ri, Qi) into Eq. (4-34). For an n-product problem, there are n- equations of Eq. 

(4-29) plus Eq. (4-34). There are 5n+1 with simultaneous computation of Eq. (4-30) –(4-33), This system 

will usually be impossible to solve directly. Therefore the algorithm for solving the model is 

Step 1: Set f1 = Z. 

Step 2: Treating f1 as a constant per-order setup cost, solve the Eq. (4-29) 

Step 3: Use the functional relation Eq. (4-34) to calculate a new value of f1. If it is sufficiently 

close to the previous value, stop; otherwise return to step 2. 

Observe that for any finite positive reorder, quantities per period will be finite, and the per-order 

setup cost will lie somewhere between Z and z + Z. In particular, the value f1 increases after step (3) has 

been executed for the first time. 

4.5.  CASE STUDY 

This section presents a case study to illustrate the HLIM model. In order to verify this approach, the 

case study is small enough to be solved in its extensive form using open-source software (R Core Team, 

2012), but detailed enough to be of interest as an illustration. Table 4-3 summarizes the key parameters of 

the commodity (e.g. water) that is assumed for this case study. There is no methodology to measure the 

cost of human suffering due to relief shortage. The general assumption is that the shortage cost is higher 

than the expenditure per unit (Balcik and Beamon, 2008; Rawls and Turnquist, 2010). In this study, we 

assume that the shortage cost per unit is 50 times higher than the variable cost per unit. We select a low 

holding cost since it represents POD’s operational cost. (Note that, although these values are useful for 

exploratory purposes, they may not match the values that may be estimated by the ultimate users of the 

model.) After plugging the base data into the proposed model, the following results are obtained. 
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Figure 4-8 shows the CDF of lead-time-demand that is derived from the combination of Eq. (4-12) (i.e. 

region 1), Eq. (4-14) (i.e. region 2) and Eq. (4-16) (i.e. region 3). The cumulative probability of LTD 

being in region 1 is less than 0.2. There is an 80% probability of shortage if the reorder level is 260 units. 

The upper boundary of region 2 is 500 units, and the cumulative probability of LTD being in region 2 is 

less than 0.5. The expected value of LTD is 600 units, and the cumulative probability that it lies in region 

3 starts at 0.5 and increases rapidly as it ultimately approaches 1.00. 

Figure 4-9 reveals the relationship between expected shortage unit and reorder level. The expected 

shortage unit decreases linearly in regions 1 and 2 for the increment of reorder level. However, the 

expected shortage unit decreases exponentially in region 3. 

 We then investigated the relative effect of cost parameters on order quantity through a series of 

sensitivity tests. With this aim, we modified each parameter and compared the resulting order quantity 

with that corresponding to a base case with specific parameter values. At the given level of holding cost 

and shortage cost, Figure 4-10 displays the change in order quantity with respect to different variable 

costs. The change in order quantity is equal to Eq. (4-35) 

The change of order quantity
0

0 %100)(

Q

QQa   

(4-35) 

Where, Qa = New order quantity after parameter change 

      Q0 = Base order quantity calculated with base data  

Table 4-3: Base data and model parameters 

f($) c($/ unit) s($/unit) h($/day-unit) tm(day) tM(day) dm(unit/day) dM(unit/day) 

10000 0.3 15 0.000003 10 30 10 50 

 

Figure 4-8: Cumulative distribution function of 

LTD 

Figure 4-9: Expected shortage with Reorder 

level 
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 Increasing the variable cost by 10% results in a decrease in order quantity; similarly, decreasing the 

variable cost by 10% or 20% results in an increase in order quantity. However, the order quantity is not 

sensitive to the variable cost at the reorder level of 661 units (near the expected D), and all the curves 

converge to zero. The convergence value is also influenced by the fixed cost of placing an order. Judging 

by these model dynamics, change of variable cost is possible in three cases: (1) if the relief goods are 

procured at a higher rate; (2) if donation goods are available in sufficient amounts; and (3) if transport 

companies offer discount rates for relief goods.  

 

In contrast, the order quantity changes exponentially with a change in shortage cost, as displayed in 

Figure 4-11. The order quantity at a reorder level of 501 units increases by 1.02% when the shortage cost 

increases by 10%, and decreases by 1.03% when the shortage cost decrease by 10%. At a reorder level of 

1,341 units, all the curves converge to zero. Figure 4-12 depicts the changes in order quantity caused by 

the changes in holding cost. The order quantity changes proportionately with the reorder level. It 

Figure 4-10: Effect of variable cost 

Figure 4-11: Effect of shortage cost 

 

 

Figure 4-12: Effect of holding cost Figure 4-13: Effect of shortage cost 
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decreases by 4.6% when the holding cost increases by 10%, and increases by 5.4% when the holding cost 

decreases by 10%. Finally, Figure 4-13 describes the change in ECUT sensitivity with changing shortage 

cost. All the curves converge to zero at a reorder level of 1,241 units. 

4.6.  SUMMARY 

Relief operation is a highly challenging, diverse, and extensive effort. Logistics manager faces 

several problems after a disaster. Inventory management is one of them, which are highly ignored by 

academic and professional. The basic properties of both CLIM and HLIM are similar (i.e., product 

dependency, supply chain dependency and other external factors). However, HLIM possess several 

distinct properties that motivate to formulate new mathematical model for HLIM. 

The performance data after past disasters shows that lead-time after large-scale earthquake is long. 

The lead-time after Indian Ocean tsunami was 30 days. Furthermore, lead-time after disaster is random 

due to the disruption of the communication network. HL after disaster is explored to show independency 

between lead-time and demand (in contrast, lead-time and demand are dependent in CLIM). This chapter 

proposes a model stochastic lead-time combining with stochastic demand.  

  Using a uniform distribution model for the two stochastic variables (i.e. lead-time and demand) 

allows us to compute the probability of relief shortage and its treatment. The model presented here is a 

stochastic optimization model based on a first-order differential equation that attempts to determine the 

order quantity and reorder level necessary to prevent relief disruption for a given probability, which 

would be most applicable to decision-makers who do not possess the actual LTD curve. An algorithm for 

multi-product inventory system is also proposed. The cumulative probability curve of LTD is formulated 

and it shows that the mean demand lies in third region in the lead-time and demand rectangular space. 

Similarly, the expected shortage for certain reorder level is also calculated. In the case of the reorder level 

equivalent to 501 units, the expected shortage is less than 200 units. The sensitivity of expected cost and 

reorder quantity against cost parameters are also presented. The case study presented here addressed the 

stochastic nature of LTD relief demand in a practical context and revealed the model’s sensitivity to 

changes in the cost parameter. 
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Chapter Five 

5. RELIEF ALLOCATION IN RESPONSE 

Humanitarian assistance providers face several bottlenecks in distributing relief to the right person, 

at the right time, and at the right cost. To assist for achieving aid organization’s aim, the third chapter in 

this dissertation presented two models for relief prepositioning and the fourth chapter presented a model 

for relief ordering in response. In this chapter, relief allocation in response is explored. The importance of 

this model generates from the mismatch between demand and supply after disaster. 

