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Summary

Control of complex dynamical systems is an important and active research area. Dynam-

ical models of various complex real life systems from biology, physics, finance, and engi-

neering fields incorporate randomly varying parameters. These parameters often describe

the state of external environment in which the system under consideration operates, and

hence they may not be directly measurable or may not be observed as frequently as the

state of the system itself. Therefore, when a control problem for a complex dynamical

system with stochastic parameters is explored, one needs to take into account the fact that

system parameters may not be available for control purposes at all time instants.

In this thesis we address feedback control problem for linear stochastic parameter-

varying systems, under the assumption that the controller has access only to sampled infor-

mation of parameters.

We first develop sampled-parameter feedback control frameworks for linear systems

with a stochastic parameter that takes values from a finite set. Each value of the parame-

ter represents a mode of the dynamical system. The overall system in this case is called a

“switched system”, since the operation mode of the dynamics switches when the parameter

changes its value. Switched stochastic systems accurately characterize complex processes

that are subject to dynamical changes due to sudden environmental variations. We in-

vestigate continuous-time switched systems with a randomly varying mode signal. This

mode signal is assumed to be observed (sampled) periodically. In this case, information

about the operation mode of the switched system is available for control purposes only

at periodic mode observation instants. We propose a feedback control law that achieves

stabilization of the system states by using only periodically observed (sampled) mode in-

formation. We then direct our attention to a more complex feedback control problem for

xi



the case where the sampled mode information is subject to time delay before it becomes

available for control purposes. This time delay may emanate from communication de-

lays between the mode sampling mechanism and the controller or computational delays

in mode detection. We propose stabilizing control laws that depend only on delayed and

sampled version of the mode signal.

In addition to continous-time switched stochastic systems, we also explore the feed-

back control problem for discrete-time switched stochastic systems. We consider the case

where the mode of the switched system is periodically observed. We develop a stabilizing

feedback control framework that incorporates sampled-mode-dependent and time-varying

feedback gains, which allow stabilization despite the uncertainty of the operation mode

between consecutive mode observation instants. We utilize the periodicity induced in the

system dynamics due to periodic mode observations, and employ discrete-time Floquet the-

ory to obtain necessary and sufficient conditions for the stabilization of the system states.

Furthermore, we address the case where mode information obtained through periodic ob-

servations is imprecise. Imprecise mode information characterizes the situation where some

of the modes are indistinguishable by the mode detector. Specifically, in this situation,

the modes of the switched system are divided into a number of groups, and the controller

periodically receives information of the group that contains the active operation mode. For

this case, we develop a feedback control law that guarantees stabilization by using only

the group information rather than a precise information of the active mode.

Next, we address feedback control problem for continuous-time and discrete-time

switched stochastic systems for the case where the mode of the switched system is ob-

served at random time instants. For the continuous-time case, we develop a stabilizing

control law under the assumption that the lengths of intervals between mode sampling

instants are exponentially distributed independent random variables. For this particular

case, we observe that the closed-loop system under our proposed sampled-mode control

law can be modeled as a switched linear stochastic system with a mode signal that is

defined to be a bivariate stochastic process composed of the actual mode signal and its

sampled version. On the other hand, for the discrete-time case we do not assume a partic-

ular structure for the distribution of the lengths of intervals between the time instants at

which mode is sampled. We observe that this characterization encapsulates periodic mode

xii



observations as a special case. Our investigation for the discrete-time case is predicated

on the analysis of a sequence-valued process that encapsulates the stochastic nature of the

evolution of active operation mode between mode observation instants.

Parameters of certain dynamical system models from engineering field evolve in mul-

tidimensional spaces composed of a continuum of points. Hence, dynamical systems with

such kind of parameters can not be characterized as switched systems. In the last part

of this thesis, we explore sampled-parameter feedback control of discrete-time dynamical

systems with stochastic parameters that are defined on multidimensional spaces. Further-

more, we investigate a special class of linear parameter-varying systems where the system

matrix depends affinely on the entries of the stochastic parameter vector. For this class of

parameter-varying systems, we show that stabilization can be achieved by using a control

law with a feedback gain that is an affine function of the entries of the sampled parameter

vector.

All sampled-parameter feedback control frameworks that we develop in this thesis

have guaranteed stabilization properties. Specifically, we obtain conditions under which

our proposed control laws guarantee that the system states converge to the zero solution

for all possible trajectories of the parameters.
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Chapter 1

Introduction

1.1 Dynamical Systems with Stochastic Parameters

The framework developed for dynamical systems with time-varying parameters has been

indispensable in modeling complex real life processes and has found applications in vari-

ous fields such as aeronautics, energy, and automotive systems as well as bio-informatics

and finance [1–3]. Specifically, parameters of many dynamical systems vary in a stochastic

fashion. For example, the dynamical model of a flight control system includes the time-

varying parameter airspeed, which is modeled as a stochastic process [4,5]. Moreover, for

power systems, load profile is a time-varying parameter of the dynamical model and char-

acterized by a stochastic process in several studies (see [6,7] and the references therein).

Furthermore, researchers of population dynamics also use dynamical models that incor-

porate randomly varying parameters [8–13]. Note that growth rate, which is a parameter

of the population model of a species, changes randomly within time depending on vari-

ations in environment such as increase or decrease in food resources. Dynamical models

with stochastic parameters have also been adopted in finance. For instance, models that

describe stock prices often include randomly varying parameters [14–17]. Specifically,

volatility, which is a parameter of stock price models, is subject to random variations due

to market trends that are influenced by external social, economical, and political changes.

There is a common feature between dynamical system models used in different appli-

cation fields. Randomly varying parameters of these dynamical system models describe
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the state of external environment, and hence they may not be directly measurable or may

not be observed as frequently as the state of the system itself. Therefore, when a control

problem for dynamical systems with stochastic parameters is considered, one must take

into account the fact that perfect knowledge of the parameters may not be available for

control purposes at all time instants. Motivated by this point, in this thesis, we address

the control problem for the case where only sampled information of parameters is available

for control purposes. Our goal is to develop sampled-parameter control frameworks that

are effective for controlling linear dynamical systems when parameters are not observed

exactly, instantaneously, or as frequently as the system state.

1.2 Sampled-Parameter Feedback Control

Control of complex dynamical systems with time-varying parameters is an important and

active research area. For many practical applications, it is desirable that the system state

is stabilized around a set point by a controller despite the effect of varying parameters.

Feedback control of linear systems with varying parameters has been explored in many

studies (e.g. [18–40]). The state-space description of continuous-time linear dynamical

systems with time-varying parameters is given by

ẋ(t) = A(ξ(t))x(t) +B(ξ(t))u(t), t ≥ 0, (1.1)

where x(·) and u(·) respectively denote the state and control input vectors; furthermore,

A(·) and B(·) are state and input matrices that depend on the parameter ξ(·).

In the literature, the control input u(·) is often designed based on the assumption that

the parameter ξ(·) can be measured at all times instants t ≥ 0 (see [18–26, 41, 42]). For

example, many researchers have investigated stabilization of the state of the dynamical

system (1.1) towards the origin with a control law of the form u(t) , K(ξ(t))x(t). Note

that in this case, K(·), which denotes the feedback gain, depends directly on the param-

eter ξ(·). On the other hand, in [43], a controller is designed for the case where only

certain components of the parameter vector ξ(·) is measurable. Furthermore, in [43–45],

researchers propose a feedback control law that depends on a noisy measurement of the
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parameter ξ(·). Note that all abovementioned control laws require continuously available

information concerning the parameter. In the case where parameter information is not

continuously available, these suggested control laws would not be applicable. The same

issue arises also in the discrete-time case, where the dynamical model is described by the

difference equation

x(k + 1) = A(ξ(k))x(k) +B(ξ(k))u(k), k ∈ N0. (1.2)

Note that the parameter ξ(·) may not be available for control purposes at all time instants

k ∈ N0.

In the case where the parameter ξ(·) is not observed at all time steps, we need alterna-

tive control frameworks that do not require knowledge of the parameter at all times. To

deal with such cases, one can use feedback control laws that are independent of the pa-

rameter (e.g., [27–31,37–40]). In this case, the control law takes the form u(k) = Kx(k)

for the discrete-time system, and u(t) = Kx(t) for the continous-time system, where K

is a fixed constant gain matrix that is independent of the parameter. However, in this

problem setting, finding a constant feedback gain K that achieves stabilization despite the

uncertainty of the time-varying parameter ξ(·) is a difficult problem. On the other hand,

if the parameter can be observed (sampled) at certain time instants (even if rarely), this

sampled parameter information can be utilized in the control framework.

In this thesis, we consider the stabilization problem under the assumption that the

controller has access only to sampled parameter information. We explore the case where

the parameter is observed periodically, as well as the case where the information about

the parameter is obtained at random time instants. Furthermore, we address sampled-

parameter feedback control problem for both linear systems with a stochastic parameter

that takes values from a finite set and linear systems with a parameter that evolves in R
l.
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Figure 1.1: Modes of a continuous-time switched stochastic system

1.3 Sampled-Mode Feedback Control of Switched Stochastic Sys-

tems

In the case where the stochastic parameter of a dynamical system takes values from a

finite set, each value of the parameter represents a mode of the dynamical system. The

mode of the dynamics switches when the parameter changes its value. The overall system

in this case is called a “switched system”. Fig. 1.1 shows possible transitions (switches)

between the modes of a switched stochastic system with 3 modes. Note that the dynamics

of the ith mode is characterized by state and input matrices Ai and Bi.

Mode signal of a switched stochastic system characterizes the random transitions be-

tween the modes of the switched system and it is modeled as a finite-state stochastic pro-

cess. In the literature, the mode signal is often modeled as a time-homogeneous Markov

chain (e.g., [15, 46–53]). Note that the value of the mode signal determines the index of

the active subsystem (mode) that will govern the dynamics until the next mode switching

instant.

Feedback control problem for switched stochastic systems has been investigated in

many studies (e.g., [4, 14, 41, 42, 49, 51, 54–66] and the references therein). Most of the

control frameworks developed for switched stochastic systems require the availability of

information on the active operation mode at all times. Note that for numerous applica-

tions the active mode describes the operating conditions of a physical process and is driven
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by external incidents of stochastic nature. The active mode, hence, may not be directly

measurable and it may not be available for control purposes at all time instants during

the course of operation. When the controller does not have access to any mode informa-

tion, for achieving stabilization one can resort to adaptive control frameworks [67–69]

or mode-independent control laws [63, 70–72]. Furthermore, an estimate of the mode

signal can also be employed for control purposes [73,74]. It is also mentioned in [75,76]

that mode information may be recovered from system state observations. However, mode

information recovery is difficult when there is noise in the dynamics. On the other hand,

if mode information can be observed (sampled) at certain time instants, this sampled

information can be utilized in the control framework.

One of the main goals of this thesis is to explore the feedback control problem for

switched stochastic systems under sampled mode information. In this regard, we first ad-

dress the case where the mode is sampled periodically. However, periodic mode sampling

(observation) is not always possible. Note that there are certain situations where mode

information can only be obtained at random time instants. For example the mode may

be sampled periodically; however, due to random losses in the communication between

mode sampling mechanism and the controller, some of the mode samples do not reach

the controller. Furthermore, in some applications, the active operation mode has to be

detected, but the detected mode information would not be always accurate. In this case

each mode detection has a confidence level. Mode information with low confidence is

discarded. As a result, depending on the confidence level of detection, the controller may

or may not receive the mode information at a particular mode detection instant. In this

thesis, we also address the feedback control problem for such cases where the information

of the mode signal is randomly available to the controller.

Note that feedback control problem setting with sampled mode information is ap-

propriate for applications where the mode cannot be observed as frequently as the sys-

tem state. On the other hand, sampled mode information may also be subject to delays.

Specifically, each sampled mode data may become available to the controller after a delay.

Addressing this problem is crucial, because in practical applications there may be delays

in mode detection. In this thesis, we address this problem and propose a control law that
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depends only on the sampled and delayed mode information.

In the literature, switched stochastic systems have also been used for modeling fault-

tolerant control systems (see [77, 78]). Fault-tolerant systems are composed of a normal

operation mode and a number of faulty modes. Faulty modes are associated with failures

of different components of a process. Furthermore, failures are often detected through

diagnostic tests, which may fail to identify the exact type of the failure. When a failure

is detected, the controller receives the information that there was a failure; however, the

exact information of the type of the faulty mode may not be available for control purposes.

In this thesis, we develop control frameworks that can deal with such situations. Specif-

ically, we investigate feedback control of switched stochastic systems for the case where

mode information obtained through observations is not precise. In order to model impre-

cision of mode information, we divide the modes of the switched system into a number

of groups, and consider the case where the controller periodically receives information of

the group that contains the active mode. We propose a control law that depends only on

the periodically available mode group information, rather than the exact information of

the mode.

1.4 Sampled-Parameter Feedback Control of Dynamical Systems

with Parameters Defined on R
l

In the switched system framework, the stochastic parameter of the system takes its values

from a finite set. On the other hand, certain complex real life processes from biology, me-

chanical engineering, and finance incorporate randomly varying parameters that takes val-

ues from sets with uncountably many elements (see [79–81]; and the references therein).

One of the main goals of this thesis is to address feedback control of dynamical systems

with stochastic parameters that evolve in a multidimensional state space. Specifically, we

develop a stabilizing control framework for discrete-time linear dynamical systems for the

case where the system parameter is observed (sampled) periodically.

The analysis for systems with stochastic parameters that evolve in multidimensional

spaces with uncountably many elements is more complicated than the analysis for switched
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stochastic systems. In our analysis we rely on stationarity and ergodicity properties of a

stochastic process that represents the sequences of values that the system parameter takes

between consecutive observation instants.

In many studies that deal with linear dynamical systems with time-varying parameters,

researchers embrace models with affine parameter-dependence (e.g., [2,82,83]). In such

models system matrices are affine functions of the entries of the parameter vector. In

the literature, researchers often employ control laws that depend on perfect information

of the parameter at all time instants. In this thesis, we explore linear parameter-varying

systems where the state matrix is an affine function of the entries of the parameter vector.

We show that stabilization for this class of parameter-varying systems can be achieved

through a control law with a feedback gain that is an affine function of the entries of the

sampled parameter vector.

1.5 Outline of the Thesis

We introduce the notation in Chapter 2, where we also present several definitions and

some key results concerning continuous-time and discrete-time stochastic processes. Fur-

thermore, the definitions of the stochastic stability notions “almost sure asymptotic stabil-

ity” and “second moment asymptotic stability” are provided also in Chapter 2.

In Chapter 3, feedback stabilization of continuous-time switched linear stochastic dy-

namical systems is explored. The mode signal, which characterizes the switching between

subsystems, is modeled as a continuous-time Markov chain. We propose a feedback con-

trol law that depends only on the uniformly (periodically) sampled mode information

rather than the actual mode signal. We analyze the probabilistic dynamics of the sampled

mode information, and develop a form of strong law of large numbers to show the almost

sure asymptotic stability of the closed-loop system under the proposed control law.

In Chapters 4 and 5, we consider the feedback control problem for the case where

the mode of a continuous-time switched system is periodically sampled at discrete time

instants and obtained sampled mode information is subject to time delays. In Chapter 4

we analyze the stability of the closed-loop switched stochastic system under our proposed
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control law with a piecewise-constant feedback gain that depends on delayed and sampled

version of the mode signal. The results presented in Chapter 4 are based on our proba-

bilistic analysis of a bivariate stochastic process that is composed of the actual mode signal

and its delayed sampled version. Next, in Chapter 5 we propose a new control framework

that relies on a probability-based feedback gain scheduling scheme that utilizes the available

delayed sampled mode data as well as a priori information concerning the probabilistic

dynamics of the mode signal. Specifically, the feedback-gain scheduling method is based

on selecting the gain associated with the mode that has the highest conditional probability

of being active given the most recent sampled and delayed mode data.

In Chapter 6, second-moment asymptotic stabilization of a discrete-time switched stochas-

tic system is investigated. Active operation mode of the switched system is assumed to be

only periodically observed (sampled). We develop a stabilizing feedback control frame-

work that incorporates sampled-mode-dependent time-varying feedback gains, which al-

low stabilization despite the uncertainty of the active operation mode between consecutive

mode observation instants. We employ discrete-time Floquet theory to obtain necessary

and sufficient conditions for second-moment asymptotic stabilization of the zero solution.

Furthermore, we use Lyapunov-like functions with periodic coefficients to obtain alterna-

tive stabilization conditions, which we then employ for designing feedback gains.

In Chapter 7, we propose a feedback control law for discrete-time switched stochas-

tic systems that depends only on the periodically obtained imprecise mode information.

Specifically, the modes of the switched system are assumed to be divided into a number

of groups, and the periodically available mode information indicates only the group that

contains the active mode. We obtain sufficient conditions for second moment asymptotic

stability of the closed-loop system under our proposed control law which depends only on

mode group information.

In Chapters 8 and 9, we investigate feedback control of continuous- and discrete-

time switched stochastic systems for the case where the mode of the switched system

is observed at random time instants. Specifically, in Chapter 8, we explore almost sure

asymptotic stabilization problem of continuous-time switched linear stochastic dynamical

systems, for which the mode signal is modeled as a Markov chain. Intervals between
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the mode sampling time instants are assumed to be exponentially distributed random

variables. We show that the bivariate process composed of the actual mode signal and

its sampled version is a finite-state continuous-time Markov chain due to the exponential

distribution property of the mode sampling intervals. Based on this result, we obtain suf-

ficient conditions under which our proposed control law achieves almost sure asymptotic

stabilization. Next, in Chapter 9, feedback control of a discrete-time switched stochastic

system is explored for the case where the active operation mode is observed only at ran-

dom time instants. A stabilizing control law that utilizes the information obtained through

mode observations is proposed. We analyze the probabilistic dynamics of a sequence-

valued stochastic process that captures the key properties of the evolution of active mode

between mode observation instants. We then use the results of our analysis to obtain suffi-

cient conditions under which our proposed control law guarantees almost sure asymptotic

stabilization.

In Chapter 10, feedback stabilization of a discrete-time linear stochastic parameter-

varying system is explored. The parameter of the system is modeled as a discrete-time

stationary and ergodic Markov process on R
l. We develop a stabilizing control framework

for the case where the system parameter is observed (sampled) periodically. We obtain

sufficient conditions under which almost sure asymptotic stabilization of the closed-loop

stochastic parameter-varying system is guaranteed by our proposed control law, which

depends only on the sampled version of the system parameter. Furthermore, we explore

a special class of linear parameter-varying systems where the state matrix is an affine

function of the entries of the parameter vector. We show that stabilization for this class of

parameter-varying systems can be achieved through a control law with a feedback gain

that is an affine function of the entries of the sampled parameter vector.

Note that in each chapter we present illustrative numerical examples to demonstrate

the efficacy of our results on the sampled-parameter feedback control problem for dynam-

ical systems with stochastic parameters.

Finally, we give concluding remarks and provide a discussion on future extensions in

Chapter 11.
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Chapter 2

Mathematical Preliminaries

In this chapter, we first introduce the notation used in the thesis, we then present several

definitions and some key results concerning continuous-time and discrete-time stochastic

processes. Furthermore, we provide the definitions of several stochastic stability notions

that are used throughout the following chapters.

2.1 Notation

We denote positive and nonnegative integers by N and N0, respectively. Moreover, R

denotes the set of real numbers, Rn denotes the set of n×1 real column vectors, and R
n×m

denotes the set of n×m real matrices. We write (·)T for transpose, ‖ · ‖ for the Euclidean

vector norm, and ⊗ for Kronecker product. Furthermore, we use ⌊·⌋ to denote the largest

integer that is less than or equal to its real argument, tr(·) for trace of a matrix, In for

the identity matrix of dimension n, and λmin(H) (resp., λmax(H)) for the minimum (resp.,

maximum) eigenvalue of the Hermitian matrix H. We represent a finite-length sequence

of ordered elements q1, q2, . . . , qn by q = (q1, q2, . . . , qn). Furthermore, the length (number

of elements) of the sequence q is denoted by |q|. A function V : Rn → R is said to be

positive definite if V (x) > 0, x 6= 0, and V (0) = 0. We use ∇V to denote the vector

of the first order spatial derivatives of a twice continuously differentiable scalar-valued

function V , that is, ∇V =
[
∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]

, and we use ∇(∇V ) to denote the matrix of
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the second-order spatial derivatives of V , that is,

∇(∇V ) =









∂2V
∂x1∂x1

· · · ∂2V
∂x1∂xn

...
. . .

...

∂2V
∂xn∂x1

· · · ∂2V
∂xn∂xn









.

Now, let (Ω,F ,P) be a probability space. We use the notation E[·] to denote the ex-

pectation. Conditional expectation of a random variable x : Ω → R given an event G ∈ F

(with P[G] > 0) is denoted by

E[x|G] , 1

P[G]

ˆ

G

x(ω)P(dω). (2.1)

Furthermore, conditional expectation of a random variable x : Ω → R given a σ-algebra

H is defined to be the H-measurable unique random variable E[x|H] such that

ˆ

A

E[x|H]P(dω) =

ˆ

A

x(ω)P(dω), A ∈ H.

We use 1[·] : Ω → {0, 1} to denote the indicator function, defined by

1[G](ω) =







1, ω ∈ G,

0, ω /∈ G,

G ∈ F . (2.2)

2.2 Continuous-time Stochastic Processes

A continuous-time stochastic process is a collection of random variables xt : Ω → R
n

parametrized by the time variable t ∈ [0,∞) (see [84–86]). Furthermore, a filtration

{Ft}t≥0 on a probability space (Ω,F ,P) is defined to be a family of σ-algebras such that

Fs ⊂ Ft ⊂ F , 0 ≤ s < t.
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A stochastic process {xt ∈ R
n}t≥0 is said to be adapted to the filtration {Ft}t≥0 if the

random variable xt : Ω → R
n is Ft-measurable, that is,

{ω ∈ Ω : xt(ω) ∈ B} ∈ Ft, t ≥ 0,

for all Borel sets B ∈ B(Rn), where B(Rn) denotes the Borel σ-algebra associated with R
n.

In the following we provide definitions of continuous-time Markov chains and Poisson

processes.

2.2.1 Continuous-Time Finite-State Markov Chains

A finite-state, continuous-time Markov chain {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 with r(0) =

r0 ∈ M, is an Ft-adapted, piecewise-constant and right-continuous stochastic process

characterized by a generator matrix Q ∈ R
M×M . The generator matrix Q ∈ R

M×M

determines the transition rates between each pair of states i, j ∈ M such that

P[r(t+∆t) = j|r(t) = i] =







qi,j∆t+ o(∆t), i 6= j,

1 + qi,j∆t+ o(∆t), i = j,

where qi,j denotes the (i, j)th element of the matrix Q. Note that qi,j ≥ 0, i 6= j, and

qi,i = −∑

j 6=i qi,j , i ∈ M. Furthermore, transition probabilities for each pair of states

i, j ∈ M are given by

P[r(t+ τ) = j|r(t) = i] = pi,j(τ), t, τ ≥ 0, (2.3)

where pi,j(τ) denotes the (i, j)th element of the matrix eQτ . A Markov chain is called

“irreducible” if it is possible to reach from any state to another state with one or more

transitions. For all finite-state, irreducible, continuous-time Markov chains there exists a

unique stationary probability distribution π , [π1, . . . , πM ]T ∈ R
M such that πTQ = 0,

πi > 0, i ∈ M, and
∑

i∈M πi = 1 [86,87].

In Chapters 3–5, and 8, the mode signal, which manages the transition between sub-

systems (modes) of a switched stochastic continuous-time dynamical system, is modeled

as a finite-state continuous-time Markov chain.
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2.2.2 Continuous-Time Poisson Processes

A continuous-time Poisson process is a stochastic process that counts the number of oc-

currences of some events. Mathematically, it is defined to be the Ft-adapted stochastic

process {N(t) ∈ N0}t≥0 with N(0) = 0, where N(t) denotes the number of events that

occur in the time interval (0, t]. Probability of the occurrence of an event in a short time

interval (t, t+∆t] is given by

P[N(t+∆t) = k + 1 |N(t) = k] = λ∆t+o(∆t), k ∈ N0, (2.4)

where λ > 0 denotes the intensity of occurrences. Length of intervals between consecutive

events are distributed by the exponential distribution with parameter λ. A Poisson process

has “stationary and independent increments”. “Independent increments” property sug-

gests that occurrences of events in non-overlapping intervals are independent. Moreover,

as a result of “stationary increments” property, the number of events in any time interval

is distributed with Poisson distribution depending only on the length of the interval. For

Poisson processes, the probability of occurrences of more than one event at a time is zero.

Additionally, only finite number of events occur in finite time intervals, almost surely.

Note that in Chapter 8, we employ a Poisson process to characterize the occurrences

of random mode observations.

2.3 Discrete-Time Stochastic Processes

A discrete-time stochastic process is a collection of random variables xk : Ω → R
n, k ∈ N0,

defined on a probability space (Ω,F ,P). Furthermore, a filtration in the discrete-time

setting is defined to be a collection of σ-algebras {Fk}k∈N0 such that

Fj ⊂ Fk ⊂ F , j ≤ k, j, k ∈ N0.
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A discrete-time stochastic process {xk ∈ R
n}k∈N0 is called Fk-adapted if the random vari-

able xk : Ω → R
n is Fk-measurable, that is,

{ω ∈ Ω : xk(ω) ∈ B} ∈ Fk, k ∈ N0,

for all Borel sets B ∈ B(Rn) [88].

In what follows, we first define discrete-time finite-state Markov chains, and then we

explain Markov chains on countable spaces. We follow with a definition of discrete-time

renewal processes, and characterize Markov processes on R
l. Finally, we explain notions

of stationarity and ergodicity for discrete-time stochastic processes.

2.3.1 Discrete-Time Finite-State Markov Chains

A finite-state, discrete-time Markov chain {r(k) ∈ M , {1, 2, . . . ,M}}k∈N0 is an Fk-

adapted stochastic process characterized by an initial distribution ν : M → [0, 1] and a

transition probability matrix P ∈ R
M×M such that

P[r(0) = i] = νi, i ∈ M, (2.5)

P[r(k + 1) = j|r(k) = i] = pi,j , i, j ∈ M, k ∈ N0, (2.6)

where pi,j ∈ [0, 1] denotes the (i, j)th entry of the matrix P . Note that
∑

i∈M νi = 1 and

∑

j∈M pi,j = 1, i ∈ M.

In Chapters 6, 7, and 9, we employ a time-homogeneous discrete-time Markov chain to

model the active operation mode of a switched stochastic discrete-time dynamical system.

2.3.2 Discrete-Time Markov Chains on Countable State Spaces

A time-homogeneous, discrete-time Markov chain defined on a countable state space S is

an Fk-adapted stochastic process {s(k) ∈ S}k∈N0 characterized by an initial distribution

λ : S → [0, 1] and transition probabilities ρi,j ∈ [0, 1], i, j ∈ S, such that

P[s(0) = i] = λi, i ∈ S, (2.7)

P[s(k + 1) = j|s(k) = i] = ρi,j , i, j ∈ S, k ∈ N0. (2.8)
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Note that
∑

i∈S λi = 1 and
∑

j∈S ρi,j = 1, i ∈ S.

A discrete-time Markov chain {s(k) ∈ S}k∈N0 is called aperiodic if for every i ∈ S,

there exists n ∈ N such that for all n̄ ≥ n, P[s(k + n̄) = i|s(k) = i] > 0, k ∈ N0. Note that

states of aperiodic Markov chains are revisited aperiodically.

We call a discrete-time Markov chain {s(k) ∈ S}k∈N0 irreducible if for every i, j ∈ S,

there exists n ∈ N such that P[s(k + n) = j|s(k) = i] > 0, k ∈ N0. In other words, for

irreducible Markov chains it is possible to reach to any state from another state in finite

transitions.

A distribution φ : S → [0, 1] : j 7→ φj is called invariant distribution of the Markov

chain {s(k) ∈ S}k∈N0 if φj =
∑

i∈S φiρi,j , j ∈ S. Now, suppose {s(k) ∈ S}k∈N0 is an

irreducible discrete-time Markov chain with the invariant distribution φ : S → [0, 1]. The

strong law of large numbers (also called ergodic theorem; see [86, 87, 89]) for discrete-

time Markov chains states that for any ξi ∈ R, i ∈ S, such that
∑

i∈S φi|ξi| <∞, it follows

that P[limn→∞
1
n

∑n−1
k=0 ξs(k) =

∑

i∈S φiξi] = 1.

In Chapter 9, we employ a time-homogeneous, discrete-time, finite-state Markov chain

for modeling the mode transitions of a switched stochastic system. We consider the case

where mode is observed at random time instants. Furthermore, the sequences of modes

between random mode observation instants are characterized through a countable-state

discrete-time Markov chain. Therefore, the ergodic theorem for countable-state Markov

chains is crucial for developing our main results in Sections 9.2 and 9.3.

2.3.3 Discrete-Time Renewal Processes

A discrete-time renewal process {N(k) ∈ N0}k∈N0 with initial value N(0) = 0 is an Fk-

adapted stochastic counting process defined by

N(k) =
∑

i∈N

1[ti≤k], (2.9)

where ti ∈ N0, i ∈ N0, are random time instants such that t0 = 0 and τi , ti − ti−1 ∈ N,

i ∈ N, are identically distributed independent random variables with finite expectation

(i.e., E[τi] < ∞, i ∈ N). Note that τi, i ∈ N, denote the lengths of intervals between time

instants ti, i ∈ N0. Furthermore, we use µ : N → [0, 1] to denote the common distribution
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of the random variables τi, i ∈ N, such that

P[τi = τ ] = µτ , τ ∈ N, i ∈ N, (2.10)

where µτ ∈ [0, 1]. Note that
∑

τ∈N µτ = 1. Now, let τ̂ ,
∑

τ∈N τµτ = E[τ1](= E[τi],

i ∈ N). It follows as a consequence of strong law of large numbers for renewal processes

(see [86]) that limk→∞
N(k)
k

= 1
τ̂
.

Note that in Section 9.2, we employ a renewal process to characterize the occurrences

of random mode observations.

2.3.4 Discrete-Time Markov Processes on R
l

A time-homogeneous, discrete-time Markov process defined on state space R
l is a stochas-

tic process {ξ(k) ∈ R
l}k∈N0 characterized by an initial distribution ν : B(Rl) → [0, 1] and

transition probability function P : Rl × B(Rl) → [0, 1] such that

P[ξ(0) ∈ S] = ν(S), (2.11)

P[ξ(k + 1) ∈ S|ξ(k) = s] = P (s, S), (2.12)

for all s ∈ R
l, S ∈ B(Rl), k ∈ N0. Note that for each s ∈ R

l, P (s, ·) : B(Rl) → [0, 1] is a

probability measure on the measurable space (Rl,B(Rl)); furthermore, for each S ∈ B(Rl),

P (·, S) : Rl → [0, 1] is a measurable function on multidimensional space R
l (see [89,90]).

We define i-step transition probability functions P (i) : Rl × B(Rl) → [0, 1] by

P (0)(s, S) ,







1, if s ∈ S,

0, otherwise,

(2.13)

P (n+1)(s, S) ,

ˆ

Rl

P (n)(s̄, S)P (s, ds̄), n ∈ N. (2.14)

Note that P (1)(s, S) = P (s, S), s ∈ R
l, S ∈ B(Rl). For a given time k ∈ N0 and step size

i ∈ N0, P
(i)(s, S) denotes the conditional probability that the Markov process will take a

value inside the set S ∈ B(Rl) at time k + i, given that it had the value s ∈ R
l at time k,
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that is

P[ξ(k + i) ∈ S|ξ(k) = s] = P (i)(s, S), k, i ∈ N0. (2.15)

A probability measure π : B(Rl) → [0, 1] is called a stationary distribution of Markov

process {ξ(k) ∈ R
l}k∈N0 if

ˆ

Rl

P (s, S)π(ds) = π(S), S ∈ B(Rl). (2.16)

A Markov process {ξ(k) ∈ R
l}k∈N0 is called aperiodic if there is no integer d ≥ 2 and

non-empty subsets Si ⊆ R
l, i ∈ {1, 2, . . . , d}, such that Si ∩ Sj = ∅, i 6= j, P (s, Si+1) = 1,

s ∈ Si, i ∈ {1, 2, . . . , d− 1} and P (s, S1) = 1, s ∈ Sd (see [91]).

In Section 10.3, we employ an aperiodic Markov process defined on R
l to characterize

the parameter of a discrete-time linear stochastic parameter-varying dynamical system.

2.3.5 Stationarity and Ergodicity of Discrete-Time Stochastic Processes

In this section we first give the definition of stationarity, and then we explain measure

preserving transformations and ergodic stochastic processes.

A discrete-time stochastic process {ζ(k) ∈ R
l}k∈N0 is called stationary if for every

n ∈ N,

P[ζ(i) ∈ S1, ζ(i+ 1) ∈ S2, . . . , ζ(i+ n− 1) ∈ Sn]

= P[ζ(j) ∈ S1, ζ(j + 1) ∈ S2, . . . , ζ(j + n− 1) ∈ Sn], (2.17)

for all Sk ∈ B(Rl), k ∈ {1, 2, . . . , n}, and i, j ∈ N0. Note that for a stationary stochastic

process {ζ(k) ∈ R
l}k∈N0 , the joint distribution of random variables ζ(k), ζ(k+1), . . . , ζ(k+

n) is the same for all k ∈ N0, in other words the joint distribution does not change over

time [90, 92]. It is important to note that a time-homogeneous discrete-time Markov

process {ξ(k) ∈ R
l}k∈N0 characterized with the transition probability function P : Rl ×

B(Rl) → [0, 1] and the initial distribution ν : B(Rl) → [0, 1] is stationary if the initial
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distribution ν(·) is also a stationary distribution, that is,

ˆ

Rl

P (s, S)ν(ds) = ν(S), S ∈ B(Rl). (2.18)

Now consider the probability space (Ω,F ,P). A measurable function T : Ω → Ω is

called a measure preserving transformation if

P[T−1(F )] = P[F ], F ∈ F ,

where

T−1(F ) , {ω ∈ Ω : T (w) ∈ F}, F ∈ F . (2.19)

Note that every stationary stochastic process is associated with a measure preserving

transformation [90,92]. We define the measure preserving transformation associated with

the stationary stochastic process {ζ(k) ∈ R
l}k∈N0 in the following way. First, let Ω ,

(
R
l
)N0 denote the space that includes all infinite-sequences of Rl-valued vectors, and let

F , B
((
R
l
)N0

)
denote the product σ-algebra (see [90, 92]). Furthermore, let P be the

probability measure induced by {ζ(k) ∈ R
l}k∈N0 . Note that all sequences of the form

ω , {ω(k) ∈ R
l}k∈N0 are included in Ω; moreover, F includes all sets of the form {ω ∈

Ω : ω(i) ∈ S1, ω(i + 1) ∈ S2, . . . ω(i + n − 1) ∈ Sn}, for all Sk ∈ B(Rl), k ∈ {1, 2, . . . , n},

and i ∈ N0. For a fixed ω ∈ Ω, the stochastic process {ζ(k) ∈ R
l}k∈N0 is given by ζ(k) =

ω(k), k ∈ N0. Now, we define Tζ : Ω → Ω by

Tζ({ω(k)}k∈N0) , {ω(k + 1)}k∈N0 , ω ∈ Ω. (2.20)

Note that Tζ : Ω → Ω shifts the sequence ω ∈ Ω. The stationarity of the stochastic

process {ζ(k) ∈ R
l}k∈N0 implies that the function Tζ : Ω → Ω is a measure preserving

transformation [90]. For the measure preserving transformation Tζ : Ω → Ω, we define

T i
ξ : Ω → Ω, by T 0

ζ (ω) = ω and T i+1
ζ (ω) = Tζ(T

i
ζ(ω)), i ∈ N0.

