
論文 / 著書情報
Article / Book Information

題目(和文) 大規模映像資源のための高速・高性能なセマンティックインデクシン
グ

Title(English) Efficient and Effective Semantic Indexing for Large-Scale Video
Resources

著者(和文) 井上中順

Author(English) Nakamasa Inoue

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第9552号,
 授与年月日:2014年3月26日,
 学位の種別:課程博士,
 審査員:篠田　浩一,佐藤　泰介,徳永　健伸,村田　剛志,杉山　将

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9552号,
 Conferred date:2014/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Efficient and Effective Semantic
Indexing for Large-Scale Video

Resources

Nakamasa Inoue

Supervised by Professor Koichi Shinoda

Department of Computer Science
Graduate School of Information Science and Engineering

Tokyo Institute of Technology

Dissertation submitted to the Tokyo Institute of Technology for the degree

of Doctor of Engineering

Feb. 2014

i

Abstract

Video semantic indexing aims to assign semantic concepts to a video seg-

ment and is one of the fundamental and important problems in computer

vision. In this study, we propose an efficient and effective semantic index-

ing system, which extends the bag-of-visual-words system to a probabilistic

framework using a Gaussian mixture model (GMM). To improve the mod-

eling accuracy, we introduce a q-Gaussian mixture model, which controls

the tail-heaviness of the GMM. To improve the speed of the system, we

propose two complementary techniques: fast parameter estimation using a

tree-structured GMM and Neighbor-to-Neighbor (NTN) search.

We evaluated our system on the TRECVID video benchmark. We achieved

Mean Average Precision of 0.321, while the computational cost of parameter

estimation is reduced by 76.2%.

ii

Acknowledgments

I would like to express my sincerest thanks and gratitude to my advisor

Professor Koichi Shinoda for his support during my study at Tokyo Institute

of Technology.

I would like to express my gratitude to Professor Sadaoki Furui and As-

sociate Professor Takahiro Shinozaki for their support and kind help in my

research. I would also like to thank every member of the Shinoda Laboratory

for their help and discussion.

I would like to extend my appreciation to my thesis committee for their

advices and comments: Professor Taisuke Sato, Professor Takenobu Toku-

naga, Professor Tsuyoshi Murata, and Professor Masashi Sugiyama.

Last but not least, I would like to thank my family for all their support

through this study at Tokyo Institute of Technology.

Contents

1 Introduction 1

2 Semantic Indexing 4
2.1 Low-Level Feature Extraction 4

2.2 Modeling . 6

2.3 Detection . 8

3 Multi-Modal Semantic Indexing 9
3.1 Overview . 9

3.2 Feature Extraction . 10

3.2.1 Visual Features . 10

3.2.2 Audio Features . 14

3.3 Detection Methods . 15

3.3.1 Log-Likelihood Ratio 15

3.3.2 GMM Supervector SVM 18

3.4 Experiments . 23

3.4.1 Experimental Conditions 23

3.4.2 Detection Accuracy . 23

3.4.3 Multi-frame Feature Extraction 24

3.4.4 Error Analysis . 24

3.4.5 Comparison with Other Methods 28

3.5 Conclusion . 35

4 Tree-structured Gaussian Mixture Models 36
4.1 Overview . 36

4.2 Tree-structured GMMs . 36

4.3 Fast MAP Adaptation . 41

iii

CONTENTS iv

4.4 Experiments . 43

4.4.1 Database and Task . 43

4.4.2 Experimental Conditions 44

4.4.3 Results . 45

4.5 Conclusion . 52

5 q-Gaussian Mixture Models 54
5.1 Overview . 54

5.2 q-Gaussian Mixture Models 55

5.3 Training q-GMM for a Background Model 57

5.4 q-GMM for histogram-based image representation 59

5.5 q-GMM Kernel . 61

5.6 Experiments . 62

5.6.1 Experimental Conditions 62

5.6.2 Experimental Results 64

5.7 Conclusion . 71

6 Neighbor-To-Neighbor Search 72
6.1 Overview . 72

6.2 Neighbor-To-Neighbor (NTN) Search for Vector Quantization 73

6.2.1 Outline . 73

6.2.2 Algorithm . 75

6.2.3 The parameter δ . 76

6.3 NTN Search for Gaussian Mixture Models 77

6.4 Experimental evaluation . 80

6.4.1 Experimental setup . 80

6.4.2 Experimental Results 82

6.5 Conclusion . 90

7 Conclusion and Future Work 91

List of Figures

2.1 The most common framework for semantic indexing: 1) Low-

level features are extracted from video, 2) A Video/Image

representation is extracted, 3) A detection score is calculated. 5

3.1 Overview of our semantic indexing system. Our system con-

sists of three parts: 1) low-level feature extraction, 2) GMM

supervector extraction by using fast MAP adaptation, and 3)

SVM classification. First, visual and audio features are ex-

tracted. Second, GMM parameters are estimated by using

MAP adaptation. Tree-structured GMMs are used to improve

the speed of MAP adaptation. Third, the outputs of SVMs for

the four feature types are fused to compute a final score. . . 10

3.2 Harris corner detector . 11

3.3 SIFT descriptor . 13

3.4 A hyperplane that maximizes the margin. 21

3.5 An example of a kernel trick. Data is not linearly separable in

(a). The data becomes linearly separable in (b) after trans-

forming the input data to a new feature space. 22

3.6 Number of appearances of semantic concepts 24

3.7 Comparison of Mean APs for different schemes. 25

3.8 Mean APs with different numbers of frames. The dotted line

indicates the average number of frames in a shot. 25

3.9 InfAP by semantic concepts on the TRECVID 2011 Semantic

Indexing Dataset. 28

v

LIST OF FIGURES vi

3.10 2D visualization of 4D Average Precisions (APs) for Har-SIFT,

Hes-SIFT, Dense-SIFTH and MFCC. To compare the effective-

ness of each type of feature, the four AP values are normal-

ized so that their sum is one. 29

3.11 Top 25 video shots for “Bus”. Correct shots are marked in red. 30

3.12 Top 25 video shots for “Female Human Face Closeup”. Cor-

rect shots are marked in red. 30

3.13 Top 25 video shots for “Airplane Flying”. Correct shots are

marked in red. 31

3.14 Top 25 video shots for “Running”. Correct shots are marked

in red. 31

3.15 Top 25 video shots for “Cityscape”. Correct shots are marked

in red. 32

3.16 Top 25 video shots for “Mountain”. Correct shots are marked

in red. 32

3.17 Top 25 video shots for “Dark-skinned People”. Correct shots

are marked in red. 33

3.18 Top 25 video shots for “Singing”. Correct shots are marked in

red. 33

3.19 Comparison with other methods on TRECVID 2011. 34

3.20 Comparison with other methods on TRECVID 2012. 34

4.1 An example of a tree-structured GMM T(2,3). 39

4.2 Example video shots for training and testing sets. The top

5 results obtained by using our system (multi-modal fusion)

are shown in the right side of the figure. 46

4.3 Calculation time for each step (The lower bars for each fea-

ture show the time in the case that the optimized tree was

used) . 49

4.4 Mean absolute error (MAE) of cik obtained using different

tree structures (the SIFTH-Dense feature and cTH = 0.001
were used). 1,364 trees of depth at most 5 that have at most

5 children per node and the binary tree are tested. All MAE

were less than 0.05. 50

LIST OF FIGURES vii

4.5 Calculation time obtained using different tree structures (the

SIFTH-Dense feature and cTH = 0.001 were used). 1,364 trees

of depth at most 5 that have at most 5 children per node and

the binary tree are tested. T(3,4,4,5) was the best tree and was

selected as the optimized tree. 51

4.6 Comparison of Mean Inf AP with runs of the TRECVID 2010. . 51

4.7 Results of partial randomization test (p < 0.05). Significant

differences among top 10 runs in TRECVID 2010 and our fu-

sion methods are shown. A black cell shows that there is

significant difference between two methods. 52

5.1 The framework of image and video semantic indexing using

q-Gaussian mixture models. 55

5.2 The q-Gaussian distributions. The (normal) Gaussian distri-

bution is obtained when q = 1. The tail of a q-Gaussian dis-

tribution is longer than that of a Gaussian distribution when

q > 1. 55

5.3 (a): Standardized histogram of the first elements of stan-

dardized SIFT descriptors. 1 million low-level descriptors are

randomly sampled from training data of PASCAL VOC 2010

dataset. (b-1), (b-2): A fitting result by a Gaussian distri-

bution and its residuals. (c-1), (c-2): A fitting result by a

q-Gaussian distribution (q = 1.12) and its residuals. 56

5.4 Assignment hardness h with different q-values. 61

5.5 The performance comparison of q-GMM kernels with differ-

ent q-values on the PASCAL VOC 2010 dataset. The q-GMM

kernel outperforms the GMM baseline (q = 1.00) and the im-

proved Fisher kernel [37] of GMM means. 64

5.6 Mean AP on PASCAL VOC 2010 for different numbers of mix-

ture components for q-GMM kernel. 65

5.7 Mean AP on PASCAL VOC 2010 for different hyper-parameter

τ in maximum a posteriori adaptation for q-GMM kernel. . . . 66

5.8 The performance comparison of q-GMM kernels with differ-

ent q-values on the TRECVID 2010 dataset. 66

LIST OF FIGURES viii

5.9 The performance comparison with othermethods in TRECVID

2010. We achieved 0.071 in Mean AP by using a q-GMM

kernel with SIFT-HueHistogram features and achieved 0.109

with additional 4 types of low-level features. 67

5.10 Examples of detected video shots in TRECVID 2010 dataset.

Top 5 video shots are shown for ten semantic concepts. 67

6.1 Neighbor-to-neighbor (NTN) search. NTN search assigns a

code to an input vector from a neighbor vector to a neighbor

vector. A typical example of a neighbor vector is a descriptor

xj adjacent to a descriptor xj−1 where image descriptors are

densely sampled from an image. The red path on the image

shows the ordering of descriptors. 73

6.2 A histogram of descriptors. Red bars: descriptors that have

the same visual word as a neighbor descriptor. White bars:

all descriptors. SIFT descriptors are extracted from every 4

pixels at 5 scales on the PASCAL VOC 2007 training images.

The codebook size is 512. 61.3% of two adjacent descriptors

have the same visual word. 74

6.3 Algorithm overview. 74

6.4 Distribution of pik and pjk(i < j). Calculation of a Gaus-

sian probability pjk is skipped for k ∈ Uik. 80

6.5 Relative computational cost. Computational cost for each

step of super-vector (SV) coding and Fisher-vector (FV) cod-

ing is reported. The codebook size is 512. Feature extraction:

SIFT descriptors are extracted from every 4 pixels at 5 scales,

Coding: each descriptor is assigned to codeword(s), Pool-

ing: an SV or FV image representation is generated. 85.3%,

56.6%, 88.4%, 65.4% and 64.2% of computational time is oc-

cupied from coding by VQ, NTN-VQ, GMM, NTN-GMM, and

NTN-LM-GMM, respectively. Total computational cost is re-

duced by 66.0%, 66.5% and 85.3% by NTN-VQ, NTN-GMM,

and NTN-LM-GMM, respectively. 82

6.6 Cumulative histogram of δ∗. Statistics of the true δ∗ in

Eq. (6.8) on PASCAL VOC 2007 training images is reported

for NTN-VQ. 84

LIST OF FIGURES ix

6.7 Speed-accuracy trade-off for different values of δ. Trade-

off between assignment time and Mean AP is reported. All

plots are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · , 0.01. VQ: stan-

dard hard vector quantization (VQ), NTN-VQ: neighbor-to-

neighbor (NTN) search for VQ, GMM: standard Gaussian mix-

ture model (GMM),NTN-GMM:NTN search for a GMM,NTN-

LM-GMM: NTN-GMM with the log-max approximation. . . . 85

6.8 Comparison with RAND-VQ. Trade-off between assignment

time andMean AP is reported. NTN-VQ: neighbor-to-neighbor

(NTN) search for VQ, this is the same plot as Figure 6.7, ANN-

VQ: approximate nearest neighbor search [15], RAND-VQ:

NTN-VQ in which a neighbor vector is replaced by a randomly

sampled vector. 86

6.9 Comparison of the accumulated distance and the direct
distance. VQ error rate in NTN-VQ for different values of δ

is reported. All plots are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · 0.01.
Accumulated distance: ∆ij is defined by Eq. (6.6). Direct

distance: ∆ij is replaced by the direct distance ‖xi − xj‖.
Pre-computed direct distance: the direct distance is used but

distance calculations for it are not counted. 87

6.10 The computational cost reduction by NTN-VQ for different
images. Four images (a), (b), (c), and (d) are from PASCAL

VOC 2007. The reduction rate of the assignment cost by NTN-

VQ and ANN-VQ for each image is reported. 88

6.11 Speed-accuracy trade-off for different codebook sizes. Trade-

off between assignment time and Mean AP for codebook sizes

of K = 2048, 1024, 512, · · · , 16. is reported. VQ: standard

hard vector quantization (VQ),NTN-VQ: neighbor-to-neighbor

(NTN) search for VQ δ = 0.20, GMM: standard Gaussian

mixture model (GMM), NTN-GMM: NTN search for a GMM

δ = 0.09, NTN-LM-GMM: NTN-GMM with the log-max ap-

proximation δ = 0.09. 89

List of Tables

3.1 Mean APs for different schemes (K = 512). R denotes a

result of Randomization test (p = 0.05). 26

4.1 The 30 target semantic concepts in the TRECVID 2010 dataset 44

4.2 The average numbers of extracted features. 44

4.3 Resulting inferred average precisions (Inf APs) for each se-

mantic concept and for each method. Mean Inf APs on the

testing set and Mean APs on a two-fold cross-validation split

of the training data are also shown. 47

4.4 Resulting inferred average precisions (Inf APs) for each se-

mantic concept and for each method. Mean Inf APs on the

testing set and Mean APs on a two-fold cross-validation split

of the training data are also shown. 48

4.5 Calculation time (sec) for MAP adaptation. Calculation time

was measured by using a single core of Intel Xeon 2.93 GHz

CPU. 49

4.6 Comparison of Mean Inf AP, calculation time (sec) for MAP

adaptation, number of leaf nodes |VA| and Mean absolute

error (MAE) of cik by using different thresholds cTH for the

SIFTH-Dense feature. 52

5.1 The targeted semantic concepts for PASCAL VOC 2010 and

TRECVID 2010. 63

x

LIST OF TABLES xi

5.2 Performance comparison on PASCAL VOC 2010 dataset. BoW:

bag-of-visual-words histogram representation [3] obtained by

using vector quantization. Our histogram: q-GMM based his-

togram representation in Sec. 5.4 for q = 1.00 (GMM) and

q = 1.05. χ2 kernel: χ2 kernel on q-GMM histogram repre-

sentation. FK: Fisher kernel [36] of a GMM. IFK: improved

Fisher kernel [37]. Our kernel: q-GMM kernel in Sec.5.5 for

q = 1.00 (GMM) and q = 1.05. 68

5.3 Testing cost and Mean AP for each method. K is the number

of mixture components, D is the dimension of low-level de-

scriptor, and N is the averaged number of support vectors of

an SVM. 69

5.4 Average precision (AP) by semantic concepts on TRECVID

2010. Results for GMM, q-GMM (q = 1.05), score fusion of

GMM and q-GMM (q = 1.05), and feature fusion of 5 types of

visual and audio features for q-GMM are reported. 70

6.1 Speed comparison at the fixed accuracy level. VQ: stan-

dard hard vector quantization (VQ), ANN-VQ: approximate

nearest neighbor search [15], NTN-VQ: our neighbor-to-neighbor

(NTN) search for VQ (Alg. 1), GMM: standard Gaussian mix-

ture model (GMM), Tree-GMM: an extension of the hierar-

chical k-means to a GMM framework, NTN-GMM: our NTN

search for a GMM (Alg. 2), NTN-LM-GMM: NTN-GMM with

log-max approximation. δ: a parameter of our NTN methods,

Mean AP: image classification accuracy on the testing set and

the validation set of the VOC 2007 classification challenge.

|E|: the number of distance or probability calculations per

input vector, Time: assignment time in sec, Reduction rate r:

reduction rate of the assignment cost. Note that there are no

statistically significant differences in Mean AP between the

method marked “*” and each other method in the same split

table on randomization test (p < 0.05). 83

Chapter 1

Introduction

Recently, a large amount of video data has been made available through

online archives. For example, over 6 billion hours of video are viewed each

month on YouTube. Since it is often difficult to find relevant video manually

from such archives, an effective video-search system is in demand. Current

search engines require users to develop metadata such as key-words and

a short summarization in text to efficiently locate video in their archives.

However, developing metadata is costly for users so attached metadata is

often too simple and not enough for video-search purposes. Furthermore,

detailed metadata is required for video-segment retrieval aiming at finding

a specific scene or a specific object in video. Video-segment retrieval is still

known to be in a nascent stage [1] and thus is hardly served by present-day

search engines.

In this study, we focus on semantic indexing which is necessary as a

basis for automatically generating metadata. Semantic indexing aims to as-

sign semantic concepts, which include objects, actions, and scenes such as

airplane, bus, singing, dancing, cityscape, and nighttime, to video segments.

This has been a challenging task due to the semantic gap [2]: “the lack of

correspondence between the low-level features and the high-level seman-

tic concepts”, where low-level features present color, texture, shape, and

spatiotemporal features extracted from video.

Most previous studies used a statistical model to construct the relation-

ship between low-level features and semantic concepts. In particular, the

bag-of-visual-words (BoW) [3, 4], a statistical method for image recogni-

tion, has been proven to be effective for video semantic indexing. It repre-

1

Introduction 2

sents an image by a histogram of low-level image descriptors such as scale-

invariant feature transform (SIFT) [5]. In BoW, vector quantization (VQ) is

needed to extract a histogram. However, quantization errors often degrade

the indexing performance. To solve this problem, several soft clustering

methods [6, 7, 8] are introduced. In particular, Gaussian mixture models

(GMMs) [8] are often preferred since they are a straightforward extension

of VQ to a probabilistic framework.

In video search, we should consider not only image information but also

audio information to find video that the user wishes to view [9, 10, 11]. For

example, a combination of a music and an action sometimes has a specific

meaning in a dance scene. Some previous studies have analyzed speech in

news video [12, 13] by using speech recognition methods. However, they

are not very effective for video other than news such as consumer gener-

ated video in which speech is often spontaneous with noise or a background

music. Furthermore, acoustic information other than speech, for example

sounds from a musical instrument, can not be captured by the speech recog-

nition methods. To capture visual and audio information effectively, a multi-

modal method is necessary for semantic indexing.

On the other hand, since video has more information than an image,

computational cost becomes a problem in real applications. Since vector

quantization is the most computationally expensive part in the BoW algo-

rithm [3], many studies have been done to develop fast VQ algorithms. For

example, approximate nearest neighbor (ANN) algorithms such as random-

ized kd-trees [14] and hierarchical k-means tree [15] are known to provide

speed-ups VQ with only minor loss in accuracy. To improve both speed and

accuracy, we need to extend them to a probabilistic framework, for example

to GMMs.

In this study, we propose a fast and accurate semantic indexing system.

We have four main contributions as follows. 1) A multi-modal semantic

indexing system which uses GMMs : we extend the BoW to a probabilistic

framework where a video shot is represented by a GMM. Audio and visual

features are extracted from video. 2) A fast parameter estimation technique

using a tree-structured GMM : we propose fast maximum a posteriori (MAP)

adaptation for estimating GMM parameters. 3) An improved modeling by a

q-GMM : we improve the accuracy of modeling by introducing a parameter

q to control the tail-heaviness of a GMM. 4) A fast search technique namely

Introduction 3

Neighbor-to-Neighbor (NTN) search : we further improve the speed of the

system especially when densely-sampled image descriptors are used.