As a hypothetical example, consider a large-scale earthquake that has caused varying degrees of 

damage in different areas. This disaster generates enormous relief demand in a given condition of limited 

resources. The coordinator faces difficulties in allocating available relief because of resource constraints. 

Additionally, the coordinator requires coordinating among stakeholders. Thus, general questions arise 

after disaster is what is the method to allocate resources among victims? Is it possible to make hierarchy 

among victims?  These issues are addressed in this chapter.  

5.1.  CURRENT PROVISION OF AGENTS IN HL 

Humanitarian operations are characterized by multiple actors, feedback loops, time pressures, 

resource constraints and uncertainty (Besiou et al., 2011). Typically, no single stakeholder of HL has 

sufficient resources to respond effectively to a major disaster (Bui, 2000). Therefore, stakeholders must 

depend on each other even though they may have different interests, mandates, capacities, and logistics 

expertise (Balcik et al., 2010). To investigate the various interests of stakeholders, the mandates of 

various aid organizations are presented. For example, Oxfam focuses on water distribution and sanitation, 

the United Nations High Commissioner for Refugees (UNHCR) and the International Federation of Red 

Cross and Red Crescent (IFRC) focus on shelter, and the World Food Program (WFP) focuses on food. 

Although these organizations have entirely different targets, their common aim is to reach more victims. 

Logistics providers also play an important role in relief distribution by providing services outside of their 

regular service area, and generally aim to reduce transport-related costs. Logistics providers may also 

have their own preference; for example, during the relief efforts following Hurricane Rita, many of the 

vehicles and drivers expected to distribute relief supplies abandoned New Orleans after hearing reports of 

violence (Hoguin-Veras et al., 2007). Thus, aid organization and transport service providers have 

seemingly different preferences.  
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 To enable coordination among different agencies, the United Nations Joint Logistics Centre 

(UNJLC) was formed in 2002 as an umbrella organization to handle operational logistics in the disaster 

relief environment and encourage the best use of limited logistics resources (Kaatrud et al., 2003). The 

United Nations (UN) and aid organizations have established various committees and offices, such as the 

Office of the Coordinator for Humanitarian Affairs (OCHA) and the Inter-Agency Standing committee 

 
 

  

Figure 5-1: Different focuses of different aid organizations (clockwise from top-left: Oxfam, 

UNHCR, IFRC, and WFP) 

 

 

Figure 5-2: Transportation of relief items 
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(IASC), to improve coordination within the relief community (Reindorp, 2002; Kehler, 2004; Balcik et al., 

2010). 

5.2. STAKEHOLDERS 

Kovacs and Spens (2008) list donors, aid organizations, NGOs, governments, military, logistics 

service providers, and suppliers as the stakeholders involved in HL network. Oloruntoba and Gray (2006) 

add aid recipients (beneficiaries) to the list. van Wassenhove (2006) adds the media as a stakeholder of 

disaster relief. This study investigates the ontology of stakeholders in the last-mile relief distribution, as 

shown in Figure 5-3. The stakeholders include the aid organization, carrier, demand agent, and society 

(e.g., national authority, evaluation team, media, etc.). Figure 5-3 shows the objectives and activities of 

each stakeholder, and provides details as follows. 

Donors are not obliged to fund and if they do, they often donate funds to aid organizations to 

increase their own social esteem (Cermak et al., 1994). However, aid organizations want to generate more 

funds by gaining trust of donors. Total funds of an aid organization are modeled as positive function of 

social benefits generated by the organization and efficiency of the organization (Preston, 1989) 

 

Figure 5-3: Stakeholders’ ontology of humanitarian logistics 

Aid organization agent (AOA): The AOA is a key player in HL, and is responsible for collecting 

funds from donors and for managing relief. This AOA aims to reach more victims. In the proposed model, 

the AOA is assigned the role of a tertiary hub.  

Carrier agent (CAA): The CAA follows the behavior of business logistics, and wants to maximize 

monetary profit. The CAA performs several activities, such as transporting, loading, and unloading. The 

goals of the CAA are to minimize transport costs and waiting time. However, the CAA faces the 

constraint of fleet capacity and operator working hours. 
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Demand agent (DA): The DA, who performs demand estimation, orders relief items, receives relief 

items, and distributes relief items to victims, is assigned the role of a demand point, and represents the last 

key stakeholder in the supply chain. The DA receives relief from the tertiary hub and distributes it to 

victims. The DA attempts to bring in more relief to their demand point, and therefore exhibits very local-

specific (i.e., selfish) behavior. The DA and AOA may be two different sections of the same organization. 

However, we classify them in two groups to distinguish their functionalities.  

Society agent (SA): The SA does not have decision-making power in the relief chain. However, the 

SA evaluates the aid organizations' efforts, and may be a representative of an evaluation team. 

Coordinator agent (COA): The COA is responsible for coordinating the overall relief flow. The 

COA did not exist in all relief operations of past disasters. However, The United Nations (UN) and aid 

organizations have established various committees and offices, such as the Office of the Coordinator for 

Humanitarian Affairs (OCHA) and the Inter-Agency Standing committee (IASC), to improve 

coordination within the relief community (Reindorp, 2002; Kehler, 2004; Balcik et al., 2010). In addition, 

national disaster management agency (for instance, Federal Emergency Management Agency (FEMA) in 

United States of America) may work as COA.  

5.3.  TASK CHAINS 

Figure 5-4 (top) provides an illustration of relief flow (modified from Balcik et al., 2008). First, the 

relief item transfers from various locations to a primary warehouse. Next, relief item is shipped to tertiary 

hubs via a secondary hub. Finally, tertiary hubs deliver relief item to demand-points (victims). The relief 

distribution from the tertiary hub to the demand point, known as last-mile distribution (LMD), is the most 

challenging section, and requires special attention (Balcik et al., 2008). Therefore, LMD requires critical 

analysis when allocating logistics resources in each tertiary hub to maximize social benefits. This topic is 

the focus of this paper, and agent based model (ABM) is implemented for relief distribution in LMD. The 

proposed ABM is a normative model (i.e. this model aims to maximize social welfare). In the model 

COA is smart enough to for making rational decision. 