Consider the stationary stochastic process {ζ(k) ∈ R
l}k∈N0 and the associated measure

preserving transformation Tζ : Ω → Ω defined in (2.20). The stationary stochastic process
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{ζ(k) ∈ R
l}k∈N0 is called ergodic if P[F ] = 0 or P[F ] = 1 for all F ∈ F such that T−1

ζ (F ) =

F .

Now let {ζ(k) ∈ R
l}k∈N0 be a stationary and ergodic stochastic process. Furthermore,

let f : Rl → R be a measurable function such that E[|f(ζ(0))|] < ∞. Ergodic Theorem

[90,92] states that limn→∞
1
n

∑n−1
k=0 f(ζ(k)) = E[f(ζ(0))], almost surely.

Stationarity and ergodicity notions are crucial for obtaining the main results of Chap-

ter 10.

2.4 Stochastic Stability Definitions

In the literature, researchers employ various stability notions for analyzing stochastic dy-

namical systems. In this section, we give definitions of almost sure asymptotic stability and

second-moment asymptotic stability, which we adopt in our study.

2.4.1 Almost Sure Asymptotic Stability

In Chapters 3–5, and 8, we investigate continuous-time stochastic dynamical systems,

where the state variable is characterized by the stochastic process {x(t) ∈ R
n}t≥0. The

zero solution x(t) ≡ 0 of a continuous-time stochastic dynamical system is called asymp-

totically stable almost surely if

P[ lim
t→∞

‖x(t)‖ = 0] = 1. (2.21)

Furthermore, in Chapters 9 and 10, we investigate almost sure asymptotic stability

of discrete-time stochastic dynamical systems, for which the state variable is given by

discrete-time stochastic process {x(k) ∈ R
n}k∈N0 . The zero solution x(k) ≡ 0 of a discrete-

time stochastic dynamical system is called asymptotically stable almost surely if

P[ lim
k→∞

‖x(k)‖ = 0] = 1. (2.22)

Note that almost sure asymptotic stability notion is also called “asymptotic stability

with probability one” [14].
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2.4.2 Second-Moment Asymptotic Stability

In Chapters 6 and 7, we investigate second-moment asymptotic stability of discrete-time

stochastic dynamical systems. The zero solution x(k) ≡ 0 of a discrete-time stochastic

system is called second-moment asymptotically stable if

lim
k→∞

E[‖x(k)‖2] = 0. (2.23)
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Chapter 3

Feedback Control of

Continuous-Time Switched Linear

Stochastic Systems Using Uniformly

Sampled Mode Information

3.1 Introduction

Stabilization of stochastic hybrid systems have been investigated by many researchers.

Particularly, feedback control of Markov jump systems have attracted considerable atten-

tion. Markov jump systems are composed of deterministic subsystems (modes). Transi-

tions between these subsystems are characterized by a stochastic mode signal, which is

modeled as a finite-state Markov chain. Feedback control of Markov jump linear systems

have been discussed in [57]; output feedback stabilization of Markov jump systems have

been investigated in [4] and [63]; moreover, stabilization problem under the effect of de-

lays is explored in [62] and [64]. In addition to Markov jump systems, researchers have

also explored more general “switching diffusion processes”, which introduce stochasticity

also in the subsystem dynamics. Several results regarding the stabilization of switching

diffusion processes are provided in [13,14,54], and [49].

In the literature concerning the stabilization of switched stochastic systems, researchers

often employ feedback control laws that require perfect knowledge of the mode signal.

These suggested control laws are not suitable when mode information is not available or
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only available at certain instants. It is important to address the stabilization problem un-

der limited mode information. In this regard, when there is no mode information available

at all, under some conditions, stabilization can be achieved using a fixed feedback con-

trol law that is independent of the mode [63, 71]. Furthermore, an estimate of the mode

signal can also be employed for control purposes [73, 74]. On the other hand, if mode

information can be observed at certain time instants (even if rarely), this information can

be utilized in the control framework.

In this chapter, we consider the stabilization problem for the case where mode infor-

mation is sampled uniformly, that is, the mode sampling instants are equally spaced by a

constant interval. Specifically, we consider a switched linear system composed of stochas-

tic subsystems which include Brownian motion in their dynamics. The mode signal of the

switched system is modeled as a time-homogeneous, finite-state Markov chain. We pro-

pose a control law that depends only on the uniformly sampled mode information. In this

case, the closed-loop system under the proposed control law cannot be transformed into

another switched linear stochastic system with a mode signal that is a time-homogeneous

Markov chain. As a consequence, a new approach is needed to analyze stability of the

closed-loop system. We first obtain a representation of the mode signal from the available

samples employing the “sample and hold” technique. We investigate the probabilistic dy-

namics of this sampled version of the mode signal. Next, we derive and employ a type of

strong law of large numbers for a bivariate process composed of the actual and the sam-

pled mode signal to show that our proposed control law guarantees almost sure stability

of the zero solution.

The contents of the chapter are as follows. In Section 3.5, we give the mathematical

model for continuous-time switched linear stochastic dynamical systems, then we inves-

tigate the feedback control problem for these systems under uniformly sampled mode

information and obtain some sufficient conditions of almost sure asymptotic stabilization.

In Section 3.4, we explore the sampled-mode output feedback control problem. Further-

more, in Section 3.5, we investigate the sampled-mode stabilization problem for switched

linear stochastic dynamical systems with multiplicative noise. We then present illustrative

numerical examples in Section 3.6 to demonstrate the efficacy of our results. Finally, we

conclude in Section 3.7.
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3.2 Feedback Control of Switched Linear Stochastic Systems

Using Periodically Sampled Mode Data

In this section, we investigate feedback control of switched linear stochastic systems that

are composed of a number of deterministic subsystems and a stochastic mode signal, which

characterizes the transition between the subsystems. We develop a control framework

for the case where the mode signal of the switched system is sampled (observed) only

at equally spaced discrete time instants. We start with the mathematical model for the

switched stochastic dynamical system that we investigate.

3.2.1 Mathematical Model for Continuous-Time Switched Linear Stochastic

Systems

We consider the continuous-time switched linear stochastic dynamical system with M ∈ N

number of subsystems (modes) described by

ẋ(t) = Ar(t)x(t) +Br(t)u(t), (3.1)

with initial conditions x(0) = x0 and r(0) = r0, where x(t) ∈ R
n is the state vector,

u(t) ∈ R
m is the control input, and Ai,∈ R

n×n, Bi ∈ R
n×m, i ∈ M , {1, 2, . . . ,M}, are

subsystem matrices. Transitions between the modes are characterized by the piecewise-

constant Ft-adapted mode signal {r(t) ∈ M}t≥0, which is assumed to be an continuous-

time irreducible Markov chain characterized by the generator matrix Q ∈ R
M×M with

the stationary probability distribution π ∈ R
M (see Section 2.2.1 for the definition of

continuous-time irreducible Markov chains).

3.2.2 Feedback Control Problem Under Periodic Mode Observations

We investigate feedback stabilization of the linear stochastic dynamical system (3.1) under

the assumption that only a periodically-sampled version the mode signal {r(t) ∈ M}t≥0

is available for control purposes. Specifically, we assume that the mode signal is sampled

(observed) at time instants 0, τ, 2τ ,3τ ,. . ., where τ > 0 denotes the constant mode sampling

period. Our goal is to design a stabilizing feedback control law that depends only on the
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Figure 3.1: Actual mode signal r(t) and the sampled mode signal σ(t) versus time

sampled mode information.

First, by employing the “sample and hold” technique we obtain a representation of the

mode signal {r(t) ∈ M}t≥0 using only the available mode samples {r(kτ) ∈ M}k∈N0 . We

define this sampled mode signal {σ(t) ∈ M}t≥0 by

σ(t) , r(kτ), t ∈ [kτ, (k + 1)τ), k ∈ N0. (3.2)

Furthermore, in order to achieve almost sure stabilization using only the sampled mode

information, we consider the control law of the form

u(t) = Kσ(t)x(t). (3.3)

In what follows we show that under certain conditions, the control law (3.3) guarantees

the stability of the zero solution x(t) ≡ 0 of the closed-loop switched linear system (3.1).

To this end, we first explore the relation between the actual mode signal r(·) and its

sampled version σ(·). We then present some key results that are necessary for investigating

the stabilization problem.

The sampled mode signal {σ(t) ∈ M}t≥0 is a piecewise-constant stochastic process.

It may be subject to jumps at the time instants kτ, k ∈ N, only when there is a mode

switch in the time interval ((k − 1)τ, kτ ]. In Fig. 3.1 we present sample paths of both

the actual mode signal r(t) and the sampled mode signal σ(t) of a switched system (3.1)
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with M = 2 modes. Note that both the sampling period τ > 0 and frequency of the

occurrences of mode transitions have an influence on how closely the sampled mode signal

{σ(t) ∈ M}t≥0 resembles the actual mode signal {r(t) ∈ M}t≥0. For example, when mode

samples are obtained relatively frequently compared to the occurrences of mode switches,

the sampled mode signal {σ(t) ∈ M}t≥0 is likely to be a good representation of the actual

mode signal {r(t) ∈ M}t≥0.

We denote the obtained mode samples by the sequence {r(kτ) ∈ M}k∈N0 , which is a

discrete-time Markov chain with state transition probabilities given by

P[r((k + 1)τ) = j|r(kτ) = i] = pi,j(τ), (3.4)

where pi,j(τ) is the (i, j)th element of the transition matrix eQτ . Since {r(t) ∈ M}t≥0 is

irreducible, {r(kτ) ∈ M}k∈N0 is also an irreducible Markov chain. Furthermore, π ∈ R
M

is also the stationary probability distribution for the discrete-time Markov chain {r(kτ) ∈

M}k∈N0 [87].

The following lemma is concerned with finite-state, irreducible Markov chains and

crucial for developing the main results of this chapter.

Lemma 3.1. Suppose {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 is a finite-state, irreducible Markov

chain characterized by the generator matrix Q ∈ R
M×M . Then for any φl ∈ R, l ∈ M,

τ > 0, and k ∈ N such that P[r(kτ) = i, r((k + 1)τ) = j] > 0, it follows that

E[

ˆ (k+1)τ

kτ

φr(s)ds|r(kτ) = i, r((k + 1)τ) = j]

=
1

pi,j(τ)

ˆ τ

0

∑

l∈M

φlpl,j(τ − s)pi,l(s)ds. (3.5)

Proof. First, let Fl(t) , {ω ∈ Ω : rt(ω) = l}, t ≥ 0, l ∈ M and G , Fi(kτ) ∩ Fj((k +
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1)τ). By the definition of conditional expectation given by (2.1), we have

E[

ˆ (k+1)τ

kτ

φr(s)ds|r(kτ) = i, r((k + 1)τ) = j]

= E[

ˆ (k+1)τ

kτ

φr(s)ds|G]

=
1

P[G]

ˆ

G

ˆ (k+1)τ

kτ

φr(s)dsP(dω)

=
1

P[G]

ˆ

G

ˆ τ

0
φr(s′+kτ)ds

′
P(dω)

=
1

P[G]

ˆ

G

ˆ τ

0

∑

l∈M

φl1[r(s′+kτ)=l]ds
′
P(dω), (3.6)

where we also used the substitution s′ = s− kτ . By employing Fubini’s Theorem [93], we

change the order of integrals in (3.6) to obtain

E[

ˆ (k+1)τ

kτ

φr(s)ds|r(kτ) = i, r((k + 1)τ) = j]

=
1

P[G]

ˆ τ

0

ˆ

G

∑

l∈M

φl1[r(s′+kτ)=l]P(dω)ds
′

=
1

P[G]

ˆ τ

0

∑

l∈M

φl

ˆ

G

1[r(s′+kτ)=l]P(dω)ds
′

=
1

P[G]

ˆ τ

0

∑

l∈M

φlP[G ∩ Fl(s
′ + kτ)]ds′. (3.7)

Furthermore, it follows from (2.3) that

P[G ∩ Fl(s
′ + kτ)]

P[G]
=

P[Fi(kτ) ∩ Fj((k + 1)τ) ∩ Fl(s
′ + kτ)]

P[Fi(kτ) ∩ Fj((k + 1)τ)]

=
P[Fj((k + 1)τ)|Fl(s

′ + kτ)]P[Fl(s
′ + kτ)|Fi(kτ)]

P[Fj((k + 1)τ)|Fi(kτ)]

=
pl,j(τ − s′)pi,l(s

′)

pi,j(τ)
. (3.8)

By substituting (3.8) to (3.7), we obtain (3.5), which completes the proof. �

Next, in Lemma 3.2 we present a form of strong law of large numbers for the bivariate

stochastic process {(r(t), σ(t)) ∈ M × M}t≥0. This result is then utilized for developing

the main results below in Sections 3.3 and 3.5.

Lemma 3.2. Suppose {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 is a finite-state, irreducible Markov

chain characterized by the generator matrix Q ∈ R
M×M with stationary probability dis-
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tributions π ∈ R
M ; and {σ(t) ∈ M}t≥0 defined in (3.2) is the sampled version of

{r(t) ∈ M}t≥0 for a given sampling period τ > 0. Then for any γi,j ∈ R, i, j ∈ M,

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ
tr(Π

ˆ τ

0
eQsdsΓ), (3.9)

almost surely, where Π ∈ R
M×M is the diagonal matrix with the diagonal elements

π1, π2, . . . , πM , and Γ ∈ R
M×M is the matrix with the elements γi,j , i, j ∈ M.

Proof. First, we divide the interval [0, t] into sub-intervals as

[0, t] = [0, τ) ∪ [τ, 2τ) ∪ . . . ∪ [N(t)τ, t], t ≥ 0, (3.10)

where N(t) , ⌊t/τ⌋ + 1, t ≥ 0, denotes the number of mode samples obtained in the

interval [0, t]. Consequently, we evaluate the integral over the interval [0, t] in (3.9) by

summing the integrals over each of the sub-intervals given in (3.10), that is,

ˆ t

0
γr(s),σ(s)ds =

N(t)−1
∑

k=0

ˆ (k+1)τ

kτ

γr(s),σ(s)ds+

ˆ t

N(t)τ
γr(s),σ(s)ds. (3.11)

Now, we define

N i,j(t) ,

N(t)
∑

k=1

1[r((k−1)τ))=i,r(kτ)=j], t ≥ 0, (3.12)

which denotes the number of times consecutive mode samples take the values i and j,

respectively, in the interval [0, t]. Note that

∑

i,j∈M

N i,j(t) = N(t). (3.13)

Furthermore, for each pair of modes i, j ∈ M, we define the sequence of indices {ki,jn ∈

N0}n∈N by

ki,j1 =min{k ∈ N0 : r(kτ) = i, r((k + 1)τ) = j}, (3.14)

ki,jn =min{k > ki,jn−1 : r(kτ) = i, r((k + 1)τ) = j}, (3.15)
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for n > 1. Note that r(ki,jn τ) = i and r((ki,jn + 1)τ) = j, n ∈ N, i, j ∈ M. As a result, for

a given pair of modes i, j ∈ M, [ki,jn τ, (ki,jn + 1)τ) denotes the nth time interval between

mode sampling instances for which the consecutive mode samples are i and j, respectively.

It follows from (3.11)-(3.15) that

ˆ t

0
γr(s),σ(s)ds =

∑

i,j∈M

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids+

ˆ t

N(t)τ
γr(s),σ(s)ds, (3.16)

where we also used γr(s),σ(s) = γr(s),i, s ∈ [ki,jn τ, (ki,jn + 1)τ). Consequently, we calculate

the limit in (3.9) as

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds

= lim
t→∞

1

t

( ∑

i,j∈M

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids+

ˆ t

N(t)τ
γr(s),σ(s)ds

)

(3.17)

Since
´ t

N(t)τ γr(s),σ(s)ds ≤ |maxi,j∈M γi,j |τ, t ≥ 0,

lim
t→∞

1

t

ˆ t

N(t)τ
γr(s),σ(s)ds = 0. (3.18)

It follows from (3.17) and (3.18) that

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds

= lim
t→∞

1

t

∑

i,j∈M

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids

= lim
t→∞

N(t)

t

∑

i,j∈M

(N i,j(t)

N(t)

1

N i,j(t)

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids
)

= lim
t→∞

N(t)

t

∑

i,j∈M

(

lim
t→∞

N i,j(t)

N(t)
lim
t→∞

1

N i,j(t)

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids
)

(3.19)

In the following, we calculate the three limit terms on the right hand side of (3.19).

First of all, by the definition of N(t) we have

lim
t→∞

N(t)

t
=

1

τ
. (3.20)
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Second, in order to evaluate limt→∞
N i,j(t)
N(t) in (3.19), we focus on the probabilistic dy-

namics of the sequence of mode samples {r(kτ) ∈ M}k∈N. Specifically, the sequence

{r(kτ) ∈ M}k∈N is a discrete-time Markov chain with transition probabilities given in

(3.4). In addition, for the discrete-time Markov chain {r(kτ) ∈ M}k∈N, Ni,j(t) and N(t)

respectively denote the number of state transitions from i to j, and the total number of

state transitions. It follows by the strong law of large numbers for discrete-time Markov

chains [86,87] that

lim
t→∞

N i,j(t)

N(t)
= πipi,j(τ). (3.21)

Third, we also employ strong law of large numbers to evaluate the last limit expression

limt→∞
1

N i,j(t)

∑N i,j(t)
n=1

´ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids in (3.19). Note that for given pair of modes i, j ∈

M, the integrals
´ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids, n = {1, . . . , N i,j(t)}, in (3.19), are R-valued i.i.d.

random variables, that is, for the Borel sets B ∈ B(R), ψ(B) , P[
´ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids ∈ B]

induces a probability measure on the measurable space (R,B) independent of n ∈ N.

Moreover, by using Lemma 3.1, we obtain

E[

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids]

=

∞∑

k=0

E[

ˆ (k+1)τ

kτ

γr(s),ids|ki,jn = k]P[ki,jn = k]

=
∞∑

k=0

E[

ˆ (k+1)τ

kτ

γr(s),ids|r(kτ) = i, r((k + 1)τ) = j]P[ki,jn = k]

=
1

pi,j(τ)

ˆ τ

0

∑

l∈M

γl,ipl,j(τ − s)pi,l(s)ds
∞∑

k=0

P[ki,jn = k]

=
1

pi,j(τ)

ˆ τ

0

∑

l∈M

γl,ipl,j(τ − s)pi,l(s)ds, (3.22)

for n ∈ N. Note also that N i,j(t) approaches infinity as t → ∞, almost surely. Thus, the

strong law of large numbers can be employed to obtain

lim
t→∞

1

N i,j(t)

N i,j(t)
∑

n=1

ˆ (ki,jn +1)τ

k
i,j
n τ

γr(s),ids = E[

ˆ (ki,j1 +1)τ

k
i,j
1 τ

γr(s),ids]

=
1

pi,j(τ)

ˆ τ

0

∑

l∈M

γl,ipl,j(τ − s)pi,l(s)ds, (3.23)
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Finally, we substitute (3.20), (3.21), and (3.23) into (3.19), and arrive at

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ

∑

i,j∈M

πi

ˆ τ

0

∑

l∈M

γl,ipl,j(τ − s)pi,l(s)ds

=
1

τ

∑

i∈M

πi

ˆ τ

0

∑

l∈M

γl,i
∑

j∈M

pl,j(τ − s)pi,l(s)ds (3.24)

Moreover, since
∑

j∈M pl,j(t) = 1, t ≥ 0, l ∈ M, it follows from (3.24) that

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ

∑

i∈M

πi

ˆ τ

0

∑

l∈M

γl,ipi,l(s)ds

=
1

τ
tr(Π

ˆ τ

0
eQsdsΓ), (3.25)

which completes the proof. �

3.3 Sufficient Conditions for Almost Sure Asymptotic Stabiliza-

tion

By utilizing the strong law of large numbers developed in Lemma 3.2 and employing a

quadratic Lyapunov-like function, we now obtain sufficient conditions for the almost sure

asymptotic stability of the closed-loop system (3.1), (3.3) under uniformly (periodically)

sampled mode information.

Theorem 3.1. Consider the continuous-time switched linear stochastic control system

(3.1), (3.3) with mode sampling period τ > 0. If there exist P > 0 and scalars γi,j ∈

R, i, j ∈ M, such that

0 ≥ (Ai +BiKj)
TP + P (Ai +BiKj)− γi,jP, i, j ∈ M, (3.26)

tr(Π

ˆ τ

0
eQsdsΓ) < 0, (3.27)

where Π ∈ R
M×M is the diagonal matrix with the diagonal elements π1, π2, . . . , πM , and

Γ ∈ R
M×M is the matrix with (i, j)th elements given by γi,j , then the zero solution x(t) ≡ 0

of the closed-loop control system (3.1), (3.3) is asymptotically stable almost surely.

Proof. First, consider the quadratic, positive-definite function V (x) , xTPx. It follows
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from (3.1) and (3.3) that

V̇ (x(t)) = xT(t)
(
(Ar(t) +Br(t)Kσ(t))

TP + P (Ar(t) +Br(t)Kσ(t))
)
x(t), t ≥ 0. (3.28)

Now let

α ,
mini,j∈M λmin((Ai +BiKj)

TP + P (Ai +BiKj))

λmax(P )
. (3.29)

It follows from (3.28) and (3.29) that

V̇ (x(t)) ≥ αV (x(t)), t ≥ 0. (3.30)

Therefore,

V (x(t)) ≥ eαtV (x(0)), t ≥ 0, (3.31)

which proves that for nonzero values of the initial state x(0) = x0, V (x(t)) > 0, t ≥ 0.

Now consider lnV (x(t)), which is well defined for t ≥ 0, since V (x(t)) > 0. It follows

from (3.28) that

d lnV (x(t))

dt

=
1

V (x(t))
V̇ (x(t))

=
1

xT(t)Px(t)
xT(t)

(
(Ar(t) +Br(t)Kσ(t))

TP + P (Ar(t) +Br(t)Kσ(t))
)
x(t), t ≥ 0.

(3.32)

Now integrating (3.32) over the interval [0, t] yields

lnV (x(t))

= lnV (x(0))

+

ˆ t

0

1

xT(s)Px(s)
xT(s)

(
(Ar(s) +Br(s)Kσ(s))

TP + P (Ar(s) +Br(s)Kσ(s))
)
x(s)ds.

(3.33)
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It then follows from (3.26) that

lnV (x(t)) ≤ lnV (x(0)) +

ˆ t

0

1

xT(s)Px(s)
γr(s),σ(s)x

T(s)Px(s)ds

= lnV (x(0)) +

ˆ t

0
γr(s),σ(s)ds, t ≥ 0. (3.34)

By the strong law of large numbers (presented in Lemma 3.2),

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ
tr(Π

ˆ τ

0
eQsdsΓ), (3.35)

almost surely. By using (3.27), (3.34), and (3.35), we obtain

lim sup
t→∞

1

t
lnV (x(t)) ≤ 1

τ
tr(Π

ˆ τ

0
eQsdsΓ)

< 0. (3.36)

It then follows that limt→∞ lnV (x(t)) = −∞, almost surely, and hence,

P[ lim
t→∞

V (x(t)) = 0] = 1, (3.37)

which implies that the zero solution is asymptotically stable almost surely. �

Theorem 3.1 provides sufficient conditions under which the proposed control law 3.3

guarantees almost sure stabilization of the zero solution of the switched linear stochastic

dynamical system (3.1). Note that the conditions of Theorem 3.1 depend not only on

subsystem dynamics but also on the probabilistic dynamics of the mode signal as well as

the mode sampling period τ > 0.

Remark 3.1. Note that conditions (3.26), (3.27) can be used to assess stability of the

closed-loop system (3.1), (3.3) when the gain matrices Ki, i ∈ M, are already known.

On the other hand, in practice, we often need to employ numerical methods for finding

gain matrices so that the proposed control law (3.3) with those gains achieves almost

sure asymptotic stabilization. In this regard, it is important to note that conditions (3.26),

(3.27) are also well suited for finding stabilizing feedback gain matrices Ki, i ∈ M. Specif-

ically, note that for given P > 0, the inequalities (3.26), (3.27) are linear in Ki, i ∈ M,
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and γi,j , i, j ∈ M. Thus, numerical tools for linear matrix inequalities (see [94–96]) can

be used for finding feedback gain matrices Ki, i ∈ M, and scalars γi,j , i, j ∈ M, that

satisfy conditions (3.26), (3.27).

Remark 3.2. Note that the condition (3.72) of Theorem 3.1 depends not only on the

transition rates between modes qi,j , i, j ∈ M, but also the sampling period τ > 0. For a

given mode sampling period τ > 0, checking the condition (3.72) requires evaluation of

the integral
´ τ

0 e
Qsds. A wide range of numerical integration algorithms can be used to

calculate this integral accurately.

3.4 Sampled-Mode Output Feedback Control Problem

In the previous section we considered sampled-mode state feedback control problem. In

this section we extend our results for the output feedback control problem. Specifically,

we consider the dynamical system (3.1) together with

y(t) = Cr(t)x(t), (3.38)

where y(t) ∈ R
l is denotes the output of the system and Ci ∈ R

l×n, i ∈ M, are output

matrices for each mode. In the output feedback control problem setting, the controller has

access to output information rather than the system state. We propose an observer-based

control framework which requires only output y(t) and sampled mode information σ(t).

Specifically, we estimate the state with an observer and use the estimated state in our

feedback control framework. To this end, we propose the observer

˙̂x(t) = Aσ(t)x̂(t) +Bσ(t)u(t) + Lσ(t)(y(t)− Cσ(t)x̂(t)), (3.39)

where x̂(t) ∈ R
n is the estimate of state and Li ∈ R

n×l, i ∈ M, are observer gains.

Furthermore, we consider the control law

u(t) = Kσ(t)x̂(t), t ≥ 0. (3.40)
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Note that in our proposed observer (3.39) and control law (3.40), only sampled mode

signal σ(t) is required rather than the actual mode signal r(t).

Let e(t) , x(t) − x̂(t). Note that e(t) ∈ R
n denotes the state estimation error at time

t ≥ 0. It follows from (3.1), (3.38), (3.39), and (3.40) that

ė(t) = ẋ(t)− ˙̂x(t)

= Ar(t)x(t) +Br(t)u(t)−
(
Aσ(t)x̂(t) +Bσ(t)u(t) + Lσ(t)(y(t)− Cσ(t)x̂(t))

)

= Ar(t)x(t) +Br(t)Kσ(t)x̂(t)−Aσ(t)x̂(t)−Bσ(t)Kσ(t)x̂(t)

− Lσ(t)(Cr(t)x(t)− Cσ(t)x̂(t))

= Ar(t)x(t) +Br(t)Kσ(t)(x(t)− e(t))−Aσ(t)(x(t)− e(t))

−Bσ(t)Kσ(t)(x(t)− e(t))− Lσ(t)(Cr(t)x(t)− Cσ(t)(x(t)− e(t)))

=
(
(Ar(t) −Aσ(t)) + (Br(t) −Bσ(t))Kσ(t) − Lσ(t)(Cr(t) − Cσ(t))

)
x(t)

+
(
Aσ(t) − Lσ(t)Cσ(t) − (Br(t) −Bσ(t))Kσ(t)

)
e(t). (3.41)

Now, define Ā1,1
i,j , Ā1,2

i,j , Ā2,1
i,j , Ā2,2

i,j , i, j ∈ M, by

Ā1,1
i,j , Ai +BiKj , (3.42)

Ā1,2
i,j , −BiKj , (3.43)

Ā2,1
i,j , (Ai −Aj) + (Bi −Bj)Kj − Lj(Ci − Cj), (3.44)

Ā2,2
i,j , Aj − LjCj − (Bi −Bj)Kj , i, j ∈ M. (3.45)

It then follows from (3.1) and (3.41) that






ẋ(t)

ė(t)




 =






Ā1,1
r(t),σ(t) Ā1,2

r(t),σ(t)

Ā2,1
r(t),σ(t) Ā2,2

r(t),σ(t)











x(t)

e(t)




 . (3.46)

In the following we obtain sufficient conditions under which the zero solution x(t) ≡ 0,

e(t) ≡ 0 of (3.46) is asymptotically stable almost surely. Note that under these condi-

tions both the state and estimation error converges to zero almost surely. We follow the

approach that we used in the previous section. Specifically, we utilize the strong law of

large numbers developed in Lemma 3.2 and employ a quadratic Lyapunov-like function.
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In this section the Lyapunov-like function has the form V (x, e) = xTP1x + eTP2e, where

both P1 ∈ R
n×n and P2 ∈ R

n×n are positive-definite matcies.

Theorem 3.2. Consider the continuous-time switched linear stochastic control system

(3.1), (3.38), (3.39), and (3.40) with mode sampling period τ > 0. If there exist P1 > 0,

P2 > 0, and scalars γi,j ∈ R, i, j ∈ M, such that

0 ≥






Ā1,1T
i,j P1 + P1Ā

1,1
i,j − γi,jP1 P1Ā

1,2
i,j + Ā2,1T

i,j P2

Ā1,2T
i,j P1 + P2Ā

2,1
i,j Ā2,2T

i,j P2 + P2Ā
2,2
i,j − γi,jP2




 , i, j ∈ M, (3.47)

tr(Π

ˆ τ

0
eQsdsΓ) < 0, (3.48)

where Ā1,1
i,j , Ā1,2

i,j , Ā2,1
i,j , Ā2,2

i,j , i, j ∈ M, are defined by (3.42)–(3.45), Π ∈ R
M×M is the

diagonal matrix with the diagonal elements π1, π2, . . . , πM , and Γ ∈ R
M×M is the matrix

with (i, j)th elements given by γi,j , then the zero solution x(t) ≡ 0, e(t) ≡ 0 of the closed-

loop control system (3.1), (3.38), (3.39), and (3.40) is asymptotically stable almost surely.

Proof. First, consider the quadratic, positive-definite function V (x, e) , xTP1x +

eTP2e. It follows from (3.1), (3.38), (3.39), and (3.40) that

V̇ (x(t), e(t)) = xT(t)
(
(Ar(t) +Br(t)Kσ(t))

TP1 + P1(Ar(t) +Br(t)Kσ(t))
)
x(t)

− 2xT(t)P1Br(t)Kσ(t)e(t)

+ eT(t)
(
(Aσ(t) − Lσ(t)Cσ(t) − (Br(t) −Bσ(t))Kσ(t))

TP2

+ P2(Aσ(t) − Lσ(t)Cσ(t) − (Br(t) −Bσ(t))Kσ(t))
)
e(t)

+ 2eT(t)P2

(
(Ar(t) −Aσ(t))− Lσ(t)(Cr(t) − Cσ(t))

+ (Br(t) −Bσ(t))Kσ(t)

)
x(t). (3.49)

Now by using (3.42)–(3.45), we obtain

V̇ (x(t), e(t)) =






x(t)

e(t)






T 




Ā1,1T
i,j P1 + P1Ā

1,1
i,j P1Ā

1,2
i,j + Ā2,1T

i,j P2

Ā1,2T
i,j P1 + P2Ā

2,1
i,j Ā2,2T

i,j P2 + P2Ā
2,2
i,j











x(t)

e(t)




 . (3.50)
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Hence, it follows from (3.47) that

V̇ (x(t), e(t)) ≤ γr(t),σ(t)
(
xT(t)P1x(t) + eT(t)P2e(t)

)

= γr(t),σ(t)V (x(t), e(t)), t ≥ 0. (3.51)

Now by using a similar argument that we employ in the proof of Theorem 3.1, we can

show that V (x(t), e(t)) > 0, t ≥ 0. Now consider lnV (x(t), e(t)), which is well defined

since for t ≥ 0, since V (x(t), e(t)) > 0. It follows that

d lnV (x(t), e(t))

dt
=

1

V (x(t), e(t))
V̇ (x(t), e(t)). (3.52)

Furthermore after integrating (3.52) over the interval [0, t] and using (3.51), we obtain

lnV (x(t), e(t)) = lnV (x(0), e(0)) +

ˆ t

0

1

V (x(s), e(s))
V̇ (x(s), e(s))ds

≤ lnV (x(0), e(0)) +

ˆ t

0
γr(s),σ(s)ds. (3.53)

By the strong law of large numbers (presented in Lemma 3.2),

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ
tr(Π

ˆ τ

0
eQsdsΓ), (3.54)

almost surely. By using (3.48), (3.53), and (3.54), we obtain

lim sup
t→∞

1

t
lnV (x(t), e(t)) ≤ 1

τ
tr(Π

ˆ τ

0
eQsdsΓ)

< 0. (3.55)

It then follows that limt→∞ lnV (x(t), e(t)) = −∞, almost surely, and hence,

P[ lim
t→∞

V (x(t), e(t)) = 0] = 1, (3.56)

which implies that the zero solution x(t) ≡ 0, e(t) ≡ 0 is asymptotically stable almost

surely. �

Theorem 3.2 provides sufficient conditions under which our observer-based sampled-
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mode feedback control framework guarantees convergence of state x(t) and estimation

error e(t) to zero. It is important to note that given positive-definite matrices P1, P2 ∈

R
n×n, the inequalities (3.47)–(3.48) are linear in feedback and observer gainsKi ∈ R

m×n,

Li ∈ R
n×l, i ∈ M. Hence, efficient numerical methods can be used to find these gains

so that the conditions (3.47)–(3.48) are satisfied. Precisely, there are polynomial-time

algorithms for checking feasibility of linear matrix inequalities. On the other hand, note

that if the dynamical system has a nominal mode i, which is controllable and observable,

P1, P2 ∈ R
n×n can be heuristically assigned by solving algebraic Riccati equations AT

i P1 +

P1Ai − P1BiR
−1
1 BT

i P1 + T1 = 0 and AiP2 + P2A
T
i + P2C

T
i R

−1
2 CiP2 + T2 = 0, where

R1, R2, T1, T2 ∈ R
n×n are known positive definite matrices.

In the next section, we consider the sampled-mode feedback control problem for

switched linear stochastic systems with multiplicative noise.

3.5 Sampled-Mode Feedback Control of Switched Linear Stochas-

tic Systems with Multiplicative Noise

In this section we consider the continuous-time switched stochastic dynamical system with

M ∈ N modes given by

dx(t) = Ar(t)x(t)dt+Br(t)u(t)dt+Dr(t)x(t)dW (t), (3.57)

with the initial conditions x(0) = x0 and r(0) = r0, where x(t) ∈ R
n and u(t) ∈ R

m re-

spectively denote the state vector and the control input, {W (t) ∈ R}t≥0 is an Ft-adapted

Wiener process, Ai, Di ∈ R
n×n, Bi ∈ R

n×m, i ∈ M , {1, 2, . . . ,M}, are subsystem

matrices. The mode signal {r(t) ∈ M}t≥0 is assumed to be an Ft-adapted, irreducible

Markov chain characterized by the generator matrix Q ∈ R
M×M with the stationary prob-

ability distribution π ∈ R
M . The Wiener process {W (t) ∈ R}t≥0 and the mode signal

{r(t) ∈ M}t≥0 are assumed to be mutually independent stochastic processes.

Remark 3.3. Note that the switched stochastic system (3.1) discussed in Section 3.2 is a

special case of the dynamical system (3.57) where Di = 0, i ∈ M. Note that the term

Dr(t)x(t)dW (t) in (3.57) characterizes the effect of noise on system dynamics. This type
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of noise (called multiplicative noise) often characterizes stochastic disturbance on the sys-

tem parameters of a dynamical system [97]. In engineering applications, state matrices of

subsystems of the dynamical system (3.1) may be subject to disturbance. In such cases, the

state matrix of the ith subsystem can be characterized by Ai+Diη(t), where Ai, Di ∈ R
n×n

are constant matrices and η(t) denotes white noise. Now note that white noise η(t) is con-

sidered as the “informal time derivative” of Wiener process W (t) (see [85,98]). Moreover,

dynamical systems that involve white noise can be characterized as stochastic differential

equations that incorporate Wiener processes. In the case where the state matrices of sub-

systems take the form Ai + Diη(t), by setting η(t)dt = dW (t), we can characterize the

overall dynamics of the switched system by (3.57). In this study for simplicity of exposi-

tion, we only consider the case with one-dimensional noise (characterized by the Wiener

process {W (t) ∈ R}t≥0). It is important to note that our proposed framework can easily

be extended to the more general case with multi-dimensional noise.