The remainder of the dissertation is organized as follows. Chapter 2

gives an over view of semantic indexing. Chapter 3 describes the multi-

modal semantic indexing system. Chapter 4 describes the fast MAP esti-

mation technique using a tree-structured GMM . Chapter 5 describes the

extension of the system to q-Gaussian mixture models. Chapter 6 describes

the NTN search. Finally, conclusions and future work are described in Chap-

ter 7.

Chapter 2

Semantic Indexing

In this chapter, the fundamental approaches to semantic indexing will be dis-

cussed. The most common framework for semantic indexing consists of the

three steps in Figure 2.1. In the first step, low-level features are extracted.

Here, video is represented by a set of low-level features X = {xi}N
i=1 where

xi ∈ Rd is a vector describing local information such as RGB-color and tex-

ture, and N is the number of low-level features. In the second step, video is

represented by a vector φ(X). This vector is so-called a video representation,

for example a histogram representation in the bag-of-visual-word approach

[3, 4]. In the third step, a detection score f(φ(X)) is calculated where f is a

discriminative function often trained based on supervised learning methods.

Relation between semantic concepts sometimes considered in this step. The

following sections discuss previous approaches for each step.

2.1 Low-Level Feature Extraction

Low-level feature extraction typically consists of two phases: key-point de-

tection and feature description.

Key-Point Detection

In the first phase, key-point detectors are applied to find interest regions

in video or in an image. Many detectors are proposed not for semantic in-

dexing but for other computer-vision applications such as image matching

[16, 17, 18], texture recognition [19], and robot servoing [20, 21]. How-

ever, they are also often effective for semantic indexing.

4

Semantic Indexing 5

Figure 2.1: The most common framework for semantic indexing: 1) Low-level
features are extracted from video, 2) A Video/Image representation is
extracted, 3) A detection score is calculated.

For image matching, Lowe [5] proposed Scale Invariant Feature Trans-

form (SIFT), which is the most widely used algorithm in many applications.

In SIFT, key-points are detected based on the Difference-of-Gaussian (DoG)

detector which is a simplification of the Laplacian-of-Gaussian (LoG) detec-

tor [5] to detect edges in a scale invariant way. Mikolajczyk et al. [22]

proposed the Harris-affine detector which is robust against affine trans-

forms. They also proposed the Hessian-affine detector to detect blob struc-

ture, which is complementary to the Harris-affine detector. Maximally sta-

ble external region (MSER) [17] focused on segmentation in an image and

is a precise blob detector while its computational cost is higher than the

Hessian-affine detector. For image classification, dense sampling which uses

grid points have shown to be effective [23, 37]. The combination of dense

sampling with above key-point detectors often improve the performance of

image classification. For action recognition in video, some works focus on

temporal information. Space-Time Interest Points (STIP) [24] extends the

Harris-corner detector to video. Dense Trajectories [25] tracks objects in

video at grid points.

Feature Description

In the second phase, a feature vector is extracted from each local region

around a key-point. SIFT [5] extracts local gradient vectors which are ro-

bust against changes in scale, rotation, and illumination. A SIFT vector is

128 dimensional which consists of 8-dimensional histograms for 4x4 blocks.

Histogram of oriented gradients (HOG) [26] proposed for human detection

also extracts local gradient vectors as SIFT, but its dimension is often larger

than SIFT. A typical HOG vector concatenates 9-dimensional histograms for

7x15 blocks. Local binary pattern (LBP) is another feature robust against

Semantic Indexing 6

changes in illumination. The combination of HOG and LBP is proposed

in [27] for human detection. Note that these features are extracted from

a gray-scale image. To capture color information, J. Weijer proposed hue

histogram [28] and its combination with SIFT. Extensions of SIFT to color

spaces such as HSV space and Opponent SIFT are proposed in [29].

Some works focused on fast algorithms and implementations of SIFT.

Speeded-Up Robust Features (SURF) improved the speed of Hessian detec-

tor and used it instead of the DoG detector in SIFT. BRIEF [30] and ORB

[31], which are specialized for image matching, further improved the speed

by introducing binary descriptors. GPU implementations [32, 67, 68] are

known to be effective for large-scale image processing.

2.2 Modeling

In the bag-of-visual-words (BoW) approach [3], an image is represented

as a histogram of visual words obtained by applying VQ to each low-level

descriptors. k-means clustering is often used for training a visual codebook

that consists of several thousands of visual words.

Soft-assignment approaches are effective for reducing quantization er-

rors in VQ and thus they outperform BoW. Gemert et al. [6] proposed a

kernel codebook in which each low-level descriptor is assigned to all visual

words in a soft manner with weighting. Hang et al. [33, 7] used sparse cod-

ing which assigns a low-level descriptor to several tens of visual words by

solving a constrained least square fitting problem. Perronnin et al. [8] used

a Gaussian mixture model (GMM) for a codebook which holds mean and

variance information for each visual word. The GMM is a straight-forward

extension of BoW to a probabilistic framework.

Recently, high-dimensional image representations have been proven to

be effective in image classification. Vector of locally aggregated descriptor

(VLAD) [34] and super-vector coding [23] use the first order differences

between low-level descriptors and visual words in addition to the BoW his-

togram. Fisher vector [35] represents an image as a concatenation of param-

eters of a parametric probability model. Perronnin et al. [36, 37] achieved

the best performance in the PASCAL VOC image classification challenge by

using a GMM as the parametric probability model for the Fisher vector. They

reported that an normalization technique [37] is needed since the Fisher

Semantic Indexing 7

vectors become sparser as the number of Gaussians increases. They pro-

posed the L2+power normalization to make the Fisher vectors dense. The

normalized fisher vector is called “improved Fisher kernel (IFK)”. Chatfield

et al. [38] reported that IFK is the best of these recent image representa-

tions.

On the other hand, several previous works focused on applying Tsallis

statistics [39, 40, 41] to image processing. Tsallis q-entropy, which is a gen-

eralization of the Boltzmann-Gibbs (BG) entropy, is used for image thresh-

olding for foreground extraction in [42, 43, 44, 45]. These works show that

long-range correlation between foreground pixels can be modeled by using

the Tsallis q-entropy. Fabbrib et al. [46] applied Tsallis q-entropy to im-

age texture classification. They reported that texture classification accuracy

is improved by using Tsallis q-entropies for multiple q-values as a feature

vector. A q-Gaussian distribution, which is a generalization of Gaussian dis-

tribution and Student’s t-distribution, is expected to effectively represent

a distribution of low-level features in the bag-of-visual-words framework.

Since a mixture of long-tailed distirbutions such as a t-mixture model [49]

improves the performance of image registration [47] and image segmenta-

tion [48], we expect it will improve the performance of semantic indexing.

To the best of our knowledge, we are the first to apply Tsallis statistics to the

bag-of-visual-words framework.

To reduce the cost of this step, many previous studies have shown that

a tree-sturucture is effective. Nistér et al. [50] propose a “vocabulary tree”

which uses a hierarchical k-means tree. Lowe [5] uses a kd-tree for nearest

neighbor search of SIFT descriptors. Muja and Lowe [15] have proposed an

automatic selection method from the recent two approximate nearest neigh-

bor (ANN) algorithms: randomized kd-trees [14], and hierarchical k-means

tree [15]. They have provided it as a fast software library for approximate

nearest neighbors (FLANN). Sparse coding [33] assigns several tens of code-

words to an input vector by solving a constrained least square fitting prob-

lem. J. Wang el al. [7] introduced k-nearest neighbor (k-NN) search as the

preprocessing to the sparse coding. The tree-structured GMM in this study

extends the hierarchical k-means to a GMM framework.

Semantic Indexing 8

2.3 Detection

In the detection step, a discriminative function to compute confidense scores

is trained on labeled data. Here, we focus on supervised learning methods.

In semantic indexing, a learning method must handle imbalance in the

number of positives and negatives since the number of positive samples are

often limited. Moreover, it also must handle the problem of the curse of

dimensionality since the dimension of a video/image representation is often

very high. In this demands, the most well-known and effective method is

the support vector machine (SVM), which separates a feature space into two

different classes, positive and negative. To estimate a posterior probability,

a probability for a particular semantic concept which is not given by an

SVM, Platt [51] and Lin et al. [52] suggest a sigmoid fitting of SVM scores

where parameters in the sigmoid function are estimated based on maximum

likelihood criteria. The logistic regression (LR) is also known to estimates

the posterior probability. While the LR sometimes performs better than the

SVM, its computational cost is also larger than the SVM. Hence, the SVM

has become the default choice in most semantic indexing schemes.

In many supervised learning methods including the SVM and the LR,

a kernel trick which enables non-linear classification often improves the

classification performance significantly. In general, the (Gaussian) radial

basis function (RBF) kernel is almost the best choice. However, Zhang [53]

showed that earth-movers-distance kernel [54] and χ2 kernel are more opti-

mal than it in the bag-of-visual-words framework. Since the BoW represents

an image by a histogram of visual words, which sometimes have frequent

but meaningless words, these kernels consider a normalization of the his-

togram to obtain better performance than the RBF. Some recent works are

focusing on kernel learning. For example, multiple kernel learning (MKL)

[55] enables to learn a linear combination of pre-dfined kernels, e.g. kernels

for different types of features. Multiple kernel Fisher discriminant analysis

(MK-FDA) [56] is an extension of the FDA to multiple kernels. However,

these methods are computationally more expensive than the SVM. The lin-

ear combination of SVM scores is known to be a reasonable alternative for

them.

Chapter 3

Multi-Modal Semantic
Indexing

3.1 Overview

In this chapter, we describe our multi-modal semantic indexing system,

which uses Gaussian-mixture-model (GMM) supervectors. The overview

of our semantic indexing system is shown in Fig. 3.1. We assume videos

are automatically segmented into shots in preprocessing. A shot consists of

continuous frames without switching between cameras.

Our system consists of three parts. First, visual and audio low-level fea-

tures are extracted from a video shot. The SIFT features are extracted by

using three different interest point detectors: Harris-Affine [22], Hessian-

Affine [22], and Dense [57]. The MFCCs, which describe the short-time

spectral shape of audio frames, are extracted to capture audio information.

The details of low-level feature extraction are described in Sec 3.2. Second,

a GMM supervector is created for each type of low-level features. A GMM

models the distribution of low-level features extracted from a video shot.

Its parameter is estimated by using MAP adaptation. Third, SVM scores for

each type of low-level features are fused to compute a final score.

9

Multi-Modal Semantic Indexing 10

Figure 3.1: Overview of our semantic indexing system. Our system consists of
three parts: 1) low-level feature extraction, 2) GMM supervector ex-
traction by using fast MAP adaptation, and 3) SVM classification. First,
visual and audio features are extracted. Second, GMM parameters are
estimated by using MAP adaptation. Tree-structured GMMs are used
to improve the speed of MAP adaptation. Third, the outputs of SVMs
for the four feature types are fused to compute a final score.

3.2 Feature Extraction

3.2.1 Visual Features

SIFT features with Harris-Affine detector (Har-SIFT)

Scale-invariant feature transform (SIFT) [5] is a low-level feature extraction

method that is widely used for object categorization. The extracted features

are invariant to image scaling and changing illumination. The Harris-Affine

local region detector [22], which is an extension of the Harris corner detec-

tor, provides affine-invariant local regions.

Let I(x, y) be the luminosity value at a point (x, y). A point (x, y) is a

Harris corner if the following value R is larger than a predetermined thresh-

old (Figure 3.2),

R = detM − k (traceM)2 = λ1λ2 − k (λ1 + λ2)2 (3.1)

where k is a parameter, λ1 and λ2 are eigenvalues of the following matrix

M :

M = σ2
Dg(σI) ∗

[
I2
x(x, y,σD) IxIy(x, y,σD)

IxIy(x, y, σD) I2
y (x, y,σD)

]
. (3.2)

Multi-Modal Semantic Indexing 11

Figure 3.2: Harris corner detector

Multi-Modal Semantic Indexing 12

Here, g(σI) is a Gaussian fuction with a window size of σI and Ix, Iy are the

partial derivative of I(x, y) given by

Ix(x, y, σD) = I(x + 1, y, σD) − I(x − 1, y, σD) (3.3)

Iy(x, y, σD) = I(x, y + 1,σD) − I(x, y − 1,σD). (3.4)

For each corner point, a SIFT descriptor is extracted as follows (Fig-

ure 3.3).

1. Compute a gradient m(x, y) and an orientation θ(x, y) by

m(x, y) =
√

(Ix(x, y,σD))2 + (Iy(x, y,σD))2, (3.5)

θ(x, y) = tan−1 Iy(x, y,σD)
Ix(x, y, σD)

. (3.6)

2. Split a local region into 4x4 blocks to compute a histogram of oriented

gradients of 8 directions {θi = π
4 i}7

i=0 for each block.

hi =
∑

x,y

w(x, y)δ(θi, θ(x, y)), (3.7)

w(x, y) = G(x, y,σ)m(x, y). (3.8)

3. Concatenate 16 histograms to obtain 128-dimensional vector.

The proposed method uses 32-dimension SIFT features, whose dimen-

sions are reduced from 128 to 32 by applying principal component analysis

(PCA). The SIFT features are extracted from every other frame in a video

shot.

SIFT features with Hessian-Affine detector (Hes-SIFT)

A Hessian-Affine detector [22] is complementary to the Harris-Affine detec-

tor. A point (x, y) is a Hessian key-point if the following detH and traceH

take an extreme value at (x, y),

detH = IxxIyy(x, y, σD) − I2
xy(x, y,σD), (3.9)

traceH = Ixx(x, y,σD) + Iyy(x, y,σD), (3.10)

Multi-Modal Semantic Indexing 13

Figure 3.3: SIFT descriptor

Multi-Modal Semantic Indexing 14

where H is an Hessian matrix given by

H =

[
Ixx(x, y, σD) Ixy(x, y, σD)
Ixy(x, y,σD) Iyy(x, y,σD)

]
(3.11)

The combination of several different detectors can improve the robust-

ness against noise. SIFT descriptors are extracted in the same way as SIFT

with a Harris-Affine detector. PCA is applied to reduce their dimensions

from 128 to 32.

SIFT and hue histogram with dense sampling (Dense-SIFTH)

To capture color information, SIFT features and hue histograms [28] are

combined. As a result, 164 dimensional low-level features (which consist

of 128-dimension SIFT features and 36-dimension hue histograms) are ob-

tained. PCA is also used to reduce the dimensions to 32. This feature is

extracted only from key frames by using dense sampling, which provides a

much larger number of low-level features than sparse sampling such as the

Harris-Affine and Hessian-Affine detectors.

HOG with dense sampling (Dense-HOG)

32-dimensional histogram of oriented gradients (HOG) are extracted from

up to 100 frames per shot by using dense sampling with 2x2 blocks. PCA is

applied but dimensions of the HOG features are kept to 32.

LBP with dense sampling (Dense-LBP)

Local Binary Patterns (LBPs) [27] are extracted from up to 100 frames per

shot by using dense sampling with 2x2 blocks to capture texture informa-

tion. We follow the procedure in [27] to extract LBP features. PCA is applied

to reduce dimensions from 228 to 32.

3.2.2 Audio Features

MFCC audio features (MFCC)

Mel-frequency cepstral coefficients (MFCCs), which describe the short-time

spectral shape of audio frames, are extracted to capture audio informa-

Multi-Modal Semantic Indexing 15

tion. Semantic concepts related to people speaking, talking, and singing

can be detected by using MFCCs since MFCCs are effective for speech recog-

nition and audio classification. The 38-dimension audio features consist of

12-dimension MFCCs, 12-dimension ∆ MFCCs, 12-dimension ∆∆ MFCCs,

1-dimension ∆ log-power and 1-dimension ∆∆ log-power are extracted.

Here, “∆” means the derivative of the feature.

3.3 Detection Methods

3.3.1 Log-Likelihood Ratio

A detection score of a log-likelihood ratio detector is given by

L =
p(X|H = +1)
p(X|H = −1)

, (3.12)

where X is a set of low-level features extracted from a video shot and H is

a random variable that takes +1 if a targeted semantic concept appears in

the shot and otherwise −1.
A probability p(·|H) is estimated by using a Gaussian mixture model

(GMM). The probability density function (pdf) of a GMM is given by

p(x|θ) =
K∑

k=1

wkN (x|µk, Σk), (3.13)

where x ∈ X is a low-level feature, θ = {wk, µk, Σk}K
k=1 is a set of GMM

parameters, K is the number of Gaussian components (vocabulary size),

wk is a mixture coefficient, and N (x|µk, Σk) is a Gaussian pdf with a mean

vector µk and a covariance matrix Σk. Here, we assume X = {xi}N
i=1 is i.i.d.

to obtain

p(X|θ) =
N∏

i=1

p(xi|θ). (3.14)

EM Algorithm

The expectation-maximization (EM) algorithm [58] is a standard way to

find the maximum likelihood (ML) solution for models with latent variables.

For each model parameter in θ, we set the derivatives of log p(X|θ) to zero.

Multi-Modal Semantic Indexing 16

Note that this is the condition that a ML solution must satisfy. With respect

to the mean vector µk of a GMM, by setting the derivative of log p(X|θ) to

zero, we obtain

0 = −
N∑

i=1

wkN(xi|µk,Σk)∑
k′ wk′N(xi|µk′ ,Σk′)

Σk(xi − µk), (3.15)

where cik is a responsibility (posterior probabilities) given by

cik =
wkN(xi|µk, Σk)∑

k′ wk′N(xi|µk′ , Σk′)
. (3.16)

By assuming that Σ−1
k is a nonsingular matrix, we obtain

µ̂k =
1

Ck

N∑

i=1

cikxi, (3.17)

by multiplying Σ−1
k to Eq (3.15), where Ck is the sum of responsibilities

given by

Ck =
N∑

i=1

cik. (3.18)

This shows that the ML solution of the mean vector µ̂k is the weighted sum

of all vectors in X with weighting factor cik.

With respect to the covariance matrix Σk of a GMM, by setting the

derivative of log p(X|θ) to zero, we obtain

Σ̂k =
1

Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T . (3.19)

This also shows that the ML solution is the weighted sum of the ML solu-

tion of a single Gaussian. which has the same form as the corresponding

result for a single Gaussian fitted to the data set, but again with each data

point weighted by the corresponding posterior probability and with the de-

nominator given by the effective number of points associated with the cor-

responding component.

For the mixture coefficient wk, we use a Lagrange multiplier since the

sum of the coefficients has to be one. By introducing a Lagrange multiplier

Multi-Modal Semantic Indexing 17

λ, instead of log p(X|θ), we maximize

log p(X|θ) + λ

(
K∑

k′=1

wk′ − 1

)
, (3.20)

which gives

0 =
N∑

i=1

N(xi|µk, Σk)∑
k′ wk′N(xi|µk′ , Σk′)

+ λ. (3.21)

By taking sum over k, we obtain λ = −N . The ML solution for wk is given

by

wk =
Ck∑
k′ Ck′

. (3.22)

The EM algorithm has two steps: E step and M step. In the E step,

responsibilities are evaluated with the current parameters. In the M step,

parameters are updated by using responsibilities obtained at E step. The

following summarizes the EM algorithm for a GMM.

1. Initialize mean vectors µ̂k , covariance matrixes Σ̂k and mixture coef-

ficients ŵk . Compute the initial value for the likelihood function.