 Figure 5-4 (bottom) shows the task chains that are linked to relief allocation. This figure shows that 

relief item is received in the tertiary hubs from secondary hubs. Simultaneously, demand points request 

relief from the tertiary hub. The tertiary hub evaluates the relief request under the resource constraints and 

deploys relief to the demand point accordingly. Finally, the whole operation is evaluated with the aim of 

maximizing social benefit.  
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Social benefit from a project is often intangible, hard to quantify, and difficult to attribute to a 

specific organization. Fortunately, the social benefit of distributing relief can be linked to the relief 

delivery that is shown in Eq. (5-1) 

where,  

SB(x) = social benefit from x available resources 

Although social benefit is the aim of relief distribution, resource constraints often force decision-

makers to distribute relief depending relief urgency. This study defines the effort of aid organizations as 

follows: 

cost

xSB
ementacknowledg

)(
  

(5-2) 

Society computes the value of acknowledgement and imposes it on aid organizations. Therefore, aid 

organizations that create a higher acknowledgement by providing relief tend to garner more donations, 

whereas those that squander their resources receive lower future donations (Cermak et al., 1991). For 

example, Lily Duke, an independent film producer, arrived in New Orleans with a single fleet of donated 

 

Figure 5-4: Supply chain of HL and task chains in the last-mile 

reliefunitofbenefitreliefsuppliedxSB )(  (5-1) 
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food. The residents of this highly damaged area by Hurricane Katrina were satisfied and media 

highlighted the news of effectiveness of relief distribution. Duke’s effort was considered effective 

strategy for relieving victims suffering. Within three months of the disaster’s onset, Duke was operating 

three distribution centers that served 20,000 people a day (Sobel and Lesson, 2007). The value of 

effectiveness of relief distribution strategy is computed by acknowledgement in this study. The 

acknowledgement value for Duke’s efforts is higher due to larger numerator value in Eq. (5-2). 

5.4. OPERATION OF THE ABM 

Consider a large-scale earthquake that has contributed to different degrees of damages. All victims 

need assistance in the aftermath of this disaster, and the circumstance requires that limited resources be 

utilized with proper judgment. This section proposes a fleet allocation model for this type of situation. 

After explaining the task chains and the study focus, we explain the behaviors of stakeholders in last-mile 

distribution. This section concludes with an illustration of the ABM architecture and operation. 

The target relief item is consumed daily (i.e., it is a meal box). The demand for the product is 

generated every day and is lost unless it is met within a specified time period. The unsatisfied demand 

incurs a penalty cost. The relief allocation includes a series of decisions including DA selection, delivery 

time, and fleet composition.  

Figure 5-5 shows the relationships among agents. The ABM is used to assign a specific type of 

 

Figure 5-5: Architecture of agent based model 
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agent to each function in relief distribution. The carrier agent (CAA) manages the transportation required 

for the entire planning period. They follow the rule of minimizing logistics cost. The demand points are 

distributed among demand agents (DA: DAn=1,… , n). A DA is responsible for only one demand point, 

and cannot exchange information with other DAs. DA expects relief as much they need. 

The coordinator agent (COA) is responsible for the coordination of local planning of the DA, AOA, 

and CAA. The AOA makes a contract with CAA, and provides a fleet composition plan to the COA. 

AOA wants to reach more victims. The relationship between the AOA and COA resembles that of a client 

and server. The AOA, in the role of a client, submits a resource plan to the COA, and the COA returns the 

solution to the AOA. Finally, the SA evaluates the performance of the logistics system based on urgency-

based mechanisms.  

Next, we explain the simulation flow of the model. Figure 5-6 shows the steps in the simulation, 

which runs until it meets the termination criteria. 

5.4.1. Phases 1 to 2: 

In Phase (1), the AOA submits a plan of fleet composition and relief quantity 

In Phase (2) the relief distribution to demand point is carried out in six steps. In step (2.1), the CAA 

submits cost information to the COA. Eq. (5-4) and (5-5)  are the constraints for COA. 


r k

rktrk ycmin  (5-3) 

Subject to, k,tVy kt
r

rkt      (5-4) 

tkryrkt ,,  }1,0{   (5-5) 

where,  

crk = cost for route r with vehicle type k 

yrkt = binary variable for selecting route r, vehicle k on time t  

Vkt = the available vehicle of type k in period t. 
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In step (2.2), the DA estimates demand using a method proposed by Sheu (2007) 

In this equation, a1 represents the average hourly demand of target product. L represents the upper 

bound preset to regulate the temporal headway between two successive relief distributions to any given 

affected area without exceeding the corresponding maximum value. Z1-α represents the statistical value 

when the tolerable possibility of time varying relief demand shortage is set to be α. δi (t) represents the 

estimated number of victims in the affected area i in a given time interval t. STDi (t) represents time-

 

Figure 5-6: Simulation flow of agent-based model 

}0,)()(max{)( 11 LtSTDLttD iii za    (5-6) 
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varying standard deviation of relief demand associated with the delivered relief and affected area i. This 

allows the model to incorporate uncertainty.  

In step (2.3), the DA places request for relief and the AOA collects information from all DAs to 

create a hierarchy of demand points to reach more victims. The AOA attempts to minimize the penalty 

cost differences among different demand points, as shown in Eq. (5-7). The satisfaction rate is the ratio 

between the delivered amount and the demand. This value is calculated as Eq. (5-8): 

Iifs
i

i  )1(min  (5-7) 

subject to, 
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tidx itit ,     (5-9) 

tFx t
i

it     (5-10) 

ktk
i

it VCapx   (5-11) 

where, 

xit = the amount of relief delivered to node i in period t, and  

dit = the demand of relief during period t for demand point i. 

 si = the satisfaction rate of delivering relief.  

f = penalty cost for relief item shortage  

Ft = the available relief item in period t 

Capk = Capacity of vehicle type k 

In step 2.4, the COA generates an urgency matrix for the system based on the technique for order of 

preference by similarity to ideal solution (TOPSIS) method (Deng et al, 2000, Sheu, 2010). The TOPSIS 

method is as follows. 

A set of demand agents is compared to a set of the criteria C={Cj, j=1,… , m}; Five criteria are 

selected to form the hierarchy of demand points. These criteria are as follows (Sheu, 2010): 

C1. The time-varying demand for relief product.  

C2. The population density associated with a given area.  
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C3. The ratio of frail population (e.g., children and older adults).  

C4. The time difference between the present time and the last delivery.  

C5. The damage condition of area. This value lies within 1 to 10.  

Note that each criteria j is in different scales. For instance, C3 (i.e, j= 3) is ratio type data and C5 

(i.e., j = 5) is an ordinal data (i.e., Likert scale). Let, 
'

ijP is the value of criteria j for DA i. 