In what follows, we explore the state-feedback stabilization problem for the case where

the mode signal is observed (sampled) periodically. To achieve stabilization, we employ

the state feedback control law (3.3), which incorporates a feedback gain that depends only

on the sampled mode signal {σ(t) ∈ M}t≥0. In Theorem 3.4 below, we extend the results

presented in Section 3.2, and obtain sufficient conditions for the almost sure asymptotic

stability of the switched stochastic control system (3.57),(3.3).

Theorem 3.3. Consider the continuous-time switched linear stochastic control system

(3.57), (3.3) with mode sampling period τ > 0. If there exist P > 0 and scalars γi,j ∈

R, i ∈ M, such that

0 ≥ (Ai +BiKj)
TP + P (Ai +BiKj) +DT

i PDi − γi,jP, i, j ∈ M, (3.58)

1

τ
tr(Π

ˆ τ

0
eQsdsΓ)−

∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
< 0, (3.59)

where Π ∈ R
M×M is the diagonal matrix with the diagonal elements π1, π2, . . . , πM , and

Γ ∈ R
M×M is the matrix with the elements given by γi,j , i, j ∈ M, then the zero solution

x(t) ≡ 0 of the closed-loop system (3.57), (3.3) is asymptotically stable almost surely.

Proof. First, we define the quadratic, positive-definite function V (x) , xTPx. The
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closed-loop system (3.57) under the control law (3.3) is described by multi-dimensional

Ito stochastic differential equations. Using Ito formula, we obtain

dV (x(t))

=
(

∇V (x(t))(Ar(t) +Br(t)Kσ(t))x(t) +
1

2
tr
(

Dr(t)x(t)x
T(t)DT

r(t)∇
(
∇V (x(t))

)))

dt

+∇V (x(t))Dr(t)x(t)dW (t)

= xT(t)
(

(Ar(t) +Br(t)Kσ(t))
TP + P (Ar(t) +Br(t)Kσ(t)) +DT

r(t)PDr(t)

)

x(t)dt

+ 2xT(t)PDr(t)x(t)dW (t). (3.60)

It is shown in [14,51] that for nonlinear and time-dependent stochastic systems that satisfy

local Lipschitz continuity and linear growth conditions in the state variable (see [98]), if

the initial state is nonzero (i.e., x0 6= 0), then it follows that x(t) 6= 0, for all t ≥ 0, almost

surely. The same result holds for the state x(t) of (3.57), (3.3), since the linear closed-

loop system (3.57), (3.3) satisfies local Lipschitz continuity and linear growth conditions.

Therefore, it is guaranteed by the positive-definiteness of V (·) that V (x(t)) > 0, t ≥ 0.

Now consider the function lnV (x(t)), which is well-defined for all t ≥ 0, since V (x(t)) > 0,

t ≥ 0. We use Ito formula once again to compute

d lnV (x(t))

=
1

V (x(t))
xT(t)

(

(Ar(t) +Br(t)Kσ(t))
TP + P (Ar(t) +Br(t)Kσ(t)) +DT

r(t)PDr(t)

)

x(t)dt

− 1

2V 2(x(t))
(2xT(t)PDr(t)x(t))

2dt+
1

V (x(t))
2xT(t)PDr(t)x(t)dW (t). (3.61)

Integrating (3.61) over the time interval [0, t] yields

lnV (x(t))

= lnV (x0) +

ˆ t

0

1

V (x(s))
xT(s)

(

(Ar(s) +Br(s)Kσ(s))
TP + P (Ar(s) +Br(s)Kσ(s))

+DT
r(s)PDr(s)

)

x(s)ds−
ˆ t

0

1

2V 2(x(s))
(2xT(s)PDr(s)x(s))

2ds+ L(t), (3.62)
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where L(t) ,
´ t

0
1

V (x(s))2x
T(s)PDr(s)x(s)dW (s). We note that

2xT(s)PDr(s)x(s) = xT(s)(DT
r(s)P + PDr(s))x(s)

≥ λmin(D
T
r(s)P + PDr(s))x

T(s)x(s)

≥
λmin(D

T
r(s)P + PDr(s))

λmax(P )
xT(s)Px(s). (3.63)

Furthermore, by (3.58), (3.73), (3.62), and (3.63),

lnV (x(t)) ≤ lnV (x0) +

ˆ t

0
γr(s),σ(s)ds−

ˆ t

0

λ2min(D
T
r(s)P + PDr(s))

2λ2max(P )
ds+ L(t). (3.64)

By the strong law of large numbers (Lemma 3.2),

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s)ds =

1

τ
tr(Π

ˆ τ

0
eQsdsΓ), (3.65)

almost surely. Moreover, by the strong law of large numbers for continuous-time irre-

ducible Markov chains [86,87] we have

lim
t→∞

1

t

ˆ t

0
−
λ2min(D

T
r(s)P + PDr(s))

2λ2max(P )
ds = −

∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
, (3.66)

almost surely. In addition, note that the Ito integral L(t) in inequality (3.62) is a local

martingale with quadratic variation given by

[L]t =

ˆ t

0
(

1

V (x(s))
2xT(s)PDr(s)x(s))

2ds

=

ˆ t

0

1

V 2(x(s))
(2xT(s)PDr(s)x(s))

2ds

≤
ˆ t

0

1

V 2(x(s))
(xT(s)(DT

r(s)P + PDr(s))x(s))
2ds

≤
ˆ t

0

λ2max(D
T
r(s)P + PDr(s))

λ2min(P )
ds

≤ maxi∈M λ2max(D
T
i P + PDi)

λ2min(P )
t. (3.67)

It follows from (3.67) that limt→∞
1
t
[L]t < ∞. Thus, we can employ the strong law of

42



large numbers for local martingales [14,49,51] to show

lim
t→∞

1

t
L(t) = 0, (3.68)

almost surely. Moreover, it follows from (3.59), (3.62), (3.65), (3.66), and (3.68) that

lim sup
t→∞

1

t
lnV (x(t)) ≤ 1

τ
tr(Π

ˆ τ

0
eQsdsΓ)−

∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )

< 0. (3.69)

Finally, it follows that limt→∞ lnV (x(t)) = −∞, almost surely, and hence,

P[ lim
t→∞

V (x(t)) = 0] = 1, (3.70)

which implies that the zero solution is asymptotically stable almost surely. �

Remark 3.4. Theorem 3.3 provides conditions that can be used to verify the almost sure

asymptotic stability of the closed-loop system (3.57) under the control law (3.3), when

the gain matrices Ki ∈ R
m×n, i ∈ M, are known. Note that conditions (3.58) and (3.59)

are obtained through a quadratic Lyapunov function approach. Specifically, we consider

the Lyapunov function candidate V (x(t)) , xT (t)Px(t), where P ∈ R
n×n is a positive-

definite matrix. In Theorem 3.4 below, we show that under certain conditions, almost

sure asymptotic stability of the closed-loop system (3.57) is guaranteed by the control law

(3.3) with the feedback gain given by Kσ(t) = −Bσ(t)P .

Theorem 3.4. Consider the continuous-time switched linear stochastic dynamical system

(3.57) with mode sampling period τ > 0. If there exist P > 0 and scalars ζi ∈ R, i ∈ M,

such that

0 ≥ AT
i P + PAi +DT

i PDi − 2PBiB
T
i P − ζiP, i ∈ M, (3.71)

1

τ
tr(Π

ˆ τ

0
eQsdsΓ)−

∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
< 0, (3.72)

where Π ∈ R
M×M is the diagonal matrix with the diagonal elements π1, π2, . . . , πM , and
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Γ ∈ R
M×M is the matrix with (i, j)th elements given by

γi,j =







ζj , i = j,

ζi +
2λmax(PBiB

T
i P )

λmin(P ) − λmin(P (BjB
T
i +BiB

T
j )P )

λmax(P ) , i 6= j,

(3.73)

then the feedback control law (3.3) with the feedback gain matrix given by

Kσ(t) = −BT
σ(t)P (3.74)

guarantees that the zero solution x(t) ≡ 0 of the closed-loop system (3.57) and (3.3) is

asymptotically stable almost surely.

Proof. Note that 3.71 and 3.73 imply 3.58 with Ki = −BT
i P , i ∈ M. Hence, the result

follows from Theorem 3.3. �

Note that when the mode sampling period is very small, mode samples are obtained

frequently; therefore, the sampled mode signal {σ(t) ∈ M}t≥0 is expected to resemble the

actual mode signal {r(t) ∈ M}t≥0 closely. Hence, when ith mode is active, the feedback

gain is likely to be Ki. Moreover, as the mode sampling period τ tends to zero, the

problem at hand becomes a stabilization problem with full mode information. In this case

the condition (3.72) takes a simpler form. Specifically, note that

1

τ
tr(Π

ˆ τ

0
eQsdsΓ) =

1

τ
tr(Π

ˆ τ

0

∞∑

n=0

snQn

n!
dsΓ)

=
1

τ
tr(Π

∞∑

n=0

τn+1Qn

(n+ 1)!
Γ)

=
∞∑

n=0

τn

(n+ 1)!
tr(ΠQnΓ). (3.75)

It follows that as the mode sampling period τ tends to zero, 1
τ
tr(Π

´ τ

0 e
QsdsΓ) approaches

to tr(ΠΓ) =
∑

i∈M πiζi. Consequently, the condition (3.72) reduces to

∑

i∈M

πi
(
ζi −

λ2min(D
T
i P + PDi)

2λ2max(P )

)
< 0. (3.76)

Note that (3.71) and (3.76) are the conditions we provide in Chapter 8 for almost sure
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stabilization with a control law that depends on the perfect knowledge of the mode signal.

3.6 Illustrative Numerical Examples

In this section, we present numerical examples in order to illustrate the efficacy of our

approach regarding the feedback control of a switched stochastic system using uniformly

sampled mode information.

Example 3.1. In this example, we present a practical application of our proposed sampled-

mode feedback control framework. In [4,5], a linear dynamical model of a helicopter flight

control system is provided. This dynamical model incorporates the time-varying parameter

airspeed, which is modeled as a stochastic process. Specifically, in [4, 5], researchers

consider a switched linear stochastic system model of the form (3.1) with M = 3 modes

which correspond to nominal, low, and high values of the airspeed. These modes are

characterized by the subsystem matrices

A1 =












−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0












, B1 =












0.4422 0.1761

3.5446 −7.5922

−5.52 4.49

0 0












,

A2 =












−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.0664 −0.707 0.1198

0 0 1 0












, B2 =












0.4422 0.1761

0.9775 −7.5922

−5.52 4.49

0 0












,

A3 =












−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.5047 −0.707 2.546

0 0 1 0












, B3 =












0.4422 0.1761

5.112 −7.5922

−5.52 4.49

0 0












.

Note that (3, 2)th and (3, 4)th entries of the state matrices Ai, i ∈ M, are different

for each mode. Furthermore, (2, 1)th entry of the input matrices Bi, i ∈ M, are also

mode-dependent. It is important to note that the states x1(·), x2(·), x3(·), x4(·) of the
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Figure 3.1: State trajectory of the uncontrolled system versus time

switched stochastic system (3.1) correspond respectively to longitudinal velocity, vertical

velocity, pitch rate, and pitch angle of a helicopter. Moreover, control inputs u1(·) and u2(·)

correspond respectively to collective and longitudinal cyclic commands of the helicopter.

The mode signal {r(t) ∈ M , {1, 2, 3}}t≥0 of the switched system is characterized by

a continuous-time Markov chain with the generator matrix

Q =









−0.0907 0.0671 0.0236

0.0671 −0.0671 0

0.0236 0 −0.0236









, (3.77)
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Figure 3.2: Mode signal versus time

with stationary probability distributions, πi =
1
3 , i ∈ M. Note that the mode signal is an

irreducible Markov chain.

Figure 3.1 shows state trajectory of the uncontrolled system (3.1) (with u(t) ≡ 0)

obtained with initial conditions x(0) = [1, 1, 1, 1]T and r(0) = 1. Furthermore, Figure 3.2

shows the mode signal {r(t) ∈ M}t≥0. Note that the uncontrolled switched stochastic

system clearly indicates unstable behavior, as the state trajectories diverge.

The hover condition of the helicopter is characterized by the zero solution x(t) ≡ 0

of the switched linear stochastic system (3.1). Note that stabilization of the zero solu-

tion of switched linear stochastic system (3.1) has been investigated in [4, 5] under the

assumption that the mode information is continuously observable. In the remainder of

this section, we show that feedback control of the helicopter described by the switched

stochastic system (3.1) can be achieved by only using sampled mode information.

Now, consider the case where the mode signal is sampled periodically and hence avail-

able for control purposes only at the time instants kτ, k ∈ N0, where τ = 1 is the mode

sampling period.
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The conditions (3.26) and (3.27) of Theorem 3.1 are satisfied by matrices

P =












1.8873 0.0557 0.0179 −0.8975

0.0557 0.1843 0.1205 −0.0461

0.0179 0.1205 0.2425 0.0949

−0.8975 −0.0461 0.0949 1.3219












, (3.78)

K1 =






−0.6368 0.4777 0.6430 0.5966

0.2139 1.1880 −0.5608 −1.3941




 , (3.79)

K2 =






−0.6414 1.0274 0.5375 0.1207

0.7746 1.1947 −1.1604 −2.0611




 , (3.80)

K3 =






−0.7219 −0.0531 0.8595 1.1602

−0.6138 1.3216 0.1941 −0.5091




 , (3.81)

and scalars γ1,1 = −0.1925, γ1,2 = 1.4185, γ1,3 = 1.4217, γ2,1 = 1.0957, γ2,2 = −0.2014,

γ2,3 = 1.1928, γ3,1 = 1.1588, γ3,2 = 1.3642, γ3,3 = −0.3316. It follows that the zero

solution x(t) ≡ 0 of the system given by (3.1) under the control law (3.3) with feedback

gains Ki, i ∈ M, given by (3.79)–(3.81), is asymptotically stable almost surely. It is

important to note that in order to obtain feedback gain matrices Ki, i ∈ M, and scalars

γi,j , i, j ∈ M, that satisfies conditions of Theorem 3.1, we first set the positive-definite

matrix P by solving algebraic Riccati equation (see [99]) for mode 1 (which corresponds

to the subsystem associated with the nominal value of the airspeed parameter for the

helicopter flight control system). Then we use numerical tools to find feasible solutions to

matrix inequalities (3.26) and (3.27), which are linear in matrices Ki, i ∈ M, and scalars

γi,j , i, j ∈ M, given the matrix P .

Figures 3.3 and 3.4 respectively show sample paths of x(t) and u(t) obtained with the

initial conditions x(0) = [1, 1, 1, 1]T and r(0) = 1. Furthermore, the actual mode signal

r(t) and its sampled version σ(t) are shown in Figure 3.5. Note that for obtaining the

state and control input trajectories, we used the sample path of the mode signal shown

in Figure 3.2. Figure 3.3 indicates that the proposed sampled-mode control framework is

effective for achieving convergence of the state trajectories to the origin (indicating hover

flight condition of helicopter). Note that control input u(·) is subject to jumps at mode
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Figure 3.3: State trajectory versus time

sampling instants when sampled mode signal σ(t) changes its value (see Figure 3.4). At

mode sampling instants, the feedback gain, which depends on the sampled mode signal,

is switched.

In this example the sampled mode signal is an accurate representation of the actual

mode signal (see Figure 3.5), since the mode switches occur relatively rarely compared to

the frequency of mode observations. In the following we consider the case where the mode

switches occur more frequently. We show that the sampled-mode feedback stabilization

can still be achieved for the sampling period τ = 1. Specifically, we consider the case

where the mode signal {r(t) ∈ M}t≥0 of the switched system is characterized by the
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generator matrix

Q =









−1.814 1.342 0.472

1.342 −1.342 0

0.472 0 −0.472









, (3.82)

with stationary probability distributions, πi =
1
3 , i ∈ M. We assume that the mode signal

is sampled periodically with period τ = 1.

Note that the inequalities (3.26) and (3.27) are satisfied by matrices

P =












1.8873 0.0557 0.0179 −0.8975

0.0557 0.1843 0.1205 −0.0461

0.0179 0.1205 0.2425 0.0949

−0.8975 −0.0461 0.0949 1.3219












, (3.83)

K1 =






−0.6541 0.5125 0.5533 0.5181

0.3139 1.0222 −0.6048 −1.5197




 , (3.84)

K2 =






−0.6736 0.7789 0.4721 0.2981

0.6171 0.9992 −0.9348 −1.8636




 , (3.85)

K3 =






−0.7589 0.0683 0.7029 1.0019

−0.3119 1.0889 −0.0242 −0.8238




 , (3.86)

and scalars γ1,1 = −0.0966, γ1,2 = 0.293, γ1,3 = 0.5988, γ2,1 = 0.1076, γ2,2 = −0.255,

γ2,3 = 0.5915, γ3,1 = 0.4215, γ3,2 = 0.6753, γ3,3 = −0.4522. It follows from Theorem 3.1

that the zero solution x(t) ≡ 0 of the system given by (3.1) under the control law (3.3)

with feedback gains Ki, i ∈ M, given by (3.84)–(3.86), is asymptotically stable almost

surely. Note that the feedback gains (3.84)–(3.86), obtained for the case with genera-

tor matrix (3.82) are different from the feedback gains (given in (3.79)–(3.81)) that we

obtained for the generator matrix given by (3.77).

Figures 3.6 and 3.7 respectively show sample paths of state x(t) and control input u(t)

obtained with the initial conditions x(0) = [1, 1, 1, 1]T and r(0) = 1. Moreover, actual

mode signal r(t) and its sampled version σ(t) are shown in Figure 3.8.
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Figure 3.6: State trajectory versus time
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Figure 3.8: Actual mode signal r(t) and the sampled mode signal σ(t) versus time
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Example 3.2. In this example, we consider the switched linear stochastic dynamical sys-

tem (3.57) with M = 3 modes characterized by the subsystem matrices

A1 =






0.5 1

−4 0.5




, B1 =






2

−2




 ,

A2 =






1 −6

1 1.5




, B2 =






−2

2




 ,

A3 =






0.5 0

0.5 0.5




, B3 =






0

0




 ,

and D1 = D2 = D3 = I2. The mode signal {r(t) ∈ M , {1, 2, 3}}t≥0 of the switched

system is assumed to be a Markov chain with the generator matrix

Q =









−2 1 1

1 −2 1

1 1 −2









, (3.87)

with stationary probability distributions, πi =
1
3 , i ∈ M. Furthermore, the mode signal

{r(t) ∈ M}t≥0 is assumed to be sampled periodically and hence available only at the time

instants kτ, k ∈ N0, where τ = 0.1 is the mode sampling period.

The conditions (3.71) and (3.72) of Theorem 3.4 are satisfied by the positive-definite

matrix P = I2 and the scalars ζ1 = −1, ζ2 = −1.4, ζ3 = 2.5. It follows that the zero

solution x(t) ≡ 0 of the system given by (3.57) under the control law (3.3) with feedback

gains Ki = −BT
i P , i ∈ M, is asymptotically stable almost surely.

Figures 3.9 and 3.10 respectively show sample paths of x(t) and u(t) obtained with the

initial conditions x(0) = [1, 1]T and r(0) = 1. The piecewise-continuous control law (3.3)

depends on the sampled mode signal information σ(t). As a consequence, control profile

is subject to jumps when sampled mode signal σ(t) changes its value at mode sampling

instants.

The quality of the representation of the actual mode signal by the sampled mode sig-

nal affects the stabilization performance. In this numerical example, mode samples are
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Figure 3.9: State trajectory versus time (mode sampling period τ = 0.1)
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sampling period τ = 0.1)
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Figure 3.12: State trajectory versus time (mode sampling period τ = 0.1)
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Figure 3.13: Control input versus time (mode sampling period τ = 0.1)

obtained frequently compared to the occurrences of mode switches. As a consequence,

the sampled mode signal σ(t) is a good representation of the actual mode signal r(t) (see

Figure 3.11). Hence, the states converge to the origin (Figure 3.9).

Note that Theorem 3.4 guarantees that state trajectories x(t) converges to the origin

with probability one. Figures 3.12–3.14 show different sample paths of state, control

input, actual mode signal, and sampled mode signal obtained with the same initial con-

ditions (x(0) = [1, 1]T and r(0) = 1) used for obtaining the sample paths shown in Fig-

ures 3.9–3.11. Figure 3.11 shows that for the sampling period τ = 0.1, the sampled mode

signal σ(t) can be considered as a good representation of the actual mode signal r(t), even

though there are intervals where the actual mode signal differs from its sampled version.

On the other hand, note that if we consider larger mode sampling periods, the sampled

mode signal σ(t) would no longer be an accurate representation of the actual mode of the
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Figure 3.14: Actual mode signal r(t) and the sampled mode signal σ(t) versus time (mode

sampling period τ = 0.1)

switched system (3.57). In such cases, the stabilization performance of the control law

(3.57) would deteriorate.

Now, we use the sample path of the actual mode signal r(t) presented in Figure 3.14,

and by considering a large mode sampling period (τ = 0.6), we obtain the sampled mode

signal σ(t) (see Figure 3.17). Furthermore, in order to illustrate the deterioration of the

stabilization performance for the large mode sampling period τ = 0.6, we obtain sample

paths of the state x(t) and the control input u(t) (see Figures 3.15 and 3.16). Note that

when the mode signal is sampled very rarely, sampled mode signal may not provide a good

information of the actual mode of the switched system. Therefore, control performance

may be subject to deterioration.

3.7 Conclusion

A piecewise-continuous feedback control law that depends only on the uniformly sampled

mode information has been proposed for continuous-time switched linear stochastic sys-

tems. In order to analyze the almost sure asymptotic stability of the closed loop system

under the proposed control law, we first examined the relation between the sampled and

the actual mode signal. Furthermore, we developed a kind of strong law of large num-

bers for the bivariate process comprising the sampled and the actual mode signal. We

obtained sufficient conditions of almost sure asymptotic stabilization by using a quadratic
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Figure 3.15: State trajectory versus time (mode sampling period τ = 0.6)
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Figure 3.16: Control input versus time (mode sampling period τ = 0.6)
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Figure 3.17: Actual mode signal r(t) and the sampled mode signal σ(t) versus time (mode

sampling period τ = 0.6)
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Lyapunov-like function and taking advantage of the developed strong law of large num-

bers.

Note that in this chapter, we only proposed a control law for stabilizing continuous-

time switched linear stochastic dynamical systems under sampled mode information. In

Chapters 4 and 5 we extend the results of this chapter to the case where the sampled mode

information is also subject to time delay.

Furthermore, note that in this chapter, we considered the case where the mode is

sampled periodically. Hence, mode sampling instants considered in this chapter are de-

terministic. In Chapter 8, we will address the case where the mode signal is sampled at

time instants that are separated by exponentially distributed independent random time

intervals.
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Chapter 4

Stabilization of Switched Linear

Stochastic Systems Under Delayed

Discrete Mode Observations

4.1 Introduction

Most of the feedback control laws documented in the literature of stochastic hybrid sys-

tems require perfect knowledge of the mode signal. As a consequence, when the mode of

the switched system is not available for control purposes or only sampled mode informa-

tion is available, these control laws cannot be used for stabilization. It is therefore impor-

tant to develop feedback control frameworks for the limited mode information case. In

the previous chapter, we explored a feedback control problem for switched stochastic sys-

tems for the case where the mode information is observed (sampled) only at discrete time

instants. Specifically, we proposed a feedback control law for stabilizing continuous-time

switched linear stochastic dynamical systems under periodically sampled mode informa-

tion. In this chapter, we extend our results presented in Chapter 3 to the case where the

sampled mode information is subject to time delay.

A feedback control problem for stochastic hybrid systems under the effect of delays

is explored in several studies. Specifically, stabilization with delayed state feedback has

been investigated in [59,62,64,100–103] and stabilization of discrete-time Markov jump

systems over communication networks with delays has been discussed in [104,105]. Fur-
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thermore, an optimal controller is obtained in [106] for stabilizing discrete-time linear

Markov jump systems under “one time-step” delayed mode observations.

In this chapter, we explore the feedback control problem for continuous-time switched

stochastic systems under sampled and delayed mode information. These systems are com-

posed of linear stochastic subsystems, which include Brownian motion in their dynamics.

A continuous-time, finite-state Markov chain is employed for modeling the mode signal of

the switched system. We focus on the case where the mode signal of the switched system is

observed (sampled) only at equally spaced discrete time instants and the obtained mode

samples are available to the controller only after a time delay. The mode information

time delay can capture communication delays between the mode sampling mechanism

and the controller. On the other hand, computational delays in mode detection might

as well be modeled by the delayed mode observations. For example, mode information

delays may correspond to failure-detection delays for a fault tolerant control system with

normal/faulty modes and a “fault detection and isolation scheme” explored in [77, 78].

We propose a piecewise-continuous control law that depends only on the delayed version

of the sampled mode signal rather than the actual mode signal. We employ a quadratic

Lyapunov-like function to obtain sufficient conditions under which our proposed control

law guarantees almost sure asymptotic stability of the switched stochastic system.

The contents of this chapter are as follows. We explain the feedback control problem

for switched stochastic systems under sampled and delayed mode information in Sec-

tion 4.2. We then obtain sufficient conditions under which our proposed control law

guarantees almost sure asymptotic stability in Section 4.3. In Section 4.4, we give an

illustrative numerical example. Finally, we provide the conclusion in Section 4.5.

4.2 Feedback Control Problem Under Delayed Sampled Mode

Information

Consider the continuous-time switched stochastic system given by (3.57). In the following,

we investigate the feedback control problem for the case where the mode signal of the

switched system is sampled and the sampled mode information is subject to time delay.

Specifically, the mode signal is assumed to be observed (sampled) periodically with period

62



τ > 0. Moreover, the obtained mode samples are assumed to be available to the controller

after a constant time delay TD > 0.

We denote the available mode samples by the sequence {r(kτ) ∈ M}k∈N0 . By employ-

ing the “sample and hold” technique we obtain the sampled version of the mode signal

{σ(t) ∈ M}t≥0 defined by

σ(t) , r(kτ), t ∈ [kτ, (k + 1)τ), k ∈ N0. (4.1)

In Chapter 3, we had considered a control law of the form u(t) = Kσ(t)x(t), which

depends only on the sampled mode information. In this chapter, each mode sample data

is assumed to be subject to delay TD > 0, and hence only a delayed version of the sampled

mode signal {σ(t) ∈ M}t≥0 is available for control purposes. As a result, the control law

presented in Chapter 3 cannot be directly employed. We assume that the initial mode is

known to the controller and propose a new control law of the form

u(t) =







Kr0x(t), 0 ≤ t < TD,

Kσ(t−TD)x(t), t ≥ TD,

(4.2)

which depends only on the delayed version of the sampled mode signal. Henceforth, our

main objective is to obtain sufficient conditions of almost sure asymptotic stability of the

closed-loop system (3.57) under our proposed control law (4.2).

In the remainder of this section, we first discuss the relation between the actual mode

signal {r(t) ∈ M}t≥0, the discrete mode sample sequence {r(kτ) ∈ M}k∈N0 , and the

time delayed version of the sampled mode signal {σ(t − TD) ∈ M}t≥TD
. We then extend

our results presented in Chapter 3 for the time-delay case and obtain a strong law of

large numbers for the continuous-time bivariate stochastic process {(r(t), σ(t − TD)) ∈

M×M}t≥TD
.

Note that the sequence of mode samples {r(kτ) ∈ M}k∈N0 , is a discrete-time Markov

chain with state transition probabilities given by

P[r((k + 1)τ) = j|r(kτ) = i] = pi,j(τ), (4.3)

63



Figure 4.1: Actual mode signal r(t), the sampled mode signal σ(t), and the delayed version

of the sampled mode signal σ(t− TD) versus time

where pi,j(τ) represents the (i, j)th entry of the transition matrix eQτ . Note that {r(kτ) ∈

M}k∈N0 is an irreducible Markov chain, since the mode signal {r(t) ∈ M}t≥0 is irre-

ducible. Moreover, the stationary probability distribution for {r(kτ) ∈ M}k∈N0 is given by

π ∈ R
M , which is also the stationary probability distribution for {r(t) ∈ M}t≥0 [87].

The delayed sampled mode signal {σ(t − TD) ∈ M}t≥TD
is a piecewise-constant

stochastic process that depends on the actual mode signal {r(t) ∈ M}t≥0. Note that

the frequency of the occurrences of mode transitions, mode sampling period τ > 0, and

sampled mode information delay TD > 0 affect how accurately the actual mode signal

{r(t) ∈ M}t≥0 is represented by the delayed sampled version {σ(t− TD) ∈ M}t≥TD
. Fig-

ure 4.1 shows sample paths of r(t), σ(t), and σ(t − TD) of a switched system (3.57) with

M = 2 modes.

Our goal now is to analyze the long run average of a piecewise-constant function

that depends on the actual mode signal r(t) as well as its sampled and delayed version

σ(t − TD). This analysis is important for obtaining sufficient stability conditions for the

closed-loop system (3.57), (4.2) through a Lyapunov-like approach. The following lemma

presents a preliminary result that is necessary for our analysis.
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Lemma 4.1. Let {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 be a finite-state, irreducible Markov

chain characterized by the generator matrix Q ∈ R
M×M . Then for any φl ∈ R, l ∈ M,

t1, t2 ∈ [0,∞) and G ∈ F such that t1 ≤ t2 and P[G] > 0, it follows that

E[

ˆ t2

t1

φr(s)ds|G] =
1

P[G]

ˆ t2

t1

∑

l∈M

φlP[G ∩ Fl(s)]ds, (4.4)

where Fl(t) , {ω ∈ Ω : rt(ω) = l}, t ≥ 0.

Proof. By using the definition of conditional expectation given in (2.1), we obtain

E[

ˆ t2

t1

φr(s)ds|G] =
1

P[G]

ˆ

G

ˆ t2

t1

φr(s)dsP(dω)

=
1

P[G]

ˆ

G

ˆ t2

t1

∑

l∈M

φl1[Fl(s)](ω)dsP(dω). (4.5)

Moreover, we employ Fubini’s Theorem [93] to change the order of integrals in (4.5). It

follows that

E[

ˆ t2

t1

φr(s)ds|G] =
1

P[G]

ˆ t2

t1

ˆ

G

∑

l∈M

φl1[Fl(s)](ω)P(dω)ds

=
1

P[G]

ˆ t2

t1

∑

l∈M

φl

ˆ

G

1[Fl(s)](ω)P(dω)ds

=
1

P[G]

ˆ t2

t1

∑

l∈M

φlP[G ∩ Fl(s)]ds, (4.6)

which completes the proof. �

Now, by using the result presented in Lemma 4.1, we obtain a strong law of large

numbers for the bivariate stochastic process {(r(t), σ(t− TD))}t≥TD
in Lemma 4.2.

Lemma 4.2. Let {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 be an irreducible Markov chain character-

ized by the generator matrix Q ∈ R
M×M with stationary probability distribution π ∈ R

M .

Moreover, let {σ(t) ∈ M}t≥0 defined in (4.1) be the sampled version of {r(t) ∈ M}t≥0 for

a given sampling period τ > 0, and let TD > 0 be the time-delay constant. Then, for any

γi,j ∈ R, i, j ∈ M,

lim
t→∞

1

t

ˆ t

TD

γr(s),σ(s−TD)ds =
1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ), (4.7)

65



almost surely, where Π ∈ R
M×M denotes the diagonal matrix with the diagonal en-

tries π1, π2, . . . , πM , and Γ ∈ R
M×M denotes the matrix with the (i, j)th entries given

by γi,j , i, j ∈ M.

The delay-free version of the result presented in Lemma 4.2 was proved in Chapter 3.

For proving Lemma 4.2, we employ a method similar to the one used in Chapter 3; how-

ever, some additional key steps are required due to the effect of time-delay.

Proof. First, let {N(t) ∈ N0}t≥TD
be the counting process defined by

N(t) = max{k ∈ N0 : kτ + TD ≤ t}, t ≥ TD. (4.8)

Note that N(t) represents the number of mode samples obtained until time t. The integral

on the left hand side of (4.7) can be computed as

ˆ t

TD

γr(s),σ(s−TD)ds =

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

+

ˆ t

N(t)τ+TD

γr(s),σ(s−TD)ds, (4.9)

for t ≥ TD. We observe that

|
ˆ t

N(t)τ+TD

γr(s),σ(s−TD)ds| ≤ max
i,j∈M

|γi,j |τ, (4.10)

for all t ≥ TD, and hence

lim
t→∞

1

t

ˆ t

N(t)τ+TD

γr(s),σ(s−TD)ds = 0. (4.11)

Consequently, by using (4.9) and (4.11), we obtain

lim
t→∞

1

t

ˆ t

TD

γr(s),σ(s−TD)ds = lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds. (4.12)

Next we consider two cases: the case where TD ≤ τ and the case where TD > τ . For both

cases we evaluate the limit limt→∞
1
t

∑N(t)
k=1

´ kτ+TD

(k−1)τ+TD
γr(s),σ(s−TD)ds and show that the

limit is given by the right hand side of (4.7) in both cases.
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Case 1) We now consider the case where TD ≤ τ . Note that in this case the information

delay is less than the mode sampling interval, and hence the kth sampled mode data r(kτ)

becomes available for control purposes before time (k + 1)τ .

Now, let {Nh,i,j(t) ∈ N0}t≥TD
be the counting process defined by

Nh,i,j(t) =

N(t)
∑

k=1

1[r((k−1)τ)=h,r(kτ)=i,r((k+1)τ)=j], t ≥ TD. (4.13)

Note that for all h, i, j ∈ M, the counting process {Nh,i,j(t) ∈ N0}t≥TD
is a stochastic

process that depends on the mode signal {r(t) ∈ M}t≥0. Note also that

∑

h,i,j∈M

Nh,i,j(t) = N(t), t ≥ TD. (4.14)

Furthermore, for all h, i, j ∈ M, let the sequence of indices {kh,i,jn ∈ N}n∈N be defined by

kh,i,jn = min{k ∈ N : Nh,i,j(kτ + TD) = n}, n ∈ N. (4.15)

Now, note that r((kh,i,jn −1)τ) = σ(kh,i,jn τ−TD) = h, r(kh,i,jn τ) = i, and r((kh,i,jn +1)τ) = j,

n ∈ N, h, i, j ∈ M. Furthermore, σ(s− TD) = r((kh,i,jn − 1)τ) = h, for s ∈ [(kh,i,jn − 1)τ +

TD, k
h,i,j
n τ + TD). As a consequence, it follows from (4.13) and (4.15) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

1

t

∑

h,i,j∈M

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

1

t

∑

h,i,j∈M

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds. (4.16)
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We multiply the integrals in the right hand side of (4.16) by
N(t)
N(t)

Nh,i,j(t)
Nh,i,j(t)

to obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

N(t)

t

∑

h,i,j∈M

(Nh,i,j(t)

N(t)

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds
)

= lim
t→∞

N(t)

t

∑

h,i,j∈M

(

lim
t→∞

Nh,i,j(t)

N(t)
lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds
)

.