2. E step. Compute the responsibilities as

cik =
ŵkN(xi|µ̂k, Σ̂k)∑K

k′=1 ŵk′N(xi|µ̂k′ , Σ̂k′)
, (3.23)

by using the current parameters.

3. M step. Update the parameters as

µ̂k ← 1
Ck

N∑

i=1

cikxi, (3.24)

Σ̂k ← 1
Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T , (3.25)

ŵk ← Ck∑
k′ Ck′

, (3.26)

Multi-Modal Semantic Indexing 18

where

Ck =
N∑

i=1

cik, (3.27)

by using the current responsibilities.

4. Compute the log likelihood function by

log p(X|θ̂) =
N∑

i=1

log

{
K∑

k=1

ŵkN(xi|µ̂k, Σ̂k)

}
, (3.28)

to check for convergence. Return to the step 2 until convergence.

3.3.2 GMM Supervector SVM

The GMM supervector SVM is another powerful model for detecting seman-

tic concepts. A GMM supervector, which is used as an input of a support

vector machine, is the concatenation of GMM parameters estimated for each

video shot.

MAP Adaptation for GMM

As described above, the GMM parameters are often estimated by using the

EM algorithm with the maximum likelihood criterion. However, a set of

extracted low-level feature vectors may not be enough to estimate the pa-

rameters precisely. In such cases, the alternative way is to use maximum a

posteriori (MAP) adaptation. MAP adaptation, a parameter estimation us-

ing the MAP criterion, is robust against over-fitting caused by limited data

since it uses a prior distribution. A GMM for prior distribution, namely a

universal background model (UBM), is first estimated by applying the EM

algorithm to all the training data. The UBM presents the feature distribution

for the whole database.

Multi-Modal Semantic Indexing 19

The MAP solution for GMM means, namely MAP adaptation, is given by

µ̂k =
τ µ̂(U)

k +
∑n

i=1 cikxi

τ + Ck
, (3.29)

cik =
wkgk(xi)∑K

k=1 wkgk(xi)
, (3.30)

Ck =
n∑

i=1

cik, (3.31)

gk(x) = N (x|µ̂(U)
k , Σ̂(U)

k), (3.32)

where X = {xi}n
i=1 is a set of feature vectors extracted from a shot, τ is a

predefined hyper-parameter, and θ̂(U) is the parameter for a universal back-

ground model (UBM). The UBM presents how the features are distributed

in the general case: therefore, the parameter θ̂(U) is estimated by using all

features in the training set.

GMM Supervector

Finally, GMM supervectors are created for each shot and are given by

φ(X) =

µ̃1

µ̃2
...

µ̃K

, (3.33)

µ̃k =
√

w(U)
k

(
Σ(U)

k

)− 1
2
µ̂k, (3.34)

where µ̂k is an adapted mean vector, and θ(U) is the GMM parameter for the

UBM. The dimension of GMM supervectors is Kd, where K is the number of

Gaussian components and d is the dimension of the low-level feature vector.

The weighted sum of Mahalanobis distances between corresponding Gaus-

sian pairs is obtained by calculating the squared Euclidean distance between

two GMM supervectors. RBF kernels are used for SVM classification:

k(X,X ′) = e−γ‖φ(X)−φ(X′)‖2
, (3.35)

where γ is a kernel parameter.

Multi-Modal Semantic Indexing 20

Support Vector Machine

A support vector machine (SVM) is trained for each semantic concept and

for each type of features. An SVM is a binary classifier which focuses on

modeling the boundary between two classes [59, 60]. A hyperplane which

separates d-dimensional data into two classes is trained by an SVM. To im-

prove the classification accuracy, SVMs introduce a kernel feature space

which maps a sample into a higher dimensional space where the data be-

comes linearly separable.

Given a N number of training samples {xi, yi}N
i=1, each sample xi ∈ Rd,

and a class label yi ∈ {−1, 1}, all the hyperplanes in Rd are parametrized by

a vector w and a constant b ,

wT x + b = 0 (3.36)

where w is a vector orthogonal to the hyperplane. For a given (w, b), a

decision (score) function of an SVM is given by

f(x) = sign(wT x + b) (3.37)

which classifies the training samples. A canonical hyperplane is defined to

separate training samples from the hyperplane by a distance of 1, while

satisfying the following two conditions:

wT xi + b ≥ +1 when yi = +1, (3.38)

wT xi + b ≤ −1 when yi = −1. (3.39)

This is simplified as,

yi(wT xi + b) ≥ 1 (3.40)

Then, the magnitude of w is normalized to obtain geometric distance

from the hyperplane to a sample. The distance is obtained as

d((w, b), xi) =
yi(wT xi + b)

‖w‖ ≥ 1
‖w‖ (3.41)

By minimizing ‖w‖ a hyperplane that maximizes the geometric distance

Multi-Modal Semantic Indexing 21

Figure 3.4: A hyperplane that maximizes the margin.

is obtained to the closets samples as shown in Figure 3.4.

Lagrange multipliers [59, 61] are introduced to solve the problem as:

minimize: W (α) = −
∑

i

αi +
1
2

∑

i,j

yiyjαiαjx
T
i xj

subject to:
∑

i
yiαi = 0

0 ≤ αi ≤ C (∀i)

where αi is a parameter of an SVM, and C is a regulalization parameter to

tune the margins for the hyperplane. Above problem is reduced as follows

by introducing a matrix Hij = yiyjxT
i xj ,

minimize: W (α) = −αT1 +
1
2
αT Hα

subject to: αT y = 0

0 ≤ α ≤ C1 (∀i)

This is solved by using quadratic programming techniques. Finally, the

Multi-Modal Semantic Indexing 22

Figure 3.5: An example of a kernel trick. Data is not linearly separable in (a). The
data becomes linearly separable in (b) after transforming the input
data to a new feature space.

optimal hyperplane is given by

w =
∑

i

αiyixi (3.42)

which shows that w is a linear combination of the training samples of αi)= 0.
Training samples which have αi > 0 are called support vectors and are used

to calculate the decision function.

If the data is not linearly separable, a kernel trick is used to transform

a d-dimensional input vector into a higher d′-dimensional vector φ(x) as

shown in Figure 3.5.

By using the kernel trick, Eq.(3.42) is replaced as follows,

w =
∑

i

αiyiφ(xi)

where φ(xi) is a mapping functionby. The decision function is obtained by

f(x) =
∑

i

αiyik(xi, x) + b (3.43)

where k is a kernel function given as a inner product of the mapped sam-

ples. The same process to find the optimal hyperplane is applied in a high

Multi-Modal Semantic Indexing 23

dimensional feature space after transforming the problem in this way. Since

a kernel function is often non-linear, classification accuracy is expected to

be improved by using it.

3.4 Experiments

3.4.1 Experimental Conditions

In our experiments, the TRECVID 2009 High-Level Feature Extraction Dataset

and TRECVID 2011 Semantic Indexing Dataset are used to evaluate our se-

mantic indexing system. Each dataset is divided into a training set and a test

set. The evaluation measure is Mean Average Precision (Mean AP) among

20 semantic concepts (Figure 3.6). Mean AP is the mean of AP for each

semantic concept given by

AP =
1
R

N∑

r=1

Pr(r)Rel(r), (3.44)

where R is the number of positive samples (appearances), N is the number

of testing samples, Pr(r) is the precision at the rank of r and Rel(r) takes a

value of one if the r-th shot is positive; otherwise, it takes zero. The number

of appearances is shown in Figure 3.6.

3.4.2 Detection Accuracy

Figure 3.7 shows Mean APs for different numbers of Gaussian components

for SIFT features (Harris-affine detector) with a log-likelihood ratio detec-

tor (SIFT-LR) or a GMM-supervector SVM (SIFT-SVM), and MFCC features

with a LR detector (MFCC-LR) or a GMM-supervector SVM (MFCC-SVM).

Detailed AP for each semantic concept is shown in Figure 3.8. As can be

seen, SIFT-SVM outperforms the others for 19 of 20 semantic concepts, and

MFCC-SVM outperforms the others for “Singing”. This shows that visual

information is often more important than audio information for detecting

semantic concepts.

When both of SIFT and MFCC are used, Mean AP is improved from 0.141

(for SIFT-SVM) to 0.173. This shows that MFCC captures complementary in-

formation to SIFT. Table 3.1 compares the following seven fusion methods:

Multi-Modal Semantic Indexing 24

Figure 3.6: Number of appearances of semantic concepts

Fusion 1: SIFT-LR + SIFT-SVM

Fusion 2: MFCC-LR + MFCC-SVM

Fusion 3: SIFT-LR + MFCC-LR

Fusion 4: SIFT-SVM + MFCC-SVM

Fusion 5: SIFT-LR + SIFT-LR + MFCC-LR + MFCC-SVM

Fusion 6: SIFT-SVM + Hes-SIFT-SVM

Fusion 7: SIFT-LR + SIFT-LR + MFCC-LR + MFCC-SVM + Hes-SIFT-SVM

The best performance is obtained by Fusion 7.

3.4.3 Multi-frame Feature Extraction

Figure 3.8 shows Mean AP for different number of image frames, from which

SIFT features are extracted. SIFT-SVM shows better performance than BoW

especially when the number of image frames is larger than 15 since GMMs

used in SIFT-SVM can estimate the distribution of SIFT features more pre-

cisely than than histogram used in BoW.

3.4.4 Error Analysis

Figure 3.9 shows resulting APs for Har-SIFT, Hes-SIFT, Dense-SIFTH and

MFCC. We conclude that the four types of features are complementary to

Multi-Modal Semantic Indexing 25

Figure 3.7: Comparison of Mean APs for different schemes.

Figure 3.8: Mean APs with different numbers of frames. The dotted line indicates
the average number of frames in a shot.

Multi-Modal Semantic Indexing 26

Table 3.1: Mean APs for different schemes (K = 512). R denotes a result of Ran-
domization test (p = 0.05).

Method R Mean AP Singing Female. M.I.
Fusion 8 14 0.186 0.233 0.271 0.149
Fusion 7 13 0.173 0.213 0.266 0.132
Fusion 6 10 0.155 0.038 0.206 0.048
Fusion 5 9 0.154 0.216 0.261 0.102
Fusion 4 8 0.145 0.151 0.205 0.022
SIFT-SVM 8 0.141 0.032 0.192 0.038
Fusion 1 7 0.138 0.037 0.193 0.063
SIFThes-SVM 7 0.129 0.025 0.163 0.044
BoW(Multiframe) 6 0.097 0.015 0.115 0.041
Fusion 3 3 0.064 0.113 0.100 0.096
BoW 2 0.060 0.004 0.049 0.020
Fusion 2 2 0.050 0.163 0.066 0.016
SIFT-LR 0 0.051 0.015 0.045 0.053
MFCC-SVM 0 0.043 0.126 0.020 0.010
MFCC-LR 0 0.042 0.095 0.067 0.028

each other: Har-SIFT is effective for detecting rigid objects and close-up ob-

jects, Hes-SIFT is effective for detecting objects with a background, Dense-

SIFTH is effective for detecting scenes, and MFCC is effective for detecting

human events and actions (Figure3.10). The followings are our detailed

observations and error analysis regarding each type of feature:

Har-SIFT

Har-SIFT achieved the highest InfAP (with the exception of the fusion meth-

ods) for 12 concepts: “Bus” (Figure 3.11), “Female Human Face Closeup”

(Figure 3.12), “Ground Vehicles”, “Singing”, “Doorway”, “Hand”, “Animal”,

“Old People”, “Cheering”, “Flowers”, “Telephones”, and “Sitting Down”. Since

Har-SIFT features are extracted from corner points, rigid objects such as cars

and buses were successfully detected. For detecting people and animals,

corner points for their eyes helped improving performance. However, we

still have some errors in classifying fine-grained categories, e.g. “Truck” and

“Bus”, “Female” and “Male”.

Multi-Modal Semantic Indexing 27

Hes-SIFT

Hes-SIFT achieved the highest InfAP for 7 concepts: “Airplane Flying” (Fig-

ure 3.13), “Running” (Figure 3.14), “Vehicle”, “Walking”, “Throwing”, “Bicy-

cling”, and “Classroom”. By introducing the Hessian-Affine detector, objects

on a flat background, for example, an airplane in the sky and a car on a

highway, were successfully detected. However, it is still difficult to detect

an object from a complex background since our modeling can not separate

foreground and background.

Dense-SIFTH

Dense-SIFTH achieved the highest InfAP for 9 concepts: “Cityscape” (Fig-

ure 3.15), “Mountain” (Figure 3.16), “Demonstration Or Protest”, “Night-

time”, “Boat Ship”, “Dancing”, “Car Racing”, “Swimming”, and “Explosion

Fire”. The hue histogram of Dense-SIFTH detected scenes with few colors,

e.g. explosion fire with red and yellow, nighttime with black, and a moun-

tain with green.

MFCC

MFCC achieved the highest InfAP for two concepts: “Dark-skinned People”

(Figure 3.17), and “Asian People”. For “Singing” (Figure 3.18), AP was im-

proved by 5.2% by combining MFCC with the three visual features. Since

MFCC captured speech and music in video, people speaking or singing were

detected even if they are partially occluded by some objects. This shows

that MFCC captured complementary information with the visual features.

However, false detections occur when video has a background music that is

not related to the video contents.

Multi-Modal Semantic Indexing 28

Figure 3.9: InfAP by semantic concepts on the TRECVID 2011 Semantic Indexing
Dataset.

3.4.5 Comparison with Other Methods

Our results in the semantic indexing task on TRECVID 2011 and 2012 are

shown in Figure 3.19 and 3.20. The best result was 0.173 and 0.321 of

Mean InfAP, respectively, which is ranked first in the TRECVID 2011 and

2012 official runs. This shows that our multi-modal system based on the

GMMs is powerful and accurate compared with the others.

Multi-Modal Semantic Indexing 29

AirplaneFlying

Animal

AsianPeople

Bicycle

BoatShip
Bus

CarRace

Cheering

Cityscape

Classroom

Dancing

DarkSkinnedPeople

Demonstra!on

Doorway

ExplosionFire
FemaleFace

Flowers

GroundVehicles

Hand

Mountain

Nigh"meOldPeople

Running

Singing

Si"ngDown

Swimming

Telephones

Throwing

Vehicle

Walking

0

MFCC

Hes-SIFT

Har-SIFT Dense-SIFTH

Human ac!ons/events/races

Objects

Scenes

0.2

0.2 0.2

0.4

0.4 0.4

0.6

0.6

0.6 0.6

Figure 3.10: 2D visualization of 4D Average Precisions (APs) for Har-SIFT, Hes-
SIFT, Dense-SIFTH and MFCC. To compare the effectiveness of each
type of feature, the four AP values are normalized so that their sum
is one.

Multi-Modal Semantic Indexing 30

Figure 3.11: Top 25 video shots for “Bus”. Correct shots are marked in red.

Figure 3.12: Top 25 video shots for “Female Human Face Closeup”. Correct shots
are marked in red.

●
●●

● ●●

●

●●

●●● ● ●
●●●●

●
●
●

●

●●
●●

Multi-Modal Semantic Indexing 31

Figure 3.13: Top 25 video shots for “Airplane Flying”. Correct shots are marked in
red.

Figure 3.14: Top 25 video shots for “Running”. Correct shots are marked in red.

Multi-Modal Semantic Indexing 32

Figure 3.15: Top 25 video shots for “Cityscape”. Correct shots are marked in red.

Figure 3.16: Top 25 video shots for “Mountain”. Correct shots are marked in red.

Multi-Modal Semantic Indexing 33

Figure 3.17: Top 25 video shots for “Dark-skinned People”. Correct shots are
marked in red.

Figure 3.18: Top 25 video shots for “Singing”. Correct shots are marked in red.

●●●

●●

●

●

● ●
●

●

●

●

●●

●

●

Multi-Modal Semantic Indexing 34

F_A_TokyoTech_Canon_1
F_A_TokyoTech_Canon_2
F_D_TokyoTech_Canon_4
F_A_TokyoTech_Canon_3

TRECVID 2011 Semantic Indexing Runs

20.0

M
ea
n
In
fA
P
(%
)

15.0

10.0

5.0

0.0

Figure 3.19: Comparison with other methods on TRECVID 2011.

Figure 3.20: Comparison with other methods on TRECVID 2012.

Multi-Modal Semantic Indexing 35

3.5 Conclusion

In this chapter, we proposed a high-performance semantic indexing system

using Gaussian mixture model (GMM) supervectors with the six audio and

visual features. Our best result on the TRECVID 2011 and 2012 was Mean

AP of 0.173 and 0.312, respectively. However, since our system, especially

the GMM-parameter-estimation step, is computationally expensive, we need

to improve the speed of the system.

Chapter 4

Tree-structured Gaussian
Mixture Models

4.1 Overview

In this chapter, we describe a fast maximum a posteriori (MAP) adaptation

technique for a GMM-supervectors-based video semantic indexing system.

As shown in Chapter 3, the use of GMM supervectors is one of the state-of-

the-art methods in which MAP adaptation is needed for estimating the dis-

tribution of local features extracted from video data. The proposed method

cuts the calculation time of the MAP adaptation step. With the proposed

method, a tree-structured GMM is constructed to quickly calculate poste-

rior probabilities for each mixture component of a GMM. The basic idea of

the tree-structured GMM is to cluster Gaussian components and approxi-

mate them with a single Gaussian. Leaf nodes of the tree correspond to

the mixture components, and each non-leaf node has a single Gaussian that

approximates its descendant Gaussian distributions.

4.2 Tree-structured GMMs

Let X = {xi}n
i=1 be a set of (one type of) low-level features extracted from

a video shot. A probability distribution function (pdf) of a Gaussian mixture

36

Tree-structured Gaussian Mixture Models 37

model (GMM) is given by

p(x|θ) =
K∑

k=1

wkN (x|µk, Σk), (4.1)

where x is a low-level feature vector, θ = {wk, µk, Σk}K
k=1 is a set of param-

eters, K is the number of mixture components, wk is a mixture coefficient.

N (·|µk, Σk) is a Gaussian pdf with a mean vector µk and a covariance matrix

Σk.

As described in Chapter 3, MAP adaptation, a parameter estimation us-

ing the MAP criterion, is robust against over-fitting caused by limited data

since it uses a prior distribution. The MAP solution gives the following equa-

tions:

µ̂k =
τ µ̂(U)

k +
∑n

i=1 cikxi

τ +
∑n

i=1 cik
, (4.2)

cik =
w(U)

k g(U)
k (xi)

∑K
k=1 w(U)

k g(U)
k (xi)

, (4.3)

g(U)
k (x) = N (x|µ(U)

k , Σ(U)
k), (4.4)

where n is the number of feature vectors, and µ̂(U)
k is a mean vector of UBM,

g(U)
k is a Gaussian component, cik is a responsibility of a Gaussian component

gk for a feature vector xi, which is the posterior probability of xi being at

k-th Gaussian component, and τ is a predefined hyper-parameter.