Therefore, 
'

ijP  are normalized as 
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(5-12) 

 

Where, pij = the normalized value of criteria j for DA i 

thus, an assessment matrix for this problem can be obtained as 

Next, each criteria weight in Eq. (5-13) can be measured by the entropy value ej (Deng et al., 2000) 

as 
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i
ijijj ppkH
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(5-14) 

Here 
n

k
ln

1
  is a constant. This ensures that 10  jH . 

The degree of divergence (gj) of the average intrinsic information contained by each criterion is 

calculated as 

Hg jj 1  (5-15) 

and The criteria weight (kj) for each criterion is thus given by 
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After determining the rating of each criterion, the next step is to aggregate rating to produce an 

overall relief-urgency for each zone. This aggregation process is based on the positive ideal solution (A
+
) 

and the negative ideal solution (A
-
), which are defined, respectively, as 
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The members of vector A
+ 

are the positive ideal values of each criterion and the members of the 

vector A
-
 are the negative ideal values of each criterion. Therefore, the lengths of vector A

+
 and A

-
 are 

equal to total number of criterions. Equations (5-13), (5-17), and (5-18) show that the weighted Euclidean 

distance between Ai and A
+
, and between Ai and A

-
 are calculated, respectively, as  
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Therefore, the overall relief urgency of each zone can be computed by 
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A larger index value indicates a more urgent zone. 

In step (2.5), the COA creates a joint evaluation matrix after incorporating information of the AOA 

and the CAA. The aid organization and carrier both adopt the weighted sum method (Zadeh, 1963) after 

incorporating the urgency of relief for each demand agent.  

}0  },)1()1({minmax{ 21
,,

rktrkii
kri

t ycwfswZ    (5-22) 

where 121 ww  
(5-23) 
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Eq. (5-22) combines the objectives of the aid organization and the carrier. w1 and w2 are weight 

factors. Generally, w1 > w2, which indicates a relatively high penalty cost. If w1 = w2, then the carrier is 

reluctant to consider the victim’s suffering. If w1 < w2, then the carrier agent exhibits opportunistic 

behavior. In the  

special case of w2 = 0, the carrier provides voluntary transport to support aid organizations. Finally, 

f is the penalty cost for relief item shortage.  

Table 5-1: Pseudo-code of the decomposition approach (Modified from Lin et al., 2011) 

a. Randomly select a demand point that is not included in any group 

b. Find the nearest demand point (not currently included in any group) to the last assigned 

demand point in the group, and repeat the process until the predefined number of demand 

points in a group is met or there is now ungrouped demand point left. 

c. Find the average distance of the group member from tertiary hub, put the new group to 

lowest distance tertiary hub (Jh) 

d. IF there is a demand point that does not belong to any group, Go to step a 

e. Else equally assign a number of vehicles Lh to each group Hh , where H = {1, … , h} is 

the collection of groups   
h

h vehicletotalL  and qpJJ qp   . The original 

problem has now been decomposed into g  sub-problems with assigned demand points and 

vehicles, respectively and each sub-problem is labeled as SPh 

f. For each sub-problem SPh, all feasible tours are enumerated and constructed using the 

shortest time principal. 

g. For each sub-problem, construct the mathematical model based on Lh , Jh and the 

corresponding demand demand points in the sub-problem; Solve SPh by a solver and get 

the objective value zh and the total objective value 
h

hall zz . If (iteration) i= 0 , set the 

best total objective value allall zz *
  

h. Find a pair of groups (p, q) that has the minimum and maximum objective value, 

respectively.  

i. IF 2pL , then remove a random number of vehicle v from Lp where 11  pLv  and 

assign to Lq 

j. Go to step f, update zp , zq, and zall. 

k. IF 
*
all

i
all zz   update 

i
allall zz *

, Go to step f 

l. ELSE set 1 ii  

m. IF ii   Go to step a 

n. ELSE find the next maximum objective value group, stop and exit. 
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The COA then deploys the fleet to the DA. This deployment can happen in different ways, and this 

study presents a comparison of the two deployment methods. The first is the enumeration method, and the 

second is the decomposition-type approach. The enumeration approach is popular for benchmarking the 

effectiveness of the proposed approach. It appears in numerous research papers (Aykin, 1995; Yu and 

Egbelu, 2008). Other approaches for this task include random demand points, Drop solution, Drop and 

interchange solution (Akin, 1995). 

In this study, the enumeration approach is a simple myopic approach and the value of w1 is zero. In 

other words, this approach generates a DA hierarchy based on the distance from the nearest tertiary hub, 

and deploys the fleet to the nearest DA that requires relief. However, not all fleet can go to particular DA 

since fleet cannot deliver more relief than the requirement in DA. Besides, the satisfaction rate (si) 

changes after decision on deployment of fleet to DA (i.e, before arrival of fleet at DA). Thus, urgency 

index (μi) is changed after each decision of deployment. The following discussion presents the 

decomposition algorithm used in this study. 

First, the decomposition approach decomposes the entire problem into several sub-problems by 

forming a group of demand points with a pre-defined maximum number of demand points per group. This 

approach allocates fleets to different sub-groups to maximize the benefit from available resources. It is 

reasonable to assume that the number of fleet vehicles is greater than the number of tertiary hubs. 

Therefore, a portion of the fleet is assigned to each sub-problem. The proposed approach is described in 

Table 5-1. Levels a – d of the algorithm decompose the original problem into several sub-problems. In 

other words, these steps categorize the demand points in several sub-groups. The number of sub-group is 

identical to the number of tertiary hub. Each sub-group of demand point is assigned to particular tertiary 

hub according to the rule of the algorithm. In Level e, the fleet is distributed among the sub-problem (i.e., 

tertiary hub). At the first iteration, fleet is allocated evenly to each sub-problem. The objective values of 

sub-problems and overall objective values are obtained in Level g. Levels f – n aims to improve the 

solution by adjusting the vehicle assignments among groups. 

If the fleet carries more load than demand in target area, it visits another demand point after 

delivering the initial target demand point. In step (2.6), after distributing all relief, the fleet returns to the 

tertiary hub. 
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5.4.2. Phases 3 to 7: 

Phase (3) is a logical condition in which the COA checks the work status. Phase (4) is performed 

once in each cycle, and is an evaluation of the efforts. In step (4.1), the SA calculates the difference 

between the requested and supplied relief. 

 In step (4.2), the value of the relief effort is calculated. Holguin-Veras et al. (2010) propose a 

methodology of calculating the deprivation cost that assumes that the deprivation cost increases with a 

late delivery. 

etnt t
iidc )()()(    (5-24) 

We propose new formulation for deprivation cost after incorporation of relief urgency index. 

etnt t
iiidc )()()(    (5-25) 

If there are two strategies for relief distribution, say strategy 1 and strategy 2, and they generate 

deprivation cost dci1 and dci2 respectively. Then, the social benefit is 

 Similarly, this study presents a hypothesis that the benefit of relief decreases if delivery is late, and 

this benefit reduction rate increases exponential with late delivery. This formulation incorporates the 

relief urgency. Thus, the social benefit is 

)()()( 21 tdctdct iiiSB   (5-26) 

where 

dci = deprivation cost 

ni = shortage of relief 

△t = time gap between two deliveries,  

ω, ξ = parameter 

The following equation provides the acknowledgement value 
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(5-27) 

In Phase (5), the COA suggests that the AOA should change the fleet composition to minimize the 

deprivation cost. The operation terminates after meeting all demands or meeting stopping criteria.  