(4.17)

We start by computing limt→∞
N(t)
t

. By the definition of N(t) given in (4.8), we have

N(t)τ + TD ≤ t ≤ (N(t) + 1)τ + TD, t ≥ TD. (4.18)

Therefore,

t− τ − TD
τ

≤ N(t) ≤ t− TD
τ

, t ≥ TD. (4.19)

Since limt→∞
1
t
t−τ−TD

τ
= limt→∞

1
t
t−TD
τ

= 1
τ
, it follows from (4.19) that

lim
t→∞

N(t)

t
=

1

τ
. (4.20)

Next, we evaluate limt→∞
Nh,i,j(t)
N(t) in (4.17). The counting process Nh,i,j(t) denotes

the number of time instants k ∈ {1, 2, . . . , N(t)} such that r((k − 1)τ) = h, r(kτ) = i, and

r((k + 1)τ) = j. Furthermore, note that N(t) =
∑

h,i,j∈MNh,i,j(t). By using the strong

law of large numbers [86, 87] for the discrete-time Markov chain {r(kτ) ∈ M}k∈N0 , we

obtain

lim
t→∞

Nh,i,j(t)

N(t)
= πhph,i(τ)pi,j(τ), (4.21)

where πh > 0 is the stationary probability distribution for state h ∈ M and ph,i(τ) and

pi,j(τ) are transition probabilities characterized in (4.3).

As the third step, we will employ the strong law of large numbers for independent and
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identically distributed random variables in order to compute the limit

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds

Note that

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds =

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γr(s),hds+

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γr(s),hds. (4.22)

Now let

yh,i,jn ,

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γr(s),hds, n ∈ N, h, i, j ∈ M, (4.23)

zh,i,jn ,

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γr(s),hds, n ∈ N, h, i, j ∈ M. (4.24)

Note that by definition (4.15), the mode signal takes the values h and i at time instants

(kh,i,jn − 1)τ and kh,i,jn τ , respectively, for all n ∈ N. The value of the mode signal during

the interval
(
(kh,i,jn − 1)τ, kh,i,jn τ

)
may differ for each n ∈ N. However, the probability

of the mode taking the value l ∈ M at time (kh,i,jn − 1)τ + s, where s ∈ (0, τ), does

not depend on n ∈ N. Hence, for given h, i, j ∈ M, the random variables yh,i,jn , n ∈ N,

are independent and identically distributed. Similarly, for given h, i, j ∈ M, the random

variables zh,i,jn , n ∈ N, are also independent and identically distributed. Now, we calculate

E[yh,i,jn ] and E[zh,i,jn ]. It follows from (4.23) that

E[yh,i,jn ] =
∞∑

k=1

E[

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γr(s),hds|kh,i,jn = k]P[kh,i,jn = k]

=

∞∑

k=1

E[

ˆ kτ

(k−1)τ+TD

γr(s),hds|G]P[kh,i,jn = k], (4.25)

where

G , {ω ∈ Ω : r(k−1)τ (ω) = h, rkτ (ω) = i, r(k+1)τ (ω) = j}. (4.26)

We set t1 , (k − 1)τ + TD, t2 , kτ , φr(s) , γr(s),h, s ∈ [t1, t2), and employ the result
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presented in Lemma 4.1 to obtain

E[yh,i,jn ] =
∞∑

k=1

1

P[G]

ˆ kτ

(k−1)τ+TD

∑

l∈M

γl,hP[G ∩ Fl(s)]dsP[k
i,j
n = k], (4.27)

where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k − 1)τ + TD, kτ). Note that G = Fh((k − 1)τ) ∩

Fi(kτ) ∩ Fj((k + 1)τ) and hence

P[G ∩ Fl(s)]

P[G]
=

P[Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ) ∩ Fl(s)]

Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ)

=
P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fl(s)]P[Fl(s)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

=
P[Fi(kτ)|Fl(s)]P[Fl(s)|Fh((k − 1)τ)]

P[Fi(kτ)|Fh((k − 1)τ)]

=
pl,i(kτ − s)ph,l(s− (k − 1)τ)

ph,i(τ)
, s ∈ [(k − 1)τ + TD, kτ), (4.28)

where ph,i(τ) is given by (4.3). We substitute (4.28) into (4.27) and set s̃ , s − (k − 1)τ

to arrive at

E[yh,i,jn ] =
∞∑

k=1

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃P[kh,i,jn = k]

=

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃

∞∑

k=1

P[kh,i,jn = k]

=

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃, n ∈ N. (4.29)

On the other hand it follows from (4.24) that

E[zh,i,jn ] =
∞∑

k=1

E[

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γr(s),hds|kh,i,jn = k]P[kh,i,jn = k]

=
∞∑

k=1

E[

ˆ kτ+TD

kτ

γr(s),hds|G]P[kh,i,jn = k], (4.30)

where G is given by (4.26). We now set t1 , kτ , t2 , kτ + TD, φr(s) , γr(s),h, s ∈ [t1, t2),

and employ the result presented in Lemma 4.1 to obtain

E[zh,i,jn ] =
∞∑

k=1

1

P[G]

ˆ kτ+TD

kτ

∑

l∈M

γl,hP[G ∩ Fl(s)]dsP[k
h,i,j
n = k]. (4.31)
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where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [kτ, kτ + TD). Now note that for s ∈ [kτ, kτ + TD),

P[G ∩ Fl(s)]

P[G]
=

P[Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ) ∩ Fl(s)]

Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ)

=
P[Fj((k + 1)τ)|Fl(s)]P[Fl(s)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

=
P[Fj((k + 1)τ)|Fl(s)]P[Fl(s)|Fi(kτ)]

P[Fj((k + 1)τ)|Fi(kτ)]

=
pl,j((k + 1)τ − s)pi,l(s− kτ)

pi,j(τ)
. (4.32)

We now use (4.32) and set s̃ , s− (k − 1)τ in (4.31) to arrive at

E[zh,i,jn ] =
∞∑

k=1

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃P[kh,i,jn = k]

=

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃

∞∑

k=1

P[kh,i,jn = k]

=

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃, n ∈ N. (4.33)

Note that limt→∞Nh,i,j(t) = ∞, almost surely. Therefore, it follows from the strong law

of large numbers and (4.29) and (4.33) that

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

yh,i,jn =

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃, (4.34)

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

zh,i,jn =

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃. (4.35)

Now it follows from (4.22)–(4.24), (4.34), and (4.35) that

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),hds =

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃

+

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃.

(4.36)

As a final step, we substitute the limits evaluated in (4.20), (4.21), and (4.36) into (4.17),
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and obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

=
1

τ

∑

h,i,j∈M

πhph,i(τ)pi,j(τ)

ˆ τ

TD

∑

l∈M

γl,h
pl,i(τ − s)ph,l(s)

ph,i(τ)
ds

+
1

τ

∑

h,i,j∈M

πhph,i(τ)pi,j(τ)

ˆ τ+TD

τ

∑

l∈M

γl,h
pl,j(2τ − s)pi,l(s− τ)

pi,j(τ)
ds

=
1

τ

∑

h,i,j∈M

πhpi,j(τ)

ˆ τ

TD

∑

l∈M

γl,hpl,i(τ − s)ph,l(s)ds

+
1

τ

∑

h,i,j∈M

πhph,i(τ)

ˆ τ+TD

τ

∑

l∈M

γl,hpl,j(2τ − s)pi,l(s− τ)ds

=
1

τ

∑

h∈M

πh

ˆ τ

TD

∑

l∈M

γl,hph,l(s)
∑

i∈M

pl,i(τ − s)
∑

j∈M

pi,j(τ)ds

+
1

τ

∑

h∈M

πh

ˆ τ+TD

τ

∑

l∈M

γl,h
∑

i∈M

ph,i(τ)pi,l(s− τ)
∑

j∈M

pl,j(2τ − s)ds. (4.37)

Note that
∑

j∈M pi,j(t) = 1, t ≥ 0, for all i ∈ M. We use this fact to obtain
∑

j∈M pi,j(τ) =

1,
∑

i∈M pl,i(τ − s) = 1, and
∑

j∈M pl,j(2τ − s) = 1 in (4.37). Furthermore, note that

∑

i∈M ph,i(τ)pi,l(s− τ) = ph,l(s), for all h, l ∈ M. Therefore, it follows from (4.37) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds =
1

τ

∑

h∈M

πh

ˆ τ

TD

∑

l∈M

γl,hph,l(s)ds

+
1

τ

∑

h∈M

πh

ˆ τ+TD

τ

∑

l∈M

γl,hph,l(s)ds

=
1

τ

∑

h∈M

πh

ˆ τ+TD

TD

∑

l∈M

γl,hph,l(s)ds

=
1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ). (4.38)

Case 2) We now consider the case where TD > τ and compute limt→∞
1
t

´ t

TD
γr(s),σ(s−TD)ds.

Note that in this case, the information delay is larger than the mode sampling interval, and

hence the kth sampled mode data r(kτ) becomes available for control purposes after time

(k + 1)τ . Let

k , max{k ∈ N : kτ ≤ TD}. (4.39)

72



Note that the kth sampled mode data r(kτ) becomes available for control purposes before

time (k + k + 1)τ . Now, for given g, h, i, j ∈ M, let {Ng,h,i,j(t) ∈ N0}t≥TD
be the counting

process defined by

Ng,h,i,j(t) =

N(t)
∑

k=1

1[r((k−1)τ)=g,r((k−1+k)τ)=h,r((k+k)τ)=i,r((k+k+1)τ)=j], t ≥ TD. (4.40)

Note that for all g, h, i, j ∈ M, the counting process {Ng,h,i,j(t) ∈ N0}t≥TD
is a stochastic

process that depends on the mode signal {r(t) ∈ M}t≥0. Furthermore, note that

∑

g,h,i,j∈M

Ng,h,i,j(t) = N(t), t ≥ TD. (4.41)

Now, for all g, h, i, j ∈ M, we define the sequence of indices {kg,h,i,jn ∈ N}n∈N by

kg,h,i,jn = min{k ∈ N : Ng,h,i,j(kτ + TD) = n}, n ∈ N. (4.42)

Now, note that r((kg,h,i,jn − 1)τ) = σ((kg,h,i,jn − 1+ k)τ −TD) = g, r((kg,h,i,jn − 1+ k)τ) = h,

r((kg,h,i,jn + k)τ) = i, and r((kg,h,i,jn + k + 1)τ) = j, n ∈ N, g, h, i, j ∈ M. Furthermore,

note that σ(s− TD) = r((kg,h,i,jn − 1)τ) = g, for s ∈ [(kg,h,i,jn − 1)τ + TD, k
g,h,i,j
n τ + TD). As

a consequence, it follows from (4.12)–(4.42) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

1

t

∑

g,h,i,j∈M

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

1

t

∑

g,h,i,j∈M

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds. (4.43)
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We now multiply the integral in the right hand side of (4.43) by
N(t)
N(t)

Ng,h,i,j(t)
Ng,h,i,j(t)

to obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

N(t)

t

∑

g,h,i,j∈M

(Ng,h,i,j(t)

N(t)

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds
)

= lim
t→∞

N(t)

t

∑

g,h,i,j∈M

(

lim
t→∞

Ng,h,i,j(t)

N(t)
lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds
)

.

(4.44)

We now evaluate limt→∞
Ng,h,i,j(t)

N(t) in (4.44). The counting process Ng,h,i,j(t) denotes the

number of time instants k ∈ {1, 2, . . . , N(t)} such that r((k−1)τ) = g, r((k−1+k)τ) = h,

r((k + k)τ) = i, and r((k + k + 1)τ) = j. Note that N(t) =
∑

g,h,i,j∈MNg,h,i,j(t). We use

the strong law of large numbers [86,87] for discrete-time Markov chain {r(kτ) ∈ M}k∈N0

and obtain

lim
t→∞

Ng,h,i,j(t)

N(t)
= πgpg,h(kτ)ph,i(τ)pi,j(τ), (4.45)

where πg > 0 is the stationary probability distribution for state g ∈ M. Moreover, ph,i(kτ),

ph,i(τ) and pi,j(τ) are transition probabilities characterized in (4.3).

Next, our goal is to compute the limit

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds. (4.46)

Note that by the definition (4.39)

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds =

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γr(s),gds+

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γr(s),gds. (4.47)
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Now let

yg,h,i,jn ,

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γr(s),gds, n ∈ N, g, h, i, j ∈ M, (4.48)

zg,h,i,jn ,

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γr(s),gds, n ∈ N, g, h, i, j ∈ M. (4.49)

Note that by definition (4.42), the mode signal takes the values g and i at time instants

(kg,h,i,jn − 1 + k)τ and (kg,h,i,jn + k̄)τ , respectively, for all n ∈ N. The value of the mode

signal during the interval
(
(kg,h,i,jn − 1 + k)τ, (kg,h,i,jn + k̄)τ

)
may differ for each n ∈ N.

However, the probability of the mode taking the value l ∈ M at time (kg,h,i,jn −1+k)τ + s,

where s ∈ (0, τ), does not depend on n ∈ N. Note that the integration in (4.48) is over the

interval [(kg,h,i,jn − 1)τ + TD, (k
g,h,i,j
n + k̄)τ), where (kg,h,i,jn − 1)τ + TD > (kg,h,i,jn − 1+ k)τ .

Hence, for given g, h, i, j ∈ M, the random variables yg,h,i,jn , n ∈ N, are independent and

distributed identically. A similar argument can be used to show that for given g, h, i, j ∈

M, the random variables zg,h,i,jn , n ∈ N, are also independent and distributed identically.

Now, it follows from (4.48) that

E[yg,h,i,jn ] =
∞∑

k=1

E[

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γr(s),gds|kg,h,i,jn = k]P[kg,h,i,jn = k]

=
∞∑

k=1

E[

ˆ (k+k)τ

(k−1)τ+TD

γr(s),gds|G]P[kg,h,i,jn = k], (4.50)

where

G , {ω ∈ Ω : r(k−1)τ (ω) = g, r(k−1+k)τ (ω) = h, r(k+k)τ (ω) = i, r(k+k+1)τ (ω) = j}. (4.51)

We set t1 , (k − 1)τ + TD, t2 , (k + k)τ , φr(s) , γr(s),g, s ∈ [t1, t2), and employ the result

presented in Lemma 4.1 to obtain

E[yg,h,i,jn ] =
∞∑

k=1

1

P[G]

ˆ (k+k)τ

(k−1)τ+TD

∑

l∈M

γl,gP[G ∩ Fl(s)]dsP[k
g,h,i,j
n = k], (4.52)

where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k − 1)τ + TD, (k + k)τ). Note that

G = Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ), (4.53)
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and hence

P[G ∩ Fl(s)]

P[G]

=
P[Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ) ∩ Fl(s)]

Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ)

=
P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fl(s)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

· P[Fl(s)|Fh((k − 1 + k)τ)]P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

=
P[Fi((k + k)τ)|Fl(s)]P[Fl(s)|Fh((k − 1 + k)τ)]

P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

=
pl,i((k + k)τ − s)ph,l(s− (k − 1 + k)τ)

ph,i(τ)
, s ∈ [(k − 1)τ + TD, (k + k)τ), (4.54)

where ph,i(τ) is given by (4.3). We substitute (4.54) into (4.52) and set s̃ , s − (k − 1)τ

to arrive at

E[yg,h,i,jn ] =

∞∑

k=1

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃P[kg,h,i,jn = k]

=

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃

∞∑

k=1

P[kg,h,i,jn = k]

=

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃, n ∈ N. (4.55)

On the other hand it follows from (4.49) that

E[zg,h,i,jn ] =
∞∑

k=1

E[

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γr(s),gds|kg,h,i,jn = k]P[kg,h,i,jn = k]

=
∞∑

k=1

E[

ˆ kτ+TD

(k+k)τ
γr(s),gds|G]P[kg,h,i,jn = k], (4.56)

where G is given by (4.51). We now set t1 , (k + k)τ , t2 , kτ + TD, φr(s) , γr(s),g,

s ∈ [t1, t2), and employ the result presented in Lemma 4.1 to obtain

E[zg,h,i,jn ] =
∞∑

k=1

1

P[G]

ˆ kτ+TD

(k+k)τ

∑

l∈M

γl,gP[G ∩ Fl(s)]dsP[k
g,h,i,j
n = k]. (4.57)
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where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k + k)τ, kτ + TD). Note that

P[G ∩ Fl(s)]

P[G]

=
P[Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ) ∩ Fl(s)]

Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ)

=
P[Fj((k + k + 1)τ)|Fl(s)]P[Fl(s)|Fi((k + k)τ)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

· P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

=
P[Fj((k + k + 1)τ)|Fl(s)]P[Fl(s)|Fi((k + k)τ)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]

=
pl,j((k + k + 1)τ − s)pi,l(s− (k + k)τ)

pi,j(τ)
, s ∈ [(k + k)τ, kτ + TD). (4.58)

We now use (4.58) and set s̃ , s− (k − 1)τ in (4.31) to arrive at

E[zg,h,i,jn ] =

∞∑

k=1

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃P[kg,h,i,jn = k]

=

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃

∞∑

k=1

P[kg,h,i,jn = k]

=

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃, n ∈ N. (4.59)

Note that limt→∞Ng,h,i,j(t) = ∞, almost surely. Consequently, it follows from the strong

law of large numbers and (4.29) and (4.59) that

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

yg,h,i,jn =

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃, (4.60)

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

zg,h,i,jn =

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃.

(4.61)
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It then follows from (4.22)–(4.24), (4.60), and (4.61) that

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),gds

=

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃

+

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃. (4.62)

Finally, we substitute the limits evaluated in (4.20), (4.45), and (4.62) into (4.44), and

obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

=
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)pi,j(τ)

ˆ (k+1)τ

TD

∑

l∈M

γl,g
pl,i((k + 1)τ − s)ph,l(s− kτ)

ph,i(τ)
ds

+
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)pi,j(τ)

·
ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
pl,j((k + 2)τ − s)pi,l(s− τ − kτ)

pi,j(τ)
ds

=
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)pi,j(τ)

ˆ (k+1)τ

TD

∑

l∈M

γl,gpl,i((k + 1)τ − s)ph,l(s− kτ)ds

+
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,gpl,j((k + 2)τ − s)pi,l(s− τ − kτ)ds

=
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

( ∑

l∈M

γl,g

·
∑

h∈M

pg,h(kτ)ph,l(s− kτ)
∑

i∈M

pl,i((k + 1)τ − s)
∑

j∈M

pi,j(τ)
)

ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

( ∑

l∈M

γl,g
∑

h∈M

pg,h(kτ)

·
∑

i∈M

ph,i(τ)pi,l(s− τ − kτ)
∑

j∈M

pl,j((k + 2)τ − s)
)

ds. (4.63)

By using the fact that
∑

j∈M pi,j(t) = 1, t ≥ 0, for all i ∈ M, we obtain
∑

j∈M pi,j(τ) = 1,

∑

i∈M pl,i((k + 1)τ − s) = 1, and
∑

j∈M pl,j((k + 2)τ − s) = 1 in (4.63). Note also that

∑

h∈M pg,h(kτ)ph,l(s − kτ) = pg,l(s), for all g, l ∈ M. Moreover,
∑

i∈M ph,i(τ)pi,l(s − τ −
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kτ) = ph,l(s− kτ), for all h, l ∈ M. Therefore, it follows from (4.63) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

=
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

∑

l∈M

γl,gpg,l(s)ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,g
∑

h∈M

pg,h(kτ)ph,l(s− kτ)ds. (4.64)

Now note that
∑

h∈M pg,h(kτ)ph,l(s− kτ) = pg,l(s), for all g, l ∈ M. As a consequence,

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds =
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

∑

l∈M

γl,gpg,l(s)ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,gpg,l(s)ds

=
1

τ

∑

g∈M

πg

ˆ τ+TD

TD

∑

l∈M

γl,gpg,l(s)ds

=
1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ). (4.65)

We evaluated the limit limt→∞
1
t

∑N(t)
k=1

´ kτ+TD

(k−1)τ+TD
γr(s),σ(s−TD)ds for cases where TD ≤

τ and TD > τ . It is shown in (4.38) and (4.65) that for both cases the limit is given by

1
τ
tr(Π

´ τ+TD

TD
eQsdsΓ). It then follows from (4.12) that for all τ > 0 and TD > 0,

lim
t→∞

1

t

ˆ t

TD

γr(s),σ(s−TD)ds =
1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ), (4.66)

which completes the proof. �

4.3 Sufficient Conditions for Almost Sure Asymptotic Stabiliza-

tion

In this section, we employ a quadratic Lyapunov approach similar to the one used in

Chapter 3 and utilize the strong law of large numbers developed in Lemma 4.2 to obtain

sufficient conditions of almost sure asymptotic stabilization under sampled and delayed

mode information.
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Theorem 4.1. Consider the switched linear stochastic system (3.57) with mode sampling

period τ > 0 and sampled mode information constant time delay TD > 0. If there exist

P > 0 and scalars ζi ∈ R, i ∈ M, such that

0 ≥ AT
i P + PAi +DT

i PDi − 2PBiB
T
i P − ζiP, (4.67)

for i ∈ M, and

1

τ
tr(Π

ˆ TD+τ

TD

eQsdsΓ)−
∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
< 0, (4.68)

where Π ∈ R
M×M denotes the diagonal matrix with the diagonal entries π1,π2,. . .,πM ,

and Γ ∈ R
M×M denotes the matrix with the (i, j)th entries given by

γi,j =







ζj , i = j,

ζi +
2λmax(PBiB

T
i P )

λmin(P ) − λmin(P (BjB
T
i +BiB

T
j )P )

λmax(P ) , i 6= j,

(4.69)

then the feedback control law (4.2) with the feedback gain matrices given by

Ki = −BT
i P, i ∈ M, (4.70)

guarantees that the zero solution x(t) ≡ 0 of the closed-loop system (3.57) and (4.2) is

asymptotically stable almost surely.

Proof. We can describe the closed-loop system (3.57) under the control law (4.2) by

the multi-dimensional Ito stochastic differential equation

dx(t) = (Ar(t) +Br(t)Kρ(t))x(t)dt+Dr(t)x(t)dW (t), t ≥ 0, (4.71)

where

ρ(t) ,







r0, 0 ≤ t < TD,

σ(t− TD), t ≥ TD.

(4.72)

Now, let V (x) , xTPx and consider the function lnV (x(t)). Note that V (·) is a positive-
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definite function; therefore, lnV (x(t)) is well-defined for non-zero values of the state. It

follows from Ito formula and (4.70) that

lnV (x(t)) = lnV (x0) +

ˆ t

0

1

V (x(s))
xT(s)

(

AT
r(s)P + PAr(s)

− PBρ(s)B
T
r(s)P − PBr(s)B

T
ρ(s)P +DT

r(s)PDr(s)

)

x(s)ds

−
ˆ t

0

1

2V 2(x(s))
(2xT(s)PDr(s)x(s))

2ds+ L(t), (4.73)

where L(t) ,
´ t

0
1

V (x(s))2x
T(s)PDr(s)x(s)dW (s). We observe that

2xT(s)PDr(s)x(s) = xT(s)(DT
r(s)P + PDr(s))x(s)

≥
λmin(D

T
r(s)P + PDr(s))

λmax(P )
xT(s)Px(s). (4.74)

By (4.67), (4.69), (4.73), and (4.74), we arrive at

lnV (x(t)) ≤ lnV (x0) +

ˆ t

0
γr(s),ρ(s)ds−

ˆ t

0

λ2min(D
T
r(s)P + PDr(s))

2λ2max(P )
ds+ L(t). (4.75)

Note that ρ(s) = r0, s ∈ [0, TD), and consequently

|
ˆ TD

0
γr(s),ρ(s)ds| ≤ max

i∈M
|γi,r0 |TD.

Therefore,

lim
t→∞

1

t

ˆ TD

0
γr(s),ρ(s)ds = 0. (4.76)

Furthermore, it follows from (4.72), (4.76) and the strong law of large numbers presented

in Lemma 4.2 that

lim
t→∞

1

t

ˆ t

0
γr(s),ρ(s)ds = lim

t→∞

1

t

ˆ t

TD

γr(s),ρ(s−TD)ds

=
1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ), (4.77)

almost surely. In addition, by the strong law of large numbers for continuous-time, finite-
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state, irreducible Markov chains [86,87]

lim
t→∞

1

t

ˆ t

0
−
λ2min(D

T
r(s)P + PDr(s))

2λ2max(P )
ds = −

∑

i∈I

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
, (4.78)

almost surely. Furthermore, note that the Ito integral L(t) in inequality (4.73) is a local

martingale with quadratic variation given by

[L]t =

ˆ t

0
(

1

V (x(s))
2xT(s)PDr(s)x(s))

2ds

=

ˆ t

0

1

V 2(x(s))
(2xT(s)PDr(s)x(s))

2ds

≤
ˆ t

0

1

V 2(x(s))
(xT(s)(DT

r(s)P + PDr(s))x(s))
2ds

≤
ˆ t

0

λ2max(D
T
r(s)P + PDr(s))

λ2min(P )
ds

≤ maxi∈I λ
2
max(D

T
i P + PDi)

λ2min(P )
t. (4.79)

It follows from (4.79) that limt→∞
1
t
[L]t < ∞. Hence, by using the same approach pre-

sented in [14,49,51], we can employ the strong law of large numbers for local martingales

to show

lim
t→∞

1

t
L(t) = 0, (4.80)

almost surely. Moreover, by using (4.68), (4.75), (4.77), (4.78), and (4.80), we arrive at

lim sup
t→∞

1

t
lnV (x(t)) ≤ 1

τ
tr(Π

ˆ τ+TD

TD

eQsdsΓ)−
∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )

< 0. (4.81)

As a consequence of (4.81), limt→∞ lnV (x(t)) = −∞, almost surely; moreover,

P[ lim
t→∞

V (x(t)) = 0] = 1. (4.82)

Therefore, the zero solution x(t) ≡ 0 of the closed-loop system (3.57), (4.2) is asymptoti-

cally stable, almost surely. �
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Note that the stabilization conditions (4.67) and (4.68) depend not only on the sub-

system dynamics, but also on the probabilistic dynamics of the mode signal, as well as the

mode sampling period τ > 0 and the sampled mode information delay TD > 0.

Remark 4.1. When time delay for the sampled mode information TD tends to 0, the con-

ditions of Theorem 4.1 reduces to the stabilization conditions presented in Theorem 3.4

for the case where time delay for sampled mode information is not present.

Remark 4.2. Note that under the conditions (4.67) and (4.68), our proposed control law

(4.2) guarantees almost sure stabilization even if the mode samples are subject to different

time delays that are upper-bounded by a constant TD ∈ (0, τ ]. Specifically, consider the

case where the kth mode sample data r(kτ) is subject to time delay Tk > 0, k ∈ N0. In this

case, the sequence {kτ + Tk}k∈N0 denotes the time instants at which the obtained mode

samples become available to the controller. If there exists a constant TD ∈ (0, τ ] such that

Tk ∈ (0, TD], k ∈ N0, then the mode samples become available to the controller in order,

that is,

k1τ + Tk1 ≤ k2τ + Tk2 , k1 ≤ k2, k1, k2 ∈ N0. (4.83)

Furthermore,

kτ + Tk ≤ kτ + TD, k ∈ N0, (4.84)

which implies that the controller has the sampled mode information r(kτ) at time kτ+TD,

and hence the proposed control law (4.2) can still be employed for stabilizing the switched

linear stochastic dynamical system (3.57).

4.4 Illustrative Numerical Example

In this section, we demonstrate the efficacy of our approach concerned with the stabiliza-

tion of switched linear stochastic dynamical systems under sampled and delayed mode

information. Specifically, we consider the switched linear stochastic system (3.57) com-
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posed of M = 3 subsystems characterized by the subsystem matrices

A1 =






1 −5

1 1.5




, B1 =






−1.6

1.6




 ,

A2 =






0.5 0

0.75 0.5




, B2 =






0

0




 ,

A3 =






0.5 0.5

−4.75 0.5




, B3 =






2

−2




 ,

and D1 = D2 = D3 = I2. The mode signal {r(t) ∈ M , {1, 2, 3}}t≥0 of the switched

system is assumed to be a Markov chain with the generator matrix

Q =









−2 1 1

1 −2 1

1 1 −2









, (4.85)

with stationary probability distributions, πi =
1
3 , i ∈ M. Furthermore, the mode signal

{r(t) ∈ M}t≥0 is assumed to be sampled periodically at the time instants kτ, k ∈ N0,

where τ = 0.1 is the mode sampling period. Furthermore, the obtained mode samples are

assumed to be available to the controller after a constant time delay TD = 0.03.

Note that the positive-definite matrix P = I2 and the scalars ζ1 = −0.35, ζ2 = 2.75,

ζ3 = −2.25 satisfy (4.67) and (4.68). Therefore, it follows from Theorem 4.1 that the zero

solution x(t) ≡ 0 of the switched stochastic system given by (3.57) under the proposed

control law (4.2) is asymptotically stable almost surely.

Figures 4.1 and 4.2 respectively show the sample paths of x(t) and u(t) obtained with

the initial conditions x(0) = [1, 1]T and r(0) = 1. The sampled mode signal σ(t) may

change its value at mode sampling time instants denoted by the sequence {kτ}k∈N. Since,

the piecewise-continuous control law (4.2) depends on the delayed sampled mode signal

σ(t − TD), the control input trajectory is subject to jumps at time instants denoted by

{kτ + TD}k∈N.

Note that the feedback control performance is directly related to the quality of the rep-
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Figure 4.1: State trajectory versus time
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Figure 4.2: Control input versus time
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Figure 4.3: Actual mode signal r(t) and the delayed version of the sampled mode signal

σ(t− TD) versus time

85



Figure 4.4: Stabilization region with respect to τ and TD

resentation of the actual mode signal by the sampled and delayed version that is available

to the controller. Owing to frequent mode sampling and small mode information time

delay, the delayed sampled mode signal σ(t − TD) of this numerical example is a good

representation of the actual mode signal r(t) (see Figure 4.3).

Stabilization performance depends on both the mode sampling period τ > 0 and the

mode sample information delay TD > 0. Figure 4.4 shows the numerically obtained values

of the constants τ and TD that satisfy the condition (4.68) of Theorem 4.1 for the positive-

definite matrix P = I2 and the scalars ζ1 = −0.35, ζ2 = 2.75, ζ3 = −2.25. The dark

region represents the set of values (τ, TD) ∈ (0,∞) × (0,∞), for which the stabilization

is guaranteed by the control law (4.2) according to Theorem 4.1. Note that the sample

paths of x(t), u(t), r(t) and σ(t−TD) shown in Figures 4.1–4.3 are obtained for the values

τ = 0.1, TD = 0.03, which corresponds to a point in the stabilization region shown in

Figure 4.4.

4.5 Conclusion

In this chapter, stabilization of switched linear stochastic systems has been investigated.

A feedback control framework has been developed for the case where the mode of the

switched system is periodically sampled and the obtained mode samples are available to

the controller only after a time delay. We employed a quadratic Lyapunov-like function for

obtaining sufficient conditions under which our proposed control framework guarantees

almost sure asymptotic stabilization.

The control law proposed in this chapter incorporates a feedback gain that depends on
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the sampled and delayed version of the mode signal. Note that this feedback gain remains

constant between consecutive time instants at which sampled mode data becomes avail-

able. In Chapter 5, we propose a new feedback gain scheduling mechanism for selecting

the feedback gain associated with the mode that has the highest conditional probability of

being active given the available sampled and delayed mode data.
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Chapter 5

Probability-Based Feedback Gain

Scheduling for Stabilizing Switched

Linear Stochastic Systems Under

Delayed Sampled Mode Information

5.1 Introduction

In Chapter 4, we investigated the stabilization of a continuous-time switched linear stochas-

tic system for the case where the mode information is observed only at discrete time in-

stants and the observed mode information is available to the controller only after a delay.

In this chapter we develop a new control framework for the same problem setting. Specif-

ically, to guarantee feedback stabilization of continuous-time switched linear stochastic

dynamical systems under delayed sampled mode information, in Chapter 4, we proposed

a piecewise-continuous linear state feedback control law. The feedback gain of the control

law presented in Chapter 4 is switched between the gains associated with each mode of

the system depending on the delayed sampled mode signal. This approach is based on

picking the feedback gain associated with the mode that was active at the most recent

mode sampling instant. Furthermore, the same feedback gain is maintained until the next

mode sample data becomes available (see Chapter 4). Note that when the mode is sam-

pled rarely and the mode information delay is large, the delayed sampled mode signal

will not be an accurate representation of the actual mode signal, and hence the control

89



law presented in Chapter 4 may fail to stabilize the switched system. In this chapter, in

order to relax the requirements on the mode sampling period and the mode information

time delay, we develop a new control framework with probability-based feedback gain

scheduling scheme.

In the literature, probabilistic gain schedulers have been employed in different prob-

lem settings. For example, in [107], probability-based gain schedulers are used for design-

ing filters for a discrete-time system with missing output measurements. Furthermore, a

stochastic scheduling scheme is proposed in [108], where a Markov chain is used for the

scheduling between finite number of controllers to stabilize a discrete-time linear system.

Our proposed scheduling method uses the available delayed sampled mode data of

a continuous-time switched stochastic system to identify the conditional probability dis-

tribution of the modes at any given time. In our proposed control framework, the gain

scheduler selects the feedback gain associated with the mode that has the highest probabil-

ity of being active. We employ a quadratic Lyapunov function approach to obtain sufficient

conditions under which our proposed control framework with the probability-based gain

scheduling scheme guarantees asymptotic stabilization.

The contents of this chapter are organized as follows. In Section 5.2, we provide a

preliminary result concerning continuous-time Markov chains. In Section 5.3, we intro-

duce the feedback control problem for switched stochastic systems under delayed sampled

mode information; furthermore, in Section 5.4 we explain our proposed control frame-

work based on a probabilistic feedback gain scheduling scheme. We obtain sufficient con-

ditions of almost sure stabilization in Section 5.5. In Section 5.6, we provide a numerical

example. Finally, we conclude the chapter in Section 5.7.

5.2 Mathematical Preliminaries

We provide a key result concerned with continuous-time finite-state Markov chains in

Lemma 5.1 below, which we employ for obtaining the main results provided in Section 5.3.

Lemma 5.1. Let {r(t) ∈ M , {1, 2, . . . ,M}}t≥0 be a finite-state irreducible Markov chain

characterized by the generator matrix Q ∈ R
M×M . Let φl : [0,∞) → R, l ∈ M, be

bounded piecewise-constant functions. Then for any t1, t2 ∈ [0,∞) and G ∈ F such that
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t1 ≤ t2 and P[G] > 0, it follows that

E[

ˆ t2

t1

φr(s)(s)ds|G] =
1

P[G]

ˆ t2

t1

∑

l∈M

φl(s)P[G ∩ Fl(s)]ds, (5.1)

where Fl(t) , {ω ∈ Ω : rt(ω) = l}, t ≥ 0.

Proof. By using the definition of conditional expectation given in (2.1), we obtain

E[

ˆ t2

t1

φr(s)ds|G] =
1

P[G]

ˆ

G

ˆ t2

t1

φr(s)(s)dsP(dω)

=
1

P[G]

ˆ

G

ˆ t2

t1

∑

l∈M

φl(s)1[Fl(s)](ω)dsP(dω). (5.2)

Moreover, we employ Fubini’s Theorem [93] to change the order of integrals in (5.2). It

follows that

E[

ˆ t2

t1

φr(s)ds|G] =
1

P[G]

ˆ t2

t1

ˆ

G

∑

l∈M

φl(s)1[Fl(s)](ω)P(dω)ds

=
1

P[G]

ˆ t2

t1

∑

l∈M

φl(s)

ˆ

G

1[Fl(s)](ω)P(dω)ds

=
1

P[G]

ˆ t2

t1

∑

l∈M

φl(s)P[G ∩ Fl(s)]ds, (5.3)

which completes the proof. �

Note that Lemma 5.1 is a generalized version of Lemma 4.1 in Chapter 4, in the sense

that it allows the integrand φr(·)(·) in the integral of the left hand side of (5.1) to not only

depend on the Markov chain r(·) but also depend directly on time.

5.3 Feedback Control Problem for Switched Linear Stochastic

Systems Under Sampled and Delayed Mode Information

In this section, we explain the stabilization problem under sampled and delayed mode in-

formation for switched linear stochastic systems. Specifically, we consider the continuous-

time switched stochastic dynamical system given by (3.57). We assume that the mode

signal of the switched system is observed (sampled) periodically and the obtained sam-

pled mode data is subject to a constant time delay. We denote the mode sampling period
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by τ > 0 and the mode information time delay by TD > 0.