A tree structure of Gaussian components that makes calculation of Eq. (4.3)

efficient is constructed from the UBM. Fig. 4.1 shows an example of a tree-

structured GMM. Each leaf node corresponds to a Gaussian component of

the UBM, and each other node has a single Gaussian obtained by combin-

ing corresponding Gaussian pdfs of descendant nodes. This tree structure is

constructed by top-down clustering of Gaussian components. For a given set

of Gaussian components G = {g1, g2, · · · , gK}, we define a combined single

Tree-structured Gaussian Mixture Models 38

Gaussian G(G) by

G(G) def= N (·|µ̄, Σ̄), (4.5)

µ̄ =
1
K

K∑

k=1

µk, (4.6)

Σ̄ =
1
K

K∑

k=1

(Σk + µkµ
T
k) − µ̄µ̄T. (4.7)

To find a pair of Gaussian components which are close to each other,

a distance measure between them is needed. The sum of Kullback-Leibler

divergence from gk to gk′ and that of from gk′ to gk is used for this measure-

ment as follows:

d(gk, gk′) =
∫

gk(x) log
gk(x)
gk′(x)

dx +
∫

gk′(x) log
gk′(x)
gk(x)

dx (4.8)

=
1
2

(
(µk − µk′)T(Σ−1

k + Σ−1
k′)(µk − µk′)

+ tr(Σ−1
k′ Σk) + tr(Σ−1

k Σk′) − 2d
)
. (4.9)

As for the following tree-construction algorithm, it is assumed that the

maximum number of child nodes for each layer (with the exception of the

leaf layer) is given. For example, if the maximum number of child nodes for

the first layer (which only has a root node) is two and that for the second

layer is three, the resulting tree will be designed as shown in Fig. 4.1. In

this case, a tree with a depth of three (including the leaf layer) is obtained.

This tree-structured GMM is denoted as

T(2,3) = (V,E, GTREE), (4.10)

where V is a set of nodes, E is a set of edges, and GTREE = {g(v)|v ∈ V }
is a set of Gaussian pdfs. In general, a node at the t-th layer of a tree

T(P1,P2,··· ,PT) has, at most, Pt child nodes.

The node pdfs g(v) of a tree T(P1,P2,··· ,PT) are created by the following

algorithm. The basic idea is to apply hierarchical k-means clustering for

Gaussian components. Note that GUBM = {g(U)
1 , g(U)

2 , · · · , g(U)
K } is a set of

mixture components of the UBM, G(v) is a subset of GUBM corresponding to

node v, and g(v) is a Gaussian pdf for node v.

Tree-structured Gaussian Mixture Models 39

Figure 4.1: An example of a tree-structured GMM T(2,3).

1. Prepare a queue and enqueue (r,G(r)), where r is the root node,

G(r) = GUBM, and g(r) ← G(G(r)).

2. (Initialization for k-means) Dequeue (v,G(v)). Let {cp}P
p=1 be the

child nodes of node v. Select the initial cluster centers g(cp) from the

given set of Gaussian components G(v), where the min-max selection

method is used instead of random selection. The min-max selection

method is explained in Appendix.

3. (Clustering by k-means) Assign each Gaussian component in G(v) to

the nearest child node, i.e.

G(cp) ← {g ∈ G(v) | p = argmin
p′

d(g, g(cp′))}. (4.11)

Update g(cp) by using Eq. (4.5) as follows:

g(cp) ← G(G(cp)), (4.12)

Tree-structured Gaussian Mixture Models 40

Repeat this step until the following sum of distance converges:

D =
P∑

p=1

∑

g∈G(cp)

d(g, g(cp)). (4.13)

4. For p = 1, 2, · · · , P , enqueue (cp, G(cp)) if cp is not in the (T + 1)-th
layer and |G(cp)| > 1. Go to step 5 if the queue is empty; otherwise,

return to step 2.

5. For each node v in the (T + 1)-th layer, create leaf nodes * for each

g(U)
k ∈ G(v) ⊂ GUBM and set

g($) = g(U)
k . (4.14)

For the initialization for k-means clustering (Step 2 in the tree-construction

algorithm,we use the min-max selection method. This method is known to

provides better initial values than random selection. This method first se-

lects from G(v) a node set whose nodes are distant from each other, and then

sets a cluster center at an internal dividing point between node v and each

of the selected nodes.

2-1) Choose the mixture component g̃(c1) that has the largest distance to

g(v), i.e.,

g̃(c1) = argmax
g∈G(v)

d(g, g(v)). (4.15)

2-2) For p = 2, · · · , P , choose g̃(cp) from the rest of mixture components

which belong to the node v and not yet assigned to any child node,

i.e.,

g̃(cp) = argmax
g∈G(v)

p−1

min
1≤p′<p

d(g, g̃(cp′)), (4.16)

where G(v)
p−1 = G(v) \ {g̃(c1), · · · , g̃(cp−1)}. If G(v)

p−1 is an empty set, the

child node is deleted from the tree.

2-3) For p = 1, 2, · · · , P , set the parameters of child Gaussian pdfs g(cp) as

Tree-structured Gaussian Mixture Models 41

follows:

g(cp) ←N (·|µ̄, Σ̄), (4.17)

µ̄ =αµ̃(cp) + (1 − α)µ(v), (4.18)

Σ̄ =α(Σ̃(cp) + µ̃(cp)(µ̃(cp))T)

+ (1 − α)(Σ(v) + µ(v)(µ(v))T)

− µ̄µ̄T, (4.19)

where 0 ≤ α ≤ 1 is a weight parameter to mix the selected pdf g̃(cp) =
N (·|µ̃(cp), Σ̃(cp)) and their parent pdf g(v) = N (·|µ(v), Σ(v)).

4.3 Fast MAP Adaptation

A fast MAP adaptation technique which estimates cik in Eq. (4.3) efficiently

by using a tree-structured GMM is explained in the following. For a con-

structed tree-structured GMM T(P1,P2,··· ,PT), node weights are first defined

as follows:

a) For each leaf node *, set

w($) = w(U)
k , (4.20)

if g($) = g(U)
k ∈ GUBM.

b) Calculate weights for t = T + 1, T, · · · , 1 as follows. For each node v

in the t-th layer,

w(v) =
∑

c∈C(v)

w(c), (4.21)

where C(v) is a set of child nodes of the node v.

The algorithm for estimating cik for feature vector xi is described as

follows. The key idea is to construct a GMM of active nodes VA, which

means vector xi will be assigned to descendants of nodes in VA. |VA| is kept

small by obtaining active nodes from the root node.

1. Set VA ← {r}, where r is the root node.

Tree-structured Gaussian Mixture Models 42

2. Expand active nodes by making child nodes of the active nodes active:

VA ←
⋃

v∈VA

C(v), (4.22)

where C(v) is a set of child nodes of the node v. Here, C(*) = {*} is

used for leaf nodes * to keep the leaf nodes active.

3. Consider a GMM for active node VA given by

p(x|VA) =
∑

v∈VA

w̃(v)g(v)(x), (4.23)

where

w̃(v) =
w(v)

∑
v∈VA

w(v)
. (4.24)

Calculate

c(v)
i =

w̃(v)g(v)(xi)∑
v∈VA

w̃(v)g(v)(xi)
=

w(v)g(v)(xi)∑
v∈VA

w(v)g(v)(xi)
. (4.25)

4. Keep a node v active if c(v)
i is larger than the predetermined threshold

cTH, i.e.

VA ← {v ∈ VA | c(v)
i > cTH}. (4.26)

5. If all nodes in VA are leaf nodes, output

ĉik =

c($)
i (* ∈ VA, g($) = g(U)

k)

0 (otherwise)
. (4.27)

Otherwise, return to Step 2.

Since the observed ĉik for non-active nodes is 0, the sum in Eq. (4.2)

can be calculated for non-zero ĉik only. Our fast MAP adaptation requires

O(n log K) time which improves O(nK) time for the basic MAP adaptation.

Moreover, calculation speed and levels of approximation can be controlled

by selecting the threshold cTH in 0 < cTH ≤ 1. Note that the same cik as given

Tree-structured Gaussian Mixture Models 43

by Eq. (4.3) is obtained when cTH is set to 0 (because all leaf nodes will be

active at the final step).

Finally, GMM supervectors are created for each shot in the same way

as Chapter 3. Note that the proposed method can be used for creating the

Fisher vectors [35, 36].

SVMs for the four types of features described in Section 3.2 are combined

by calculating the weighted sum of detection scores as

f(X) =
∑

F∈{SIFT-Har, SIFT-Hes,

SIFTH-D, MFCC}

βFfF(X), (4.28)

where βF is a combination weight and fF(X) is a detection score for the

feature F. The combination weights are optimized for each semantic concept

by cross validation.

4.4 Experiments

4.4.1 Database and Task

Our experiments were conducted on the TRECVID 2010 dataset [64, 13].

The dataset consists of 400 hours of Internet archive videos with creative

commons licenses. The shot boundaries and key-frame images are automat-

ically detected and provided with the video data. Half of the videos were

used for training, and the others were used for testing. The number of shots

was 119,685 for training and 146,788 for testing.

We evaluated our system on the TRECVID 2010 Semantic Indexing bench-

mark. The task is to detect the 30 semantic concepts (including objects,

events and scenes) listed in Table 4.1. They are considered useful for video

searching.

The annotated labels for the 30 concepts are also provided with the video

data (including testing videos for evaluation). The labels for training data

are created using a collaborative annotation system [65]; however, some of

the training shots are still unlabeled. It was assumed that the unlabeled sam-

ples are negative since the annotation system is based on an active learning

method that requires shots appearing to be positive samples to be annotated

preferentially. On the other hand, labels for testing videos are attached on

Tree-structured Gaussian Mixture Models 44

Table 4.1: The 30 target semantic concepts in the TRECVID 2010 dataset
Airplane Flying Female Human Face Closeup
Animal Flowers
Asian People Ground Vehicles
Bicycling Hand
Boat ship Mountain
Bus Nighttime
Car Racing Old People
Cheering Running
Cityscape Singing
Classroom Sitting down
Dancing Swimming
Dark-skinned People Telephones
Demonstration Or Protest Throwing
Doorway Vehicle
Explosion Fire Walking

Table 4.2: The average numbers of extracted features.

Feature # of features per shot
SIFT-Har 19,536
SIFT-Hes 18,986
SIFTH-Dense 30,000
MFCC 5,160

the basis of the submission pool of TRECVID 2010, which allows precise

estimation of average precision.

The evaluation measures are Mean average precision (Mean AP) and the

calculation time of the testing phase. The AP is estimated by using a method

called inferred average precision (Inf AP), proposed in [66].

4.4.2 Experimental Conditions

SiftGPU [67] and Mikolajczyk’s implementation [22] were used for SIFT fea-

ture extraction. MFCC features were extracted by using a speech recognition

toolkit HTK [69]. The average numbers of features per shot are summarized

in Table 4.2.

The number of mixtures (vocabulary size) K for GMMs was 512 for

visual features and 256 for audio features. For computational efficiency,

it was assumed that covariance matrices are diagonal. Hyper parameter

Tree-structured Gaussian Mixture Models 45

τ in the MAP adaptation was set to 20.0, which is the standard value of

the toolkit HTK. Parameter γ in the RBF kernel was γ = d̄−1, where d̄ is

pre-calculated average distance between two GMM supervectors in training

data. SVMs were trained for each semantic concept by using the libSVM

implementation [70]. Combination weights for the fusion in Eq. (4.28) were

optimized by using two-fold cross validation on training data.

For tree-structured GMMs, the optimal tree structure Topt was selected as

Topt = argmin
T ∈S

CT(T), (4.29)

where CT(T) is calculation time when the tree T is used and

S = {T(P1,P2,··· ,PT) | 1 ≤ T ≤ 5, 1 ≤ Pt ≤ 5}. (4.30)

The trees T(4,4,5), T(4,5,5), T(3,4,4,5) and T(3,3) were selected for SIFT-Har, SIFT-

Hes, SIFTH-Dense and MFCC, respectively. Parameter α in Eq. (4.17) was

fixed to 0.1.

Threshold cTH for the fast MAP adaptation was set to 0.001. Here, a low

threshold was set so as to keep detection performance high. Experiments

using different thresholds were also conducted (see Subsection 4.4.3).

In the experiments, calculation time was measured by using a single core

of Intel Xeon 2.93 GHz CPU. Calculation time without feature extraction

time is reported since some features were pre-extracted by using GPUs. The

average feature extraction time per shot was 0.38 sec by using a GPU NVIDIA

Tesla M2050.

4.4.3 Results

Mean Inf APs

Table 4.3 and Table 4.4 summarizes obtained Inf APs and Mean Inf AP for

each types of low-level features and two fusion methods: visual fusion and

multi-modal fusion. The visual fusion is a combination of three types of

visual features (SIFT-Har, SIFT-Hes, and SIFTH-Dense). The multi-modal

fusion combines the MFCC in addition to the visual features. As a result, we

can see that the Mean Inf APs using tree-structured GMMs are comparable

to those using no trees. Some example video shots for training and testing

Tree-structured Gaussian Mixture Models 46

Figure 4.2: Example video shots for training and testing sets. The top 5 results
obtained by using our system (multi-modal fusion) are shown in the
right side of the figure.

sets are shown in Fig. 4.2.

Calculation time

Table 4.5 lists calculation times for MAP adaptation using different features

and different trees. The results for binary trees (Tbinary) are also listed in the

table. The calculation speed when the optimal tree is used on average 4.2

times faster than when trees were not used; that is, calculation time was

reduced by 76.2%.

Fig. 4.3 shows calculation time for each step in the testing phase of the

proposed semantic indexing system. The testing cost was reduced, on aver-

age, by 56.6% by using tree-structured GMMs. The second and third highest

costs were for the PCA projection and the SVM prediction (including cal-

culation of kernels). The SVM prediction can be speed up by using linear

kernels instead of RBF kernels. To avoid decrease in detection accuracy, a

possible compromise is to use linear kernels for roughly ranking shots and

re-evaluate high-ranked shots by using RBF kernels.

Analysis of estimation error

Estimation errors of cik were evaluated from the mean absolute error (MAE),

given as follows:

MAE =
1
n

n∑

i=1

K∑

k=1

|ĉik − cik|, (4.31)

where ĉik and cik are given by Eq. (4.27) and Eq. (4.3), respectively. The

MAE for SIFTH-Dense was 0.32 on average (note that 0 ≤ MAE ≤ 2). Al-

● ● ● ● ● ● ● ●●■

Tree-structured Gaussian Mixture Models 47

Table 4.3: Resulting inferred average precisions (Inf APs) for each semantic con-
cept and for each method. Mean Inf APs on the testing set and Mean APs
on a two-fold cross-validation split of the training data are also shown.

Semantic concept SIFT-Har SIFT-Hes SIFTH-Dense MFCC
No tree Topt No tree Topt No tree Topt No tree Topt

Airplane_Flying 0.064 0.064 0.080 0.078 0.032 0.030 0.001 0.001
Animal 0.039 0.041 0.034 0.035 0.026 0.020 0.002 0.002
Asian_People 0.024 0.029 0.014 0.015 0.001 0.002 0.041 0.041
Bicycling 0.039 0.041 0.040 0.033 0.029 0.026 0.000 0.000
Boat_Ship 0.046 0.044 0.040 0.041 0.050 0.049 0.000 0.000
Bus 0.012 0.012 0.011 0.013 0.007 0.009 0.000 0.000
Car_Racing 0.021 0.019 0.014 0.013 0.060 0.054 0.000 0.000
Cheering 0.053 0.051 0.044 0.045 0.033 0.037 0.008 0.008
Cityscape 0.090 0.098 0.109 0.110 0.125 0.108 0.009 0.009
Classroom 0.004 0.005 0.020 0.022 0.010 0.010 0.000 0.000
Dancing 0.034 0.036 0.030 0.028 0.034 0.033 0.001 0.001
Dark-skinned_People 0.089 0.088 0.073 0.071 0.118 0.133 0.138 0.139
Demonstration_Or_Protest 0.095 0.095 0.065 0.069 0.130 0.121 0.001 0.001
Doorway 0.084 0.082 0.068 0.067 0.073 0.068 0.000 0.001
Explosion_Fire 0.025 0.025 0.026 0.025 0.045 0.043 0.011 0.011
Female-Human-Face-Closeup 0.139 0.124 0.096 0.105 0.125 0.121 0.021 0.021
Flowers 0.030 0.028 0.019 0.017 0.029 0.028 0.001 0.001
Ground_Vehicles 0.159 0.165 0.148 0.150 0.153 0.151 0.021 0.020
Hand 0.078 0.073 0.062 0.073 0.047 0.055 0.000 0.000
Mountain 0.059 0.055 0.053 0.054 0.192 0.194 0.003 0.003
Nighttime 0.072 0.073 0.055 0.054 0.120 0.113 0.002 0.002
Old_People 0.043 0.045 0.040 0.041 0.022 0.023 0.013 0.011
Running 0.039 0.041 0.047 0.045 0.020 0.018 0.000 0.000
Singing 0.112 0.105 0.069 0.074 0.069 0.068 0.086 0.090
Sitting_Down 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
Swimming 0.121 0.131 0.162 0.164 0.343 0.339 0.199 0.199
Telephones 0.008 0.010 0.006 0.006 0.008 0.009 0.001 0.000
Throwing 0.059 0.059 0.063 0.063 0.019 0.016 0.019 0.020
Vehicle 0.158 0.150 0.163 0.172 0.150 0.146 0.015 0.014
Walking 0.093 0.103 0.135 0.138 0.061 0.060 0.002 0.002
Mean InfAP 0.063 0.063 0.060 0.061 0.071 0.070 0.020 0.020

Mean AP on validation set 1 0.078 0.078 0.081 0.082 0.105 0.107 0.028 0.028

Mean AP on validation set 2 0.084 0.085 0.092 0.091 0.111 0.111 0.028 0.027

though we have estimation errors of cik in the fast MAP adaptation algo-

rithm, they can be cancelled when the distance in Eq. (3.35) is calculated

since the same errors occur in training and testing phases.

Effect of using different thresholds

Table 4.6 lists the results obtained using different thresholds cTH for the fast

MAP adaptation. The number of leaf nodes that are active (at least once in

Eq. (4.22)) and MAE are also listed in the table.

As cTH gets higher, the calculation time shortens, but Mean Inf AP was de-

creased when cTH = 0.1 and 0.5. Moreover, the number of active leaf nodes

decreases, and MAE increases. It can thus be concluded that calculation

time should be reduced not by setting a high threshold cTH but by selecting

a better-structured tree to keep detection performance high. In particular,

cTH should be equal to or smaller than 0.01.

Tree-structured Gaussian Mixture Models 48

Table 4.4: Resulting inferred average precisions (Inf APs) for each semantic con-
cept and for each method. Mean Inf APs on the testing set and Mean APs
on a two-fold cross-validation split of the training data are also shown.

Semantic concept Visual fusion Multi-modal fusion
No tree Topt No tree Topt

Airplane_Flying 0.105 0.105 0.105 0.117
Animal 0.068 0.073 0.076 0.076
Asian_People 0.012 0.009 0.012 0.009
Bicycling 0.045 0.056 0.045 0.056
Boat_Ship 0.085 0.084 0.085 0.084
Bus 0.018 0.016 0.021 0.016
Car_Racing 0.040 0.040 0.056 0.043
Cheering 0.052 0.051 0.052 0.051
Cityscape 0.180 0.177 0.185 0.179
Classroom 0.015 0.011 0.017 0.021
Dancing 0.068 0.067 0.068 0.067
Dark-skinned_People 0.151 0.159 0.208 0.203
Demonstration_Or_Protest 0.137 0.132 0.137 0.132
Doorway 0.098 0.097 0.104 0.098
Explosion_Fire 0.050 0.047 0.050 0.047
Female-Human-Face-Closeup 0.169 0.175 0.173 0.178
Flowers 0.043 0.044 0.043 0.044
Ground_Vehicles 0.211 0.210 0.208 0.206
Hand 0.092 0.089 0.090 0.090
Mountain 0.180 0.169 0.182 0.164
Nighttime 0.127 0.133 0.120 0.132
Old_People 0.059 0.058 0.061 0.063
Running 0.073 0.077 0.073 0.077
Singing 0.154 0.158 0.182 0.188
Sitting_Down 0.002 0.003 0.003 0.004
Swimming 0.173 0.186 0.278 0.276
Telephones 0.010 0.012 0.010 0.018
Throwing 0.062 0.065 0.062 0.066
Vehicle 0.205 0.200 0.205 0.200
Walking 0.134 0.142 0.135 0.143
Mean InfAP 0.094 0.095 0.102 0.102

Mean AP on validation set 1 0.147 0.148 0.153 0.154

Mean AP on validation set 2 0.158 0.158 0.162 0.161

Effect of using different tree structures

Fig. 4.4 shows calculation time obtained using different tree structures. The

tree of T(3,4,4,5) was the best in terms of calculation time. We can see that

the tree should not be too deep to improve the speed of MAP adaptation.