In Phase (6), the model checks the termination criteria. If termination criteria are satisfied, the 

mission ends in Phase (7). 
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5.5. EMPIRICAL ANALYSIS 

The ABM adopted in this study is implemented in open-source tool NetLogo that utilizes integrated 

development environment (IDE) for implementation of model environment. The NetLogo is developed by 

North Western University (available on http://ccl.northwestern.edu/netlogo/). In the proposed model, 

several optimization sub-models are included. The optimization is solved by another open-source tool R. 

Here, ‘RNetLogo’ package is used to connect two open-source tools. The ABM was tested on an Intel (R) 

Core (TM) i3-3220 PC operating at 3.30 GHz. The following section describes the test concept and the 

results. 

5.5.1. Case Study  

The 'Great East Japan Earthquake' destroyed an untold number of roads and buildings. The most 

severely affected prefectures were Fukushima, Miyagi, and Iwate, which had pre-disaster populations of 

2.35 million, 1.33 million, and 2.03 million, respectively. In this case study, we collected data for five of 

the most-affected cities in these three prefectures. Miyagi prefecture lost 3.11% of its population (10,739 

victims) to the disaster. Iwate prefecture had fewer fatalities, but lost 4.35% of its population. Fukushima  

Table 5-2: Features in five cities of three prefectures 

Prefecture City 
victims in 

shelter 
%Fatalities  frail people 

Density 

(people per 

km
2
) 

Fukushima 

(hub1) 

Iwaki  (A1) 341983 0.1 0.065 270 

Namie-machi (A2 ) 18866 0.97 0.065 99 

Minamisoma(A 3) 69171 1 0.065 170 

Soma (A4 ) 37843 1.21 0.0658 190 

Shinchi-machi (A5 ) 7141 1.58 0.0658 191.3 

Miyagi 

(hub 2) 

Natori( A 6) 69311 1.47 0.06 727 

Higashimatsushima (A7 ) 35522 3.32 0.060 420 

Ishinomaki (A 8) 160835 3.65 0.060 295 

Minami-sanriku (A9 ) 16294 2.3 0.060 120 

Kesennuma (A10 ) 63841 7.4 0.060 220 

Iwate 

(hub3) 

Rikuzentakata (A 11) 21262 10.03 0.067 100 

Kamaichi  (A12 ) 41360 3.03 0.067 92.9 

Otsuchi (A13 ) 13811 11.63 0.067 83 

Yamada-machi (A14 ) 16959 4.98 0.067 77 

Miyako (A 15) 57406 1.34 0.067 46 
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had a much smaller number of fatalities (Vervaeck et al., 2011; Holguín-Veras et al., 2012). Table 5-2 

shows the victims in shelters, fatalities, frail population, and density for the five most-affected cities in 

each prefecture. Victims-in-shelters and %fatalities are post-disaster data. In contrast, frail population and 

density are pre-disaster data. The NetLogo computes the transportation time from tertiary hub to demand 

point internally. The demand point keeps the record of each delivery time. In the TOPSIS method, time of 

last delivery that is a dynamic parameter, is a criterion for computation of urgency index. In this analysis, 

the 15 shelters are the demand points. For the network setting, three tertiary hubs were placed in three 

prefectural offices. Fleet compositions of 9, 12, 15, 18, 21, 24, and 27 were used. The parameter value for 

Eq. (5-6) a1 is 3, and the standard deviation is assumed to be 10. 

Table 5-3: Summary of parameters 

Parameter setting 

Hourly demand 0.125 

Upper bound of two delivery )(L  
24 h 

Lead time (L) 6 h 

z1-α 1.95 

Vehicle capacity 1600 unit  

Planning periods 2 days 

Working hours 10 h 

Fleet operation cost .79 $ / km 

Penalty cost ω = 1.63  

ξ = 0.00002 

5.5.2. Results 

This case study was analyzed using the decomposition approach and the enumeration approach. The 

decomposition approach employs Eq. (5-22) as an objective function in step 2.5 of the simulation flow 

stated in Figure 5-6. In the decomposition approach, w1 and w2 are assumed identical value (i.e., 0.5). On 

the other hand, the enumeration approach employs Eq. (5-3).  

Table 5-4 represents the result of the TOPSIS method for calculating the hierarchy of each demand 

point in terms of relief urgency. Here, A1 to A15 represent cities in three prefectures. Among them, A8 

(Ishinomaki) is the most urgent demand point and A5 (Shinchi-machi) is the least urgent demand point at 

Day 0. In the case of relief shortage and no transport capacity limitation, the AOA serves the demand 

points sequentially, starting from A8. However, the urgency index of each demand point changes with 

time. It is interesting to see that there is no dominating parameter. All parameters are treated in 
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simultaneously. At Day 0, Criterion 5 in the TOPSIS method (i.e., the time difference between the present 

time and the last delivery) is equal for all points. The hierarchy of demand points changes after each 

delivery 

The average deprivation cost of the complete planning period was calculated to compare the two 

deployment methods, and Table 5-5 presents the results. The decomposition approach dominates the 

enumeration approach for all fleet compositions. This model generates routes and allocates the fleet to 

deliver relief to all demand points. If one demand point does not receive relief for two consecutive days, 

the deprivation cost increases exponentially. In the decomposition approach, the fleet visits each point at 

least once per day, whereas in the enumeration approach, the fleet distributes relief to closer demand 

points and other demand points are left un-served. 