We denote the obtained mode samples by the sequence {r(kτ) ∈ M}k∈N0 , which forms

a discrete-time Markov chain with state transition probabilities given by

P[r((k + 1)τ) = j|r(kτ) = i] = pi,j(τ), (5.4)

where pi,j(τ) represents the (i, j)th entry of the transition matrix eQτ . It follows from the

irreducibility of the mode signal {r(t) ∈ M}t≥0 that {r(kτ) ∈ M}k∈N0 is also irreducible.

Furthermore, the stationary probability distribution for the discrete-time Markov chain

{r(kτ) ∈ M}k∈N0 is given by π ∈ R
M , which is also the stationary probability distribution

for {r(t) ∈ M}t≥0 [87].

We use the “sample and hold” technique and define the sampled version of the mode

signal {σ(t) ∈ M}t≥0 by

σ(t) , r(kτ), t ∈ [kτ, (k + 1)τ), k ∈ N0. (5.5)

As each mode sample data is subject to time delay TD > 0, only a delayed version of the

sampled mode signal {σ(t) ∈ M}t≥0 is available for control purposes. We denote the

delayed sampled mode signal by the stochastic process {σ(t− TD) ∈ M}t≥TD
.

In Chapter 4, under the assumption that the initial mode r0 is known to the controller,

we had proposed the stabilizing feedback control law (4.2). The control law (4.2) depends

only on the delayed sampled mode signal {σ(t − TD) ∈ M}t≥TD
, which switches the

feedback gain of the controller between the gains K1,K2, . . . ,KM associated with the

modes of the switched stochastic system (3.57).

The delayed sampled mode signal {σ(t− TD) ∈ M}t≥TD
and hence the feedback gain

remain constant in the time intervals [kτ + TD, (k + 1)τ + TD), k ∈ N0. Moreover, the

feedback gain in (4.2) is switched at the time instant kτ + TD, only if the consecutive

mode samples r((k − 1)τ) ∈ M and r(kτ) ∈ M are different. Stabilization performance

of the feedback control law (4.2) is directly related to the quality of the representation of

the actual mode signal {r(t) ∈ M}t≥0 by the sampled and delayed version {σ(t − TD) ∈

M}t≥TD
.
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Note that the frequency of the mode transitions, the mode sampling period τ > 0, as

well as the sampled mode information delay TD > 0 affect how accurately the actual mode

signal is represented by its time delayed sampled version. If the mode is sampled very

frequently and the mode information time delay is small, then the delayed sampled mode

signal {σ(t − TD) ∈ M}t≥TD
is likely to resemble the actual mode signal {r(t) ∈ M}t≥0

accurately. In this case, the feedback gain is likely to be Ki when mode i is active. On the

other hand, if the mode is observed rarely and the mode information delay is large, then

the delayed sampled mode signal {σ(t−TD) ∈ M}t≥TD
is likely to be a poor representation

of the actual mode signal {r(t) ∈ M}t≥0. Consequently, depending also on the subsystem

dynamics and the mode switching frequency, the control performance may deteriorate. In

order to overcome this issue associated with the control law (4.2), in the following section

we will propose a new probability-based scheme to schedule the switching between the

feedback gains K1,K2, . . . ,KM , in the time intervals [kτ + TD, (k + 1)τ + TD), k ∈ N0.

5.4 Probability-Based Feedback Gain Scheduling

In this section, we develop a probabilistic feedback gain scheduling framework that is

based on selecting the feedback gain associated with the mode that has the highest prob-

ability of being active.

The mode signal {r(t) ∈ M}t≥0 of the switched stochastic system (3.57) may change

its value in the time intervals between mode sampling instants. However, the trajectory

of the mode signal in the time intervals (kτ, (k + 1)τ), k ∈ N0, is not available to the

controller. Nevertheless, the available delayed sampled mode data and the a priori in-

formation concerning the probabilistic dynamics of the mode signal can be utilized to

compute the probability distribution regarding the active mode in those intervals.

The conditional probability of the mode signal taking the value j ∈ M at time t2 ≥ 0

given that it had the value i ∈ M at an earlier time t1 ∈ [0, t2], is given by

P[r(t2) = j|r(t1) = i] = pi,j(t2 − t1), (5.6)

where pi,j(t), again, represents the (i, j)th entry of the matrix eQt, t ≥ 0. Note that
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Figure 5.1: The structure and the partitions of the set S

∑

j∈M pi,j(t) = 1, t ≥ 0, i ∈ M.

We define the conditional probability distributions pi : [0,∞) → R
M , i ∈ M, by

pi(t) , [pi,1(t), pi,2(t), . . . , pi,M (t)]T, t ≥ 0, i ∈ M. (5.7)

It follows that pi(t2− t1) ∈ M represents the conditional probability distribution regarding

the active mode at time t2 ≥ 0 given that the mode signal had the value i ∈ M at time

t1 ∈ [0, t2].

Now let S , {z ∈ R
M :

∑

i∈M zi = 1; zi ≥ 0, i ∈ M}. Note that the trajectories of the

conditional probability distributions pi(·), i ∈ M, move on the set S, that is, pi(t) ∈ S, t ≥

0, i ∈ M. We partition the set S into M subsets S1,S2, . . . ,SM given by

Si , {z ∈ S : zi > zj , j ∈ {1, . . . , i− 1}; zi ≥ zj , j ∈ {i+ 1, . . . ,M}}, i ∈ M. (5.8)

Note that S =
⋃

i∈M Si and Si ∩ Sj = ∅, i 6= j. For example, when M = 3, the trajectories

of the conditional probability distributions pi(·), i ∈ {1, 2, 3}, move on a triangular surface

characterized by the set S = S1∪S2∪S3 (see Figure 5.1). Note that the trajectories of the

conditional distributions converge to π ∈ R
M , which denotes the stationary distribution

for the mode signal {r(t) ∈ M}t≥0. For example, Figure 5.2 shows the conditional prob-

ability distribution p3(·) which starts in the subset S3 and moves towards the stationary

distribution π ∈ R
M , which is in the subset S1.
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Figure 5.2: Trajectory of the conditional probability distribution p3(·) on the set S

Now we construct the feedback gain switching (scheduling) signal {ρ(t) ∈ M}t≥0 by

ρ(t) ,







η(r0, t), if t ∈ [0, TD),

η(r(kτ), t− kτ), if t ∈ Tk, k ∈ N0,

(5.9)

where Tk , [kτ + TD, (k + 1)τ + TD), k ∈ N0, and

η(i, ·) ,







1, if pi(·) ∈ S1,

...

M, if pi(·) ∈ SM ,

i ∈ M. (5.10)

For a given mode i ∈ M, η(i, ·) is a piecewise-constant, deterministic function of time. The

trajectory of η(i, ·) depends only on the generator matrix Q ∈ R
M×M of the mode signal,

which is assumed to be known. Furthermore, η(i, t2 − t1) denotes the index of the mode

that has the highest conditional probability of being active at time t2 ≥ 0 given that the ith

mode was active at an earlier time t1 ∈ [0, t2]. Note that the information of an obtained

mode sample r(kτ) become available to the controller at the time instant kτ + TD. This

mode sample is used for computing η(r(kτ), t − kτ) in (5.9), which represents the index

of the mode with the highest conditional probability at time t ∈ [kτ + TD, (k + 1)τ + TD)

given the mode information r(kτ). Hence, for a given time t ≥ 0, ρ(t) denotes the index

of the mode that has the highest conditional probability of being active at time t given the

most recent sampled mode information.

Note that the conditional probability distributions pi(·), i ∈ M, cross the boundaries

between the sets Si, i ∈ M, finitely many times in every finite time interval. As a conse-
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Figure 5.3: Actual mode signal r(t), the sampled mode signal σ(t), the delayed version

of the sampled mode signal σ(t− TD), and the feedback gain switching signal ρ(t) versus

time
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quence, {ρ(t) ∈ M}t≥0 changes its value only finite number of times in every finite time

interval. For an example switched system (3.57) with M = 2 modes, Figure 5.3 shows

sample paths of r(t), σ(t), σ(t− TD), and ρ(t).

We employ {ρ(t) ∈ M}t≥0 for switching between the feedback gains K1,K2, . . . ,KM

and propose a new control law of the form

u(t) = Kρ(t)x(t), t ≥ 0. (5.11)

Note that in the closed-loop system (3.57), (5.11), the active mode is denoted by r(t),

whereas the index of the active feedback gain is denoted by ρ(t). In Lemma 5.2 below we

present a strong law of large numbers for the bivariate stochastic process {(r(t), ρ(t)) ∈

M × M}t≥0, so that we obtain sufficient almost sure asymptotic stability conditions for

the closed-loop system (3.57), (5.11) in Section 5.5.

Lemma 5.2. Let {r(t) ∈ M}t≥0 be the irreducible Markov chain characterized by the

generator matrix Q ∈ R
M×M . Furthermore, let {ρ(t) ∈ M}t≥0 be the stochastic process

defined in (5.9). Then for any γi,j ∈ R, i, j ∈ M, it follows that

lim
t→∞

1

t

ˆ t

0
γr(s),ρ(s)ds =

1

τ

∑

i,j∈M

πi

ˆ τ+TD

TD

γj,η(i,s)pi,j(s)ds, (5.12)

almost surely.

In order to prove Lemma 5.2, we use the method that we employed previously in

Chapter 4 for proving Lemma 4.2.

Proof. We define the counting process {N(t) ∈ N0}t≥TD
by

N(t) = max{k ∈ N0 : kτ + TD ≤ t}, t ≥ TD. (5.13)

The number of mode samples obtained until time t ≥ TD, is given by N(t). It follows from
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5.13 that

ˆ t

0
γr(s),ρ(s)ds =

ˆ TD

0
γr(s),ρ(s)ds+

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

+

ˆ t

N(t)τ+TD

γr(s),ρ(s)ds, t ≥ 0. (5.14)

Now note that

|
ˆ TD

0
γr(s),ρ(s)ds| ≤ max

i,j∈M
|γi,j |TD, (5.15)

|
ˆ t

N(t)τ+TD

γr(s),ρ(s)ds| ≤ max
i,j∈M

|γi,j |τ, t ≥ TD. (5.16)

Therefore,

lim
t→∞

1

t

ˆ TD

0
γr(s),ρ(s)ds = 0, (5.17)

lim
t→∞

1

t

ˆ t

N(t)τ+TD

γr(s),ρ(s)ds = 0. (5.18)

By using (5.14), (5.17), and 5.18 we obtain

lim
t→∞

1

t

ˆ t

0
γr(s),ρ(s)ds = lim

t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds. (5.19)

We now consider the following cases: the case where TD ≤ τ and the case where TD > τ .

For each case we evaluate the limit limt→∞
1
t

∑N(t)
k=1

´ kτ+TD

(k−1)τ+TD
γr(s),ρ(s)ds and show that

the limit is given by the right hand side of (5.12) in both of the cases.

Case 1) Consider the case where TD ≤ τ . It is important to note that in this case the

information delay is less than the mode sampling interval, and hence the kth sampled

mode data r(kτ) becomes available for control purposes before time (k + 1)τ .

Now, let {Nh,i,j(t) ∈ N0}t≥TD
be the counting process defined by

Nh,i,j(t) =

N(t)
∑

k=1

1[r((k−1)τ)=h,r(kτ)=i,r((k+1)τ)=j], t ≥ TD. (5.20)

Note that for all h, i, j ∈ M, the counting process {Nh,i,j(t) ∈ N0}t≥TD
is a stochastic
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process that depends on the mode signal {r(t) ∈ M}t≥0. Note also that

∑

h,i,j∈M

Nh,i,j(t) = N(t), t ≥ TD. (5.21)

Furthermore, for all h, i, j ∈ M, let the sequence of indices {kh,i,jn ∈ N}n∈N be defined by

kh,i,jn = min{k ∈ N : Nh,i,j(kτ + TD) = n}, n ∈ N. (5.22)

Now, note that r((kh,i,jn −1)τ) = σ(kh,i,jn τ−TD) = h, r(kh,i,jn τ) = i, and r((kh,i,jn +1)τ) = j,

n ∈ N, h, i, j ∈ M. Furthermore, σ(s− TD) = r((kh,i,jn − 1)τ) = h, for s ∈ [(kh,i,jn − 1)τ +

TD, k
h,i,j
n τ + TD). It follows from (5.9) that

ρ(s) = η(h, s− (kh,i,jn − 1)τ), s ∈ [(kh,i,jn − 1)τ + TD, k
h,i,j
n τ + TD). (5.23)

It then follows from (5.20), (5.22), and (5.23) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

= lim
t→∞

1

t

∑

h,i,j∈M

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),ρ(s)ds

= lim
t→∞

1

t

∑

h,i,j∈M

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds. (5.24)

We multiply the integrals in the right hand side of (5.24) by
N(t)
N(t)

Nh,i,j(t)
Nh,i,j(t)

to obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),σ(s−TD)ds

= lim
t→∞

N(t)

t

∑

h,i,j∈M

(Nh,i,j(t)

N(t)

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds
)

= lim
t→∞

N(t)

t

∑

h,i,j∈M

(

lim
t→∞

Nh,i,j(t)

N(t)

· lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds
)

. (5.25)
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We start by computing limt→∞
N(t)
t

. By the definition of N(t) given in (5.13), we have

N(t)τ + TD ≤ t ≤ (N(t) + 1)τ + TD, t ≥ TD. (5.26)

Therefore,

t− τ − TD
τ

≤ N(t) ≤ t− TD
τ

, t ≥ TD. (5.27)

Since limt→∞
1
t
t−τ−TD

τ
= limt→∞

1
t
t−TD
τ

= 1
τ
, it follows from (5.27) that

lim
t→∞

N(t)

t
=

1

τ
. (5.28)

Next, we evaluate limt→∞
Nh,i,j(t)
N(t) in (5.25). The counting process Nh,i,j(t) denotes

the number of time instants k ∈ {1, 2, . . . , N(t)} such that r((k − 1)τ) = h, r(kτ) = i, and

r((k + 1)τ) = j. Furthermore, note that N(t) =
∑

h,i,j∈MNh,i,j(t). By using the strong

law of large numbers [86, 87] for the discrete-time Markov chain {r(kτ) ∈ M}k∈N0 , we

obtain

lim
t→∞

Nh,i,j(t)

N(t)
= πhph,i(τ)pi,j(τ), (5.29)

where πh > 0 is the stationary probability distribution for state h ∈ M and ph,i(τ) and

pi,j(τ) are transition probabilities characterized in (5.4).

As the third step, we will employ the strong law of large numbers for independent and

identically distributed random variables in order to compute the limit

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds.

Note that

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds

=

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds+

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds. (5.30)
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Now let

yh,i,jn ,

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds, n ∈ N, h, i, j ∈ M, (5.31)

zh,i,jn ,

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds, n ∈ N, h, i, j ∈ M. (5.32)

Note that by definition (5.22), the mode signal takes the values h and i at time instants

(kh,i,jn − 1)τ and kh,i,jn τ , respectively, for all n ∈ N. The value of the mode signal during

the interval
(
(kh,i,jn − 1)τ, kh,i,jn τ

)
may differ for each n ∈ N. However, the probability

of the mode taking the value l ∈ M at time (kh,i,jn − 1)τ + s, where s ∈ (0, τ), does

not depend on n ∈ N. Hence, for given h, i, j ∈ M, the random variables yh,i,jn , n ∈ N,

are independent and identically distributed. Similarly, for given h, i, j ∈ M, the random

variables zh,i,jn , n ∈ N, are also independent and identically distributed. Now, we calculate

E[yh,i,jn ] and E[zh,i,jn ]. It follows from (5.31) that

E[yh,i,jn ] =
∞∑

k=1

E[

ˆ k
h,i,j
n τ

(kh,i,jn −1)τ+TD

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds|kh,i,jn = k]P[kh,i,jn = k]

=
∞∑

k=1

E[

ˆ kτ

(k−1)τ+TD

γr(s),η(h,s−(k−1)τ)ds|G]P[kh,i,jn = k], (5.33)

where

G , {ω ∈ Ω : r(k−1)τ (ω) = h, rkτ (ω) = i, r(k+1)τ (ω) = j}. (5.34)

We set t1 , (k − 1)τ + TD, t2 , kτ , φr(s)(s) , γr(s),η(h,s−(k−1)τ), s ∈ [t1, t2), and employ

the result presented in Lemma 5.1 to obtain

E[yh,i,jn ] =
∞∑

k=1

1

P[G]

ˆ kτ

(k−1)τ+TD

∑

l∈M

γl,η(h,s−(k−1)τ)P[G ∩ Fl(s)]dsP[k
i,j
n = k], (5.35)

where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k − 1)τ + TD, kτ). Note that G = Fh((k − 1)τ) ∩
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Fi(kτ) ∩ Fj((k + 1)τ) and hence

P[G ∩ Fl(s)]

P[G]
=

P[Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ) ∩ Fl(s)]

Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ)

=
P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fl(s)]P[Fl(s)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

=
P[Fi(kτ)|Fl(s)]P[Fl(s)|Fh((k − 1)τ)]

P[Fi(kτ)|Fh((k − 1)τ)]

=
pl,i(kτ − s)ph,l(s− (k − 1)τ)

ph,i(τ)
, s ∈ [(k − 1)τ + TD, kτ), (5.36)

where ph,i(τ) is given by (5.4). We substitute (5.36) into (5.35) and set s̃ , s − (k − 1)τ

to arrive at

E[yh,i,jn ] =
∞∑

k=1

ˆ τ

TD

∑

l∈M

γl,η(h,s̃)
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃P[kh,i,jn = k]

=

ˆ τ

TD

∑

l∈M

γl,η(h,s̃)
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃

∞∑

k=1

P[kh,i,jn = k]

=

ˆ τ

TD

∑

l∈M

γl,η(h,s̃)
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃, n ∈ N. (5.37)

On the other hand it follows from (5.32) that

E[zh,i,jn ] =

∞∑

k=1

E[

ˆ k
h,i,j
n τ+TD

k
h,i,j
n τ

γ
r(s),η(h,s−(kh,i,jn −1)τ)

ds|kh,i,jn = k]P[kh,i,jn = k]

=
∞∑

k=1

E[

ˆ kτ+TD

kτ

γr(s),η(h,s−(k−1)τ)ds|G]P[kh,i,jn = k], (5.38)

where G is given by (5.34). We now set t1 , kτ , t2 , kτ+TD, φr(s)(s) , γr(s),η(h,s−(k−1)τ),

s ∈ [t1, t2), and employ the result presented in Lemma 5.1 to obtain

E[zh,i,jn ] =

∞∑

k=1

1

P[G]

ˆ kτ+TD

kτ

∑

l∈M

γ
l,η(h,s−(kh,i,jn −1)τ)

P[G ∩ Fl(s)]dsP[k
h,i,j
n = k]. (5.39)
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where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [kτ, kτ + TD). Now note that for s ∈ [kτ, kτ + TD),

P[G ∩ Fl(s)]

P[G]
=

P[Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ) ∩ Fl(s)]

Fh((k − 1)τ) ∩ Fi(kτ) ∩ Fj((k + 1)τ)

=
P[Fj((k + 1)τ)|Fl(s)]P[Fl(s)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

P[Fj((k + 1)τ)|Fi(kτ)]P[Fi(kτ)|Fh((k − 1)τ)]P[Fh((k − 1)τ)]

=
P[Fj((k + 1)τ)|Fl(s)]P[Fl(s)|Fi(kτ)]

P[Fj((k + 1)τ)|Fi(kτ)]

=
pl,j((k + 1)τ − s)pi,l(s− kτ)

pi,j(τ)
. (5.40)

We now use (5.40) and set s̃ , s− (k − 1)τ in (5.39) to arrive at

E[zh,i,jn ] =
∞∑

k=1

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s̃)
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃P[kh,i,jn = k]

=

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s̃)
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃

∞∑

k=1

P[kh,i,jn = k]

=

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s̃)
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃, n ∈ N. (5.41)

Note that limt→∞Nh,i,j(t) = ∞, almost surely. Therefore, it follows from the strong law

of large numbers and (5.37) and (5.41) that

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

yh,i,jn =

ˆ τ

TD

∑

l∈M

γl,η(h,s̃)
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃, (5.42)

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

zh,i,jn =

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s̃)
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃. (5.43)

Now it follows from (5.30)–(5.32), (5.42), and (5.43) that

lim
t→∞

1

Nh,i,j(t)

Nh,i,j(t)
∑

n=1

ˆ k
h,i,j
n τ+TD

(kh,i,jn −1)τ+TD

γr(s),ρ(s)ds

=

ˆ τ

TD

∑

l∈M

γl,η(h,s̃)
pl,i(τ − s̃)ph,l(s̃)

ph,i(τ)
ds̃+

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s̃)
pl,j(2τ − s̃)pi,l(s̃− τ)

pi,j(τ)
ds̃.

(5.44)

As a final step, we substitute the limits evaluated in (5.28), (5.29), and (5.44) into (5.25),
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and obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

=
1

τ

∑

h,i,j∈M

πhph,i(τ)pi,j(τ)

ˆ τ

TD

∑

l∈M

γl,η(h,s)
pl,i(τ − s)ph,l(s)

ph,i(τ)
ds

+
1

τ

∑

h,i,j∈M

πhph,i(τ)pi,j(τ)

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s)
pl,j(2τ − s)pi,l(s− τ)

pi,j(τ)
ds

=
1

τ

∑

h,i,j∈M

πhpi,j(τ)

ˆ τ

TD

∑

l∈M

γl,η(h,s)pl,i(τ − s)ph,l(s)ds

+
1

τ

∑

h,i,j∈M

πhph,i(τ)

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s)pl,j(2τ − s)pi,l(s− τ)ds

=
1

τ

∑

h∈M

πh

ˆ τ

TD

∑

l∈M

γl,η(h,s)ph,l(s)
∑

i∈M

pl,i(τ − s)
∑

j∈M

pi,j(τ)ds

+
1

τ

∑

h∈M

πh

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s)
∑

i∈M

ph,i(τ)pi,l(s− τ)
∑

j∈M

pl,j(2τ − s)ds. (5.45)

Note that
∑

j∈M pi,j(t) = 1, t ≥ 0, for all i ∈ M. We use this fact to obtain
∑

j∈M pi,j(τ) =

1,
∑

i∈M pl,i(τ − s) = 1, and
∑

j∈M pl,j(2τ − s) = 1 in (5.45). Furthermore, note that

∑

i∈M ph,i(τ)pi,l(s− τ) = ph,l(s), for all h, l ∈ M. Therefore, it follows from (5.45) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds =
1

τ

∑

h∈M

πh

ˆ τ

TD

∑

l∈M

γl,η(h,s)ph,l(s)ds

+
1

τ

∑

h∈M

πh

ˆ τ+TD

τ

∑

l∈M

γl,η(h,s)ph,l(s)ds

=
1

τ

∑

h∈M

πh

ˆ τ+TD

TD

∑

l∈M

γl,η(h,s)ph,l(s)ds. (5.46)

Case 2) We now consider the case where TD > τ and compute the limit given by

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds. (5.47)

Note that in this case, the information delay is larger than the mode sampling interval,

and hence the kth sampled mode data r(kτ) becomes available for control purposes after
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time (k + 1)τ . Let

k , max{k ∈ N : kτ ≤ TD}. (5.48)

Note that the kth sampled mode data r(kτ) becomes available for control purposes before

time (k + k + 1)τ . Now, for given g, h, i, j ∈ M, let {Ng,h,i,j(t) ∈ N0}t≥TD
be the counting

process defined by

Ng,h,i,j(t) =

N(t)
∑

k=1

1[r((k−1)τ)=g,r((k−1+k)τ)=h,r((k+k)τ)=i,r((k+k+1)τ)=j], t ≥ TD. (5.49)

Note that for all g, h, i, j ∈ M, the counting process {Ng,h,i,j(t) ∈ N0}t≥TD
is a stochastic

process that depends on the mode signal {r(t) ∈ M}t≥0. Furthermore, note that

∑

g,h,i,j∈M

Ng,h,i,j(t) = N(t), t ≥ TD. (5.50)

Now, for all g, h, i, j ∈ M, we define the sequence of indices {kg,h,i,jn ∈ N}n∈N by

kg,h,i,jn = min{k ∈ N : Ng,h,i,j(kτ + TD) = n}, n ∈ N. (5.51)

Now, note that r((kg,h,i,jn − 1)τ) = σ((kg,h,i,jn − 1+ k)τ −TD) = g, r((kg,h,i,jn − 1+ k)τ) = h,

r((kg,h,i,jn + k)τ) = i, and r((kg,h,i,jn + k + 1)τ) = j, n ∈ N, g, h, i, j ∈ M. Furthermore,

note that σ(s− TD) = r((kg,h,i,jn − 1)τ) = g, for s ∈ [(kg,h,i,jn − 1)τ + TD, k
g,h,i,j
n τ + TD). It

follows from (5.9) that

ρ(s) = η(g, s− (kg,h,i,jn − 1)τ), s ∈ [(kg,h,i,jn − 1)τ + TD, k
g,h,i,j
n τ + TD). (5.52)
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As a consequence, it follows from (5.19)–(5.51) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

= lim
t→∞

1

t

∑

g,h,i,j∈M

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),ρ(s)ds

= lim
t→∞

1

t

∑

g,h,i,j∈M

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds. (5.53)

We now multiply the integral in the right hand side of (5.53) by
N(t)
N(t)

Ng,h,i,j(t)
Ng,h,i,j(t)

to obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

= lim
t→∞

N(t)

t

∑

g,h,i,j∈M

(Ng,h,i,j(t)

N(t)

· 1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds
)

= lim
t→∞

N(t)

t

∑

g,h,i,j∈M

(

lim
t→∞

Ng,h,i,j(t)

N(t)

· lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds
)

. (5.54)

We now evaluate limt→∞
Ng,h,i,j(t)

N(t) in (5.54). The counting process Ng,h,i,j(t) denotes the

number of time instants k ∈ {1, 2, . . . , N(t)} such that r((k−1)τ) = g, r((k−1+k)τ) = h,

r((k + k)τ) = i, and r((k + k + 1)τ) = j. Note that N(t) =
∑

g,h,i,j∈MNg,h,i,j(t). We use

the strong law of large numbers [86,87] for discrete-time Markov chain {r(kτ) ∈ M}k∈N0

and obtain

lim
t→∞

Ng,h,i,j(t)

N(t)
= πgpg,h(kτ)ph,i(τ)pi,j(τ), (5.55)

where πg > 0 is the stationary probability distribution for state g ∈ M. Moreover, ph,i(kτ),

ph,i(τ) and pi,j(τ) are transition probabilities characterized in (5.4).
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Next, our goal is to compute the limit

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds. (5.56)

Note that by the definition (5.48)

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds

=

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds+

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds.

(5.57)

Now let

yg,h,i,jn ,

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds, n ∈ N, g, h, i, j ∈ M, (5.58)

zg,h,i,jn ,

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds, n ∈ N, g, h, i, j ∈ M. (5.59)

Note that by definition (5.51), the mode signal takes the values g and i at time instants

(kg,h,i,jn − 1 + k)τ and (kg,h,i,jn + k̄)τ , respectively, for all n ∈ N. The value of the mode

signal during the interval
(
(kg,h,i,jn − 1 + k)τ, (kg,h,i,jn + k̄)τ

)
may differ for each n ∈ N.

However, the probability of the mode taking the value l ∈ M at time (kg,h,i,jn −1+k)τ + s,

where s ∈ (0, τ), does not depend on n ∈ N. Note that the integration in (5.58) is over the

interval [(kg,h,i,jn − 1)τ + TD, (k
g,h,i,j
n + k̄)τ), where (kg,h,i,jn − 1)τ + TD > (kg,h,i,jn − 1+ k)τ .

Hence, for given g, h, i, j ∈ M, the random variables yg,h,i,jn , n ∈ N, are independent and

distributed identically. A similar argument can be used to show that for given g, h, i, j ∈

M, the random variables zg,h,i,jn , n ∈ N, are also independent and distributed identically.

Now, it follows from (5.58) that

E[yg,h,i,jn ] =
∞∑

k=1

E[

ˆ (kg,h,i,jn +k)τ

(kg,h,i,jn −1)τ+TD

γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds|kg,h,i,jn = k]P[kg,h,i,jn = k]

=
∞∑

k=1

E[

ˆ (k+k)τ

(k−1)τ+TD

γr(s),η(g,s−(k−1)τ)ds|G]P[kg,h,i,jn = k], (5.60)
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where

G , {ω ∈ Ω : r(k−1)τ (ω) = g, r(k−1+k)τ (ω) = h, r(k+k)τ (ω) = i, r(k+k+1)τ (ω) = j}. (5.61)

We set t1 , (k − 1)τ + TD, t2 , (k + k)τ , φr(s)(s) , γr(s),η(g,s−(k−1)τ), s ∈ [t1, t2), and

employ the result presented in Lemma 5.1 to obtain

E[yg,h,i,jn ] =
∞∑

k=1

1

P[G]

ˆ (k+k)τ

(k−1)τ+TD

∑

l∈M

γl,η(g,s−(k−1)τ)P[G ∩ Fl(s)]dsP[k
g,h,i,j
n = k], (5.62)

where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k − 1)τ + TD, (k + k)τ). Note that

G = Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ), (5.63)

and hence

P[G ∩ Fl(s)]

P[G]

=
P[Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ) ∩ Fl(s)]

Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ)

=
P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fl(s)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

· P[Fl(s)|Fh((k − 1 + k)τ)]P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

=
P[Fi((k + k)τ)|Fl(s)]P[Fl(s)|Fh((k − 1 + k)τ)]

P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

=
pl,i((k + k)τ − s)ph,l(s− (k − 1 + k)τ)

ph,i(τ)
, s ∈ [(k − 1)τ + TD, (k + k)τ), (5.64)

where ph,i(τ) is given by (5.4). We substitute (5.64) into (5.62) and set s̃ , s − (k − 1)τ

to arrive at

E[yg,h,i,jn ] =
∞∑

k=1

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s̃)
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃P[kg,h,i,jn = k]

=

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s̃)
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃

∞∑

k=1

P[kg,h,i,jn = k]

=

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s̃)
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃, n ∈ N. (5.65)
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On the other hand it follows from (5.59) that

E[zg,h,i,jn ] =
∞∑

k=1

E[

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn +k)τ
γ
r(s),η(g,s−(kg,h,i,jn −1)τ)

ds|kg,h,i,jn = k]P[kg,h,i,jn = k]

=
∞∑

k=1

E[

ˆ kτ+TD

(k+k)τ
γr(s),η(g,s−(k−1)τ)ds|G]P[kg,h,i,jn = k], (5.66)

where G is given by (5.61). We now set t1 , (k + k)τ , t2 , kτ + TD, φr(s)(s) ,

γr(s),η(g,s−(k−1)τ), s ∈ [t1, t2), and employ the result presented in Lemma 5.1 to obtain

E[zg,h,i,jn ] =
∞∑

k=1

1

P[G]

ˆ kτ+TD

(k+k)τ

∑

l∈M

γl,η(g,s−(k−1)τ)P[G ∩ Fl(s)]dsP[k
g,h,i,j
n = k]. (5.67)

where Fl(s) , {ω ∈ Ω : rs(ω) = l}, s ∈ [(k + k)τ, kτ + TD). Note that

P[G ∩ Fl(s)]

P[G]

=
P[Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ) ∩ Fl(s)]

Fg((k − 1)τ) ∩ Fh((k − 1 + k)τ) ∩ Fi((k + k)τ) ∩ Fj((k + k + 1)τ)

=
P[Fj((k + k + 1)τ)|Fl(s)]P[Fl(s)|Fi((k + k)τ)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]

· P[Fi((k + k)τ)|Fh((k − 1 + k)τ)]P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

P[Fh((k − 1 + k)τ)|Fg((k − 1)τ)]P[Fg((k − 1)τ)]

=
P[Fj((k + k + 1)τ)|Fl(s)]P[Fl(s)|Fi((k + k)τ)]

P[Fj((k + k + 1)τ)|Fi((k + k)τ)]

=
pl,j((k + k + 1)τ − s)pi,l(s− (k + k)τ)

pi,j(τ)
, s ∈ [(k + k)τ, kτ + TD). (5.68)

We now use (5.68) and set s̃ , s− (k − 1)τ in (5.39) to arrive at

E[zg,h,i,jn ] =
∞∑

k=1

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s̃)
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃P[kg,h,i,jn = k]

=

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s̃)
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃

∞∑

k=1

P[kg,h,i,jn = k]

=

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s̃)
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃, n ∈ N. (5.69)

Note that limt→∞Ng,h,i,j(t) = ∞, almost surely. Consequently, it follows from the strong
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law of large numbers and (5.37) and (5.69) that

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

yg,h,i,jn =

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s̃)
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃,

(5.70)

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

zg,h,i,jn =

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s̃)
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃.

(5.71)

It then follows from (5.30)–(5.32), (5.70), and (5.71) that

lim
t→∞

1

Ng,h,i,j(t)

Ng,h,i,j(t)
∑

n=1

ˆ k
g,h,i,j
n τ+TD

(kg,h,i,jn −1)τ+TD

γr(s),ρ(s)ds

=

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s̃)
pl,i((k + 1)τ − s̃)ph,l(s̃− kτ)

ph,i(τ)
ds̃

+

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s̃)
pl,j((k + 2)τ − s̃)pi,l(s̃− τ − kτ)

pi,j(τ)
ds̃. (5.72)

Finally, we substitute the limits evaluated in (5.28), (5.55), and (5.72) into (5.54), and
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obtain

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

=
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)pi,j(τ)

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s)
pl,i((k + 1)τ − s)ph,l(s− kτ)

ph,i(τ)
ds

+
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)pi,j(τ)

·
ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s)
pl,j((k + 2)τ − s)pi,l(s− τ − kτ)

pi,j(τ)
ds

=
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)pi,j(τ)

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s)pl,i((k + 1)τ − s)ph,l(s− kτ)ds

+
1

τ

∑

g,h,i,j∈M

πgpg,h(kτ)ph,i(τ)

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s)pl,j((k + 2)τ − s)pi,l(s− τ − kτ)ds

=
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

( ∑

l∈M

γl,η(g,s)

·
∑

h∈M

pg,h(kτ)ph,l(s− kτ)
∑

i∈M

pl,i((k + 1)τ − s)
∑

j∈M

pi,j(τ)
)

ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

( ∑

l∈M

γl,η(g,s)
∑

h∈M

pg,h(kτ)

·
∑

i∈M

ph,i(τ)pi,l(s− τ − kτ)
∑

j∈M

pl,j((k + 2)τ − s)
)

ds. (5.73)

By using the fact that
∑

j∈M pi,j(t) = 1, t ≥ 0, for all i ∈ M, we obtain
∑

j∈M pi,j(τ) = 1,

∑

i∈M pl,i((k + 1)τ − s) = 1, and
∑

j∈M pl,j((k + 2)τ − s) = 1 in (5.73). Note also that

∑

h∈M pg,h(kτ)ph,l(s − kτ) = pg,l(s), for all g, l ∈ M. Moreover,
∑

i∈M ph,i(τ)pi,l(s − τ −

kτ) = ph,l(s− kτ), for all h, l ∈ M. Therefore, it follows from (5.73) that

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds

=
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s)pg,l(s)ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s)
∑

h∈M

pg,h(kτ)ph,l(s− kτ)ds. (5.74)
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Now note that
∑

h∈M pg,h(kτ)ph,l(s− kτ) = pg,l(s), for all g, l ∈ M. As a consequence,

lim
t→∞

1

t

N(t)
∑

k=1

ˆ kτ+TD

(k−1)τ+TD

γr(s),ρ(s)ds =
1

τ

∑

g∈M

πg

ˆ (k+1)τ

TD

∑

l∈M

γl,η(g,s)pg,l(s)ds

+
1

τ

∑

g∈M

πg

ˆ τ+TD

(k+1)τ

∑

l∈M

γl,η(g,s)pg,l(s)ds

=
1

τ

∑

g∈M

πg

ˆ τ+TD

TD

∑

l∈M

γl,η(g,s)pg,l(s)ds. (5.75)

We evaluated the limit limt→∞
1
t

∑N(t)
k=1

´ kτ+TD

(k−1)τ+TD
γr(s),ρ(s)ds for cases where TD ≤ τ and

TD > τ . By changing the variables for sums in (5.46) and (5.75), we can show for both

cases that the limit is given by 1
τ

∑

i∈M πi
´ τ+TD

TD

∑

j∈M γj,η(i,s)pi,j(s)ds. Consequently, it

follows from (5.19) that for all τ > 0 and TD > 0,

lim
t→∞

1

t

ˆ t

0
γr(s),σ(s−TD)ds =

1

τ

∑

i∈M

πi

ˆ τ+TD

TD

∑

j∈M

γj,η(i,s)pi,j(s)ds

=
1

τ

∑

i,j∈M

πi

ˆ τ+TD

TD

γj,η(i,s)pi,j(s)ds, (5.76)

which completes the proof. �

Lemma 5.2 provides a strong law of large numbers for the bivariate stochastic process

{(r(t), ρ(t))}t≥0. The result presented in Lemma 5.2 is crucial for obtaining the main re-

sults of this study. Specifically, the integral expression obtained in (5.12) for the long-run

average of the piecewise-constant stochastic process {γr(t),ρ(t)}t≥0 will be used in Sec-

tion 5.5.