Fig. 4.5 shows MAE obtained using different tree structures. MAE can be

reduced by changing the tree structure. However, we conclude that any tree

structures will not be the cause for decreasing final performance since there

was no decrease in Mean Inf AP even in the case of MAE = 0.53 in Table 4.6.

Comparison With Other Methods

Fig. 4.6 compares Mean Inf APs obtained in the above-described experi-

ment with those values obtained by the other methods used at TRECVID

2010. Our fusion methods got better results than the best result reported at

TRECVID 2010 (0.900).

Fig. 4.7 shows the results of significance test obtained by applying par-

Tree-structured Gaussian Mixture Models 49

Figure 4.3: Calculation time for each step (The lower bars for each feature show
the time in the case that the optimized tree was used)

Table 4.5: Calculation time (sec) for MAP adaptation. Calculation time was mea-
sured by using a single core of Intel Xeon 2.93 GHz CPU.

Feature No tree Topt Tbinary

SIFT-Har 1.62 0.49 0.98
SIFT-Hes 1.67 0.48 1.00
SIFTH-Dense 2.89 0.81 1.89
MFCC 0.22 0.03 0.08

tial randomization test (p < 0.05). The muti-modal fusion was significantly

better than the visual fusion. Our method performed better than the other

methods in TRECVID 2010 for semantic concepts related to human and hu-

man actions such as “Singing” and “Dancing” since we used audio features.

However, there was no significant difference between the muti-modal fusion

and the top result in TRECVID 2010. This result shows that the performance

can be improved by combining a larger number of visual features since the

top ranked methods in TRECVID 2010 used more than 10 types of visual

features.

Although our final goal is to develop a generic methods for automatically

assigning semantic concepts to videos, overall performances are still low

compared with that of human annotation. One future challenge is detection

Tree-structured Gaussian Mixture Models 50

Figure 4.4: Mean absolute error (MAE) of cik obtained using different tree struc-
tures (the SIFTH-Dense feature and cTH = 0.001 were used). 1,364
trees of depth at most 5 that have at most 5 children per node and the
binary tree are tested. All MAE were less than 0.05.

Tree-structured Gaussian Mixture Models 51

Figure 4.5: Calculation time obtained using different tree structures (the SIFTH-
Dense feature and cTH = 0.001 were used). 1,364 trees of depth at most
5 that have at most 5 children per node and the binary tree are tested.
T(3,4,4,5) was the best tree and was selected as the optimized tree.

Figure 4.6: Comparison of Mean Inf AP with runs of the TRECVID 2010.

Tree-structured Gaussian Mixture Models 52

Table 4.6: Comparison of Mean Inf AP, calculation time (sec) for MAP adaptation,
number of leaf nodes |VA| and Mean absolute error (MAE) of cik by
using different thresholds cTH for the SIFTH-Dense feature.

cTH Mean Inf AP Calc. time |VA| MAE
0.001 0.695 0.81 17.0 0.32
0.01 0.699 0.68 11.2 0.53
0.1 0.660 0.59 7.3 0.80
0.5 0.641 0.53 5.4 0.98

Figure 4.7: Results of partial randomization test (p < 0.05). Significant differ-
ences among top 10 runs in TRECVID 2010 and our fusion methods
are shown. A black cell shows that there is significant difference be-
tween two methods.

of many kinds of semantic concepts; however, we have to consider which

concepts are really useful for applications of video search.

4.5 Conclusion

A fast and accurate semantic indexing system using fast MAP adaptation and

GMM supervectors was proposed. A tree-structured GMM was constructed

to quickly calculate posterior probabilities for each mixture component of

a GMM. The calculation time for MAP adaptation was reduced by 76.2%
from the conventional method, while high detection performance was main-

Tree-structured Gaussian Mixture Models 53

tained. Our future work will focus on a GPU implementation of the fast MAP

adaptation and feature extraction.

Chapter 5

q-Gaussian Mixture Models

5.1 Overview

As described in the previous chapters, Gaussian mixture models (GMMs)

which extend the bag-of-visual-words (BoW) to a probabilistic framework

are effective for image and video semantic indexing. Recently, the q-Gaussian

distribution, which is derived in the non-extensive statistics, has been shown

to be useful for representing patterns in many complex systems in physics

such as fractals and cosmology. In this chapter, we extend our GMM-based

system to q-Gaussian mixture models (q-GMMs), which are mixture models

of q-Gaussian distributions, for image and video semantic indexing.

The procedure of the proposed image and video semantic indexing based

on q-Gaussian mixture models (q-GMMs) is shown in Fig. 5.1. First, low-

level features (e.g. SIFT features) are extracted from image/video data.

Second, a q-GMM for a background model is estimated from low-level fea-

tures in training data. Finally, each image is represented by a histogram of

low-level features in which the background model is used as a visual code-

book.

54

q-Gaussian Mixture Models 55

Figure 5.1: The framework of image and video semantic indexing using q-Gaussian
mixture models.

Figure 5.2: The q-Gaussian distributions. The (normal) Gaussian distribution is
obtained when q = 1. The tail of a q-Gaussian distribution is longer
than that of a Gaussian distribution when q > 1.

5.2 q-Gaussian Mixture Models

The q-Gaussian distribution, which has a parameter q to control its tail-

heaviness, is derived by maximizing Tsallis q-entropy Sq given by

Sq = − 1
1 − q

(
1 −

∫
p(x)qdx

)
. (5.1)

The Boltzmann-Gibbs (BG) entropy is obtained from Tsallis q-entropy Sq for

q → 1. The probability density function of the q-Gaussian distribution Nq is

q-Gaussian Mixture Models 56

Figure 5.3: (a): Standardized histogram of the first elements of standardized SIFT
descriptors. 1 million low-level descriptors are randomly sampled from
training data of PASCAL VOC 2010 dataset. (b-1), (b-2): A fitting result
by a Gaussian distribution and its residuals. (c-1), (c-2): A fitting result
by a q-Gaussian distribution (q = 1.12) and its residuals.

given by

Nq(x | µ,Σ) =

1
Zq

(
1 − 1 − q

3 − q
(x − µ)T Σ−1(x − µ)

) 1
1 − q ,

if (x − µ)T Σ−1(x − µ) <
3 − q

1 − q
,

0, otherwise,

(5.2)

where µ is a mean vector, Σ is a covariance matrix, and Zq is a normalizing

constant to make the integral over Eq. (5.2) to 1. Note that the q-Gaussian

distribution asymptotically approaches to the Gaussian distribution when

q → 1.
Fig. 5.2 shows the shape of q-Gaussian distributions for some q-values.

The q-Gaussian distribution has a longer tail than the Gaussian distribution

when q > 1. The long-tailed distribution obtained for q > 1 is expected

to be effective for representing complexly correlated data. Fig. 5.3 shows

a histogram of the first values of 1 million low-level descriptors with fit-

ting results. The q-Gaussian distribution is more suitable than the Gaussian

distribution to represent distribution of the low-level descriptors.

To further improve the expressiveness of the q-Gaussian distribution, we

introduce a mixture model of q-Gaussian distributions, namely a q-Gaussian

q-Gaussian Mixture Models 57

mixture model (q-GMM), by

pq(x | θ) =
K∑

k=1

wkNq(x | µk, Σk), (5.3)

where K is the number of mixtures, wk is a mixture coefficient, and θ =
{wk, µk, Σk}K

k=1 is a set of q-GMM parameters.

5.3 Training q-GMM for a Background Model

From a set of low-level features X = {xi}N
i=1 in training data, we estimate

q-GMM parameters for a background model which is used instead of a code-

book for BoW. We propose the expectation maximization (EM) algorithm

for q-GMMs as follows.

E-step

Evaluate posterior probabilities cik as follows:

cik =
ŵkNq(xi | µ̂k, Σ̂k)∑K

k=1 ŵkNq(xi | µ̂k, Σ̂k)
. (5.4)

M-step

To derive the parameter-update rules for the M-step, we introduce a Q-

function given by

Q(θ) = log
∏

i

pq(xi | θ) + λ

(
1 −

∑

k′

wk′

)
(5.5)

where pq is a pdf of a q-GMM defined by Eq. (5.3). A lagrangian multiplier

λ is introduced to obtain wk such that

∑

k′

wk′ = 1. (5.6)

q-Gaussian Mixture Models 58

The derivations of the Q-function for each parameter are given by

∂

∂wk
Q(θ) =

∑

i

Nq(xi | µk, Σk)∑
k′ wk′Nq(xi | µk′ , Σk′)

− λ (5.7)

=
1

wk

∑

i

cik − λ, (5.8)

∂

∂µk
Q(θ) =

∑

i

aikwkNq(xi | µk, Σk)∑
k′ wk′Nq(xi | µk′ , Σk′)

Σ−1
k (xi − µk) (5.9)

= Σ−1
k

∑

i

aikcik(xi − µk), (5.10)

∂

∂Σk
Q(θ) =

1
2

∑

i

wkNq(xi | µk, Σk)∑
k′ wk′Nq(xi | µk′ , Σk′)

Σ−2
k

(
aik(xi − µk)(xi − µk)T − Σk

)

(5.11)

=
1
2
Σ−2

k

∑

i

cik

(
aik(xi − µk)(xi − µk)T − Σk

)
, (5.12)

where

aik =
2

3 − q − (1 − q)(xi − µk)T Σ−1
k (xi − µk)

. (5.13)

The parameter-update rules for the M-step are obtained by setting the

derivatives of Q to zero. For mixture coefficients wk, we obtain

ŵk =
Ck∑K

k=1 Ck

, (5.14)

from Eq. (5.8) where Ck =
∑

i cik.

However, µ̂k and Σ̂k can not be obtained from Eqs. (5.10) and (5.12)

analytically since µk and Σk appear in aik. Our preliminary experiments

show that numerically solving those equations by the steepest descent (SD)

method is time-consuming and it’s difficult to optimize step size in SD in a

high-dimensional space. Hence we assume aik is a constant A for all i and

q-Gaussian Mixture Models 59

k, and analytically solve the equations as

µ̂k =
1

Ck

N∑

i=1

cikxi, (5.15)

Σ̂k =
A

Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T . (5.16)

We determine the value of A so that the expectation of Σ̂k, E[Σ̂k], is

equal to Σk, a covariance matrix of a q-Gaussian distribution Nq(· | µk, Σk).
The expectation of Σ̂k is calculated as

E
[
Σ̂k

]
= E

[
A

Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T

]
(5.17)

=
A

Ck

N∑

i=1

cikV[xi] (5.18)

= A
3 − q

5 − 3q
Σk. (5.19)

where we use the fact

V[xi] =
3 − q

5 − 3q
Σk. (5.20)

Therefore, A is set to

A =
(

3 − q

5 − 3q

)−1

. (5.21)

Here, we assume q < 5
3 since a q-Gaussian distribution has an infinite vari-

ance if q ≥ 5
3 .

5.4 q-GMM for histogram-based image representa-
tion

To represent an image by a feature vector, we create a histogram of low-level

features H(X ′) from a set of low-level features X ′ = {xi}N ′
i=1 extracted from

q-Gaussian Mixture Models 60

an image as follows:

H(X ′) =

C1

C2
...

CK

, Ck =

∑

i

cik, (5.22)

where cik is the posterior probability of xi being at the k-th q-Gaussian com-

ponent. It is given by

cik =
ŵkNq(xi | µ̂k, Σ̂k)∑K

k=1 ŵkNq(xi | µ̂k, Σ̂k)
. (5.23)

where ŵk, µ̂k, and Σ̂k are q-GMM parameters for the background model.

The posterior probabilities cik can be viewed as weights in soft-assignment

of visual words since they satisfy

K∑

k=1

cik = 1, 0 ≤ cik ≤ 1. (5.24)

Thus, the q-GMM can be regarded as an extension of BoW to a probabilistic

framework.

We found that the assignment using the q-GMM comes close to the hard-

assignment (i.e., only one of cik is equal to 1.0 and others are 0.0) as q

decreases, and comes close to the uniform-assignment (i.e., all cik have

equivalent values) as q increases. To measure how much the assignment

is close to the hard-assignment, we introduce the assignment hardness h

defined by

h =
1

N ′

N ′∑

i=1

maxk cik − K−1

1 − K−1
. (5.25)

The assignment hardness h is designed to reach 1.0 for the hard-assignment

and 0.0 for the uniform-assignment.

Fig. 5.4 shows the assignment hardness with different q-values. To im-

prove the final performance of image and video indexing, the assignment

should not be too hard nor too uniform. Here, we employ a q-value of 1.05

that has the middle value (0.5) of assignment hardness.

q-Gaussian Mixture Models 61

Figure 5.4: Assignment hardness h with different q-values.

5.5 q-GMM Kernel

Here, we introduce q-GMMs instead of the BoW histograms to represent im-

ages and videos. Generally, the number of low-level features extracted from

an image is limited and may not be enough to estimate q-GMM parameters

robustly. Thus, we use the maximum a posteriori criteria which provides

robust parameter estimation. For each image that has low-level features

X ′ = {xi}N ′
i=1, we only update q-GMM mean vectors from the background

model as follows:

µ̃′
k =

τ µ̂k +
∑N ′

i=1 cikxi

τ +
∑N ′

i=1 cik

, (5.26)

where N ′ is the number of the low-level features, µ̂k is a q-GMM parameter

for the background model, τ is a prefixed hyper-parameter, and cik is the

posterior probability given by Eq. (6.10).

For a kernel to train support vector machines (SVMs), we introduce the

q-Gaussian Mixture Models 62

following RBF-based kernel, namely q-GMM kernel,

k(X ′,X ′′) = exp

(
−γ

K∑

k=1

ŵk(µ̃′
k − µ̃′′

k)
T Σ̂−1

k (µ̃′
k − µ̃′′

k)

)
, (5.27)

where X ′ is a set of low-level features extracted from an image, µ̃′
k is an

updated q-GMM mean vector, Σ̂k, wk are q-GMM parameters for the back-

ground model, and γ is a scaling parameter. The weighted sum of Maha-

lanobis distance between the k-th q-Gaussian components is utilized in the

q-GMM kernel.

To efficiently compute the q-GMM kernel, we define the following super-

vector φ(X ′) and store it in storage.

φ(X ′) =

√
ŵ1Σ̂

− 1
2

1 µ̃′
1

√
ŵ2Σ̂

− 1
2

2 µ̃′
2

...
√

ŵKΣ̂− 1
2

K µ̃′
K

, (5.28)

The dimension of the super-vector is Kd where K is the number of mixture

components and d is the dimension of low-level descriptors. The super-

vector immediately implies the following simplification of the q-GMM ker-

nel.

k(X ′,X ′′) = exp
(
−γ‖φ(X ′) − φ(X ′′)‖2

2

)
. (5.29)

5.6 Experiments

5.6.1 Experimental Conditions

In this section, the proposed method is evaluated on two data sets: PASCAL

VOC 2010 and TRECVID 2010. The PASCAL Visual Object Classes Challenge

(VOC) [71] provides a benchmark for comparison of object classification

methods. The PASCAL VOC 2010 classification (validation) challenge data

set consists of 4,998 training images and 5,105 testing images of 20 object

classes in Table 5.1. The evaluation measure is Mean average precision

(Mean AP), which is the arithmetic mean of APs over all targeted object

classes. The TREC Video Retrieval Evaluation (TRECVID) [64] provides a

q-Gaussian Mixture Models 63

Table 5.1: The targeted semantic concepts for PASCAL VOC 2010 and TRECVID
2010.

PASCAL VOC 2010
Aeroplane Bicycle Bird
Boat Bottle Bus
Car Cat Chair
Cow Diningtable Dog
Horse Motorbike Person
Pottedplant Sheep Sofa
Train Tvmonitor

TRECVID 2010
Airplane Flying Animal Asian People
Bicycling Boat Ship Bus
Car Racing Cheering Cityscape
Classroom Dancing Dark-skinned People
Demonstration Or Protest Doorway Explosion Fire
Female Human Face Closeup Flowers Ground Vehicles
Hand Mountain Nighttime
Old People Running Singing
Sitting down Swimming Telephones
Throwing Vehicle Walking

benchmark for comparison of video indexing methods. The TRECVID 2010

Semantic Indexing data set consists of 119,685 training video shots and

146,788 testing video shots. 30 semantic concepts of objects, actions, and

scenes in Table 5.1 and their ground truth labels are provided. Officially

provided key-frame images for each video shot is used in our experiments.

The evaluation measure is Mean AP among the 30 semantic concepts.

To test our q-GMM on these benchmarks, the low-level image descrip-

tors are densely sampled from 100x100 grid with 3 different scales on an

image. The descriptor is a concatenation of 128-dimension SIFT descrip-

tor [5] and 36-dimension hue-histogram descriptor [28]. The dimension of

each descriptor is reduced to 32 by applying Principal Component Analysis

(PCA) after the concatenation.

The q-GMM for a background model is constructed by applying the pro-

posed EM algorithm to one million randomly sampled descriptors. The num-

ber of mixture components K and the hyper-parameter τ in Eq. (5.26) are

set to 512 and 20.0, respectively, in all experiments except the experiment

evaluating their influence. Note that the dimension of the q-GMM histogram

q-Gaussian Mixture Models 64

Figure 5.5: The performance comparison of q-GMM kernels with different q-values
on the PASCAL VOC 2010 dataset. The q-GMM kernel outperforms the
GMM baseline (q = 1.00) and the improved Fisher kernel [37] of GMM
means.

representation and q-GMM super-vector is 512 and 16,384 (=512×32), re-

spectively.

5.6.2 Experimental Results

PASCAL VOC 2010

We first compared our q-GMM histogram representation in Sec.5.4 with the

hard-assignment BoW [3]. Mean AP of the BoW was 30.93% and the q-

GMM histogram improved it to 32.03%. The q value is set to 1.05 which has

the hardness of 0.5 as presented in Sec. 5.4. This shows that the q-GMM is

more suitable than the hard-assignment BoW for representing an image by

a histogram of low-level descriptors.

Next, we compared our q-GMM kernel in Sec.5.5 with three kernel meth-

ods: χ2-kernel, Fisher kernel (FK) [36], and Improved Fisher kernel (IFK)

[37]. For the χ2-kernel, we computed χ2-distance between the q-GMM his-

togram representations. For FK and IFK, we extracted Fisher vectors for

GMM means, whose dimension is the same as our super-vector. We ap-

q-Gaussian Mixture Models 65

Figure 5.6: Mean AP on PASCAL VOC 2010 for different numbers of mixture com-
ponents for q-GMM kernel.

plied L2 and power normalization as in [37] for IFK. The parameter of the

power normalization was set to 0.4 which performed the best in our ex-

periments. As shown in Table 5.2, the q-GMM kernel performed the best

among these methods and achieved 49.42% in Mean AP. Figure 5.5 shows

the performance of the q-GMM kernel for different q values. As can be seen,

the q-GMM outperformed the normal GMM baseline (q = 1.00). The best q

value and its Mean AP were 1.06 and 49.47%, respectively. This shows the

effectiveness of the q-GMM kernel in image classification.