Table 5-4: Relief urgency index for demand points at Day 0 

id A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 

μ (X10
-2

) 
4.5 9.5 4.0 3.7 2.8 9.1 8.1 12.5 6.1 10.0 10.1 4.4 7.9 4.4 3.1 

Table 5-5: Fleet allocation for various hubs to minimize the deprivation cost 

Total fleet number 
Allocation of fleet  avg. deprivation cost 

Hub 1 Hub 2 Hub 3 Decomposition approach  Enumeration approach  

9 3 4 2 36.37 5127.73 

 2 5 2 72.74 5127.73 

12 3 5 4 24.22 4766.33 

 3 4 5 25.36 4766.33 

15 4 7 4 15.58 3694.11 

 5 6 4 26.95 3694.11 

18 5 7 6 27.25 3058.67 

 6 6 6 26.83 3058.67 

21 7 7 7 25.62 2676.64 

 6 10 5 25.787 2676.64 

24 6 10 8 25.80 1331.81 

 8 10 6 26.15 1331.81 

27 7 13 7 15.82 1384.37 

 8 12 7 27.92 1384.37 
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We compute shortage of relief in each method. The relief shortage depends on the available capacity 

of the fleet. This is directly plausible because HL fleet management assumes that all vehicles operate with 

full truck loads under operational time constraints. Figure 5-7 and Figure 5-8 show the changes in total 

shortage and transportation cost as the fleet volume changes in enumeration and in decomposition 

approach respectively. According to both Figures, the relief shortage decreases linearly as the fleet 

volume increases. This implies that the fleet maximizes its utilization capacity. The fleet moves from one 

demand point to another demand point until it delivers all carrying relief. This system is in line with the 

model proposed by Ozdamer et al. (2004), in which the fleet gets a call from its last position rather then 

returning to depot to get a new order. In contrast, the transportation cost changes every operational day in 

decomposition approach and remains unchanged in enumeration approach. This implies that the fleet 

must run longer distances to meet the demands of the most urgent demand points in decomposition 

approach. This proves that the urgency index has an effect on the selection of the target demand points. 

This study employs a linear cost function of distance for transportation cost. Therefore, it is natural that 

an increase in resources would lead to a higher transportation cost and a lower deprivation cost. We 

successfully simulate this phenomenon in the virtual world to analyze the effects of transportation 

measures The enumeration approach and the decomposition approach produce the same total relief 

shortage.  

To compare the effects of urgency-based relief distribution, we must compute the acknowledgement 

value. The benefit is computed based on the difference between the deprivation costs of the enumeration 

approach and decomposition approach. The denominator in Eq. (5-27) is computed by the transport cost 

differences between the enumeration and decomposition approach. The formula is shown in Eq. (5-28): 

 

According to Figure 5-9, the acknowledgement values decreases exponentially as fleet number 

increases from 9 to 12, 15, 18, 21, 24, and 27. This implies that the decomposition approach is more 

effective when resources are limited. The decomposition approach and the enumeration approach both 

generate identical benefit if there are sufficient resources, and the acknowledgement value is similar to he 

benefit-cost ratio computation 
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Finally, all agents follow their own preferences in attempting to maximize their own objectives. The 

aid organization agent aims to minimize the differences among various demand points. On the other hand, 

the carrier agent wants to deliver in shorter distances. The coordinator agent finally reaches a solution for 

both parties. Table 5-5 shows the combined effects of each agent’s preferences observed through changes 

in deprivation cost. The demand agent strives to obtain more relief, whereas the social agent evaluates the 

efforts of the aid organization based on relief urgency.  

 

Figure 5-7: Change of transportation cost and shortage in enumeration approach 

 

Figure 5-8: Change of transportation cost and shortage in decomposition approach 
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. 

5.6. MODEL COMPARISONS AND EXTENSION 

The ABM presented in this chapter has several benefits over other models, particularly over linear 

programming (LP) model. One distinctive benefit is the capability in changing the parameter value in 

dynamic environment. Generally a linear programming is static in nature and provides optimal results. To 

facilitate the changing of parameter values, dynamic linear programming becomes popular. However, 

ABM provides better flexibility and functionality than dynamic linear programming.  

A similar approach of ABM is game theory that is based on rational choice theory. According to 

Von Neumann and Morgenstern (1944), there are two problems in game theory. First, there is ample 

psychological evidence that rational choice theory are at odds with reality. Second, rational choice theory 

relies on objective probabilities for decision making when in reality decisions are made within complex 

and changing environments where objective probabilities are unobtainable. On the other hand, rule of 

thumb and bounded rationality are easily accommodated in ABM. 

In the proposed ABM, coordinator is assumed to have enormous power and to be smart enough to 

make sound decisions. However, reality does not preserve such situations. The coordinator, as a human 

being, is also susceptible human errors and manipulation for the sake of particular interests. In 

mathematic term, smartness (i.e. ability of neutral decisions) of coordinator need to be modeled before 

implementing the model in practice. Another interesting extension would be incorporation of transport 

 

Figure 5-9: Change of Acknowledgement 
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network uncertainty or congestion. Congestion can be occurred due to general car users who want to 

access the affected area or want to go out from affected area. Such phenomenon creates delay in relief 

distribution. In the case study, transportation capacity is introduced by limiting the number of fleet. 

However, in reality, destruction of road infrastructure prohibits to distribute relief. In this case, relief need 

to be distributed to some places that are not posited in top rank of relief urgency.  The model can be 

extended in following avenue 

 Formulation of agent based model for in imperfect information 

 Cooperation strategies of different stakeholders in relief logistics 

 Predicting stakeholders behavior in emergency 

5.7.  SUMMARY 

A simulation model can be used to help emergency logistics decision-makers for better understand 

the dynamics of an emergency response situation. A decision-maker wants to maximum utilization of 

resources. The ABM is a good tool for analyzing the effects of resource allocation. This approach is much 

less risky than actually waiting for another disaster to happen and then test the model in a real-life 

situation. This model allows actors to investigate the effects of transport measures and to understand the 

mechanisms of demand management in a dynamic environment. 

Relief distribution aims to maximize the overall social benefit. To solve this problem of integrated 

transport operation and demand point selection, the proposed ABM includes five types of agents: aid 

organization agent, carrier agent, demand agent, society agent, and coordinator agent. The ABM focuses 

on dynamic environment after earthquake, rather than uncertainty, rather uncertainties are incorporated in 

estimating demand. Relief demand calculation is adopted from Sheu (2010). In this model, demand 

equation contains standard deviation of demand to represent uncertainty.  

The ABM was tested using data obtained from the Great East Japan Earthquake. This study shows 

the benefits of an alternative relief distribution method, examines the effects of resource allocation, and 

analyzes the improvement strategies of relief distribution from a more strategic viewpoint. The results of 

this analysis lead to the following conclusions: 

 TOPSIS uses both qualitative and quantitative parameters to compute relief urgency. This method 

helps determine effective resource allocation. 
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 The decomposition approach generates more social benefit because it considers relief urgency in 

a relief allocation situation. 

 The fleet allocation strategy greatly affects relief distribution. The proposed model demonstrates 

the fleet allocation. The enumeration approach generates benefits for victims staying near the 

depot.  

 The decomposition approach helps achieve higher social benefits. 