5.5 Sufficient Conditions of Almost Sure Asymptotic Stabiliza-

tion

In this section we provide sufficient conditions under which our proposed control law

(5.11) achieves almost sure asymptotic stabilization of the switched linear stochastic sys-

tem (3.57).

Theorem 5.1. Consider the switched linear stochastic system (3.57) with mode sampling

period τ > 0 and sampled mode information constant time delay TD > 0. If there exist
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P > 0 and scalars ζi ∈ R, i ∈ M, such that

0 ≥ AT
i P + PAi +DT

i PDi − 2PBiB
T
i P − ζiP, (5.77)

for i ∈ M, and

1

τ

∑

i,j∈M

πi

ˆ τ+TD

TD

γj,η(i,s)pi,j(s)ds−
∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
< 0, (5.78)

where

γi,j ,







ζj , if i = j,

ζi +
2λmax(PBiB

T
i P )

λmin(P ) − λmin(P (BjB
T
i +BiB

T
j )P )

λmax(P ) , if i 6= j,

(5.79)

then the feedback control law (5.11) with the feedback gain matrices given by

Ki = −BT
i P, i ∈ M, (5.80)

guarantees that the zero solution x(t) ≡ 0 of the closed-loop system (3.57) and (5.11) is

asymptotically stable almost surely.

For proving Theorem 5.1 we employ the strong law of large numbers developed in

Lemma 5.2, and utilize a quadratic Lyapunov approach similar to the one used in Chap-

ters 3 and 4.

Proof. The closed-loop system (3.57) under the control law (5.11) is given by the

multi-dimensional Ito stochastic differential equation

dx(t) = (Ar(t) +Br(t)Kρ(t))x(t)dt+Dr(t)x(t)dW (t),

for t ≥ 0. First, we define V (x) , xTPx and consider the function lnV (x). Since V (·) is

a positive-definite function, lnV (x) is well-defined for non-zero values of the state. Using
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Ito formula and (5.80), we obtain

lnV (x(t))

= lnV (x0) +

ˆ t

0

1

V (x(s))
xT(s)

(

AT
r(s)P + PAr(s) − PBρ(s)B

T
r(s)P − PBr(s)B

T
ρ(s)P

+DT
r(s)PDr(s)

)

x(s)ds−
ˆ t

0

1

2V 2(x(s))
(2xT(s)PDr(s)x(s))

2ds+ L(t), (5.81)

where L(t) ,
´ t

0
1

V (x(s))2x
T(s)PDr(s)x(s)dW (s). Noting that

2xT(s)PDr(s)x(s) ≥
λmin(D

T
r(s)P + PDr(s))

λmax(P )
xT(s)Px(s), (5.82)

it follows from (5.77), (5.79), and (5.81) that

lnV (x(t)) ≤ lnV (x0) +

ˆ t

0
γr(s),ρ(s)ds−

ˆ t

0

λ2min(D
T
r(s)P + PDr(s))

2λ2max(P )
ds+ L(t). (5.83)

We now apply the strong law of large numbers presented in Lemma 5.2 to obtain

lim
t→∞

1

t

ˆ t

0
γr(s),ρ(s)ds =

1

τ

∑

i,j∈M

πi

ˆ τ+TD

TD

γj,η(i,s)pi,j(s)ds, (5.84)

almost surely. In addition, by the strong law of large numbers for continuous-time, finite-

state, irreducible Markov chains [86,87],

lim
t→∞

1

t

ˆ t

0
−
λ2min(D

T
r(s)P + PDr(s))

2λ2max(P )
ds = −

∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )
, (5.85)

almost surely. Furthermore, note that the Ito integral L(t) in inequality (5.81) is a local

martingale with quadratic variation given by

[L]t =

ˆ t

0
(

1

V (x(s))
2xT(s)PDr(s)x(s))

2ds

≤
ˆ t

0

λ2max(D
T
r(s)P + PDr(s))

λ2min(P )
ds

≤ maxi∈M λ2max(D
T
i P + PDi)

λ2min(P )
t, (5.86)

so that limt→∞
1
t
[L]t < ∞. Hence, by employing the same approach presented in [14,49,
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51], it follows from the strong law of large numbers for local martingales that

lim
t→∞

1

t
L(t) = 0, (5.87)

almost surely. Finally, using (5.78), (5.83), (5.84), (5.85), and (5.87), we arrive at

lim sup
t→∞

1

t
lnV (x(t)) ≤ 1

τ

∑

i,j∈M

πi

ˆ τ+TD

TD

γj,η(i,s)pi,j(s)ds−
∑

i∈M

πi
λ2min(D

T
i P + PDi)

2λ2max(P )

< 0. (5.88)

Hence, limt→∞ lnV (x(t)) = −∞ almost surely; moreover, P[limt→∞ V (x(t)) = 0] = 1.

Therefore, the zero solution x(t) ≡ 0 of the closed-loop system (3.57), (5.11) is asymptot-

ically stable almost surely. �

The conditions of Theorem 5.1 reflect the effect of the mode sampling period τ > 0 and

the sampled mode information delay TD > 0 on the stabilization. Note that the subsystem

dynamics as well as the mode switching frequency also affect the stabilization.

Sufficient conditions of almost sure asymptotic stabilization presented in Theorem 5.1

are obtained through a quadratic Lyapunov function approach. Specifically, we consider

the Lyapunov function candidate V (x(t)) , xT (t)Px(t). The condition (5.77) guaran-

tees an upper-bound on the stochastic Lyapunov derivative. Namely, under the condition

(5.77), we have

LV (x(t)) , xT (t)(AT
r(t)P + PAr(t) +DT

r(t)PDr(t) − PBρ(t)B
T
r(t)P − PBr(t)B

T
ρ(t)P )x(t)

≤ γr(t),ρ(t)V (x(t)), t ≥ 0, (5.89)

where γi,j ∈ R, i, j ∈ M, are given in (5.79). On the other hand, the condition (5.78)

characterizes the requirement on the long run average of γr(t),ρ(t), which we obtain through

the strong law of large numbers presented in Lemma 5.2. Note that we do not require

γi,j < 0, for all i, j ∈ M. In fact, as long as the condition (5.78) is satisfied, almost

sure asymptotic stability of the closed-loop system is guaranteed even if γi,j > 0 for some

i, j ∈ M.

The control framework developed in this study is based on a probability-based feed-
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back gain scheduling. When a mode sample data becomes available to the controller after

a delay, the feedback gain is switched according to the conditional probability distribution

of the active mode given the available sampled mode data. This method is in contrast with

the approach presented in Chapter 4, where the same feedback gain is maintained until

the next mode sample data becomes available. The effect of the proposed feedback gain

scheduling on the stabilization is characterized in the condition (5.78) by η(i, ·), i ∈ M.

Note that η(i, ·), i ∈ M, (defined in (5.10)) are deterministic functions of time that can

be computed easily for a given generator matrix Q ∈ R
M×M .

In the development of our control framework above, we have considered the case

where the mode information delay is constant. However, in certain applications, the sam-

pled mode information delay may vary for every mode sample. It is important to note

that our proposed control law (5.11) can still be employed for almost sure asymptotic

stabilization even if each mode sample is subject to a different time delay. Let Tk > 0

denote the time delay after which the kth mode sample data r(kτ) become available for

control purposes. If there exists a positive constant TD ≤ τ such that Tk ≤ TD, k ∈ N0,

sampled mode data reach the controller in order; furthermore, the controller has access to

the mode sample r(kτ) at time kτ + TD. In this case, as long as the conditions (5.77) and

(5.78) are satisfied for the time delay upper-bound constant TD, stabilization of the zero

solution is guaranteed by our proposed control law (5.11).

5.6 Illustrative Numerical Example

In this section we present a numerical example to demonstrate the utility of our pro-

posed framework. Specifically, consider the 2-dimensional continuous-time switched lin-

ear stochastic system (3.57) composed of M = 3 modes characterized by the subsystem
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matrices

A1 =






0.5 0.1

−5 0.5




, B1 =






−2

2




 ,

A2 =






0.25 0

0.25 0.25




, B2 =






0

0




 ,

A3 =






1 −5.5

0.75 0.5




, B3 =






2

−2




 ,

and D1 = D2 = D3 = I2. The mode signal {r(t) ∈ M , {1, 2, 3}}t≥0 of the switched

system is assumed to be an irreducible Markov chain with the generator matrix

Q =









−1 1 0

4 −5 1

1 0 −1









, (5.90)

and the stationary probability distribution given by π1 = 5
7 , π2 = π3 = 1

7 . Moreover, the

mode signal {r(t) ∈ M}t≥0 is assumed to be sampled periodically with the mode sampling

period τ = 0.5. In addition, the obtained mode samples are assumed to be available to

controller after a constant time delay TD = 0.4.

Note that the positive-definite matrix P = I2 and the scalars ζ1 = −2.9, ζ2 = 1.75,

ζ3 = −2.2 satisfy the conditions (5.77) and (5.78). As a consequence, it follows that the

control law (5.11) guarantees almost sure asymptotic stabilization of the zero solution

x(t) ≡ 0 of the switched stochastic system (3.57).

The sample paths of x(t) and u(t) obtained with the initial conditions x(0) = [1, 1]T

and r(0) = 3 are shown in Figures 5.1 and 5.2, respectively. Moreover, Figure 5.3 shows

the sample paths of the actual mode signal r(t) and the feedback gain switching signal

ρ(t). Note that the control input trajectory is subject to jumps at feedback gain switching

instants, as the feedback gain switching signal ρ(t) changes its value.

Both the mode sampling period τ > 0 and the mode sample information delay TD > 0

have effects on the stabilization. The whole dark region in Figure 5.4 shows the nu-

merically obtained values of the constants τ and TD that satisfy the condition (5.78) of
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Figure 5.4: Stabilization region with respect to τ and TD

Theorem 5.1 for the positive-definite matrix P = I2 and the scalars ζ1 = −2.9, ζ2 = 1.75,

ζ3 = −2.2. Hence, our proposed control law (5.11) based on the feedback gain schedul-

ing framework developed in Section 5.4 is guaranteed to achieve almost sure asymptotic

stabilization for any values of τ and TD selected from the whole dark region. On the other

hand, the smaller region denoted by R in Figure 5.4 represents the values of τ and TD such

that the control law given in (4.2) guarantees the stabilization according to Theorem 4.1

in Chapter 4. This indicates that in comparison to the control law (4.2), our new control

law (5.11) that relies on the probability-based feedback gain scheduling framework offer

more relaxed stabilization conditions with respect to the mode sampling period τ > 0 and

the mode sample information delay TD > 0 for this example.

The sample paths of x(t), u(t), r(t) and ρ(t) shown in Figures 5.1–5.3 are obtained for

the case where the mode sampling period is τ = 0.5 and the mode sample information
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delay is TD = 0.4. Note that the point (τ = 0.5, TD = 0.4) lies only in the stabilization

region associated with the control law (5.11) that relies on the probability-based feedback

gain scheduling framework (see Figure 5.4).

5.7 Conclusion

Feedback control of switched linear stochastic systems under sampled and delayed mode

information have been investigated. A new feedback gain scheduling method has been

developed. This method is based on selecting the feedback gain associated with the mode

that has the highest conditional probability of being active given the available sampled and

delayed mode data. Sufficient conditions of almost sure asymptotic stabilization under the

proposed control law have been obtained by employing a quadratic Lyapunov approach.

In Chapters 3–5, sampled-mode stabilization of continuous-time switched stochastic

systems was explored. In Chapters 6, 7, and 9 below, we direct our attention to discrete-

time switched stochastic systems.
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Chapter 6

Sampled-Mode-Dependent

Time-Varying Control Strategy for

Stabilizing Discrete-Time Switched

Stochastic Systems

6.1 Introduction

In Chapters 3–5, we explored feedback control of continuous-time switched stochastic sys-

tems that incorporate a continuous-time mode signal. Under the assumption that the

mode of the switched system can be periodically observed, we proposed stabilizing feed-

back control laws that utilize the available sampled mode information.

In this chapter, our goal is to investigate the feedback control problem for discrete-

time switched linear stochastic systems. Discrete-time switched linear stochastic systems

are composed of a number of deterministic subsystems that are described by difference

equations. The transitions between the subsystems (modes) of a discrete-time switched

stochastic system is managed by a discrete-time stochastic mode signal. In this chapter,

we use a finite-state discrete-time Markov chain (see Section 2.3.2) to model the mode

signal. We consider the feedback control problem for the case where the mode signal is

observed periodically. Therefore, the feedback control problem we explore in this chapter

can be considered as a discrete-time analogue of the problem discussed in Chapter 3. Note

that the feedback gain of the control law developed in Chapter 3, is set to a constant gain
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associated with the last observed mode. Furthermore, the same constant feedback gain is

maintained between consecutive mode observation instants. The control law developed

in Chapter 3, guarantee stabilization when the sampled mode information is an accurate

representation of the actual operation mode, which is the case when transitions between

modes occur rarely, and the operation mode of the system is frequently observed. In

this chapter, we develop a time-varying control strategy that guarantees second-moment

asymptotic stabilization of a discrete-time switched linear stochastic dynamical system.

In our proposed control law we utilize sampled-mode-dependent feedback gains that vary

during the intervals between consecutive mode observation instants. Note that these feed-

back gains can be designed for each time step to effectively compensate the uncertainty

of the operation mode during large mode observation intervals. Therefore, our present

control framework allows us to relax the tight requirements characterized in Chapter 3

on the mode observation period. Note that the control framework that we propose in this

chapter and the control framework that we developed in Chapter 5 are similar in the sense

that feedback gains in both frameworks are allowed to vary between the time instants at

which consecutive mode observations become available for control purposes.

In this chapter, to obtain conditions under which our proposed control framework

guarantees stabilization, we first investigate the properties of a bivariate process com-

posed of the actual mode and its sampled version. We also observe that the dynamics

that govern the evolution of the state covariance is periodic due to periodic mode obser-

vations. We then apply the discrete-time analogue of Floquet theory (see [109–111]), to

obtain necessary and sufficient conditions of second-moment asymptotic stability of the

zero solution. Furthermore, by employing Lyapunov-like functions with periodic coef-

ficients, we also obtain alternative stabilization conditions, which we use for designing

feedback gains.

The contents of this chapter are as follows. In Section 6.2, we propose our feedback

control framework for stabilizing discrete-time switched stochastic systems with periodic

mode observations. Then in Section 6.3, we present conditions under which our pro-

posed control law guarantees second-moment asymptotic stabilization. In Section 6.4, we

present a numerical example. Finally, in Section 6.5, we conclude the chapter.
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Figure 6.1: Mode transition diagram for {r(k) ∈ M , {1, 2}}k∈N0

6.2 Feedback Control of Switched Stochastic Systems with Pe-

riodically Observed Active Operation Mode

In this section, we propose a feedback control framework for stabilizing a switched stochas-

tic system by using only the periodically obtained mode information.

6.2.1 Mathematical Model of Discrete-Time Switched Linear Stochastic Sys-

tems

We consider the discrete-time switched linear stochastic dynamical system with M ∈ N

number of modes given by

x(k + 1) = Ar(k)x(k) +Br(k)u(k), k ∈ N0, (6.1)

with the initial condition x(0) = x0, where x(k) ∈ R
n and u(k) ∈ R

m respectively denote

the state vector and the control input; furthermore, Ai ∈ R
n×n, Bi ∈ R

n×m, i ∈ M ,

{1, 2, . . . ,M}, are the subsystem matrices. The mode signal {r(k) ∈ M}k∈N0 is assumed

to be an Fk-adapted,M -state discrete-time Markov chain characterized by the initial mode

distribution, ν : M → [0, 1] and the transition probability matrix P ∈ R
M×M with entries

pi,j ∈ M, i, j ∈ M (see Section 2.3.2 for the definition and properties of discrete-time

Markov chains). Let p
(l)
i,j denote the (i, j)th entry of the matrix P l. Note that p

(l)
i,j ∈ [0, 1],

i, j ∈ M, characterize l-step transition probabilities between the modes of the switched

system, that is,

p
(l)
i,j = P[r(k + l) = j|r(k) = i], l ∈ N0, i, j ∈ M, (6.2)

with p
(0)
i,i = 1, i ∈ M, p

(0)
i,j = 0, i 6= j. Moreover, p

(1)
i,j = pi,j , i, j ∈ M.

We use transition diagrams to graphically represent possible transitions between the

operation modes of a switched system. A mode transition diagram for a switched system
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Figure 6.2: Actual mode signal r(k) and its sampled version σ(k)

with M = 2 modes is shown in Figure 6.1. The labels on the directed edges indicate

probability of associated transitions. For example, Figure 6.1 indicates that probability of

transition from mode 1 to mode 2 is given by p1,2 = 0.9.

6.2.2 Control under Periodic Observations of the Active Operation Mode

Our goal in this section is to investigate a feedback control problem for the case where

operation mode of the switched stochastic system (6.1) is observed (sampled) periodically

at time instants 0, τ, 2τ, . . ., where τ ∈ N denotes the mode observation period.

The sampled mode information that is available to the controller can be represented

by the discrete-time stochastic process {σ(k) ∈ M}k∈N0 defined by

σ(k) = r(nτ), k ∈ {nτ, nτ + 1, . . . (n+ 1)τ − 1}, (6.3)

for n ∈ N0.

In Figure 6.2, we show sample paths of the actual mode r(·) and the corresponding

sampled mode σ(·) for a switched stochastic system with M = 2 modes. In this example,

active mode is observed at every τ = 3 steps. Note that at mode observation instants,

the operation mode of the switched system is known by the controller with certainty.

However, at the other time instants, the actual mode signal may change its value according

to transition probabilities pi,j , i, j ∈ M, and hence, sampled mode may differ from the
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actual mode.

Remark 6.1. Note that when the operation mode rarely switches and the mode obser-

vations are frequent, the sampled mode σ(·) is likely to be an accurate representation of

the actual mode r(·) of the switched system. Therefore, stabilization can be achieved by a

feedback control law of the form

u(k) = Kσ(k)x(k), k ∈ N0, (6.4)

where Ki ∈ R
m×n is a constant gain matrix designed for mode i ∈ M. In Chapter 3, we

employed continuous-time version of the control law (6.4), for stabilizing continuous-time

switched stochastic systems.

It is important to note that when the mode observation period τ ∈ N is large, the

sampled mode is likely to be a poor representation of the actual mode, and therefore, the

control law (6.4) may not suffice to stabilize the switched stochastic system. To illustrate

this issue, we consider l-step transition probabilities p
(l)
i,j ∈ [0, 1], i, j ∈ M , {1, 2}, for a

switched system with M = 2 modes. Operation mode of the switched system is assumed

to switch randomly according to transition probabilities given by the transition diagram

in Figure 6.1. Note that given the n-th sampled mode information σ(nτ) = r(nτ), the

probability of mode j being active at time nτ+l, is given by the l-step transition probability

p
(l)
σ(nτ),j . For example, consider the case where σ(nτ) = r(nτ) = 1, that is, at time k = nτ ,

the switched system is in mode 1. In this case p
(l)
1,1 and p

(l)
1,2, which are shown in Figure 6.3,

respectively denote probabilities of mode 1 and mode 2 being active l ∈ N0 steps after

the mode observation instant nτ . As shown in Figure 6.3, it is likely that mode 2 will

be active 1 step after the mode observation instant nτ . Note that this information is not

taken into account in the control law (6.4), and the feedback gain is set to K1 until the

next mode observation instant (n+ 1)τ . Therefore, the control performance may be poor,

as the feedback gain is kept constant at K1, when mode 2 is likely to be active.

In order to overcome the above-mentioned issue with the stabilization problem for

the case of large mode observation periods, we propose a sampled-mode-dependent time-
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Figure 6.3: Evolution of conditional mode transition probabilities over time

varying feedback control strategy. Specifically, we consider the control law

u(k) = Kσ(k)(k)x(k), k ∈ N0, (6.5)

where Ki(·) : N0 → R
m×n, i ∈ M, are τ -periodic matrix functions, that is, Ki(k + τ) =

Ki(k), k ∈ N0, i ∈ M. Note that with this new control framework, feedback gains

Ki(0),Ki(1), . . . ,Ki(τ − 1), can be designed effectively by utilizing the l-step conditional

transition probabilities p
(l)
i,j , j ∈ M.

6.3 Conditions for Second-Moment Asymptotic Stabilization

In this section, we obtain conditions under which the control law (6.5) guarantees second-

moment asymptotic stabilization of the switched linear stochastic system (6.1).

Note that the closed-loop system dynamics (6.1), (6.5) can be treated as a switched

stochastic system on its own with a bivariate mode signal {(r(k), σ(k)) ∈ M×M}k∈N0 . In

the following, we present some key results on the probabilistic dynamics of the bivariate

process {(r(k), σ(k)) ∈ M×M}k∈N0 .

It is important to note that for given î, ĵ, i, j ∈ M, the conditional probability P[
(
r(k+

1), σ(k + 1)
)
= (̂i, ĵ)|

(
r(k), σ(k)

)
= (i, j)] cannot be unambiguously defined in the case

where P[
(
r(k), σ(k)

)
= (i, j)] = 0 (Borel’s paradox, [93]). For example, at mode observa-

tion instants k ∈ {0, τ, 2τ, . . .}, we have P[
(
r(k), σ(k)

)
= (i, j)] = 0, when i 6= j. Further-
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more, depending on mode transition probabilities and the initial mode distribution, there

may be other time instants k such that P[
(
r(k), σ(k)

)
= (i, j)] = 0.

In Lemma 6.1 below, we show that under certain conditions on the mode transition

probabilities pi,j ∈ [0, 1], i, j ∈ M, and the initial mode distribution ν : M → [0, 1], there

exist τ -periodic functions γ(i,j),(̂i,ĵ) : N0 → [0, 1], i, j, î, ĵ ∈ M, such that

P[
(
r(k + 1), σ(k + 1)

)
= (̂i, ĵ)|

(
r(k), σ(k)

)
] = γ(r(k),σ(k)),(̂i,ĵ)(k), k ∈ N0. (6.6)

Note that the τ -periodicity of the functions γ(i,j),(̂i,ĵ)(·), i, j, î, ĵ ∈ M, and subsystem ma-

trices Ai +BiKj(·), i, j ∈ M, is crucial for obtaining our main stability results.

Lemma 6.1. Let γ(i,j),(̂i,ĵ) : N0 → [0, 1], i, j, î, ĵ ∈ M, be τ -periodic functions defined by

γ(i,j),(̂i,ĵ)(lτ + k) =







pi,̂i, if î = ĵ and p
(k)
j,i > 0,

0, otherwise,

(6.7)

for k = τ − 1, l ∈ N0, and

γ(i,j),(̂i,ĵ)(lτ + k) =







pi,̂i, if j = ĵ and p
(k)
j,i > 0,

0, otherwise,

(6.8)

for k ∈ {0, 1, . . . , τ − 2}, l ∈ N0. If pi,j > 0, i, j ∈ M, and νi > 0, i ∈ M, then it follows

that for i, j, î, ĵ ∈ M, and k ∈ N0 such that P[r(k) = i, σ(k) = j] = 0,

γ(i,j),(̂i,ĵ)(k) = 0, (6.9)

moreover,

P[r(k + 1) = î, σ(k + 1) = ĵ|
(
r(k), σ(k)

)
] = γ(r(k),σ(k)),(̂i,ĵ)(k), k ∈ N0. (6.10)

Proof. First, let {ρ(k) ∈ M×M}k∈N0 be a bivariate process defined by

ρ(k) , (r(k), σ(k)), k ∈ N0. (6.11)
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Furthermore, for all k ∈ {0, 1, . . . , τ − 1} define

N (k) , {(i, j) ∈ M×M : P[ρ(k) = (i, j)] > 0}. (6.12)

Let, N (k) ⊂ M×M denote the complement of the set N (k), that is,

N (k) , (M×M) \ N (k). (6.13)

Now, note that

P[ρ(lτ + k) = (i, j)] = P[r(lτ + k) = i, σ(lτ) = j]

= P[r(lτ + k) = i|σ(lτ) = j]P[σ(lτ) = j]

= p
(k)
j,i P[σ(lτ) = j], (6.14)

for k ∈ {0, 1, . . . , τ − 1}, l ∈ N0. By the assumption that pi,j ∈ (0, 1), i, j ∈ M, and

νi ∈ (0, 1), i ∈ M, we obtain P[σ(lτ) = j] > 0, l ∈ N0. Therefore, by (6.14), P[ρ(lτ + k) =

(i, j)] > 0 if and only if p
(k)
j,i > 0, and hence, it follows from (6.12) that

N (k) = {(i, j) ∈ M×M : p
(k)
j,i > 0}. (6.15)

By the definition of conditional probability of an event given a random variable [93,112],

it follows that

P[ρ(lτ + k + 1) = (̂i, ĵ)|ρ(lτ + k)]

=
∑

(i,j)∈N (k)

P[ρ(lτ + k + 1) = (̂i, ĵ)|ρ(lτ + k) = (i, j)]1[ρ(lτ+k)=(i,j)], (6.16)

for k ∈ {0, 1, . . . , τ−1}, l ∈ N0. Note that r(lτ+k+1) = σ(lτ+k+1) and P[r(lτ+k+1) =

î|r(lτ + k) = i] = pi,̂i for k = τ − 1, l ∈ N0, because at time instants 0, τ, 2τ, . . ., the mode
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is sampled. Hence, by (6.7) and (6.16), for k = τ − 1 and l ∈ N0,

∑

(i,j)∈N (k)

P[ρ(lτ + k + 1) = (̂i, ĵ)|ρ(lτ + k) = (i, j)]1[ρ(lτ+k)=(i,j)]

=







∑

(i,j)∈N (k) pi,̂i1[ρ(lτ+k)=(i,j)], if î = ĵ,

0, otherwise,

=
∑

(i,j)∈N (k)

γ(i,j),(̂i,ĵ)(lτ + k)1[ρ(lτ+k)=(i,j)]. (6.17)

Furthermore, since σ(lτ + k + 1) = σ(lτ + k), k ∈ {0, 1, . . . , τ − 2}, l ∈ N0, it follows from

(6.8) and (6.16) that for k ∈ {0, 1, . . . , τ − 2}, l ∈ N0.

∑

(i,j)∈N (k)

P[ρ(lτ + k + 1) = (̂i, ĵ)|ρ(lτ + k) = (i, j)]1[ρ(lτ+k)=(i,j)]

=







∑

(i,j)∈N (k) pi,̂i1[ρ(lτ+k)=(i,j)], if j = ĵ,

0, otherwise,

=
∑

(i,j)∈N (k)

γ(i,j),(̂i,ĵ)(lτ + k)1[ρ(lτ+k)=(i,j)]. (6.18)

Next, note that (6.7), (6.8), and (6.15) imply (6.9), that is, γ(i,j),(̂i,ĵ)(lτ + k) = 0 for

(i, j) ∈ N (k), k ∈ {0, 1, . . . , τ − 1}, l ∈ N0. Consequently,

∑

(i,j)∈N (k)

γ(i,j),(̂i,ĵ)(k)1[ρ(k)=(i,j)] = 0, k ∈ N0. (6.19)

Since N (k) ∪N (k) = M×M, it follows from (6.16)–(6.19) that

P[r(k + 1) = î, σ(k + 1) = ĵ|
(
r(k), σ(k)

)
] = P[ρ(k + 1) = (̂i, ĵ)|ρ(k)]

=
∑

(i,j)∈M×M

γ(i,j),(̂i,ĵ)(k)1[ρ(k)=(i,j)]

=
∑

i,j∈M

γ(i,j),(̂i,ĵ)(k)1[r(k)=i,σ(k)=j]

= γ(r(k),σ(k)),(̂i,ĵ)(k), k ∈ N0, (6.20)

which completes the proof. �
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Remark 6.2. Note that γ(i,j),(̂i,ĵ)(k), i, j, î, ĵ ∈ M, defined in (6.7), (6.8) cannot be consid-

ered as transition probabilities between the states of the bivariate process {(r(k), σ(k)) ∈

M×M}k∈N0 . Specifically, Lemma 6.1 shows that γ(i,j),(̂i,ĵ)(k) can only be considered as the

transition probability from state (i, j) to state (̂i, ĵ) of the bivariate process {(r(k), σ(k)) ∈

M×M}, if P[r(k) = i, σ(k) = j] 6= 0. On the other hand, when P[r(k) = i, σ(k) = j] = 0,

we have γ(i,j),(̂i,ĵ)(k) = 0, î, ĵ ∈ M.

In the following, we utilize the result presented in Lemma 6.1 to obtain necessary

and sufficient conditions for second-moment asymptotic stability of a class of switched

linear stochastic control systems (6.1), (6.5) with nonzero mode transition probabilities

and random initial mode. Specifically, we consider the case where the mode signal is

characterized by transition probabilities and initial distribution that satisfy pi,j > 0, i, j ∈

M, and vi > 0, i ∈ M, respectively.

Theorem 6.1. Consider the switched linear stochastic control system (6.1), (6.5) with a

mode signal characterized by transition probabilities and initial distribution that satisfy

pi,j > 0, i, j ∈ M, and νi > 0, i ∈ M, respectively. Let Λ : N0 → R
M2n2×M2n2

be a

τ -periodic matrix function given in block matrix form as

Λ(k) ,









Λ1,1(k) · · · Λ1,M2(k)

...
. . .

...

ΛM2,1(k) · · · ΛM2,M2(k)









, k ∈ N0, (6.21)

where Λ(̂i−1)M+ĵ,(i−1)M+j(k) , γ(i,j),(̂i,ĵ)(k)
(
Ai+BiKj(k)

)
⊗
(
Ai+BiKj(k)

)
for i, j, î, ĵ ∈

M and γ(i,j),(̂i,ĵ)(k) is given by (6.7) and (6.8). Furthermore, let

Φ , Λ(τ − 1)Λ(τ − 2) · · ·Λ(1)Λ(0). (6.22)

Then the zero solution x(k) ≡ 0 of the closed-loop system (6.1) and (6.5) is second-

moment asymptotically stable if and only if all eigenvalues of the matrix Φ ∈ R
M2n2×M2n2

are inside the unit circle of the complex plane.

The proof of Theorem 6.1 is based on stability analysis for a linear periodic system, the

states of which are closely related to the second moment E[‖x(k)‖2]. Specifically, by using
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an approach similar to the one employed in [58,113,114], we analyze the dynamics that

govern the evolution of the state covariance (given in vector form by E[x(k) ⊗ x(k)]). In

our analysis, the dynamics of the state covariance is affected by both the actual mode and

its sampled version.

Proof. First, define

y(k) , E[r̄(k)⊗ σ̄(k)⊗ x(k)⊗ x(k)], (6.23)

where r̄(·) : N0 → R
M , σ̄(·) : N0 → R

M are vector-functions given by

r̄i(k) , 1[r(k)=i], i ∈ M, k ∈ N0, (6.24)

σ̄i(k) , 1[σ(k)=i], i ∈ M, k ∈ N0. (6.25)

Our goal is to obtain a difference equation that characterizes the evolution of y(k). Now,

let Āi,j : N0 → R
n2×n2

, i, j ∈ M, be matrix functions defined by

Āi,j(k) ,
(
Ai +BiKj(k)

)
⊗
(
Ai +BiKj(k)

)
, k ∈ N0. (6.26)

Note that Āi,j(·), i, j ∈ M, are τ -periodic matrix functions, because Kj(·), j ∈ M, are

τ -periodic. Now, for each pair of modes î, ĵ ∈ M,

E[1[r(k+1)=î,σ(k+1)=ĵ]x(k + 1)⊗ x(k + 1)]

= E[1[r(k+1)=î,σ(k+1)=ĵ]

(
Ar(k) +Br(k)Kσ(k)(k)

)
x(k)⊗

(
Ar(k) +Br(k)Kσ(k)(k)

)
x(k)]

= E[1[r(k+1)=î,σ(k+1)=ĵ]Ār(k),σ(k)(k)
(
x(k)⊗ x(k)

)
]

= E[E[1[r(k+1)=î,σ(k+1)=ĵ]Ār(k),σ(k)(k)
(
x(k)⊗ x(k)

)
|Hk]], k ∈ N0, (6.27)

where Hk denotes the σ-algebra generated by the random variables x(k), r(k), and σ(k).

It follows from (6.27) that

E[1[r(k+1)=î,σ(k+1)=ĵ]x(k + 1)⊗ x(k + 1)]

= E[E[1[r(k+1)=î,σ(k+1)=ĵ]|Hk]Ār(k),σ(k)(k)
(
x(k)⊗ x(k)

)
], î, ĵ ∈ M, k ∈ N0. (6.28)
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Now, note that r(k + 1) = σ(k + 1), k ∈ {nτ − 1 : n ∈ N0}. Since {r(k) ∈ M}k∈N0 is a

Markov process, the random variables r(k+1) and σ(k+1) are independent of the random

variable x(k) given r(k) for k ∈ {nτ − 1 : n ∈ N0). On the other hand σ(k + 1) = σ(k) for

k ∈ N0 \ {nτ − 1 : n ∈ N0). Therefore, for k ∈ N0 \ {nτ − 1 : n ∈ N0), r(k+1) and σ(k+1)

are independent of the random variable x(k) given r(k) and σ(k). Consequently,

E[1[r(k+1)=î,σ(k+1)=ĵ]x(k + 1)⊗ x(k + 1)]

= E[E[1[r(k+1)=î,σ(k+1)=ĵ]|
(
r(k), σ(k)

)
]Ār(k),σ(k)(k)

(
x(k)⊗ x(k)

)
], î, ĵ ∈ M, (6.29)

for k ∈ N0. Now by Lemma 6.1,

E[1[r(k+1)=î,σ(k+1)=ĵ]x(k + 1)⊗ x(k + 1)]

= E[γ(r(k),σ(k)),(̂i,ĵ)(k)Ār(k),σ(k)(k)
(
x(k)⊗ x(k)

)
]

=
∑

i,j

γ(i,j),(̂i,ĵ)(k)Āi,j(k)E[1[r(k)=i,σ(k)=j]x(k)⊗ x(k)], î, ĵ ∈ M, k ∈ N0. (6.30)

It then follows from (6.23) and (6.30) that

y(k + 1) = Λ(k)y(k), k ∈ N0, (6.31)

where Λ(·) : N0 → R
M2n2×M2n2

defined in (6.21) is a τ -periodic matrix function. Note

that

y((l + 1)τ) = Φy(lτ), l ∈ N0, (6.32)

where Φ ∈ R
M2n2×M2n2

defined in (6.22) is in fact the monodromy matrix associated

with the discrete-time deterministic linear periodic system (6.31). Based on discrete-time

version of Floquet theory [111], we study asymptotic behavior of the solutions of (6.31)

through the associated monodromy matrix Φ. Specifically, limk→∞ y(k) = 0, if and only if

all eigenvalues of the monodromy matrix Φ are inside the unit circle of the complex plane.