As described in [8], another idea to obtain a discriminative image repre-

sentation is to train a class-specific model instead of the background model

for a visual codebook. However, APs for aeroplane and bicycle were de-

creased by 1.30% and 2.09%, respectively, when a q-GMM is trained on one

million descriptors sampled only from images of the targeted object. There

was no significant performance improvement by concatenating both repre-

sentations: AP for aeroplane was improved by 0.46% but that for bicycle

was decreased by 0.31%. In conclusion, it is better to train a visual code-

book on images of various object categories. A class-specific model could

be useful for other problems such as dog breed classification that focus on a

specific category.

q-Gaussian Mixture Models 66

Figure 5.7: Mean AP on PASCAL VOC 2010 for different hyper-parameter τ in max-
imum a posteriori adaptation for q-GMM kernel.

Figure 5.8: The performance comparison of q-GMM kernels with different q-values
on the TRECVID 2010 dataset.

q-Gaussian Mixture Models 67

Figure 5.9: The performance comparison with other methods in TRECVID 2010.
We achieved 0.071 in Mean AP by using a q-GMM kernel with SIFT-
HueHistogram features and achieved 0.109 with additional 4 types of
low-level features.

Figure 5.10: Examples of detected video shots in TRECVID 2010 dataset. Top 5
video shots are shown for ten semantic concepts.

●

●●● ●● ● ●
● ●

●

● ● ● ● ●

q-Gaussian Mixture Models 68

Table 5.2: Performance comparison on PASCAL VOC 2010 dataset. BoW: bag-
of-visual-words histogram representation [3] obtained by using vector
quantization. Our histogram: q-GMM based histogram representation
in Sec. 5.4 for q = 1.00 (GMM) and q = 1.05. χ2 kernel: χ2 kernel
on q-GMM histogram representation. FK: Fisher kernel [36] of a GMM.
IFK: improved Fisher kernel [37]. Our kernel: q-GMM kernel in Sec.5.5
for q = 1.00 (GMM) and q = 1.05.

Concept BoW[3]
Our histogram

χ2 FK [36] IFK[37]
Our kernel

GMM q-GMM GMM q-GMM
aeroplane 54.38 55.21 55.99 75.10 68.41 81.21 81.72 82.34
bicycle 36.53 37.88 38.20 42.52 46.79 52.07 52.62 53.50
bird 24.76 25.79 25.77 36.57 34.26 43.82 44.39 45.07
boat 37.41 38.29 39.65 50.51 50.37 58.36 56.51 57.32
bottle 9.71 10.03 10.28 16.36 18.06 20.51 21.91 22.62
bus 56.62 58.56 59.99 66.90 71.80 77.17 76.29 77.50
car 35.63 36.51 36.34 45.76 51.08 55.82 56.87 57.24
cat 41.75 42.33 42.05 49.62 52.09 56.96 57.18 57.16
chair 33.96 34.79 35.04 41.99 43.39 47.10 46.70 47.76
cow 7.12 7.69 7.66 12.24 13.48 20.35 21.77 22.76
diningtable 14.89 15.36 15.22 24.11 30.76 34.11 34.30 34.65
dog 24.36 24.84 24.63 35.30 39.41 44.30 44.61 44.67
horse 21.53 22.98 24.06 31.77 35.90 43.71 43.45 43.81
motorbike 27.30 28.55 28.19 43.41 49.64 56.27 57.17 58.83
person 68.63 69.23 69.29 73.42 73.16 76.69 76.84 77.50
pottedplant 8.54 8.38 8.04 10.85 14.31 15.78 16.82 16.91
sheep 19.68 20.42 19.37 30.07 32.64 42.17 41.63 42.09
sofa 16.17 16.66 17.10 24.09 26.97 33.38 33.47 33.83
train 44.59 45.71 46.17 51.33 57.97 62.93 63.17 64.27
tvmonitor 35.04 36.20 37.48 45.88 41.96 48.79 47.69 48.51
Mean AP 30.93 31.77 32.03 40.39 42.62 48.58 48.76 49.42

Analysis

Here, we analyze the influence of the number of mixture components and

the hyper-parameter τ in Eq.(5.26) on the performance. Figure 5.6 com-

pares the q-GMM kernel with the GMM baseline for different numbers of

mixture components. It is shown that the q-GMM constantly performed bet-

ter than the GMM baseline. We observed that the difference between the

GMM and the q-GMM is large when the number of mixture components is

large. This observation can be explained as follows. For a GMM, as the

number of mixture components increases, fewer low-level descriptors are

assigned with a significant posterior probability cik to each Gaussian, i.e.,

a matrix of cik becomes sparser and it decreases the performance. On the

other hand, for a q-GMM, long-tailed q-Gaussian distributions prevent it

from becoming sparse. This is the reason why we observed the large differ-

q-Gaussian Mixture Models 69

Table 5.3: Testing cost and Mean AP for each method. K is the number of mixture
components, D is the dimension of low-level descriptor, and N is the
averaged number of support vectors of an SVM.

Representation Dimension Kernel type N Testing cost Mean AP
q-GMM histogram 512 linear 1540 O(K) 32.03

χ2 1700 O(NK) 40.39
q-GMM supervector 16384 linear 1251 O(DK) 47.09

RBF 2261 O(NDK) 49.42
Fisher vector (mean) 16384 linear 1494 O(DK) 46.21

RBF 2556 O(NDK) 48.58

ence for a large number of mixture components.

Figure 5.7 illustrates the influence of the hyper-parameter τ in Eq.(5.26)

on the performance. We observed no significant change in performance

when τ was between 10.0 to 25.0. Thus, we conclude that values between

10.0 to 25.0 are reasonable. We also confirmed that the improvement by

the q-GMM is robust against the hyper-parameter τ .

TRECVID 2010

Table 5.4 shows the performance comparison of the q-GMM kernel and the

GMM baseline on TRECVID 2010. The q-GMM kernel of q = 1.05 outper-

formed the GMM and achieved 7.11% in Mean AP. As shown in Figure 5.8,

the q-value of 1.02 performed the best with 7.12% Mean AP on this dataset.

On the other hand, we observed that the performance is improved to

7.49% if we choose the best q-value for each of targeted semantic concept.

This shows that supervised q-value optimization has potential for improving

the overall performance in future work while our q-value optimization in

Sec 5.4, which is based on the assignment hardness, was in an unsupervised

way.

Another idea to improve the overall performance is to use the both of the

GMM and the q-GMM. The simplest implementation of this idea is averaging

two detection scores obtained from the GMM and the q-GMM. We addition-

ally evaluated it and observed 7.30%Mean AP as shown in Table 5.4. On the

other hand, a disadvantage of averaging scores is that it’s time-consuming

to compute independent scores for the GMM and the q-GMM. To reduce the

computational costs, an efficient method for calculating q-Gaussian proba-

bilities for multiple q-values is needed in future work.

q-Gaussian Mixture Models 70

Table 5.4: Average precision (AP) by semantic concepts on TRECVID 2010. Results
for GMM, q-GMM (q = 1.05), score fusion of GMM and q-GMM (q =
1.05), and feature fusion of 5 types of visual and audio features for q-
GMM are reported.

Concept
Single feature Feature fusion

GMM q-GMM Fusion q-GMM
Airplane Flying 2.75 2.67 3.01 15.64
Animal 2.18 2.53 2.39 6.44
Asian People 0.45 0.18 0.40 3.08
Bicycling 3.10 2.90 3.31 5.90
Boat Ship 5.28 5.51 5.24 11.01
Bus 0.80 0.43 0.57 1.42
Car Racing 4.30 3.92 4.03 4.37
Cheering 3.22 3.56 3.38 3.81
Cityscape 9.91 10.75 10.85 17.43
Classroom 1.24 1.27 1.21 0.81
Dancing 3.12 5.10 4.53 8.89
Dark-skinned People 12.85 13.21 13.77 20.40
Demonstration Or Protest 13.63 13.54 14.14 17.86
Doorway 7.84 7.14 7.95 12.44
Explosion Fire 4.61 4.03 4.28 3.93
Female-Human-Face-Closeup 10.94 10.55 11.09 17.79
Flowers 3.57 3.95 3.59 3.86
Ground Vehicles 14.59 14.15 15.46 20.20
Hand 4.06 4.05 3.92 9.30
Mountain 20.14 20.83 20.15 20.87
Nighttime 12.89 9.99 12.24 15.88
Old People 2.58 1.98 2.37 8.20
Running 1.42 1.87 1.90 6.88
Singing 6.80 8.11 8.40 17.47
Sitting Down 0.12 0.08 0.09 0.56
Swimming 32.98 33.07 33.35 30.82
Telephones 1.03 1.39 1.39 1.88
Throwing 3.49 5.61 5.45 7.02
Vehicle 14.61 14.04 14.28 18.91
Walking 5.66 6.98 6.41 13.03
Mean 7.01 7.11 7.30 10.87

Comparison with other methods

Fig. 5.9 shows the performance comparison with the other methods in the

TRECVID 2010 Semantic Indexing Task [64]. Mean AP of 7.11%, which

q-Gaussian Mixture Models 71

was obtained by using our q-GMM kernel (q = 1.05), ranked 10-th among

87 official runs. Fig. 5.10 shows some examples of detected video shots.

We conclude the q-GMM kernel performed well since the other methods

typically used more than 5 types of low-level features while we used only

one type of low-level features (SIFT with hue histogram).

Furthermore, we achieved Mean AP of 10.90%, which is better than the

best performance on the TRECVID 2010, by combining q-GMM kernels for 4

additional types of low-level features: SIFT with Harris-affine detector, SIFT

with Hessian-affine detector, dense HOG, and MFCC audio features.

5.7 Conclusion

We proposed q-Gaussian mixture models (q-GMMs) and their application to

image and video semantic indexing systems. It has been shown in our ex-

periments that the q-GMM kernels outperform both of the BoW method and

the normal GMM. The q-GMM kernel achieved 0.494 and 0.109 in Mean

Average Precision on the PASCAL VOC 2010 dataset and the TRECVID 2010

Semantic Indexing dataset, respectively. The linear kernel on q-GMM su-

pervectors was shown to be effective in terms of the scalability. Our future

work will focus on optimization of q-values for each semantic concepts. An

extension of the Fisher information analysis to Tsallis statistics would be

interesting as a promising next step.

Chapter 6

Neighbor-To-Neighbor Search

6.1 Overview

Assigning a visual code to a low-level image descriptor, which we call code
assignment, is the most computationally expensive part of image classifica-

tion algorithms based on the bag of visual word (BoW) framework. As de-

scribed in Chapter 3, a tree-structured GMM reduces computational cost by

searching visual words for each input feature vectors independently. How-

ever, input vectors are often strongly depend on each other when they are

extracted from the same region in an image. Their typical examples are

densely-sampled image descriptors such as dense SIFT, which have been

proven to be effective in image classification [23, 37].

In this chapter, we proposes a fast computation method, Neighbor-to-

Neighbor (NTN) search, for this code assignment. Based on the fact that

image features from an adjacent region are usually similar to each other, this

algorithm effectively reduces the cost of calculating the distance between a

codeword and a feature vector. This method can be applied not only to a

hard codebook constructed by vector quantization (NTN-VQ), but also to a

soft codebook, a Gaussian mixture model (NTN-GMM).

72

Neighbor-To-Neighbor Search 73

Figure 6.1: Neighbor-to-neighbor (NTN) search. NTN search assigns a code to
an input vector from a neighbor vector to a neighbor vector. A typical
example of a neighbor vector is a descriptor xj adjacent to a descriptor
xj−1 where image descriptors are densely sampled from an image. The
red path on the image shows the ordering of descriptors.

6.2 Neighbor-To-Neighbor (NTN) Search for Vector
Quantization

6.2.1 Outline

This section presents our neighbor-to-neighbor (NTN) search in a simple

framework, hard VQ. Let X be a set of input vectors and B(x) be a set of

neighbor vectors for an input vector x ∈ X. The NTN search assumes that

a neighbor vector in B(x) is similar to x, and that the number of neighbor

vectors is smaller than the codebook size. A typical example that satisfies

this assumption is densely-sampled SIFT descriptors for image classification

. Here, B(x) is a set of the four descriptors adjacent to a descriptor x (Fig-

ure 6.1 and Figure 6.2) or a set of descriptors in the same pre-segmented

region.

In NTN search, input vectors are ordered from a neighbor vector to a

neighbor vector to skip distance calculations for some input vectors based

on a triangle inequality. We first explain the structure of our algorithm and

then explain our speeding-up idea.

Neighbor-To-Neighbor Search 74

Figure 6.2: A histogram of descriptors. Red bars: descriptors that have the same
visual word as a neighbor descriptor. White bars: all descriptors. SIFT
descriptors are extracted from every 4 pixels at 5 scales on the PASCAL
VOC 2007 training images. The codebook size is 512. 61.3% of two
adjacent descriptors have the same visual word.

(b) STEP1, j=2

: input vector

: codeword

: calculated distance

(a) INIT, j=1 (c) STEP2-1, j=2 (d) STEP2-2, j=2

(e) STEP1 (f) STEP2-1 (g) STEP2-2

Figure 6.3: Algorithm overview.

Neighbor-To-Neighbor Search 75

6.2.2 Algorithm

Let {µk}K
k=1 be a codebook. In the initialization step for j = 1, xj is ran-

domly selected from X. Its code vj is determined as

vj = argmin
k

djk, (6.1)

where distance

djk = ‖xj − µk‖, (6.2)

is calculated for each k = 1, 2, · · · ,K. This process is the same as the

straightforward hard VQ.

For j = 2, 3, · · · , N , the following three steps are iterated (Figure 6.3).

(STEP 1: Select the next input vector)
For each x ∈ B(xj−1), calculate ∆(x) = ‖x − xj−1‖, and set

xj = argmin
x∈B(xj−1)∩X̄

∆(x), (6.3)

where X̄ = X \ {x1, · · · , xj−1} is a set of remaining input vectors. If

B(xj−1) ∩ X̄ = ∅ then xj is randomly picked from X̄.

(STEP 2: Calculate distance)
Set k∗ = vj−1.

2-1) Calculate distance djk∗ .

2-2) For k = 1, 2, · · · , k∗ − 1, k∗ + 1, · · · ,K, calculate a lower bound djk for

djk as follows.

djk = dik − δ∆ij , (6.4)

where i is the index of the input vector whose distance dik has been calcu-

lated, δ is a parameter, and ∆ij is an accumulated distance from xi to xj .

This process will be explained in detail in the next paragraph. If djk ≥ djk∗

then skip calculation of djk, otherwise calculate djk.

(STEP 3: Output a code)
Calculate

vj = argmin
k∈E

djk, (6.5)

Neighbor-To-Neighbor Search 76

where E is a set of indices of codewords whose distance to xj is calculated

in STEP 2.

Here we explain Eq. (6.4) in STEP 2. For a given xj , let’s go back to the

previous input vector xi (i < j) whose distance dik has been calculated (Fig-

ure 6.3 (g)). Take the maximum such index i and let ∆ij be an accumulated

distance between xi and xj given by

∆ij =
j∑

p=i+1

‖xp − xp−1‖. (6.6)

The triangle inequality gives

dik − ∆ij ≤ djk ≤ dik + ∆ij . (6.7)

It implies

∃δ∗ ∈ [−1, 1] s.t. djk = dik − δ∗∆ij . (6.8)

Thus, for δ ≥ δ∗, djk in Eq. (6.4) is a lower bound of distance djk. Note

that the result of coding by this algorithm is exactly the same as that by the

original hard VQ in this case.

6.2.3 The parameter δ

Our idea to improve the speed of the algorithm is to regard δ as a constant

and use it as a parameter. Then, the lower bound is efficiently updated from

the previous lower bound by

djk = dj−1,k − δ‖xj − xj−1‖. (6.9)

The lower bound is obtained by only one distance calculation from xj−1 to

xj , which is already calculated in STEP 1. By relaxing the restriction δ ≥ δ∗,

we can further reduce the computational cost though the exact solution may

not be obtained in such cases.

Alg. 1 summarizes the neighbor-to-neighbor (NTN) search for hard VQ

which outputs assigned codes for each input vector quickly.

Neighbor-To-Neighbor Search 77

Algorithm 1 NTN-VQ

Input: input vectors X (N = |X|),
codebook {µk}K

k=1, parameter δ.
Output: codes {vi}N

i=1
x1 ← Rand(X)
dk ← ‖x1 − µk‖ for all k
v1 ← argmin

k
dk; k∗ ← v1

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄
‖x − xi−1‖

dk∗ ← ‖xi − µk∗‖
for all k)= k∗ do

dk ← dk − δ‖xi − xi−1‖
if dk∗ > dk then

dk ← ‖xi − µk‖
if dk∗ > dk then k∗ ← k end if

end if
end for
vi ← k∗

end for

6.3 NTN Search for Gaussian Mixture Models

A Gaussian mixture model (GMM) is an extension of hard VQ to a probabilis-

tic framework since it provides a soft assignment of codewords to an input

vector. Here we extend the NTN search to a GMM framework (NTN-GMM).

The algorithm structure of NTN-GMM is the same as NTN-VQ, but instead

of a lower bound of distance for NTN-VQ, an upper bound of a Gaussian

probability is calculated for NTN-GMM.

Let µk, Σk and wk (k = 1, 2, · · ·K) be the mean vector, the covariance

matrix, and the mixture weight of the k-th mixture component (codeword)

of a GMM, respectively. A code cjk for an input vector xj(j = 1, 2, · · · , N)
to the k-th codeword is given by

cjk =
pjk∑K

k′=1 pjk′
. (6.10)

Neighbor-To-Neighbor Search 78

Here pjk is a Gaussian probability given by

pjk =
wk

(2π)
2
d |Σk|

1
2

exp
(
−1

2
‖xj − µk‖2

Σ−1
k

)
, (6.11)

where ‖x‖A =
√

xT Ax. Note that NK probability calculations are required

in the standard GMM.

Our empirical observation shows that the distribution of pjk over all the

codewords is peaky, i.e., for each input vector xj , a few pjk ’s have a large

value and the others do not. If xj is similar to xj−1, the “peak” is shifting

gradually as j increments. Conversely, the changes in the “bottom (no-

peak)” of the distribution are generally small. This observation brings us

to an idea that we may ignore the change of Gaussian probabilities in the

“bottom” of the distribution.

For a given xj , let xi (i < j) be the previous input vector whose Gaus-

sian probability pik has been calculated. The idea is to ignore the difference

between pjk and pik and assume pjk = pik for k ∈ G(b)
i ∩ G(b)

j to skip calcu-

lation of pjk. Here, G(b)
j is a set of mixture components in the “bottom” of

the distribution, which we call a bottom set, given by

G(b)
j = {k : pjk < pth}. (6.12)

where pth is a threshold to categorize the mixture components into “peak”

and “bottom”.

A bottom set G(b)
j cannot be directly observed without computing pjk.

Thus, we introduce an upper bound pjk of a probability pjk given by

pjk = pik exp (δik∆ij) . (6.13)

Here, ∆ij is the accumulated distance given by Eq. (6.6) and δik is given by

δik = Skδ‖xi − µk‖Σ−1
k

, (6.14)

where δ ∈ [0, 1] is a parameter to control the speed of our algorithm (as

Subsec. 6.2.3) and Sk is the square root of the spectral radius of Σ−1
k .