92 

 

Chapter One 

1. INTRODUCTION 

Chapter Two 

2. LITERATURE REVIEW 

  Chapter Three 

3. RELIEF POSITIONING IN PREPAREDNESS 

Chapter Four 

4. RELIEF ORDERING IN RESPONSE 

Chapter Five 

5. RELIEF ALLOCATION IN RESPONSE 

 

 

 

 

 

 

 

 

 

 



93 

 

 

This page is left blank intentionally  



116 

 

Chapter Six 

6. CONCLUSIONS 

Disasters are always coupled with a series of negative consequences. For example, a large number 

of people displaced from their living places. Moreover, food and water shortage are common 

consequences after large-scale disaster. The uncertainties in relief distribution are analyzed throughout the 

dissertation. This chapter summarizes the vital findings in this study. Most importantly, the implication 

and application of this study are emphasized in the succeeding sections of this chapter. Finally, 

recommend some potential extensions of this study. 

6.1. SUMMARY OF FINDINGS 

This study has addressed some empirical issues in understanding the uncertainty in humanitarian 

logistics. The general objective of this study was to construct robust response strategies. This is done by 

incorporating the uncertainty in pre-disaster conditions and post-disaster conditions. In the case pre-

disaster conditions are presented in Chapter 3 while post-disaster conditions are presented in Chapter 4 

and 5. Besides, Chapter 2 presents the overall scenarios of disasters. 

At first I explore the concept of disaster management in Chapter 2. There are four stages in disaster 

management: Mitigation, Preparation, Response and Recovery. HL encompass Preparation, Response and 

Recovery. I have analyzed and identified the causes of response delay among the three stages. After that I 

categorize the uncertainty in HL  and analyze decision making strategies in uncertain environment. 

At the beginning of the analysis in Chapter 3, I proposed a model for humanitarian depot for 

multinational, represented by Asia-Oceania region. In this model, I demonstrate how location affect the 

victims and service level. Most importantly, I used a metric, named mean distance per capita. After that 

supply uncertainty and demand uncertainty are introduced in the IPSC model. It shows that the expected 

cost in stochastic model is lower than that in deterministic model. The IPSC model incorporate 

deviational cost and the results shows that the model is robust.  

After developing the network, I focus on post-disaster situations. I propose a model for bringing 

relief from humanitarian depot to LDC in Chapter 4. The major contribution of this chapter is that the 

model is closed form, despite the model incorporate two random parameters. Besides, I propose model for 

computing expected time cycle and expected inventory level in each cycle. This model is easy to apply 
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since decision maker does not require large data base. Local experience and some observational data can 

be used to realize the PDF for random parameters.   

After establishing network and bringing relief in LDC, I introduce an ABM in Chapter 5. I explore 

objectives and activities of stakeholders in HL. The ABM is optimization based simulation. Each 

stakeholder aims to maximize own objective under certain constraints. I also propose a modified 

decomposition approach for comparing the result with the enumeration approach. The shows that 

modified decomposition approach generate less deprivation cost compare to enumeration approach. 

  The key summary of the findings are outlined in the following paragraphs. 

6.1.1. Objective 1: Causes of poor performance 

I investigated response strategies in past disasters and identified eleven major reasons of response 

delay. It shows that the decision making process of concerned organizations (i.e., FEMA) is the main 

reason for response delay within a country. Multi layers of decision makers, fear of criticism, and 

shortsighted policy bias are the example of ineffective decision making process of concerned 

organizations. Secondly, hesitation of accepting foreign aid creates delay in response. Visa and other 

document processing takes longer time. Moreover, intervention of government during relief distribution 

created difficulties. Third, the ignorance of humanitarian logistics also makes response delay. There are 

lot of provisions of improving response strategies by strengthening humanitarian logistics. 

6.1.2. Objective 2-1: Deterministic network model 

Relief chain is complex and comprises of several stages. I explore the activities and stages of 

international relief chain. I show that some activities in chain can be dissolved by taking some initiatives. 

After that, I modify the relief chain to formulate p-median model for locating humanitarian depots for 

storing relief. This model proposes a metric, named mean distance per capita. After that this model is 

extended to analyze two situations: (1) status quo (i.e., including the UNHRD) and (2) free form. This 

model assumes that ‘total affected people’ (defined by EMDAT) represents demand for relief. The p-

median model is applied for analyzing the effect of relief prepositioning for Asia-Oceania region that 

faces 60% of total disasters. Since different countries in this zone encounter different disasters, I include 

meteorological disaster (i.e., storm) and geophysical disaster (i.e., disaster) for estimating relief demand. 

The mean distance per capita in free form analysis for single location is 1132 km/capita while that in 

status quo for single location is 4110 km/capita. This analysis shows the current location of UNHRD is 

not optimally located for Asia-Oceania region. However, Asia-Oceania region requires more than one 
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humanitarian depot for gaining the service level of 500 km per capita. Finally, three locations are 

suggested for free form. These are China, India and Indonesia. The service level is improved with the 

addition of humanitarian depot. The sensitivity of network extension shows the trend of diminishing 

return on positions after new humanitarian depot.  

6.1.3. Objective 2-2: Stochastic network model 

Decision maker encounters several uncertain parameters in designing logistics network. I proposes 

two stage linear optimization model for supply and demand. The first stage decisions are location of RDC 

and quantity of relief item. Then, the second stage decisions are procurement of relief and other 

operational variables. The model contains several constraints: balance constraint of inflow and outflow of 

relief, RDC locational constraint, capacity constraints and other relevant constraints. The model tackles 

deviation cost variability that are generated from balance constraint and scenario differences.  

Deterministic model is easy to solve and highly sensitive to parameter changes. On the other hand, 

stochastic model is superior over deterministic model in terms of rational decision. Stochastic model is 

difficult to solve and requires sufficient amount of data. The IPSC model showed that decision maker 

could save 0.34 million dollar by adopting stochastic model over deterministic model. 

6.1.4. Objective 3-1: Effect of uncertainty in relief ordering 

I explore differences in inventory management between commercial logistics and humanitarian 

logistics. I observe that aid-organizations bring large volume of relief at once. As a result port of entry 

becomes congested that creates long waiting time at port of entry. It motivates to proposes inventory 

model for HL. Researchers encounter difficulties in finding closed form formula for the combination of 

stochastic parameter lead-time and demand. I propose a model for computing reorder level and reorder 

quantity in the condition of random lead-time and demand. The model also calculates CDF for LTD and 

expected shortage in particular reorder level. Finally, I found a closed form formula for random lead-time 

and demand. The case study shows that expected cost and reorder quantity are sensitive to cost 

parameters (i.e., shortage cost, ordering cost, and holding cost). However, the expected cost and reorder 

quantity converge to zero at the reorder level 1,241 units. The results meet my expectation that the reorder 

level must be higher than the mean LTD for inventory management in HL.  