Note that for x ∈ R
n, r̄, σ̄ ∈ R

M , such that r̄ 6= σ̄, we have Λ(0)E[r̄ ⊗ σ̄ ⊗ x⊗ x] = 0, and

hence ΦE[r̄ ⊗ σ̄ ⊗ x⊗ x] = 0. On the other hand, for x ∈ R
n, r̄, σ̄ ∈ R

M , such that r̄ = σ̄,

limk→∞Φk
E[r̄ ⊗ σ̄ ⊗ x ⊗ x] = 0 if all eigenvalues of the monodromy matrix Φ are inside
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the unit circle of the complex plane.

Now, as a consequence of (6.23), the zero solution is second-moment asymptotically

stable (i.e., limk→∞ E[‖x(k)‖2] = 0) if and only if limk→∞ y(k) = 0. Therefore, we have

limk→∞ E[‖x(k)‖2] = 0 if and only if all eigenvalues of the monodromy matrix Φ are inside

the unit circle of the complex plane. �

Theorem 6.1 shows that the stability of the zero solution of the closed-loop switched

stochastic control system (6.1), (6.5) can be deduced through the eigenvalues of the ma-

trix Φ ∈ R
M2n2×M2n2

(given in (6.22)), which depends not only on the mode transition

probabilities and subsystem dynamics but also on the mode observation period τ ∈ N.

Next, we present alternative stabilization conditions by considering quadratic Lya-

punov function with periodic coefficients that depend on both the actual mode signal

r(·) and its sampled version σ(·).

Theorem 6.2. Consider the switched linear stochastic control system (6.1), (6.5) with a

mode signal characterized by transition probabilities and initial distribution that satisfy

pi,j > 0, i, j ∈ M, and νi > 0, i ∈ M, respectively. If there exist τ -periodic matrix

functions Ri,j(·), Qi,j(·) > 0, i, j ∈ M, such that

0 =
∑

ĩ,j̃∈M

γ(i,j),(̃i,j̃)(k)Â
T
i,j(k)Rĩ,j̃(k + 1)Âi,j(k)

−Ri,j(k) +Qi,j(k), k ∈ {0, 1, . . . τ − 1}, i, j ∈ M, (6.33)

where Âi,j(k) , Ai + BiKj(k), and γ(i,j),(̃i,j̃)(k) is defined by (6.7), (6.8), then the zero

solution x(k) ≡ 0 of the closed-loop system (6.1), (6.5) is second-moment asymptotically

stable.

Proof. First, let V (x(k), k) , xT(k)Rr(k),σ(k)(k)x(k), k ∈ N0. We now show that the

Lyapunov function candidate decreases in expectation. It follows from (6.1) and (6.5)

that

E[V (x(k + 1), k + 1)]

= E[xT(k)ÂT
r(k),σ(k)(k)Rr(k+1),σ(k+1)(k + 1)Âr(k),σ(k)(k)x(k)],

= E[E[xT(k)ÂT
r(k),σ(k)(k)Rr(k+1),σ(k+1)(k + 1)Âr(k),σ(k)(k)x(k)|Hk]], (6.34)
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where Hk denotes the σ-algebra generated by the random variables x(k), r(k), and σ(k).

Note that the random variables x(k), r(k), and σ(k) are Hk-measurable, and hence, it

follows that

E[V (x(k + 1), k + 1)]

= E[xT(k)ÂT
r(k),σ(k)(k)E[Rr(k+1),σ(k+1)(k + 1)|Hk]Âr(k),σ(k)(k)x(k)]. (6.35)

Note also that E[(r(k+1), σ(k+1))|Hk] = E[(r(k+1), σ(k+1))|(r(k), σ(k))]. Consequently,

it follows from Lemma 6.1 that

E[Rr(k+1),σ(k+1)(k + 1)|Hk] = E[Rr(k+1),σ(k+1)(k + 1)|
(
r(k), σ(k)

)
]

=
∑

î,ĵ∈M

E[1[r(k+1)=î,σ(k+1)=ĵ]|
(
r(k), σ(k)

)
]Rî,ĵ(k + 1)

=
∑

î,ĵ∈M

P[r(k + 1) = î, σ(k + 1) = ĵ|
(
r(k), σ(k)

)
]Rî,ĵ(k + 1)

=
∑

î,ĵ∈M

γ(r(k),σ(k)),(̂i,ĵ)Rî,ĵ(k + 1), k ∈ N0. (6.36)

Now, by substituting (6.36) into (6.35), we obtain

E[V (x(k + 1), k + 1)]

= E[xT(k)
( ∑

î,ĵ∈M

γ(r(k),σ(k)),(̂i,ĵ)Â
T
r(k),σ(k)(k)Rî,ĵ(k + 1)Âr(k),σ(k)(k)

)
x(k)]. (6.37)

Moreover, as a consequence of (6.33),

E[V (x(k + 1), k + 1)]− E[V (x(k), k)] = −E[xT(k)Qr(k),σ(k)(k)x(k)]. (6.38)

It follows from the positive definiteness of the matrices Qr(k),σ(k)(k), k ∈ N0, that the se-

quence {E[V (x(k), k)]}k∈N0 is monotone decreasing with respect to time k. Furthermore,

V (x(k), k) is nonnegative for all k ∈ N0, and hence, E[V (x(k), k)] ≥ 0, k ∈ N0. It follows

from monotone convergence theorem that

lim
k→∞

E[V (x(k), k)] = 0. (6.39)

134



Now note that

E[‖x(k)‖2] ≤ rE[V (x(k), k)], k ∈ N0, (6.40)

where r , min{λmin(Ri,j(k)) : i, j ∈ M, k ∈ {0, . . . , τ − 1}}. Since Ri,j(k) > 0, k ∈

{0, . . . , τ −1}, we have r > 0. Thus, it follows from (6.39) and (6.40) that E[‖x(k)‖2] → 0

as k → ∞, which completes the proof. �

Remark 6.3. Note that Theorem 6.2 requires the initial mode to be randomly distributed,

that is, νi > 0, i ∈ M. This requirement is relaxed in Theorem 6.3 below. Specifically, the

result presented in Theorem 6.3 can also be used for assessing second-moment asymptotic

stability of the switched stochastic control system (6.1), (6.5) with a deterministic initial

mode r0, such that νr0 = 1, νi = 0, i 6= r0.

Theorem 6.3. Consider the switched linear stochastic control system (6.1), (6.5) with

a mode signal characterized by transition probabilities that satisfy pi,j > 0, i, j ∈ M. If

there exist τ -periodic matrix functions Ri,j(·), Qi,j(·) > 0, i, j ∈ M, such that (6.33) holds,

then the zero solution x(k) ≡ 0 of the closed-loop system (6.1), (6.5) is second-moment

asymptotically stable.

Proof. Let x̃(k) , x(k + τ), r̃(k) , r(k + τ), σ̃(k) , σ(k + τ), k ∈ N0. Since Ki(·),

i ∈ M, are τ -periodic, it follows from (6.1) and (6.5) that

x̃(k + 1) = Ar̃(k)x̃(k) +Br̃(k)ũ(k), k ∈ N0, (6.41)

ũ(k) , Kσ̃(k)(k)x̃(k). (6.42)

Note that the random variable r̃(0) denotes the initial mode of the switched stochastic

control system (6.41), (6.42). Furthermore, ν̃i , P[r̃(0) = i] = p
(τ)
r(0),i > 0, i ∈ M,

because pi,j ∈ (0, 1), i, j ∈ M. Now it follows from Theorem 6.2 that for any initial state

x̃(0) = x̃0 ∈ R
n, the zero solution x(k) ≡ 0 of the switched stochastic control system

(6.41), (6.42) is second-moment asymptotically stable, that is, limk→∞ E[‖x̃(k)‖2] = 0. As

a direct consequence of the definition of x̃(k), we obtain limk→∞ E[‖x(k)‖2] = 0, which

completes the proof. �
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The second-moment asymptotic stability of the switched linear stochastic system (6.1)

under the control law (6.5) can be analyzed through the results presented in Theo-

rems 6.1, 6.2, and 6.3, when the feedback gain matrices Ki(k), k ∈ {0, 1, . . . , τ − 1},

i ∈ M, are already known. On the other hand, we often need to find feedback gains such

that the proposed control law (6.5) with those gains achieves second-moment asymptotic

stabilization. In Corollary 6.1 below, we present sufficient stabilization conditions, which

are well suited for finding stabilizing feedback gains through numerical methods.

Corollary 6.1. Consider the switched linear stochastic system (6.1) with a mode signal

characterized by transition probabilities that satisfy pi,j > 0, i, j ∈ M. If there exist

τ -periodic matrix functions S̃j(·) > 0, Lj(·) ∈ R
m×n, j ∈ M, such that

0 >
∑

ĩ,j̃∈M

γ(i,j),(̃i,j̃)(k)Ã
T
i,j(k)S̃

−1
j̃

(k + 1)Ãi,j(k)− S̃j(k), (6.43)

for all k ∈ {0, 1, . . . τ − 1}, and i, j ∈ M, where Ãi,j(k) , AiS̃j(k) + BiLj(k), and

γ(i,j),(̃i,j̃)(k) is defined by (6.7), (6.8), then the feedback control law (6.5) with the feed-

back gain matrix Kσ(k)(k) , Lσ(k)(k)S̃
−1
σ(k)(k) guarantees that the zero solution x(k) ≡ 0

of the closed-loop system (6.1), (6.5) is second-moment asymptotically stable.

Proof. The result is a direct consequence of Theorem 6.3 with τ -periodic matrix func-

tions Ri,j(·) > 0 and Qi,j(·) > 0, i, j ∈ M, given by

Ri,j(k) = S̃−1
j (k), i, j ∈ M, (6.44)

Qi,j(k) = S̃−1
j (k)−

∑

ĩ,j̃∈M

γ(i,j),(̃i,j̃)(k)Â
T
i,j(k)S̃

−1
j̃

(k + 1)Âi,j(k), i, j ∈ M, (6.45)

where Âi,j(k) , Ai +BiKj(k), k ∈ {0, 1, . . . τ − 1}. �

Corollary 6.1 shows that if (6.43) can be verified for τ -periodic matrix functions

S̃j(·) > 0, Lj(·) ∈ R
m×n, for each mode j ∈ M, then second-moment asymptotic sta-

bilization of the zero solution is guaranteed under the control law (6.5) with feedback

gain matrix Kσ(k)(k) , Lσ(k)(k)S̃
−1
σ(k)(k).

Remark 6.4. For numerical verification of condition (6.43) in Corollary 6.1, we employ a

numerical technique that involves linear matrix inequalities (see [94,95]). Specifically, we
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use Schur complements (see [115]) to transform condition (6.43) into matrix inequalities

given by

0 <












S̃j(k) T 1T
i,j (k) · · · TM2T

i,j (k)

T 1
i,j(k) U1(k + 1) 0

...
. . .

TM2

i,j (k) 0 UM2
(k + 1)












, (6.46)

for i, j ∈ M, k ∈ {0, 1, . . . τ − 1}, where

U (̂i−1)M+ĵ(k) , S̃ĵ(k), (6.47)

T
(̂i−1)M+ĵ
i,j (k) ,

√

γ(i,j),(̂i,ĵ)(k)Ãi,j(k), î, ĵ ∈ M, (6.48)

with Ãi,j(k) , AiS̃j(k) + BiLj(k). Note that the matrix inequalities (6.46) are linear in

S̃j(·) > 0, Lj(·) ∈ R
m×n, j ∈ M. Furthermore, note that since S̃j(·), j ∈ M, are τ -periodic

matrix functions, U (̂i−1)M+ĵ(τ) = U (̂i−1)M+ĵ(0), î, ĵ ∈ M. In this study, we use numerical

methods to search for positive-definite matrices S̃j(k) > 0, k ∈ {0, 1, . . . , τ − 1}, i, j ∈ M,

and matrices Lj(k) ∈ R
m×n, k ∈ {0, 1, . . . , τ − 1}, i, j ∈ M, that satisfy the linear matrix

inequalities (6.46).

Remark 6.5. Investigation of the applicability of our results to large-scale systems is im-

portant. To this end, we note that in large-scale systems both the state size n ∈ N and the

number of modes M ∈ N may be large. Depending on how large these values are, our

numerical methods characterized through linear matrix inequalities in Remark 6.4 may re-

quire long computation time. It is crucial to investigate computational complexity of these

numerical methods. Note that as explained in Remark 6.4, our numerical method is based

on checking feasible solutions to linear matrix inequalities. Linear matrix inequalities can

be accurately solved in an efficient manner [116, 117]. Specifically, the worst-case com-

putational complexity of the method presented in [116] is given as O(ab3) where a ∈ N

denotes the number of total row size of the linear matrix inequalities and b ∈ N denotes

the number of decision variables. Now, note that the row size of the linear matrix inequal-

ity (6.46) is given by nM2; furthermore, there are τM2 of these inequalities. On the other

hand, since we look for positive-definite matrices, we consider linear matrix inequlities of
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the form S̃j(k) > 0, j ∈ M, k ∈ {1, 2, . . . , τ}, which have total row size τnM . Hence,

a = τM2nM2 + τnM = τnM4 + τnM . On the other hand, decision variables are entries

of S̃j(k) > 0, Lj(k) ∈ R
m×n, j ∈ M, k ∈ {1, 2, . . . , τ}. Therefore, b = τn2M + τmnM ,

where m ∈ N is the control input size. Assuming m ≤ n, the worst-case computational

complexity of our problem is then given by O(ab3) = O(τ4n7M7). This shows that the

computatioal complexity grows similarly for state size n ∈ N and the number of modes

M ∈ N.

6.4 Illustrative Numerical Example

We now demonstrate our results with an illustrative numerical example. Specifically, con-

sider the switched linear stochastic system (6.1) with M = 2 modes described by the

subsystems matrices

A1 =






0.01 1

1.5 −0.1




 , A2 =






0.4 1.2

1 0.01




 ,

B1 = [0, 1]T, and B2 = [−1, 0]T. The mode signal {r(k) ∈ M , {1, 2}}k∈N0 of the

switched system is assumed to be a discrete-time Markov chain characterized by the tran-

sition probabilities p1,1 = 0.1, p1,2 = 0.9 and p2,1 = p2,2 = 0.5 (see Figure 6.1 for the

corresponding transition diagram).

The mode signal of the switched system is assumed to be sampled at every 5 time

steps, that is, τ = 5. Note that positive-definite τ -periodic matrix functions S̃j(·) > 0,
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j ∈ M , {1, 2}, with values

S̃1(0) =






15.062 0.395

0.395 2.621




 , S̃2(0) =






3.633 0.961

0.961 45.827




 ,

S̃1(1) =






2.662 −2.754

−2.754 3.03




 , S̃2(1) =






1.849 −2.241

−2.241 3.701




 ,

S̃1(2) =






3.069 −2.073

−2.073 3.459




 , S̃2(2) =






3.7 −2.683

−2.683 3.111




 ,

S̃1(3) =






3.46 −1.97

−1.97 4.766




 , S̃2(3) =






3.155 −1.461

−1.461 4.841




 ,

S̃1(4) =






4.805 0.242

0.242 3.865




 , S̃2(4) =






4.873 0.094

0.094 3.847




 ,

and τ -periodic row vectors functions Lj(·) : N0 → R
1×2, j ∈ M , {1, 2}, with values

L1(0) =

[

−23.082 −2.869

]

, L2(0) =

[

4.812 56.236

]

,

L1(1) =

[

−1.502 2.035

]

, L2(1) =

[

−0.701 1.058

]

,

L1(2) =

[

−1.084 1.472

]

, L2(2) =

[

−2.153 2.799

]

,

L1(3) =

[

−2.307 3.631

]

, L2(3) =

[

−1.714 2.737

]

,

L1(4) =

[

1.817 0.358

]

, L2(4) =

[

1.754 0.58

]

,

satisfy (6.43). Therefore, it follows from Corollary 6.1 that the proposed control law (6.5)

with sampled-mode-dependent τ -periodic feedback gains Ki(k) , Li(k)S̃
−1
i (k), i ∈ M ,

{1, 2}, k ∈ N0, guarantees second-moment asymptotic stability of the closed-loop system

(6.1), (6.5).

Sample paths of the state x(k) and the control input u(k) (obtained with initial condi-

tions x(0) = [1, −1]T and r(0) = 1) are shown in Figures 6.1 and 6.2. Moreover, Figure 6.3

shows sample paths of the actual mode r(k) and its sampled version σ(k).

We can see in Figure 6.3 that the sampled version of the mode signal σ(k) is not a
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Figure 6.2: Control input versus time

good representation of the actual mode signal r(k) due to frequent mode switches and

rare mode observations. However, our new sampled-mode-dependent time-varying feed-

back control strategy characterized in (6.5) takes possible mode transitions between mode

observation time instants into account. As it is indicated in Figures 6.1–6.3, the proposed

control law achieves stabilization of the state.

Furthermore, we obtain 5000 sample paths of the state trajectory x(k) and estimate

the second moment E[‖x(k)‖2] of the state by

E[‖x(k)‖2] ≈ 1

5000

5000∑

i=1

‖x(k)‖2(i), k ∈ N0, (6.49)

where ‖x(k)‖(i) denotes the norm of state x(k) of the ith sample path at time k. Figure 6.4

shows the numerically approximated second moment, which converges to 0.

Note that at mode observation instants, the active operation mode of the switched

system is known by the controller with certainty; however, between mode observation
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instants only the probability distribution of the possibly active mode is known. Hence, the

control performance may start to deteriorate over time as the certainty of the mode infor-

mation decreases, until the next mode observation instant, where perfect operation mode

information becomes available once again. Note that although the second moment of the

state increases for a few time steps before each mode sampling instant, the controller is ef-

fective enough to compensate the uncertainty on the mode information so that E[‖x(k)‖2]

takes a lower value at each mode observation instant, and eventually it converges to 0

(see Figure 6.4).

6.5 Conclusion

In this section, we investigated second-moment asymptotic stabilization of discrete-time

switched linear stochastic systems. Specifically, we developed a control law that guar-

antees stabilization even when only periodically observed version of the active operation
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mode of the switched system is available for control purposes. Our proposed control law,

which incorporates sampled-mode-dependent time-varying feedback gains, is effective for

compensating the uncertainty on the information about the operation mode of the system

between mode observation instants. We utilized the periodicity induced in the closed-loop

system dynamics due to periodic mode observations, and employed discrete-time Floquet

theory to obtain necessary and sufficient conditions for second-moment asymptotic stabi-

lization of the zero solution. Furthermore, we used Lyapunov-like functions with periodic

coefficients to obtain alternative stabilization conditions, which we then employed for

designing feedback gains.
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Chapter 7

Stabilizing Discrete-Time Switched

Linear Stochastic Systems Using

Periodically Available Imprecise

Mode Information

7.1 Introduction

In Chapters 3–5, we considered stabilization problems for continuous-time switched stochas-

tic systems under sampled mode information. Furthermore, in Chapter 6, we explored the

sampled-mode feedback control problem for the discrete-time case.

In Chapters 3 and 6, the mode signal of a switched stochastic system is assumed to

be periodically observed. Note that the control frameworks developed in Chapters 3 and

6 guarantee stabilization under the assumption that perfect information of the operation

mode of the switched system is obtained at mode observation instants. In contrast to the

problem setting in Chapters 3 and 6, in this chapter we assume that the mode information

obtained through the observations is not precise. In other words, the controller does not

receive perfect mode information at mode observation instants. Specifically, we assume

that modes of the switched system are divided into a number of groups, and the controller

periodically receives information of the group that contains the active mode. In summary,

in our new framework, the control law depends only on periodically available imprecise

mode information, rather than the exact information of the mode.
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In the literature, stabilization problem under imprecise mode information has been

previously studied in [118, 119] for the case where the mode information is available at

all time instants. Specifically, H2-control of discrete-time switched systems with imprecise

mode information is explored in [118]. Furthermore, stabilization conditions are obtained

in [119] for continuous-time switched systems under continuously available imprecise

mode information. In this chapter we investigate the case where the imprecise mode

information is only available periodically.

Note that the imprecise mode information characterizes the case where some of the

modes are indistinguishable by the mode detector. For example, for a fault tolerant control

system, the fault detector detects a failure, but the type of the failure may not be exactly

known. Thus, the control system has only imprecise information of the failure. There

are other studies that deal with feedback stabilization problems using imperfect mode

information. For example, in [73, 74, 120] the authors propose stabilizing control laws

that depend on estimates of the mode signal. The difference between mode estimates and

imprecise mode information is that mode estimates may lack accuracy; however, imprecise

mode information lacks exactness, although it is accurate.

This chapter is organized as follows. In Section 7.2, we introduce the feedback con-

trol problem for discrete-time switched stochastic systems under periodically available

imprecise mode information; furthermore, we obtain sufficient conditions under which

our proposed control law achieves second-moment asymptotic stabilization of the zero so-

lution. We present an illustrative numerical example in Section 7.3. Finally, we conclude

the chapter in Section 7.4.

7.2 State Feedback Control of Switched Stochastic Systems Us-

ing Periodically Available Imprecise Mode Information

Consider the discrete-time switched stochastic dynamical system with M ∈ N modes given

by (6.1) with the initial conditions x(0) = x0 and r(0) = r0. Hence, the initial distribution

of the mode signal {r(k) ∈ M , {1, 2, . . . ,M}}k∈N0 is given by ν : M → [0, 1] such that

νr0 = 1 and νi = 0, i 6= r0.

A mode transition diagram for the switched system (6.1) with M = 4 modes is shown
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Figure 7.1: Mode transition diagram for {r(k) ∈ M , {1, 2, 3, 4}}k∈N0

in Figure 7.1. The labels on the directed edges indicate probability of associated transi-

tions. In Figure 7.1, we only show the edges that correspond to transitions with nonzero

probabilities.

7.2.1 Periodic Mode Observations

For the switched stochastic system (6.1), we study the state feedback stabilization problem

for the case where mode information is observed periodically at time instants 0, τ, 2τ, . . .,

where τ ∈ N denotes the mode observation period. In this chapter, we specifically consider

the case where τ ≥ 2 such that at certain time instants no mode information will be

available for control purposes.

When the observations at time instants 0, τ, 2τ, . . ., provide perfect knowledge of the

active mode, the sampled mode information that is available to the controller can be

represented by the discrete-time stochastic process {σ(k) ∈ M}k∈N0 defined by

σ(k) = r(nτ), k ∈ {nτ, nτ + 1, . . . (n+ 1)τ − 1}, n ∈ N0. (7.1)

Note that when the observation period τ is small, and the mode switches occur rarely, the

sampled mode signal {σ(k) ∈ M}k∈N0 is likely to be a good representation of the actual

mode signal {r(k) ∈ M}k∈N0 . Hence, the stabilization can be achieved by a control law of

the form

u(k) = Kσ(k)x(k), k ∈ N0. (7.2)
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In Chapter 3, in order to stabilize continuous-time switched stochastic systems, we

proposed the continuous-time version of the feedback control law (7.2) that depends only

on the sampled mode signal, rather than the actual mode signal. In this chapter we extend

our results to the case of imprecise mode information.

7.2.2 Imprecise Mode Information

In this section we provide mathematical definition of the imprecise mode information.

We assume that the index set M is divided into a number of nonempty subsets Mi ⊂

M, i ∈ {1, . . . , N}, where N ≤M , such that Mi∩Mj = ∅, i 6= j, and ∪i∈{1,...,N}Mi = M.

We call the Mi ⊂ M, i ∈ {1, . . . , N}, the mode groups, since each subset Mi represents a

group of modes. Now let N , {1, . . . , N} and define η : M → N by

η(i) = j, i ∈ Mj , j ∈ N . (7.3)

Note that the function η(·) maps each mode into its respective group.

In this chapter, we assume that periodically available imprecise mode information in-

dicates only the group that contains the active mode. For example if mode i is active

at a mode observation time instant nτ , the only information that is available for control

purposes is η(i), which indicates the mode group Mη(i) that contains mode i. Note that

this information lacks precision when Mη(i) also contains modes other than mode i. In

this case, the controller has the imprecise information that one of the modes contained

in Mη(i) is active at the mode observation time instant nτ . A suitable measure for the

precision of the periodically available mode information would be the scalar µ , N
M

. For

example, if µ is close to 1, it means that the periodically available mode information has

high precision.

We consider the case where the imprecise mode information is only available peri-

odically at mode observation time instants 0, τ, 2τ, . . .. We denote the available mode

information by the imprecise mode information signal {η(σ(k)) ∈ N}k∈N0 , and propose

the control law given by

u(k) = Kη(σ(k))x(k), k ∈ N0. (7.4)
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Figure 7.2: Actual mode signal r(k), sampled mode signal σ(k), and imprecise mode

information signal η(σ(k))

In the next section, we obtain sufficient conditions of stabilization of the switched stochas-

tic system (6.1) under the control law (7.4).

It is important to note that both the sampled mode signal {σ(k) ∈ M}k∈N0 and the

imprecise mode information signal {η(σ(k)) ∈ N}k∈N0 are stochastic processes that de-

pend on the actual mode signal {r(k) ∈ M}k∈N0 . In Figure 7.2, we show sample paths of

r(k), σ(k), and η(σ(k)) for a discrete-time switched stochastic system with M = 4 modes.

For this switched system, we assume that the index set M , {1, 2, 3, 4} is divided into

subsets M1 , {1, 3} and M2 , {2, 4} (see Figure 7.3). Therefore, when the mode is

observed at time instants 0, τ , 2τ ,. . ., the imprecise mode information signal η(σ(k)) takes

the values either 1 or 2, which indicate the group of the active mode. For example, at time

k = 3τ , mode 2 is active, that is r(3τ) = 2. Consequently, σ(3τ) = 2, and η(σ(3τ)) = 2.

Furthermore, note that neither σ(k) nor η(σ(k)) indicate any information about the mode

switches between two consecutive mode observation instants.

147



Figure 7.3: Groups of modes characterized by M1 , {1, 3} and M2 , {2, 4}

Remark 7.1. The case of N = M corresponds to the situation when the mode observa-

tions provide perfect knowledge of the active mode. In this particular case, the problem

turns into the stabilization problem under sampled mode information.

Remark 7.2. Note that the situation where no information is available can also be char-

acterized within the imprecise mode information framework. Specifically, consider the

case where all modes are collected in a single group M1 = M. Hence, N = {1}, and

η(σ(k)) = 1, k ∈ N0. In this case, stabilization has to be achieved by the control law (7.4)

with the fixed feedback gain matrix K1 ∈ R
m×n.

7.2.3 Sufficient Conditions for Second-Moment Asymptotic Stabilization

In this section we present sufficient conditions under which our proposed control law

(7.4) guarantees the second-moment asymptotic stability (see Section 2.4.2) of the zero

solution x(k) ≡ 0 of the closed-loop system (6.1), (7.4).

Theorem 7.1. Consider the switched linear stochastic system (6.1) with control input

(7.4), which depends on imprecise mode information that is available periodically at time

instants 0, τ, 2τ, . . ., where τ ≥ 2. If there exist P̃i > 0, i ∈ N , Li ∈ R
m×n, i ∈ N , and
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scalars α ≥ 0, β ≥ 0, γ ≥ 0, such that

0 ≥ (AiP̃η(i) +BiLη(i))
TP̃−1

η(i)(AiP̃η(i) +BiLη(i))− αP̃η(i), i ∈ M, (7.5)

0 ≥ (AiP̃η(j) +BiLη(j))
TP̃−1

η(j)(AiP̃η(j) +BiLη(j))− βP̃η(j), i, j ∈ M, (7.6)

0 ≥
∑

j∈M

pi,j(AiP̃η(l) +BiLη(l))
TP̃−1

η(j)(AiP̃η(l) +BiLη(l))− γP̃η(l), i, l ∈ M, (7.7)

and

αβτ−2γ < 1, (7.8)

then the feedback control law (7.4) with the feedback gain matrix

Kη(σ(k)) = Lη(σ(k))P̃
−1
η(σ(k)), (7.9)

guarantees that the zero solution x(k) ≡ 0 of the closed-loop system (6.1) and (7.4) is

second-moment asymptotically stable.

The proof of Theorem 7.1 is based on showing the asymptotic convergence of the

expectation of a quadratic Lyapunov function candidate.

Proof. First, we define the positive-definite matrices Pi , P̃−1
η(i), i ∈ M, and the

positive-definite function V (x(k), k) , xT(k)Pσ(k)x(k), k ∈ N0. Our initial goal is to show

that E[V (x(nτ), nτ)] → 0 as n→ ∞.

Note that

E[V (x(k), k)] =
∑

i,j∈M

E[V (x(k), k)1[r(k)=i,σ(k)=j]]

=
∑

i,j∈M

E[xT(k)Pjx(k)1[r(k)=i,σ(k)=j]], k ∈ N0. (7.10)

Now let Ãi,j , Ai + BiKj , i ∈ M, j ∈ N . Hence, Ãr(k),η(σ(k)) denotes the closed-loop
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state matrix such that x(k + 1) = Ãr(k),η(σ(k))x(k), k ∈ N0. It follows that

E[V (x(k + 1), k + 1)] =
∑

i,j∈M

E[xT(k + 1)Pjx(k + 1)1[r(k+1)=i,σ(k+1)=j]]

=
∑

i,j∈M

E[E[xT(k + 1)Pjx(k + 1)1[r(k+1)=i,σ(k+1)=j]|Fk]]

=
∑

i,j∈M

E[E[xT(k)ÃT
r(k),η(σ(k))Pj

· Ãr(k),η(σ(k))x(k)1[r(k+1)=i,σ(k+1)=j]|Fk]], k ∈ N0. (7.11)

Since the random variables x(k), r(k), σ(k) are all Fk-measurable, we have

E[V (x(k + 1), k + 1)] =
∑

i,j∈M

E[xT(k)ÃT
r(k),η(σ(k))PjÃr(k),η(σ(k))x(k)

· E[1[r(k+1)=i,σ(k+1)=j]|Fk]], k ∈ N0. (7.12)

Note that σ(k + 1) = r(k + 1) for k = nτ − 1, n ∈ N. It follows from (7.12) that

E[V (x(k + 1), k + 1)] =
∑

j∈M

E[xT(k)ÃT
r(k),η(σ(k))PjÃr(k),η(σ(k))x(k)E[1[r(k+1)=j]|Fk]]

=
∑

j∈M

E[xT(k)ÃT
r(k),η(σ(k))PjÃr(k),η(σ(k))x(k)pr(k),j ]

= E[xT(k)
( ∑

j∈M

ÃT
r(k),η(σ(k))PjÃr(k),η(σ(k))pr(k),j

)
x(k)], (7.13)

for k = nτ − 1, n ∈ N.

Now set Lη(j) = Kη(j)P
−1
j , j ∈ M. It follows from the definitions Pi , P̃−1

η(i), i ∈ M,

Ãi,j , Ai +BiKj , i ∈ M, j ∈ N , and the condition (7.7) that

∑

j∈M

P−1
σ(k)Ã

T
r(k),η(σ(k))PjÃr(k),η(σ(k))pr(k),jP

−1
σ(k) ≤ γP−1

σ(k), k = nτ − 1, n ∈ N. (7.14)

By pre- and post-multiplying both sides of (7.14) with Pσ(k),

∑

j∈M

ÃT
r(k),η(σ(k))PjÃr(k),η(σ(k))pr(k),j ≤ γPσ(k), (7.15)
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for k = nτ − 1, n ∈ N. Furthermore, by using (7.13) and (7.15), we obtain

E[V (x(k + 1), k + 1)] ≤ γE[xT(k)Pσ(k)x(k)]

= γE[V (x(k), k)], (7.16)

for k = nτ − 1, n ∈ N. Note that σ(k + 1) = σ(k), and hence σ(k + 1) is Fk-measurable,

for k ∈ {(n− 1)τ, (n− 1)τ + 1, . . . , nτ − 2}, n ∈ N. It follows from (7.12) that

E[V (x(k + 1), k + 1)] =
∑

i∈M

E[xT(k)ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))x(k)E[1[r(k+1)=i]|Fk]]

=
∑

i∈M

E[xT(k)ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))x(k)pr(k),i]

= E[xT(k)ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))x(k)

( ∑

i∈M

pr(k),i
)
]

= E[xT(k)ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))x(k)], (7.17)

for k ∈ {(n− 1)τ, . . . , nτ − 2}, n ∈ N. Note that by the condition (7.6), for n ∈ N,

P−1
σ(k)Ã

T
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))P

−1
σ(k) ≤ βP−1

σ(k), k ∈ {(n− 1)τ + 1, . . . , nτ − 2}. (7.18)

We now pre- and post-multiply both sides of (7.18) with Pσ(k), to obtain

ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k)) ≤ βPσ(k), k ∈ {(n− 1)τ + 1, . . . , nτ − 2}, n ∈ N. (7.19)

Hence, by (7.17),

E[V (x(k + 1), k + 1)] ≤ βE[xT(k)Pσ(k)x(k)]

= βE[V (x(k), k)], k ∈ {(n− 1)τ + 1, . . . , nτ − 2}, n ∈ N.

(7.20)

Furthermore, since r(k) = σ(k), for k = nτ , n ∈ N0, it follows form condition (7.5) that

P−1
σ(k)Ã

T
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k))P

−1
σ(k) ≤ αP−1

σ(k), (7.21)
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for k = (n − 1)τ, n ∈ N. After pre- and post-multiplying both sides of (7.21) with Pσ(k),

we get

ÃT
r(k),η(σ(k))Pσ(k)Ãr(k),η(σ(k)) ≤ αPσ(k), k = (n− 1)τ, n ∈ N. (7.22)

It then follows that

E[V (x(k + 1), k + 1)] ≤ αE[xT(k)Pσ(k)x(k)]

= αE[V (x(k), k)], k = (n− 1)τ, n ∈ N. (7.23)

Finally, by using (7.16), (7.20), and (7.23), we obtain

E[V (x((n+ 1)τ), (n+ 1)τ)] ≤ γE[V (x((n+ 1)τ − 1), (n+ 1)τ − 1)]

≤ βτ−2γE[V (x(nτ + 1), nτ + 1)]

≤ αβτ−2γE[V (x(nτ), nτ)], n ∈ N0. (7.24)

As a consequence of (7.8) and (7.24), E[V (x(nτ), nτ)] → 0 as n → ∞. Moreover, since

E[‖x(nτ)‖2] ≤ E[V (x(nτ),nτ)]
minj∈M λmin(Pj)

, it follows that

lim
n→∞

E[‖x(nτ)‖2] = 0. (7.25)

Now let c , maxi,j∈M λmax(Ã
T
i,η(j)Ãi,η(j)). Note that E[‖x(k+1)‖2] ≤ cE[‖x(k)‖2], k ∈ N0.

It follows from (7.25) that for every ǫ > 0, there exists N̂ ∈ N such that E[‖x(nτ)‖2] < ǫcτ ,

for n > N̂ . Consequently, E[‖x(k)‖2] < ǫ, for k > N̂τ . Therefore, E[‖x(k)‖2] → 0 as

k → ∞, which completes the proof. �

Theorem 7.1 provides sufficient conditions under which our proposed feedback con-

trol law (7.4) guarantees second-moment asymptotic stabilization of the zero solution.

Note that feedback control performance is directly related to subsystem dynamics, mode

switching frequency, and mode observation period τ . The condition (7.8) of Theorem 7.1

indicates the effect of the mode observation period τ on the stability of the closed-loop

system.