The upper bound pjk of the probability (Eq. (6.13)) is delivered as fol-

Neighbor-To-Neighbor Search 79

lows. The law of cosines gives

∃δ∗ ∈ [−1, 1] s.t. ‖xj − µk‖2
Σ−1

k
(6.15)

= ‖xi − µk‖2
Σ−1

k
+ ‖xi − xj‖2

Σ−1
k

− 2δ∗‖xi − xj‖Σ−1
k
‖xi − µk‖Σ−1

k
.

For δ ≥ max(δ∗, 0), it implies

‖xj − µk‖2
Σ−1

k
≥ ‖xi − µk‖2

Σ−1
k

− 2Skδ‖xi − xj‖‖xi − µk‖Σ−1
k

≥ ‖xi − µk‖2
Σ−1

k
− 2Skδ∆ij‖xi − µk‖Σ−1

k
, (6.16)

where Sk is the square root of the spectral radius of Σ−1
k and ∆ij is the

accumulated distance given by Eq. (6.6). Thus, we have

pjk =
wk

Zk
exp

(
−1

2
‖xj − µk‖2

Σ−1
k

)
(6.17)

≤ wk

Zk
exp

(
−1

2
‖xi − µk‖2

Σ−1
k

+ Skδ∆ij‖xi − µk‖Σ−1
k

)
(6.18)

= pik exp
(
Skδ∆ij‖xi − µk‖Σ−1

k

)
(6.19)

= pik exp (δik∆ij) = pjk, (6.20)

where Zk = (2π)
d
2 |Σk|

1
2 and δik is given in Eq.(6.14).

Note that this upper bound is obtained efficiently from a previous upper

bound by

pjk = pj−1,k exp (δik‖xj − xj−1‖) . (6.21)

Finally, instead of the intersection of bottom sets G(b)
i ∩ G(b)

j , its subset Uij

given by

Uij = {k : pjk < pth}, (6.22)

is used for determining mixture components to skip calculation of pjk (Fig-

ure 6.4).

The threshold pth should depend on the maximum value of Gaussian

probabilities at j, i.e., maxk pjk. However, this value also cannot be observed

without computing all Gaussian probabilities at j. Since two adjacent de-

scriptors are expected to be similar to each other, the value at the previous

Neighbor-To-Neighbor Search 80

Figure 6.4: Distribution of pik and pjk(i < j). Calculation of a Gaussian prob-
ability pjk is skipped for k ∈ Uik.

maximum point is used to determine the threshold as

pth = pjk∗ , k∗ = argmax
k

pj−1,k. (6.23)

Note that, by this thresholding, Gaussian probabilities at the previous maxi-

mum point and the current maximum point (at least) will be calculated for

each input vector.

Alg. 2 summarizes the NTN search for a GMM which outputs soft codes

for each input vector quickly.

To further improve the speed of NTN-GMM, avoiding the exp compu-

tation is effective since our observation shows that 63.0% of the computa-

tional cost in coding using a GMM is spent for it. An exp operator is deleted

by taking a log of Gaussian probabilities and introducing log-max (LM) ap-

proximation to approximate Eq. (6.10) by

cjk 1

1, if k = argmax
k

log pjk,

0, otherwise.
(6.24)

6.4 Experimental evaluation

6.4.1 Experimental setup

We perform image classification experiments on the PASCAL VOC 2007 clas-

sification challenge [72]. The dataset consists of 9,963 images, which are

divided into a training set (5011 images) and a testing set (4952 images).

We use Mean Average Precision (Mean AP) over the 20 object categories for

evaluating classification accuracies. A single core of a 2.93 GHz Intel Xeon

Neighbor-To-Neighbor Search 81

Algorithm 2 NTN-GMM

Input: input vectors X (N = |X|),
GMM {wk, µk, Σk}K

k=1, parameter δ.
Output: soft codes {cik}N

i=1
K
k=1

x1 ← Rand(X)
pk, pk ← wkN (x1|µk, Σk) for all k
δk ← Skδ‖x1 − µk‖Σ−1

k
for all k

c1k ← pkPK
k′=1 pk′

for all k; k∗ ← argmax
k

pk

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄
‖x − xi−1‖

pk∗ , pk∗ ← wk∗N (xi|µk∗ , Σk∗)
for all k)= k∗ do

pk ← pk exp(δk‖xi − xi−1‖)
if pk∗ < pk then

pk, pk ← wkN (xi|µk, Σk)
δk ← Skδ‖xi − µk‖Σ−1

k

end if
end for
cik ← pkPK

k′=1 pk′
for all k; k∗ ← argmax

k
pk

end for

CPU with an 8 GB memory is used for measuring computational costs.

We implement NTN-VQ (Alg. 1) on super-vector (SV) coding [23] and

NTN-GMM (Alg. 2) on Fisher-vector (FV) coding [37]. We compare them

with two standard methods, VQ, GMM, and two tree-based methods, ANN-

VQ, Tree-GMM. The ANN-VQ uses a fast library for approximate nearest

neighbor (ANN) search in [15, 38] for SV coding. The Tree-GMM is an

extension of the hierarchical k-means to a GMM framework for FV coding.

In addition, NTN-LM-GMM applies the LM approximation to NTN-GMM.

In all experiments, 2 × 2 SIFT descriptors are extracted from every 4

pixels 1 at 5 scales. We set a set of neighbor vectors B(x) to a set of the four

SIFT descriptors adjacent to a descriptor x. We omit Gaussian weighting for

SIFT descriptors. The averaged number of descriptors per image is 49580.

A codebook is trained on randomly sampled 1 million descriptors by using

k-means algorithm for VQ or EM algorithm for a GMM. Covariance matrices

for a GMM are assumed to be diagonal. The codebook size is set to 512. A

1Mean APs were 0.582, 0.582 and 0.574 for density of 3, 4, and 5, respectively.

Neighbor-To-Neighbor Search 82

Figure 6.5: Relative computational cost. Computational cost for each step of
super-vector (SV) coding and Fisher-vector (FV) coding is reported.
The codebook size is 512. Feature extraction: SIFT descriptors are
extracted from every 4 pixels at 5 scales, Coding: each descriptor is
assigned to codeword(s), Pooling: an SV or FV image representation is
generated. 85.3%, 56.6%, 88.4%, 65.4% and 64.2% of computational
time is occupied from coding by VQ, NTN-VQ, GMM, NTN-GMM, and
NTN-LM-GMM, respectively. Total computational cost is reduced by
66.0%, 66.5% and 85.3% by NTN-VQ, NTN-GMM, and NTN-LM-GMM,
respectively.

one-vs-rest linear SVM is used for a classifier for each of 20 object categories,

where the regularization parameter is fixed to 1.0.

6.4.2 Experimental Results

Speed of coding

In Table 6.1, we compare speed of coding at the fixed accuracy level. Over-

all, our NTN methods are faster than the others while keeping the classi-

fication accuracy. We observe that NTN-VQ and NTN-LM-GMM reduce the

assignment cost by 77.4% and by 89.3%, respectively. Note that there are

no significant differences in Mean AP on randomization test (p < 0.05) be-

tween methods in the same split table in Table 6.1. Here, a parameter δ is

optimized on the validation set, where half of training images are used for

training models and others are used for validating the models. As described

in Subsec. 6.2.3, the restriction of δ ≥ δ∗ is relaxed in our methods. How-

ever, more than 90% of djk gives a correct lower bound when δ = 0.20 for

NTN-VQ as shown in Figure 6.6.

Figure 6.7 shows the speed-accuracy trade-off for NTN methods for dif-

ferent values of δ. We observe that NTN-LM-GMM outperforms NTN-GMM

Neighbor-To-Neighbor Search 83

Method δ Mean AP [test/val] |E| Time (sec) r (%)

VQ - *0.568 / 0.519 512.0 856.2 0.0
ANN-VQ [15] - 0.563 / 0.518 - 475.7 44.4
NTN-VQ 0.20 0.563 / 0.519 57.8 193.2 77.4
GMM - *0.582 / 0.532 512.0 2595.7 0.0
Tree-GMM - 0.582 / 0.532 295.2 1496.8 42.3
NTN-GMM 0.09 0.580 / 0.531 88.0 642.0 75.3
NTN-LM-GMM 0.09 0.579 / 0.531 88.0 276.8 89.3

Table 6.1: Speed comparison at the fixed accuracy level. VQ: standard hard vec-
tor quantization (VQ), ANN-VQ: approximate nearest neighbor search
[15], NTN-VQ: our neighbor-to-neighbor (NTN) search for VQ (Alg. 1),
GMM: standard Gaussian mixture model (GMM), Tree-GMM: an exten-
sion of the hierarchical k-means to a GMM framework, NTN-GMM: our
NTN search for a GMM (Alg. 2), NTN-LM-GMM: NTN-GMM with log-
max approximation. δ: a parameter of our NTN methods, Mean AP:
image classification accuracy on the testing set and the validation set
of the VOC 2007 classification challenge. |E|: the number of distance
or probability calculations per input vector, Time: assignment time in
sec, Reduction rate r: reduction rate of the assignment cost. Note that
there are no statistically significant differences in Mean AP between the
method marked “*” and each other method in the same split table on
randomization test (p < 0.05).

and NTN-VQ in terms of both speed and accuracy. This is because NTN-LM-

GMM has the advantages of both of NTN-VQ and NTN-GMM: it only requires

distance calculations without using an exp operator as NTN-VQ, but it has a

weight coefficient and a covariance matrix for each codeword as NTN-GMM.

Compared with tree-based methods, a disadvantage of NTN methods is

that they are not very effective if neighbor vectors are not similar to each

other. We confirm this in Figure 6.8: a tree-based ANN-VQ performs better

than RAND-VQ which replaces a neighbor vector by a randomly sampled

vector in each iteration of NTN-VQ. Notably, the average distance between

two neighbor descriptors (xj−1 and xj) is 132.8 and 507.7 for NTN-VQ and

RAND-VQ, respectively. This confirms that the assumption that neighbor

vectors are similar to each other, is necessary for NTN methods.

In addition, we confirm the necessity of the accumulated distance in

Eq. (6.6) by replacing it with direct distance, i.e., ∆ij = ‖xi − xj‖ in Fig-

ure 6.9. If we ignore computation time for ∆ij , for example in the case

where a distance matrix on input vectors is pre-computed in some way, the

direct distance is better than the accumulated distance. In general, the ac-

Neighbor-To-Neighbor Search 84

Figure 6.6: Cumulative histogram of δ∗. Statistics of the true δ∗ in Eq. (6.8) on
PASCAL VOC 2007 training images is reported for NTN-VQ.

cumulated distance is computationally effective since it derives efficient up-

date rules of a lower/upper bound in Eq. (6.9) and (6.21).

Result examples

We examine the effectiveness of NTN-VQ for several different images in Fig-

ure 6.10. The reduction rate of the assignment cost by NTN-VQ is 84.9% for

the image (a) and 66.8% for the image (d). Here, (a) and (d) are the best

and the worst cases on PASCAL VOC 2007, respectively. This shows that

NTN methods are more effective for images which can be segmented into

several uniform regions. Notably, NTN-VQ is still better than ANN-VQ even

in the worst case.

Codebook size

The simplest idea to reduce the assignment cost is to reduce the codebook

size. In Figure 6.11, which shows the speed-accuracy trade-off for different

codebook sizes, we confirm that using NTN methods is better than reducing

the codebook size. This also confirms that NTN-LM-GMM is the best in both

speed and accuracy. Note that there is no significant difference in Mean

AP between a standard method and a NTN methods for each codebook size

K = 2048, 1024, · · · , 16.

Relative computational time in a pipeline

Figure 6.5 shows the relative cost of coding with respect to the cost of the

other steps of processing pipeline for extracting SV and FV representations.

As can be seen, the coding step is the majority of the whole processing

Neighbor-To-Neighbor Search 85

Figure 6.7: Speed-accuracy trade-off for different values of δ. Trade-off be-
tween assignment time and Mean AP is reported. All plots are for
δ = 1.0, 0.9, · · · 0.1, 0.09, · · · , 0.01. VQ: standard hard vector quantiza-
tion (VQ), NTN-VQ: neighbor-to-neighbor (NTN) search for VQ, GMM:
standard Gaussian mixture model (GMM), NTN-GMM: NTN search for
a GMM, NTN-LM-GMM: NTN-GMM with the log-max approximation.

Neighbor-To-Neighbor Search 86

Figure 6.8: Comparison with RAND-VQ. Trade-off between assignment time and
Mean AP is reported. NTN-VQ: neighbor-to-neighbor (NTN) search for
VQ, this is the same plot as Figure 6.7, ANN-VQ: approximate nearest
neighbor search [15], RAND-VQ: NTN-VQ in which a neighbor vector
is replaced by a randomly sampled vector.

pipeline: 85.3% and 88.4% of computational time are occupied from it in

FV coding and SV coding, respectively.

NTN-VQ, NTN-GMM and NTN-LM-GMM reduces the total computational

cost by 66.0%, 66.5%, and 85.3%, respectively. Note that the cost of pooling

in FV coding, which generate a final FV representation, is also reduced by

the LM approximation since we can skip some summations in pooling if cik

is equal to zero.

For large-scale image classification, for example on the ImageNET with

more than 20,000 object categories, we should consider the SVM-classification

cost, which is neg- ligible in our experiments on PASCAL VOC with 20 cat-

egories. To reduce the SVM-classification cost, applying dimension reduc-

tion techniques such as product quantiza- Speed-accuracy trade-off for dif-

ferent codebooktion to the final image representation can be effectively uti-

lized.

Neighbor-To-Neighbor Search 87

Figure 6.9: Comparison of the accumulated distance and the direct distance.
VQ error rate in NTN-VQ for different values of δ is reported. All plots
are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · 0.01. Accumulated distance: ∆ij

is defined by Eq. (6.6). Direct distance: ∆ij is replaced by the direct
distance ‖xi − xj‖. Pre-computed direct distance: the direct distance
is used but distance calculations for it are not counted.

Neighbor-To-Neighbor Search 88

Figure 6.10: The computational cost reduction by NTN-VQ for different im-
ages. Four images (a), (b), (c), and (d) are from PASCAL VOC 2007.
The reduction rate of the assignment cost by NTN-VQ and ANN-VQ
for each image is reported.

Neighbor-To-Neighbor Search 89

Figure 6.11: Speed-accuracy trade-off for different codebook sizes. Trade-
off between assignment time and Mean AP for codebook sizes of
K = 2048, 1024, 512, · · · , 16. is reported. VQ: standard hard vector
quantization (VQ), NTN-VQ: neighbor-to-neighbor (NTN) search for
VQ δ = 0.20, GMM: standard Gaussian mixture model (GMM), NTN-
GMM: NTN search for a GMM δ = 0.09, NTN-LM-GMM: NTN-GMM
with the log-max approximation δ = 0.09.

Neighbor-To-Neighbor Search 90

6.5 Conclusion

We have proposed a fast computation method for searching for the matches,

neighbor-to-neighbor (NTN) search, and its applications to vector quantiza-

tion (VQ) and a Gaussian mixture model (GMM). We tested NTN-VQ and

NTN-GMM on super-vector coding and Fisher-vector coding, respectively.

Our experiments on the PASCAL VOC 2007 classification challenge showed

that NTN-VQ, NTN-GMM, and NTN-LM-GMM reduced the assignment cost

by 77.4%, 75.3%, and 89.3%, respectively, without any significant degra-

dation in the image classification performance. This result confirms the

effectiveness of our proposed algorithms.

In future work, we will focus on the speeding up of the feature extraction

step that we didn’t discuss in this chapter. Approximation of dense sampling

and SIFT descriptors would be interesting as promising next steps.

Chapter 7

Conclusion and Future Work

We have proposed an efficient and effective semantic indexing system. Our

system extended the bag-of-visual-words system to a probabilistic frame-

work in which a video segment is modeled by a GMM. By extracting au-

dio and visual low-level features, we effectively detected semantic concepts

from video data. A q-GMM, which is generalization of a GMM with a pa-

rameter q to control its tail-heaviness, further improved the modeling ac-

curacy. In experiments on the TRECVID benchmark, we achieved Mean

Average Precision (AP) of 0.178, and 0.321 on TRECVID 2011, and 2012

datasets, respectively, which is the best performance among official runs in

the TRECVID workshop.

To improve the speed of the system, we have proposed fast MAP adap-

tation and Neighbor-to-Neighbor (NTN) search, which are complementary

techniques to each other. For fast MAP adaptation, a tree-structured GMM

was utilized to decrease the computational cost, where only the output prob-

abilities of mixture components close to a feature vector are precisely calcu-

lated. The calculation time for MAP adaptation was reduced by 76.2% from

the conventional method, while high detection performance was maintained

on the TRECVID benchmark. The NTN search further improved the speed

when densely sampled image descriptors are used in the low-level feature

extraction step. Based on the fact that image features extracted from an

adjacent region are usually similar to each other, the NTN algorithm effec-

tively reduced the cost of calculating the distance between a codeword and

a feature vector. In experiments, we applied the NTN search to vector quan-

tization (NTN-VQ) and a GMM (NTN-GMM). Results on the PASCAL VOC

91

Conclusion and Future Work 92

2007 classification challenge showed that NTN-VQ reduced the assignment

cost by 77.4% in super-vector coding, and NTN-GMM reduced it by 89.3%

in Fisher-vector coding, without any significant degradation in classification

performance.

Our future work will focus on the relation between semantic concepts

to extend our system to generate detailed meta data such as a text summa-

rization of video. In this study, we focused on detecting word-level semantic

concepts which is the most important part of meta-data in key-word search

engines. However, what users require will probably become sentence-level
semantic concepts such as complex events and human actions in near future.

To detect the sentence-level semantic concepts, temporal and spatial localiza-

tion of objects and motions is needed which is not discussed in this study.

For example, temporal modeling using hidden Markov models (HMMs) or

bayesian networks is expected to effectively capture the causality relation

between semantic concepts. To improve the speed of detection, the next

step would be the GPU implementation of our methods. We also would like

to apply our techniques to other applications than semantic indexing such

as robot serving, object tracking and video editing.

Bibliography

[1] M. Kankanhalli and Y. Rui, Application potential of multimedia in-

formation retrieval, In Proc. IEEE MIR, vol. 96, pp. 712-720, 2008.

[2] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain Content-

based image retrieval at the end of the early years, In IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.22, no.12,

pp.1349–1380, 2000.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual

categorization with bags of keypoints. Proc. ECCV SLCV workshop,
pages 59–74, 2004.

[4] J. Yang and A. G. Hauptmann. Evaluating bag-of-visual-words rep-

resentations in scene classification. In Proc. of ACM Multimedia MIR
workshop, Augsburg, Germany, 2007.

[5] D. G. Lowe. Distinctive image features from scale-invariant key-

points. IJCV, 60(2):91–110, 2004.

[6] J. C. V. Gemert, J.-m. Geusebroek, C. J. Veenman, and A. W. M.

Smeulders. Kernel codebooks for scene categorization. In Proc. of
ECCV, pages 696–709, 2008.

[7] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. Proc. CVPR, pages

3360–3367, 2010.

[8] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted vocabu-

laries for generic visual categorization. Proc. ECCV, pages 464–475,

2006.

[9] C.G.M. Snoek, K.E.A. van de Sande, O. de Rooij, B. Huurnink,

E. Gavves, D. Odijk, M. de Rijke, Th. Gevers, M. Worring,

D.C. Koelma, and A.W.M. Smeulders The MediaMill TRECVID 2010

93

BIBLIOGRAPHY 94

Semantic Video Search Engine. In Proc. of TRECVID workshop,
Gaithersburg, MD, USA, 2010.