6.1.5. Objective 3-2: Relief operational model 

After developing HL network and bringing relief at RDC, the decision maker faces difficulties in 

relief allocation. This issue is complicated and requires to integrate socio-economic characteristics of 
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victims for making decision on relief allocation. I propose an ABM for relief allocation among victims. I 

explore the ontology of stakeholders in HL. I observe that aid organization and carrier have seemingly 

different objective. By introducing a coordinator, ABM combined all stakeholders to generate optimum 

solution. In the case study, TOPSIS method is used to generate hierarchy among victims. It shows that 

Ishinomaki region was the top in relief urgency (at day 0) after the Great East Japan earthquake. The 

model shows that transportation cost and social satisfaction will be increased in urgency based (i.e., 

decomposition approach) relief allocation. Finally acknowledgement for relief effort is calculated. It 

shows that relief effort generate similar acknowledgement if there are sufficient resources.      

6.2.  POLICY RECOMMENDATION 

This study recommends following recommendation for relief response improvement based on the 

findings:  

 Strengthening humanitarian depot network 

Aid organizations need to expand the humanitarian depots in Asia-Oceania region for delivering 

relief to victims aftermath of disasters. Asia-Oceania region host more that 60% of world population and 

bears more than 60% of total disasters. The death rate and total affected people per disaster is the highest 

in this region. This region hosts a UNHRD at Malaysia. This study highly recommends establishing 

additional humanitarian depots in this region. 

 Reducing vulnerability in Oceania 

Oceania consists of hundreds of small islands. Aid organizations need to provide special 

consideration (i.e., relief prepositioning) for Oceania regions since those islands has few number of 

people but are highly vulnerable to meteorological disasters. A humanitarian depot in Australia can 

reduce delay in accessing Oceania. 

 Procurement before disaster 

Aid organizations must not rely on post disaster procurement of all relief items. Disaster also affect 

supplier capacity, therefore aid organizations cannot procure sufficient amount of relief aftermath of 

disaster. The tradeoff between pre- and post-disaster cost helps making decisions on procurements.  

 Data collection and gathering 

It is necessary to build practice of keeping relief operation data of each disaster and transfer the 

knowledge of relief operation for future disasters. 
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 Avoid congestion at POE 

Aid organizations bring a large volume of relief items at once at POE. Aid organization should have 

inventory planning for avoiding congestion at POE and transportation. 

 Urgency based relief allocation 

Aid organizations must stop ad-hoc basis relief distribution. Aid organizations should use urgency 

based relief allocation. Since urgency index is the aggregation of several factors, it can reduce social 

injustice in relief allocation. 

 High value on social benefit 

Humanitarian logistics aims to maximizing social benefit. Even though, transportation cost 

increases to deliver relief to remote people, aid organization must attempt to reach those victims. 

The above mentioned policies can improve the relief response strategies.  

6.3.  POTENTIAL APPLICATION OF THE STUDY 

This study has various potential applications in terms of its proposed model. Some example are 

given in the following areas:  

 Network expansion: Disaster strikes suddenly all over the world. Since Asia-Oceania 

regions faces 60% of all disasters, WFP has planned to extend UNHRD network to respond 

in Asia region. It is important to consider existing network for network expansion. In this 

regard, the IPMC model is applicable for WFP. Further, other aid organizations (for 

example CARE, World vision) also aims for build logistical network for strengthening 

relief operation. In this regards, IPSC model can be suitable model for them.  

 Procurement: Fleet contract or transport procurement is essential for operating smooth 

flow of relief. The ABM can be good model for formulating fleet contract. The decision 

maker can analyze the each stakeholders objective and characteristics.  

 Fund allocation: I use TOPSIS method for making hierarchy among victims. This model 

has potential to make ranking among provinces or among countries. For example, Indian 

Ocean tsunami (2004) damages many countries in Asia. It was difficult to allocate for donor 

in chaotic environment. TOPSIS method can be used to make hierarchy among countries 

for allocating fund. 
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 Logistics evaluation: The ABM can also be used for logistics service evaluation in 

commercial logistics and humanitarian logistics. I proposes ‘acknowledgement’ for 

evaluating humanitarian logistics. A similar term can be used for evaluating commercial 

logistics. 

For the moment, these are the potential applications that this study is most likely oriented to. There 

may be other applications that this study is of practical applications but as far as this study is concerned 

the above mentioned are the most approximate.   

6.4. FUTURE SCOPE 

Although the findings of the study are enriching and useful, there are also new interesting areas to 

explore further study, here are the following.  

 Field survey:  

One of the limitations of the study is the consideration of secondary source data that could be 

augmented into bigger set of field survey data in the future endeavors of the study. Hence, a field survey 

is recommended for the future work. 

 Improving the IPSC model considering other factors 

The IPSC model has several further potential improvement points. I have considered supplier 

capacity reduction due to network disruption. In the IPSC model, network uncertainty is not considered 

explicitly. Some link of transport network may be damaged fully by disaster. And some links may be 

partially damaged. However, the incorporation of network uncertainty is highly data intensive formulation. 

And the model becomes large scale. Therefore, a solution algorithm is also required.  

 Application of the IPSC model for large network 

I apply the IPSC model for small network and for only four scenarios. It will be interesting to apply 

the model for large network. Since the current open source software has capacity limitation, it is 

important to make an algorithm for solving large network. It is expected that new algorithm may also 

increase the efficiency of the model. 

 Exigent order for relief ordering model 

I introduce exigent order in the system description of relief ordering model and solve the model for 

avoiding exigent ordering. An interesting extension of the relief-ordering model will be the incorporation 
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of exigent ordering. This system is a risky system where aid organization makes the tradeoff between 

opportunity cost and penalty cost.  

 Examining ABM for relief constraint and fleet contract 

I apply the ABM for allocating fleet in different demand points. The model assumes that RDC has 

sufficient relief item. An extension of this model can be after introducing relief item shortage. This 

problem can be modeled after introducing a constraint for AOA. However, the model has high potential 

for examining fleet contract policy for fleet operation after disaster. 

 Other activities of relief operation 

This study primarily deals with relief prepositioning and distribution. Other logistics activities that 

affect relief distribution might be good area for further study, for example, procurement of relief item, 

convergence of donation goods and transport mode selection.  
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Appendix 1 

Parameter of ωs : 

Li (1996) proposed a model for minimizing deviation cost. The overall purpose of this model is to 

minimize the deviations between the achievement of the goals (in this paper scenario) and their aspiration 

levels. 
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where  

)(xfs = linear function of the s th scenario 

   sg = aspiration level of the s th scenario 

after introducing the artificial variable in Problem (P1) and using big M method 
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observing the constraint (b) in (P1) 
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substituting the constraint (i) in objective function and constraints, denoting as  the equivalent 

formulation of (P2) is 

(P3) 
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Thus, the parameter ωs is “2”.  