[10] S.-F. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A.C. Loui, and

J. Luo, Large-scale Multimodal Semantic Concept Detection for Con-

sumer Video. In Proc. of ACM Multimedia MIR workshop, Augsburg,

Germany, 2007.

[11] W. Jiang, C. Cotton, S.-F. Chang, and D. Ellis, Short-Term Audio-

Visual Atoms for Generic Video Concept Classification. In Proc. of

ACM Multimedia, Beijing, China, 2009.

[12] M. Huijbregts, R. Ordelman, F. De Jong, Annotation of Heteroge-

neous Multimedia Content Using Automatic Speech Recognition, In

Proc. SAMT, vol.4816, pp.78–90, 2007.

[13] A. F. Smeaton, P. Over, and W. Kraaij. High-Level Feature Detection

from Video in TRECVid: a 5-Year Retrospective of Achievements. In

A. Divakaran, editor, Multimedia Content Analysis, Theory and Appli-
cations, pages 151–174, Springer Verlag, Berlin, 2009.

[14] C. Silpa-anan and R. Hartley. Optimised kd-trees for fast image de-

scriptor matching. Proc. CVPR, pages 1–8, 2008.

[15] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with

automatic algorithm configuration. Proc. VISAPP, pages 331–340,

2009.

[16] M. Brown, and D.Lowe, Recognizing panoramas. In Proc. ICCV,

pp.1218–1225, 2003.

[17] J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline

stereo from maximally stable extremal regions, In Proc. BMVC,

pp.384–393, 2002.

[18] P. Pritchett, and A. Zisserman, Wide baseline stereo matching, In

Proc. ICCV, pp.754–760, 1998.

[19] T. Tuytelaars, L. V. Gool, L. Dhaene, and R. Koch, Matching of

affinely invariant regions for visual servoing, In Proc. ICRA, 1999

[20] S. Lazebnik, C. Schmid, and J. Ponce, A sparse texture representation

using affine-invariant regions, In Proc. CVPR, 2003.

BIBLIOGRAPHY 95

[21] S. Lazebnik, C. Schmid, and J. Ponce, Affine-invariant local descrip-

tors and neighborhood statistics for texture recognition, In Proc.
ICCV, pp.649–655, 2003.

[22] K. Mikolajczyk and C. Schmid. Scale and affine invariant interest

point detectors. In IJCV, vol. 60(1), pages 63–86, 2004.

[23] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using

super-vector coding of local image descriptors. Proc. ECCV, pages

141–154, 2010.

[24] I. Laptev and T. Lindeberg, Space-time interest points In Proc. ICCV,

pp.432–439, 2003.

[25] H. Wang, A. Kl, C. Schmid, C.-lin Liu, Action Recognition by Dense

Trajectories In Proc. CVPR, pp.3169–3176, 2011.

[26] N. Dalal, W. Triggs, C. Schmid, S. Soatto, and C. Tomasi, Histograms

of Oriented Gradients for Human Detection, In Proc. CVPR, pp.886–

893, 2005

[27] X. Wang, T. X. Han, S. Yan, An HOG-LBP human detector with partial

occlusion handling, In Proc. ICCV, pp.32–39, 2009.

[28] J. van de Weijer and C. Schmid. Coloring local feature extraction. In

Proc. of ECCV, pp. 334–348, 2006.

[29] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek. Evaluating

color descriptors for object and scene recognition. In IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 32(9), pp. 1582–1596,

2010.

[30] M. Calonder, V. Lepetit and C. Strecha and P. Fua, BRIEF : Binary

Robust Independent Elementary Features, In Proc. ECCV, 2010.

[31] E. Rublee, V .Rabaud, K. Konolige and G. Bradski, ORB: an efficient

alternative to SIFT or SURF, In Proc. ICCV, 2011.

[32] S. N. Sinha, J. michael Frahm, M. Pollefeys, and Y. Genc. Gpu-based

video feature tracking and matching. In Proc. of EDGE workshop,

Chapel Hill, NC, USA, 2006.

[33] T. Huang. Linear spatial pyramid matching using sparse coding for

image classification. Proc. CVPR, pages 1794–1801, 2009.

BIBLIOGRAPHY 96

[34] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local de-

scriptors into a compact image representation. In Proc. of CVPR, pages

3304–3311, 2010.

[35] T. Jaakkola, and D. Haussler, Exploiting Generative Models in Dis-

criminative Classifiers In Proc. of NIPS, pp. 487–493, 1998.

[36] F. Perronnin, and C. Dance, Fisher kernels on visual vocabularies for

image categorization. In Proc. of CVPR, pp. 1–8, 2007.

[37] F. Perronnin, S. Jorge, and T. Mensink. Improving the fisher ker-

nel for large-scale image classification. Proc. ECCV, pages 143–156,

2010.

[38] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil

is in the details: an evaluation of recent feature encoding methods.

Proc. BMVC, pages 1–12, 2011.

[39] M. Havrda and F. Charvat. Quantification method of classification

processes: concept of structural α-entropy, In Kybernetika, vol. 3, pp.

30–35, 1967.

[40] C. Tsallis, Possible generalization of boltzmann-gibbs statistics, In

Journal of Statistical Physics, vol. 52, pp. 479–487, 1988.

[41] C. Tsallis, R. S. Mendes, A. R. Plastino, The role of constraints within

generalized nonextensive statistics, In Physica A, vol. 261, no. 3, pp.

534-554, 1988.

[42] M. P. de Albuquerque, I. A. Esquef, and A. R. G. Mello, Image thresh-

olding using Tsallis entropy. In Elsevier Pattern Recognition Letters,

vol. 25, pp. 1059–1065, 2004.

[43] P. K. Sahoo, and G. Arora, Image thresholding using two-dimensional

Tsallis-Havrda-Charvat entropy, In Elsevier Pattern Recognition Let-

ters, vol. 27, issue. 6, pp. 520–528, 2006.

[44] Q. Lin, and C. Ou, Tsallis entropy and the long-range correlation in

image thresholding, In Elsevier Signal Processing, vol. 92, pp. 2931–

2939, 2012.

[45] Y. Li, X. Fan, and G. Li. Image segmentation based on Tsallis-entropy

and Renyi-entropy and their comparison. In Proc. of ICII, pp. 943–

948, 2006.

BIBLIOGRAPHY 97

[46] R. Fabbrib, W. N. Goncalvesa, F. J. P. Lopesc, and O. M. Brunoa,

Multi-q pattern analysis: A case study in image classification, In

Elsevier Physica A: Statistical Mechanics and its Applications, vol.

391, issue. 19, pp. 4487–4496, 2012.

[47] D. Gerogiannis, C. Nikou, and A. Likas Robust Image Registration

using Mixtures of t-distributions, In Proc. of ICCV, 2007.

[48] T. M. Nguyen and Q. M. J. Wu, Robust Student’s-t Mixture Model

With Spatial Constraints and Its Application in Medical Image Seg-

mentation, In IEEE Trans. on Medical Imaging, vol.31, no.1, 2012.

[49] N. Johnson, S. Kotz, and N. Balakrishnan, Discrete Multivariate Dis-

tributions, New York: Wiley Interscience, 1997.

[50] D. Nister and H. Stewenius. Scalable recognition with a vocabulary

tree. Proc. CVPR, pages 2161–2168, 2006.

[51] J. C. Platt, Probabilities for SV machines, In Advances in Large Mar-

gin Classifiers, pp.61–74, The MIT Press, 2000.

[52] H.-T. Lin, C.-J. Lin, and R. C. Weng, A note on Platt’s probabilistic

outputs for support vector machines, In Machine Learning, vol. 68,

pp. 267276, 2007.

[53] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local features

and kernels for classification of texture and object categories: A com-

prehensive study, In International Journal of Computer Vision, vol.

73, pp. 213-238, 2007.

[54] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover’s distance

as a metric for image retrieval, International Journal of Computer

Vision, vol. 40, pp. 99121, 2000.

[55] F. R. Back and G. R. G. Lanckriet. Multiple Kernel Learning, Conic

Duality, and the SMO Algorithm In Proc. of ICML, Banff, Alberta,

Canada, 2004.

[56] F. Yan, J. Kittler, K. Mikolajczyk, and A. Tahir. Non-sparse multiple

kernel learning for fisher discriminant analysis. In Proc. of ICDM,

Miami, Florida, USA, 2009.

[57] A. Bosch, A. Zisserman, and X. Munoz. Image classification using

random forests and ferns. In Proc. of ICCV, Rio de Janeiro, Brazil,

2007.

BIBLIOGRAPHY 98

[58] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood

from Incomplete Data via the EM Algorithm, Journal of the Royal
Statistical Society, vol.Series B, 39, no.1, pp.1–38, 1977.

[59] V. N. Vapnik, Statistical learning theory, Wiley, New York, 1 ed., Sept.

1998.

[60] N. Cristianini and J. Shawe-Taylor, Support Vector Machines, Cam-

bridge University Press, Cambridge, 2000.

[61] C. J. C. Burges, A tutorial on support vector machines for pattern

recognition, Data Min. Knowl. Discov., vol.2, pp.121–167, 1998.

[62] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector

machines using GMM supervectors for speaker verification. In IEEE
Signal Processing Letters, vol. 13, pp. 308–311, 2006.

[63] X. Zhou, X. Zhuang, S. Yan, S.-F. Chang, M. H.-Johnson, and T. S.

Huang. Sift-bag kernel for video event analysis. In Proc. of ACM
Multimedia, Vancouver, British Columbia, Canada, 2008.

[64] A. F. Smeaton, et al. Evaluation campaigns and trecvid. In Proc. of

ACM Multimedia MIR workshop, pp. 321–330, 2006.

[65] S. Ayache and G. Quénot. Video Corpus Annotation Using Active

Learning. In Proc. of ECIR, 2008.

[66] E. Yilmaz, E. Kanoulas, and J. A. Aslam. A simple and efficient sam-

pling method for estimating ap and ndcg. In Proc. of ACM SIGIR,

Singapore, 2008.

[67] C. Wu. SiftGPU: A GPU implementation of sift. http://cs.unc.edu/˜

ccwu/siftgpu, 2007.

[68] Koen E. A. van de Sande, Theo Gevers, Cees G. M. Snoek. Empow-

ering Visual Categorization With the GPU. In IEEE Transactions on
Multimedia, vol. 13 (1), pages 60–70, 2011.

[69] S. J. Young, G. Evermann, M. J. F. Gales, D. Kershaw, G. Moore, J. J.

Odell, D. G. Ollason, D. Povey, V. Valtchev, and P. C. Woodland. The

htk book, version 3.4, 2006.

[70] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector ma-

chines. Software available at http://www.csie.ntu.edu.tw/cjlin/lib-

svm, 2001.

BIBLIOGRAPHY 99

[71] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2010 (VOC2010)

Results. http://www.pascal-network.org/challenges/VOC/

[72] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool. The pas-

cal visual obiect classes challenge 2007 (voc2007) results. http://

www.pascal-network.org/challenges/VOC/voc2007/, 2007.

[73] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 33(1):117–128, 2011.

List of Publications

1.

Journal Paper
Nakamasa Inoue and Koichi Shinoda, q-Gaussian Mixture Models for

Image And Video Semantic Indexing, In Elsevier Journal of Visual Com-
munication and Image Representation, vol.24, no.8 pp.1450-1457, 2013.

2. Yusuke Kamishima, Nakamasa Inoue and Koichi Shinoda, Event De-

tection in Consumer Videos Using GMM Supervectors and SVMs, In
EURASIP Journal on Image and Video Processing, vol.2013:51, pp.1–13,

2013.

3. Nakamasa Inoue and Koichi Shinoda, A Fast and Accurate Video

Semantic-Indexing System Using FastMAP Adaptation and GMM Super-

vectors, In IEEE Transactions on Multimedia, vol.14, no.4–2, pp.1196–

1205, 2012.

4. Nakamasa Inoue, Tatsuhiko Saito, Koichi Shinoda, and Sadaoki Furui,

Multimodal High-Level Feature Extraction for Large-Scale Video Re-

sources In IEICE Transactions on Information and Systems, vol.J93–D,

no.12, pp.2633–2644, 2010, in Japanese.

International Conference Paper (Reviewed)
1. Liang Zhuolin, Nakamasa Inoue, and Koichi Shinoda, Velocity Pyramid

for Multimedia Event Detection, In Proc. of MMM, Jan., 2014.

2. Nakamasa Inoue, and Koichi Shinoda, Neighbor-To-Neighbor Search

for Fast Coding of Feature Vectors In Proc. of ICCV, pp.1233-1240, Dec.,

2013.

3. Nakamasa Inoue and Koichi Shinoda, q-Gaussian Mixture Models Based

on Non-Extensive Statistics for Image And Video Semantic Indexing, In
Proc. of Asian Conference on Computer Vision (ACCV), pp.1–12 (PT1–

20), Korea, Nov., 2012.

100

LIST OF PUBLICATIONS 101

4. Yusuke Kamishima, Nakamasa Inoue, Koichi Shinoda, and Shunsuke

Sato, Multimedia Event Detection Using GMM Supervectors and SVMs,

In Proc. of ICIP, USA, pp.3089–3092, Oct., 2012.

5. Nakamasa Inoue and Koichi Shinoda, A Fast MAP Adaptation Technique

for GMM-supervector-based Video Semantic Indexing, In Proc. of ACM
Multimedia, USA, pp.1357–1360, Nov., 2011.

6. Nakamasa Inoue, Tatsuhiko Saito, Koichi Shinoda, and Sadaoki Furui,

High-Level Feature Extraction using SIFT GMMs and Audio Models, In
Proc. of ICPR, Turkey, pp.3220–3223, Aug., 2010.

International Workshop Paper
1. Nakamasa Inoue, Kotaro Mori, Liang Zhuolin, and Koichi Shinoda, Se-

mantic Indexing Using GMM Supervectors and Video-Clip Scores (Toky-

oTechCanon at TRECVID 2013), In Proc. of TREC Video Retrieval Evalu-
ation (TRECVID) workshop, USA, Nov., 2013.

2. Nakamasa Inoue, Yusuke Kamishima, Kotaro Mori, and Koichi Shinoda,

Multimedia Event Detection Using GMM Supervectors and Camera Mo-

tion Cancelled Features (TokyoTechCanon at TRECVID 2012), In Proc.
of TREC Video Retrieval Evaluation (TRECVID) workshop, USA, Nov.,

2012.

3. Nakamasa Inoue and Koichi Shinoda, Video Semantic Indexing Using

GMM-Supervectors, Greater Tokyo Area Multimedia/Vision Workshop,

Japan, Aug, 2012.

4. Nakamasa Inoue, Toshiya Wada, Yusuke Kamishima, Koichi Shinoda,

and Shunsuke Sato, Semantic Indexing Using GMM Supervectors and

Tree-structured GMMs (TokyoTech+Canon at TRECVID 2011), In Proc.
of TREC Video Retrieval Evaluation (TRECVID) workshop, USA, Dec.,

2011.

5. Nakamasa Inoue, Toshiya Wada, Yusuke Kamishima, Koichi Shinoda,

Ilseo Kim, Byungki Byun, and Chin-Hui Lee, Semantic Indexing Using

GMM Supervectors with MFCCs and SIFT features (TT+GT at TRECVID

2010 Workshop), In Proc. of TREC Video Retrieval Evaluation (TRECVID)

workshop, USA, Nov., 2010.

6. Nakamasa Inoue, Shanshan Hao, Tatsuhiko Saito, Koichi Shinoda, Ilseo

Kim and Chin-Hui Lee, High-Level Feature Extraction Using SIFT

LIST OF PUBLICATIONS 102

GMMs, Audio Models, and MFoM (TITGT at TRECVID 2009 Workshop),

In Proc. of TREC Video Retrieval Evaluation (TRECVID) workshop, USA,

pp.373–380, Nov., 2009.

Domestic Conference Paper
1. 井上中順, 篠田 浩一, GMM Supervectorとビデオクリップスコアを用
いた映像のセマンティックインデクシング, 電子情報通信学会 パターン
認識・メディア理解研究会 (PRMU), vol.112, no.441, pp.173–178, Feb.,

2013.

2. 上嶋 勇祐, 井上中順, 篠田 浩一, カメラの動き補正に基づく時空間特徴
量と GMM supervectorを用いた映像からのイベント検出, 電子情報通
信学会 パターン認識・メディア理解研究会 (PRMU), vol.112, no.441,

pp.185–190, Feb., 2013.

3. 井上中順, 篠田 浩一, 映像のセマンティックインデクシングのための q-

混合ガウス分布, 電子情報通信学会 パターン認識・メディア理解研究会
(PRMU), vol.112, no.197, pp.31–36, Sep., 2012.

4. 井上中順, 篠田 浩一, GMM-Supervectorを用いた高速な映像のセマン
ティック検索システム, 画像の認識・理解シンポジウム (MIRU), pp.DS–

09, Aug., 2012.

5. 井上中順,篠田浩一, GMM-supervectorを用いた映像の高速セマンティッ
ク検索システム～映像の意味に基づいた検索を実現～, 画像センシングシ
ンポジウム (SSII), pp.DS2–08, Jul., 2012.

6. 上嶋 勇祐, 井上中順, 篠田 浩一, GMM-Supervectorと SVMを用いた映
像からのイベント検出, 電子情報通信学会 パターン認識・メディア理解
研究会 (PRMU), vol.111, no.430, pp.195–200, Feb., 2012.

7. 井上中順, 篠田 浩一, 木構造 GMMを用いたセマンティックインデクシ
ングの高速化, 電子情報通信学会 パターン認識・メディア理解研究会
(PRMU), vol.111, no.77, pp.105–110, Jun., 2011.

8. 井上中順,上嶋勇祐,篠田浩一, マルチモーダル・マルチフレームな手法
を用いた TRECVIDセマンティックインデクシング, 電子情報通信学会パ
ターン認識・メディア理解研究会 (PRMU), vol.110, no.414, pp.25–30,

Feb., 2011.

9. 井上中順, 上嶋 勇祐, 篠田 浩一, SIFT混合ガウス分布を用いた一般物体
認識のためのマルチカーネル学習, 電子情報通信学会 パターン認識・メ
ディア理解研究会 (PRMU), vol.110, no.187, pp.7–12, Sep., 2010.

LIST OF PUBLICATIONS 103

10. 斉藤辰彦,井上中順,篠田浩一,古井貞煕, 音響特徴を用いた映像からの
イベント検出の研究, 日本音響学会 2010年春季研究発表会,日本音響学
会講演論文集, pp.201-202, Mar, 2010.

11. 井上中順, 斉藤 辰彦, 篠田 浩一, 古井 貞煕, SIFT混合ガウス分布と音響
特徴を用いた映像からの高次特徴検出, 電子情報通信学会パターン認識・
メディア理解研究会 (PRMU), vol.109, no.306, pp.97–102, Nov., 2009.

Invited Talk
1. 井上中順,篠田浩一, ［特別講演］映像の高性能なセマンティックインデ
クシングを目指して, 電子情報通信学会 パターン認識・メディア理解研
究会 (PRMU), vol.111, no.353, pp.89–94, Dec., 2011.

Article
1. Koichi Shinoda and Nakamasa Inoue, Reusing Speech Techniques for

Video Semantic Indexing, In IEEE Signal Processing Magazine, vol.30,

no.2, pp.118–122, 2013.

Award
2011年パターン認識・メディア理解研究会研究奨励賞