Note that the nonnegative scalars α, β, and γ characterize upper bounds on the growth
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of the expectation of a positive-definite function V (x(k), k) , xT(k)Pσ(k)x(k) with Pσ(k) ,

P̃−1
η(σ(k)). Specifically, the scalar α ≥ 0 characterizes the growth right after an impre-

cise mode information becomes available to the controller. Strictly speaking, E[V (x(nτ +

1), nτ + 1)] ≤ αE[V (x(nτ), nτ)], n ∈ N0. The scalar γ ≥ 0 characterizes the growth right

before the mode observation instants, that is, E[V (x(nτ), nτ)] ≤ γE[V (x(nτ − 1), nτ −

1)], n ∈ N. On the other hand, the nonnegative scalar β characterizes the growth between

two consecutive mode observation instants when the available mode information may no

longer be an accurate representation of the active mode. As a consequence, β has to sat-

isfy the condition (7.6) for all pairs of modes i, j ∈ M. Hence, when the dynamics of

the subsystems are significantly different from each other, the condition (7.6) can only be

satisfied for β ≥ 1. In this case, the mode observation period τ has to be sufficiently small

so that the condition (7.8) can be satisfied.

In addition, the effect of the precision of the mode information is also reflected in

conditions (7.5)–(7.7) through the function η(·), which maps individual modes into their

respective groups. In order to check whether the proposed control law (7.4) guarantees

stabilization or not, we have to find positive-definite matrices P̃i > 0, i ∈ N , such that

conditions (7.5)–(7.7) hold. It is important to note that these conditions are harder to

satisfy when the mode information is very imprecise, as one has to satisfy conditions

(7.5)–(7.7) simultaneously with fewer variables, P̃i > 0, Li ∈ R
m×n, i ∈ N .

Although, it is not easily seen from the conditions (7.5)–(7.8), in general, one can

compensate the imprecision of the observed mode information by observing the mode

more frequently. Note that this method would not work for the case N = {1}, as mode

observations would not provide any distinctive mode information regardless of the mode

observation period.

Remark 7.3. When N = {1}, the conditions (7.5)–(7.7) reduce, respectively, to

0 ≥ (AiP̃1 +BiL1)
TP̃−1

1 (AiP̃1 +BiL1)− αP̃1, (7.26)

0 ≥ (AiP̃1 +BiL1)
TP̃−1

1 (AiP̃1 +BiL1)− βP̃1, (7.27)

0 ≥ (AiP̃1 +BiL1)
TP̃−1

1 (AiP̃1 +BiL1)− γP̃1, (7.28)

for i ∈ M. After setting α = β = γ, the final condition (7.8) becomes ατ < 1, which
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is satisfied only when α < 1. It is natural that when no distinctive mode information is

available through observations (N = {1}), stabilization conditions do not depend on the

mode observation period τ .

Remark 7.4. When τ = 2, the conditions of Theorem 7.1 take a simpler form. Note

that the condition (7.6) can always be satisfied with β =
maxi,j∈M λmax(Ci,η(j))

minj∈M λmin(P̃η(j))
, where

Ci,η(j) , (AiP̃η(j) + BiLη(j))
TP̃−1

η(j)(AiP̃η(j) + BiLη(j)). Thus, for the case where τ = 2,

the stabilization conditions reduce to the inequalities (7.5), (7.7), and αγ < 1.

Remark 7.5. Note that the inequalities (7.5)–(7.8) are not linear in Li, P̃i, i ∈ N , α ≥

0, β ≥ 0, and γ ≥ 0, due to the terms αP̃η(i), βP̃η(j), γP̃η(l), and αβτ−2γ. However,

given the scalars α ≥ 0, β ≥ 0, and γ ≥ 0 that satisfy (7.8), the conditions (7.5)–(7.7)

can be transformed into matrix inequalities that are linear in Li, P̃i, i ∈ N , using Schur

complements [115]. Specifically, let Âi,η(j) , (AiP̃η(j) +BiLη(j)), i, j ∈ M, and define

Qi ,






αP̃η(i) ÂT
i,η(i)

Âi,η(i) P̃η(i)




 , i ∈ M, (7.29)

Ri,j ,






βP̃η(j) ÂT
i,η(j)

Âi,η(j) P̃η(j)




 , i, j ∈ M, (7.30)

Si,l ,












γP̃η(l) T 1T
i,l · · · TMT

i,l

T 1
i,l P̃η(1) 0

...
. . .

TM
i,l 0 P̃η(M)












, i, l ∈ M, (7.31)

where T j
i,l ,

√
pi,jÂi,η(l), i, j, l ∈ M. It follows that the conditions (7.5)–(7.7) are equiv-

alent to the inequalities Qi ≥ 0, i ∈ M, Ri,j ≥ 0, i, j ∈ M, and Si,l ≥ 0, i, l ∈ M, which

are linear in Li ∈ R
m×n, P̃i > 0, i ∈ N , given α ≥ 0, β ≥ 0, and γ ≥ 0 . Hence, we can

iterate over a set of the values of α ≥ 0, β ≥ 0, and γ ≥ 0 that satisfy (7.8) and look

for feasible solutions to the linear matrix inequalities Qi ≥ 0, i ∈ M, Ri,j ≥ 0, i, j ∈ M,

and Si,l ≥ 0, i, l ∈ M. In Section 7.3, we employ this approach and find values for

Li ∈ R
m×n, P̃i > 0, i ∈ N , α ≥ 0, β ≥ 0, and γ ≥ 0 that satisfy (7.5)–(7.8) for a given

discrete-time switched linear system.
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7.3 Illustrative Numerical Example

In this section we present a numerical example to demonstrate the utility of our main

results presented in Section 7.2. Consider the 2-dimensional discrete-time switched linear

stochastic dynamical system with M = 3 modes described by the subsystems matrices

A1 =






0 1

1.6 −0.1




, B1 =






0

1




 ,

A2 =






0 −1

−1.45 1




, B2 =






0

−0.9




 ,

A3 =






0 1

1.5 0.3




, B3 =






0

0.9




 ,

The mode signal {r(k) ∈ M , {1, 2, 3}}k∈N0 of the discrete-time switched stochastic

system is assumed to be a time-homogeneous Markov chain characterized by the transition

probabilities pi,i = 0.6, i ∈ M, pi,j = 0.2, i 6= j, i, j ∈ M. The controller is assumed to

have access to imprecise information concerning the mode signal {r(k) ∈ M}k∈N0 , at time

instants 0, τ, 2τ, . . ., where τ = 5.

Modes of the switched system are assumed to be divided into N = 2 groups, M1 ,

{1, 3} and M2 , {2}. Periodically available mode information is characterized by the

imprecise mode information signal {η(σ(k)) ∈ {1, 2}}k∈N0 . Hence, the modes 1 and 3 are

indistinguishable by the controller.

Note that the positive-definite matrices,

P̃1 =






4.5221 −0.2061

−0.2061 0.2448




 , (7.32)

P̃2 =






3.6290 −0.1609

−0.1609 0.2492




 , (7.33)

the row vectors L1 = [−7.3576 0.2998], L2 = [−6.0399 0.4816], and scalars α = 0.1, β =

1.45, γ = 1.5, satisfy the conditions (7.5)–(7.8). It follows from Theorem 7.1 that the

control law (7.4) with the feedback gain matrices K1 = L1P̃
−1
1 = [−1.6339 − 0.1510]
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Figure 7.1: State trajectory versus time
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Figure 7.2: Control input versus time

and K2 = L2P̃
−1
2 = [−1.6252 0.8837], guarantees that the zero solution x(k) ≡ 0 of the

closed-loop system (6.1), (7.4) is second-moment asymptotically stable.

Sample paths of the state and control input, x(k) and u(k), obtained with the initial

conditions x(0) = [1, −1]T and r(0) = 1 are presented in Figs. 7.1 and 7.2, respectively.

Furthermore, sample paths of the actual mode signal r(k), sampled version of the mode

signal σ(k), and the imprecise mode information signal η(σ(k)) are shown in Figure 7.3.

Note that the states 1, 2 ∈ N of the imprecise mode information signal η(σ(k)), cor-

respond to the mode groups M1 and M2. For example, at time instant k = 5, impre-

cise mode information signal η(σ(k)) takes the value 1, which corresponds to the group

M1 = {1, 3} (Figure 7.3). Hence, at time k = 5, information obtained through mode

observation is not precise. Specifically, given the information, the active mode can either
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Figure 7.3: Actual mode signal r(k), sampled mode signal σ(k), and imprecise mode

information signal η(σ(k))
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be 1 or 3. Note also that in the case η(σ(nτ)) = 2, for some n ∈ N, information that is

available for control purposes is precise, since the group M2 = {2} contains only mode 2.

In order to demonstrate the convergence of the second moment of the state, we obtain

1000 sample paths of the state trajectory x(k) (with the initial conditions x(0) = [1, −1]T

and r(0) = 1) to estimate E[‖x(k)‖2] by

E[‖x(k)‖2] ≈ 1

1000

1000∑

i=1

‖x(k)‖2(i), k ∈ N0, (7.34)

where ‖x(k)‖(i) denotes the state norm for the ith sample path at time k. Figure 7.4 shows

the numerically approximated second moment E[‖x(k)‖2], which converges to 0.

7.4 Conclusion

We proposed a state feedback control framework for stabilizing discrete-time switched

linear stochastic systems. We considered the case where the controller has access to mode

information only at certain time instants. Furthermore, the exact modes which are active

at those instants are unknown to the controller. The controller is assumed to have only

the information of a set of modes one of which is guaranteed to be active. We obtained

sufficient conditions of second-moment asymptotic stabilization under the assumption that

the imprecise mode information is available periodically.

Note that in Chapters 3–7, we explored the stabilization problem for switched stochas-

tic systems for the case where the mode of the switched system is sampled periodically at

deterministic time instants. In Chapters 8 and 9 below, we will address the case where

the mode signal is sampled at random time instants.
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Chapter 8

Sampled-Mode Stabilization of

Switched Linear Stochastic

Dynamical Systems With

Exponentially Distributed Random

Mode Sampling Intervals

8.1 Introduction

In most of the studies that deal with stabilization of switched stochastic systems, proposed

control laws depend on full information of the mode signal of the switched system. As a

result, these control laws may not be appropriate when the mode information is sampled

and only available at sampling instants. In Chapters 3–7 we considered the feedback con-

trol problem for the case where the mode is sampled periodically. Hence, mode sampling

instants considered in Chapters 3–7 are deterministic.

In this chapter, we investigate stabilization of continuous-time switched linear stochas-

tic systems for the case where the mode signal is sampled at random time instants. Specif-

ically, the intervals between mode sampling instants are assumed to be exponentially dis-

tributed independent random variables. First, we provide stability analysis for a continuous-

time switched linear stochastic dynamical system without control input. The mode signal,

which manages the transition between the subsystems of the switched system, is modeled

as a finite-state continuous-time Markov chain (see Section 2.2.1). Based on our stabil-
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ity analysis, we first propose a stabilizing control law that depends on the actual mode

signal. Next, we consider the case where the mode signal information is sampled and

hence available only at random time instants. By using “sample and hold” technique, we

construct the sampled version of the mode signal. We then propose a control law that

depends only on the sampled mode signal rather than the actual mode signal. We observe

that the closed-loop control system under our proposed control law can be character-

ized as a switched linear stochastic system with a mode signal defined to be a bivariate

stochastic process composed of the actual mode signal and its sampled version. Due to the

fact that the time intervals between mode sampling instants are exponentially distributed,

the bivariate process composed of the actual mode signal and its sampled version turns

out to be a finite-state continuous-time Markov chain. Based on our stability analysis for

switched linear stochastic dynamical systems, we obtain sufficient conditions under which

the proposed control law achieves almost sure asymptotic stabilization (see Section 2.4.1).

Note that the closed-loop system under the control law that we propose resembles a fault

tolerant control system with normal/faulty modes and a “fault detection and isolation

scheme” which is explored in [77] and [78]. In this sense, investigation of the stability

of this closed-loop system is also important due to possible applications in the field of

fault-tolerant control systems as well.

This chapter is organized as follows. In Section 8.2, we present the mathematical

model for continuous-time switched linear stochastic dynamical systems, and provide

sufficient conditions of stability. Furthermore we propose a stabilizing control law that

depends on the mode signal. We investigate feedback stabilization of switched linear

stochastic systems under randomly sampled mode information in Section 8.3. A numerical

example is provided in Section 8.4 to demonstrate the utility of our results. Finally, we

conclude the chapter in Section 8.5.

8.2 Stability and Stabilization of Switched Linear Stochastic

Dynamical Systems

In this section, we first provide the mathematical model for switched linear stochastic

dynamical systems. We obtain sufficient conditions of almost sure asymptotic stability.
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Figure 8.1: Transition diagram of a 3-state Markov chain

Then, we consider switched linear stochastic dynamical systems with control input. Based

on our stability analysis, we propose a piecewise-continuous control strategy that achieves

stabilization of the zero solution of continuous-time switched linear stochastic dynamical

systems.

8.2.1 Sufficient Conditions of Almost Sure Asymptotic Stability

Consider the continuous-time switched linear stochastic dynamical system given by

dx(t) = Ar(t)x(t)dt+Dr(t)x(t)dW (t), t ≥ 0, (8.1)

with initial conditions x(0) = x0 and r(0) = r0, where {x(t)}t≥0 is the R
n-valued Ft-

adapted state vector, {W (t)}t≥0 is an R-valued Ft-adapted Wiener process, Ai, Di ∈

R
n×n, i ∈ M , {1, 2, . . . ,M}, are subsystem matrices. The dynamical system (8.1) is

assumed to have M ≥ 1 number of subsystems (modes). Transition between the modes

is characterized by the piecewise constant Ft-adapted mode signal {r(t) ∈ M}t≥0, which

is assumed to be an irreducible Markov chain with generator matrix Q ∈ R
M×M and

with a stationary probability distribution π ∈ R
M . We assume that the Wiener process

{W (t) ∈ R}t≥0 and the mode signal {r(t) ∈ M}t≥0 are mutually independent stochastic

processes.

Figure 8.1 shows the mode transition diagram for a switched system with M = 3

modes. Nodes in the figure represent the states of the modes of the switched system,

arrowed edges represent a possible transition between the modes in the direction of the

arrows, and the labels on the edges indicate the transition rates between the paired modes.

Stability of the dynamical system given by (8.1) can be analyzed using a quadratic

Lyapunov-like function.

Theorem 8.1. Consider the switched linear stochastic system given by (8.1). If there exist
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P > 0 and scalars ζi ∈ R, i ∈ I, such that

0 ≥AT
i P + PAi +DT

i PDi − ζiP, i ∈ M, (8.2)

∑

i∈M

πi(ζi −
λ2min(D

T
i P + PDi)

2λ2max(P )
) < 0, (8.3)

then the zero solution x(t) ≡ 0 of the system described by (8.1) is asymptotically stable

almost surely.

Proof. We start by defining the quadratic, positive-definite function V (x) , xTPx.

All modes of the switched system (8.1) are described by multi-dimensional Ito stochastic

differential equations. We can employ Ito formula to obtain

dV (x(t)) =
(

∇V (x(t))Ar(t)x(t) +
1

2
tr
(

Dr(t)x(t)x
TDT

r(t)∇
(
∇V (x(t))

)))

dt

+∇V (x(t))Dr(t)x(t)dW (t)

= xT(t)(AT
r(t)P + PAr(t) +DT

r(t)PDr(t))x(t)dt+ 2xT(t)PDr(t)x(t)dW (t) (8.4)

which determines the evolution of V (x(t)), between consequent switching instants, when

the ith mode is active. Now consider the function lnV (x(t)), which is well-defined for

non-zero values of the state, since V (·) is a positive-definite function. We use Ito formula

once again to compute

d lnV (x(t)) =
1

V (x(t))
xT(t)(AT

r(t)P + PAr(t) +DT
r(t)PDr(t))x(t)dt

− 1

2V 2(x(t))
‖2xT(t)PDr(t)x(t)‖2dt

+
1

V (x(t))
2xT(t)PDr(t)x(t)dW (t). (8.5)

We integrate (8.5) over the time interval [0, t] to obtain

lnV (x(t)) = lnV (x0) +

ˆ t

0

xT(τ)(AT
r(τ)P + PAr(τ) +DT

r(τ)PDr(τ))x(τ)

V (x(τ))
dτ

−
ˆ t

0

1

2V 2(x(τ))
‖2xT(τ)PDr(τ)x(τ)‖2dτ

+

ˆ t

0

1

V (x(τ))
2xT(τ)PDr(τ)x(τ)dW (τ). (8.6)
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Note that

2xT(τ)PDr(τ)x(t) = xT(τ)(DT
r(τ)P + PDr(τ))x(τ)

≥ λmin(D
T
r(τ)P + PDr(τ))x

T(τ)x(τ)

≥
λmin(D

T
r(τ)P + PDr(τ))

λmax(P )
xT(τ)Px(τ). (8.7)

It follows from (8.2), (8.6) and (8.7) that

lnV (x(t)) ≤ lnV (x0) +

ˆ t

0
(ζr(τ) −

λ2min(D
T
r(τ)P + PDr(τ))

2λ2max(P )
)dτ

+

ˆ t

0

1

V (x(τ))
2xT(τ)PDr(τ)x(τ)dW (τ). (8.8)

By the strong law of large numbers for irreducible Markov chains [87] we have

lim
t→∞

1

t

ˆ t

0
(ζr(τ) −

λ2min(D
T
r(τ)P + PDr(τ))

2λ2max(P )
)dτ =

∑

i∈I

πi(ζi −
λ2min(D

T
i P + PDi)

2λ2max(P )
), (8.9)

almost surely. Furthermore, the Ito integral in inequality (8.8),

L(t) =

ˆ t

0

1

V (x(τ))
2xT(τ)PDr(τ)x(τ)dW (τ) (8.10)

is a local martingale with quadratic variation

[L]t =

ˆ t

0

( 1

V (x(τ))
2xT(τ)PDr(τ)x(τ)

)2
dτ

=

ˆ t

0

1

V 2(x(τ))

(
2xT(τ)PDr(τ)x(τ)

)2
dτ

≤
ˆ t

0

1

V 2(x(τ))

(
xT(τ)(DT

r(τ)P + PDr(τ))x(τ)
)2
dτ

≤
ˆ t

0

λ2max(D
T
r(τ)P + PDr(τ))

λ2min(P )
dτ

≤ maxi∈M λ2max(D
T
i P + PDi)

λ2min(P )
t (8.11)

Consequently, limt→∞
1
t
[L]t <∞. Thus, by using the same approach presented in [49,51],
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we can employ the strong law of large numbers for local martingales [14] to show

lim
t→∞

1

t
L(t) = 0, (8.12)

almost surely. Moreover, it follows from (8.8), (8.9), and (8.12) that

lim sup
t→∞

1

t
lnV (x(t)) ≤

∑

i∈M

πi(ζi −
λ2min(D

T
i P + PDi)

2λ2max(P )
). (8.13)

Finally, by (8.3),

P[ lim
t→∞

V (x(t)) = 0] = 1, (8.14)

which implies almost sure asymptotic stability of the zero solution. �

We employ the stability result presented in Theorem 8.1 for investigating almost sure

feedback stabilization problem in the following sections.

8.2.2 Feedback Stabilization with Continuously Observed Mode

In this section, we develop a stabilizing control law for switched linear stochastic dynam-

ical systems. Consider the continuous-time switched linear stochastic system with control

input given by (3.57). The stabilization problem we discuss in this section is to design

a feedback control law which guarantees the almost sure asymptotic stability of the zero

solution x(t) ≡ 0. By assuming that information on the mode signal {r(t) ∈ M}t≥0 is

available to the controller for t ≥ 0, we propose a control law of the form u(t) = Kr(t)x(t),

where Ki ∈ R
m×n denotes the state feedback gain for the ith mode. Note that the feed-

back matrix is switched when there is a mode transition. As a result, control input u(·)

may have discontinuities at mode switching instants, which we denote by the sequence

{t1, t2, . . .}.

Corollary 8.1. Consider the continuous-time switched linear stochastic dynamical system

given by (3.57). If there exist P > 0 and scalars ζi ∈ R, i ∈ M, such that

0 ≥ AT
i P + PAi +DT

i PDi − 2PBiB
T
i P − ζiP, i ∈ M, (8.15)
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and (8.3) are satisfied, then the feedback control law

u(t) = −BT
r(t)Px(t) (8.16)

guarantees that the zero solution x(t) ≡ 0 of the switched stochastic system (3.57) is

asymptotically stable almost surely.

Proof. The result is a direct consequence of Theorem 8.1 with Ai replaced by Ai −

BiB
T
i P, i ∈ M. �

The proposed control law (8.16) is a function of the mode signal {r(t) ∈ M}t≥0, and

hence cannot be used for stabilization when the mode information is available only at

certain time instants or when it is not available at all. For the case where the mode signal

information is not available, one can seek a control law of the form

u(t) = Kx(t), (8.17)

which does not depend on the mode signal {r(t) ∈ M}t≥0. On the other hand, when mode

signal is sampled and only available at certain time instants, sampled mode information

can also be employed in the control law.

8.3 Feedback Stabilization Under Sampled Mode Information

with Exponentially Distributed Random Sampling Intervals

In this section we explore feedback stabilization problem for the case where the mode

signal information {r(t) ∈ M}t≥0 of the switched linear stochastic system (3.57) is avail-

able only at certain time instants, which we denote by the sequence {t0 = 0, t1, t2, . . .}.

We assume that the length of time intervals between these instants are independent ran-

dom variables that are distributed by exponential distribution with parameter λ > 0.

As a result, these time instants correspond to occurrences of events of a Poisson process

{N(t) ∈ N0}t≥0 with the parameter λ > 0 (see Section 2.2.2 for explanation of the prop-

erties of Poisson processes). We call λ the mode sampling intensity parameter.
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The elements of the sequence {t0, t1, t2, . . .} are characterized by

tk , inf{t : N(t) ≥ k}, k ∈ N0. (8.18)

Note that when the mode sampling intensity λ is small, the length of the time intervals

(tk, tk+1], k ∈ N0, are likely to be large; therefore, the mode signal information is expected

to be rarely available.

By employing the “sample and hold” technique we construct the sampled mode signal

{σ(t) ∈ M}t≥0 of the mode signal {r(t) ∈ M}t≥0 by using only the available mode

samples {r(t0), r(t1), r(t2), . . .} as

σ(t) , r(tN(t)), t ≥ 0. (8.19)

At time instants {t0, t1, t2, . . .}, the sampled mode signal is equal to the actual mode

signal of the switched system, that is, σ(tk) = r(tk), k ∈ N0. Furthermore, the sampled

mode signal may be discontinuous at the time instant tk, k ∈ N, if a mode switch occurs

in the time interval (tk−1, tk]. Figure 8.1 shows a sample path of the actual mode signal

r(t) and the sampled mode signal σ(t) of a switched system (3.57) with M = 3 modes.

Note that when the mode sampling intensity parameter λ is sufficiently large, mode signal

information samples will be frequently available; therefore, {σ(t) ∈ M}t≥0 is likely to be

a good representation of the mode signal.

Now, we show that under certain conditions, the zero solution of the switched linear

system (3.57) can be stabilized by a controller that depends only on the sampled informa-

tion of the mode signal rather than the actual mode signal. Specifically, we consider the

control law of the form

u(t) = Kσ(t)x(t). (8.20)

The closed-loop system (3.57) under the control law (8.20) is given by

dx(t) = (Ar(t) +Br(t)Kσ(t))x(t)dt+Dr(t)x(t)dW (t). (8.21)
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Figure 8.1: Actual mode signal r(t) and the sampled mode signal σ(t) versus time

We now verify that the closed-loop system (8.21) can be expressed as a switched linear

stochastic dynamical system described by (8.1). For finite values of the mode sampling

intensity parameter λ, the sampled mode signal is imperfect, that is, the actual mode signal

r(t) and the sampled mode signal σ(t) may take different values when t 6= tk, k ∈ N0. We

define the bivariate stochastic process

{r̂(t)}t≥0 , {
(
r(t), σ(t)

)
}t≥0. (8.22)

Under the assumption that the Poisson process {N(t) ∈ N0}t≥0 and the mode signal

{r(t) ∈ M}t≥0 are independent stochastic processes, for any i, j, k, l ∈ M,

P[r̂(t+∆t) = (j, l) | r̂(t) = (i, k)]

=







qi,j∆t+ o(∆t), i 6= j, k = l,

1 + qi,i∆t+ o(∆t), i = j = k = l,

λ∆t+ o(∆t), i = j, k 6= l, i 6= k,

1 + qi,i∆t− λ∆t+ o(∆t), i = j, k = l, i 6= k,

o(∆t), otherwise.

(8.23)

It follows that the bivariate stochastic process {r̂(t)}t≥0 is a Markov chain with M2 states

given by {(1, 1), (2, 1), . . . , (M, 1), (1, 2), (2, 2), . . . , (M, 2), . . . , (1,M), (1,M), . . . , (M,M)}.
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Figure 8.2: Transition diagram of a Markov chain of 9 states with a special structure for

M = 3

We enumerate the states in this order as M̂ , {1, 2, . . . ,M2}. Furthermore, the generator

of the Markov chain {r̂(t) ∈ M̂}t≥0 is given by

Q̂ =












T 1 λJ2
M · · · λJM

M

λJ1
M T 2 · · · λJM

M

...
...

. . .
...

λJ1
M λJ2

M · · · TM












, (8.24)

where T i = Q − λIM + λJ i
M , i ∈ M, and J i

M ∈ R
M×M denotes the matrix with the (i, i)

entry being 1 and the rest of the entries being zero.

The Markov chain {r̂(t) ∈ M̂ = {1, 2, . . . ,M2}}t≥0 can be represented by a transition

diagram with a special graph structure of M2 nodes (Figure 8.2). In this graph structure,

the nodes are placed in M layers. Nodes in the ith layer are numbered as {(i − 1)M +

1, (i − 1)M + 2, . . . , (i − 1)M + M}. Graph structure of each separate layer resembles

the transition diagram of the Markov chain {r(t) ∈ M}t≥0. For example, an arrowed

edge directed from the ((i − 1)M + j)th node to the ((i − 1)M + k)th node represents a

possible transition from the state j to the state k of the Markov chain {r(t) ∈ I}t≥0. On

the other hand, between two distinct layers i and j in the graph structure of the Markov

chain {r̂(t) ∈ M̂}t≥0, there exist two directed edges: one from the ((i− 1)M + j)th node

in the ith layer to the ((j − 1)M + j)th node in the jth layer, and another one from the

((j − 1)M + i)th node in the jth layer to the ((i − 1)M + j)th node in the ith layer. The

directed edge from the ith layer to the jth layer represents a possible change in the state

of the sampled mode signal {σ(t) ∈ M}t≥0 from i to j.
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Since the mode signal {r(t) ∈ M}t≥0 is irreducible, there exists a directed path

between each pair of nodes within each layer of the transition diagram of the Markov

chain {r̂(t) ∈ M̂}t≥0. Furthermore, there exists a directed edge from each layer to an-

other layer. It follows that there exists a directed path from each node to another node

in the transition diagram of the Markov chain {r̂(t) ∈ M̂}t≥0. We conclude that the

Markov chain {r̂(t) ∈ M̂}t≥0 is also irreducible. Consequently, there exists a unique

stationary probability distribution π̂ ∈ R
M2

such that π̂TQ̂ = 0, π̂i > 0, i ∈ M̂, and

∑

i∈M̂ π̂i =
∑

i∈M

∑

j∈M π̂(i−1)M+j = 1

The Markov chain {r̂(t) ∈ M̂}t≥0 is irreducible; therefore, we can express the closed-

loop system (8.21) as a comparison system which is a switched linear stochastic dynamical

system of M2 modes described by (8.1) with subsystem matrices A(i−1)M+j replaced by

Aj−BjKi, and D(i−1)M+j replaced by Dj , for i, j ∈ M. The transition between the modes

of this comparison system is represented by the transition diagram of the Markov chain

{r̂(t) ∈ M̂}t≥0 with M layers.

We now state our main result on the almost sure asymptotic stabilization of the switched

stochastic dynamical system (3.57) under sampled mode information. The result is based

on the stability analysis for the comparison system (8.1) stated in Theorem 8.1.

Theorem 8.2. Consider the continuous-time switched linear stochastic dynamical system

given by (3.57). If there exist P > 0 and scalars ζi ∈ R, i ∈ M, such that (8.15) and

∑

i∈M

∑

j∈M

π̂(i−1)M+j

(

βi,j −
λ2min(D

T
j P + PDj)

2λ2max(P )

)

< 0, (8.25)

where

βi,j =







ζj , i = j,

ζj +
2λmax(PBjB

T
j P )

λmin(P ) − λmin(P (BjB
T
i +BiB

T
j )P )

λmax(P ) , i 6= j,

(8.26)

and π̂ ∈ R
M2

is the unique stationary distribution of the Markov chain {r̂(t) ∈ M̂ =

{1, 2, . . . ,M2}}t≥0 characterized by the generator matrix Q̂ given in (8.24), then the feed-
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back control law (8.20) with the feedback gain matrix given by

Kσ(t) = −BT
σ(t)P, (8.27)

guarantees that the zero solution x(t) ≡ 0 of the closed-loop system (3.57) and (8.20) is

asymptotically stable almost surely.

Proof. The closed-loop system under the control law (8.27) can be expressed as a

comparison system which is a switched linear stochastic system given by (8.1). The com-

parison system is composed of M2 modes described by the subsystem matrices A(i−1)M+j

replaced by Aj−BjB
T
i P , and D(i−1)M+j replaced by Dj , for i, j ∈ M. The mode signal of

the comparison system is the Markov chain {r̂(t) ∈ M̂ = {1, 2, . . . ,M2}}t≥0 characterized

by the generator matrix Q̂ given in (8.24). We set the initial conditions of the comparison

system as x(0) = x0 and r(0) = r̂(0). Almost sure asymptotic stability of the zero solu-

tion of the comparison system (8.1) implies almost sure asymptotic stability of the zero

solution of the system (3.57). Thus the result follows from Theorem 8.1 with ζ(i−1)M+j

replaced by βi,j , for i, j ∈ M. �

The transition rates qi,j , i, j ∈ M, as well as the mode sampling intensity λ affect the

stability conditions of the closed-loop system under the control law (8.27). Note that the

stationary distribution π̂ ∈ R
M2

also depends on the values of both qi,j , i, j ∈ M, and

λ. Therefore, the condition (8.25), which involves the stationary distribution π̂ ∈ R
M2

, is

satisfied only for certain values of qi,j , i, j ∈ M, and λ.

When the transition rates qi,j , i, j ∈ M, are large, switchings between the modes of the

system (3.57) are likely to be frequent. In this case, if the mode sampling intensity λ is very

small, then the stationary probability distributions associated with the states {(i−1)M+j :

i, j ∈ M, i 6= j} are high. Furthermore, the sampled mode signal {σ(t) ∈ M}t≥0 is

expected to differ from the mode signal {r(t) ∈ M}t≥0. On the contrary, when the mode

switchings are statistically rare and the mode sampling intensity λ is sufficiently large, the

stationary probability distributions associated with the states {(i− 1)M + i : i ∈ M} are

high. Moreover, {σ(t) ∈ M}t≥0 is expected to be a good representation of the mode signal

{r(t) ∈ M}t≥0.

170



8.4 Illustrative Numerical Example

In this section, we present a numerical example to demonstrate the efficacy of our ap-

proach. Specifically, we consider the switched linear stochastic dynamical system (3.57)

with M = 3 modes described by the subsystem matrices given by

A1 =






2 −2

3 1.5




, B1 =






1 0

0 1




 ,

A2 =






1.5 0

0 2




, B2 =






0 0

0 0




 ,

A3 =






2 1

−0.5 3




, B3 =






−1 0.3

0.2 1




 ,

and D1 = D2 = D3 = I2. The mode signal {r(t) ∈ M , {1, 2, 3}}t≥0 of the system is

assumed to be a 3-state Markov chain characterized by the generator matrix

Q =









−2 1 1

1 −2 1

1 1 −2









. (8.28)

The mode signal {r(t) ∈ M}t≥0 is assumed to be available only at certain time instants.

Furthermore, intervals between these time instants are assumed to be distributed inde-

pendently by exponential distribution with the parameter λ = 5.

The bivariate stochastic process {r̂(t) ∈ M̂ , {1, 2, . . . , 9}}t≥0 defined in (8.22) is a

Markov chain with the unique invariant distribution given by

π̂(i−1)M+j =







1
4 , i, j ∈ M, i = j,

1
24 , i, j ∈ M, i 6= j.

Note that the positive-definite matrix P = 5I2 and the scalars ζ1 = −4.3, ζ2 = 5,

ζ3 = −3.3 satisfy the conditions (8.15) and (8.25). Therefore, it follows from Theorem 8.2

that the control law (8.20) guarantees almost sure asymptotic stability of the zero solution
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Figure 8.1: State trajectory versus time (mode sampling intensity parameter λ = 5)

x(t) ≡ 0 of the system given by (3.57).

With initial conditions x(0) = [1, 1]T and r(0) = 1, Figures 8.1 and 8.2 show sample

paths of x(t) and u(t), respectively.

The piecewise-continuous control law (8.20) depends on the sampled mode signal

information σ(t). As a consequence, control profile is subject to jumps when σ(t) changes

its value at mode sampling instants. Note that both the mode sampling intensity and the

frequency of mode switches directly affect the quality of the representation of the actual

mode signal by the sampled mode signal. In this example, the sampling intensity λ = 5

is relatively high compared to the frequency of mode switches; consequently, the sampled

mode signal σ(t) closely matches the actual mode signal r(t) (see Figure 8.3).

When the mode sampling intensity parameter λ is small, the mode signal is sampled

statistically rarely, and hence the performance of the approximation is expected to be poor.

As a consequence, the control performance may also deteriorate. In order to demonstrate

the effect of a relatively small mode sampling intensity parameter, we set λ = 1 and obtain

sample paths of the state x(t), the control input u(t), as well as the actual mode signal r(t)

and its sampled version σ(t), which we present in Figures 8.4–8.6 respectively.
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Figure 8.2: Control input versus time (mode sampling intensity parameter λ = 5)
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Figure 8.3: Actual mode signal r(t) and the sampled mode signal σ(t) versus time (mode

sampling intensity parameter λ = 5)
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Figure 8.4: State trajectory versus time (mode sampling intensity parameter λ = 1)
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Figure 8.5: Control input versus time (mode sampling intensity parameter λ = 1)
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Figure 8.6: Actual mode signal r(t) and the sampled mode signal σ(t) versus time (mode

sampling intensity parameter λ = 1)

8.5 Conclusion

The stability of continuous-time switched linear stochastic systems was investigated. A

quadratic Lyapunov-like function has been employed for obtaining sufficient almost sure

asymptotic stability conditions. Moreover, feedback stabilization of the zero solution under

sampled mode information was explored. The intervals between mode sampling time

instants are assumed to be exponentially distributed random variables. We proposed a

piecewise-continuous control law that guarantees almost sure asymptotic stability of the

zero solution. The proposed control law depends only on the sampled mode signal which

is constructed from the available mode samples by using “sample and hold” technique.

In Chapter 9 below, we investigate stabilization of a discrete-time switched stochastic

system under the assumption that the active operation mode of the switched system is

available for control purposes at random time instants. In this sense the control problem

we consider in Chapter 9 is closely related to the feedback control problem that we have

explored in this chapter.
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Chapter 9

Feedback Control of Discrete-Time

Switched Stochastic Systems Using

Randomly Available Active Mode

Information

9.1 Introduction

In Chapters 6 and 7 we investigated the stabilization of discrete-time switched stochas-

tic systems for the case where only sampled mode information is available for control

purposes. Under the assumption that the active mode can be periodically observed, we

proposed stabilizing feedback control frameworks that utilize the available mode informa-

tion.

In this chapter our goal is to explore feedback stabilization of discrete-time switched

stochastic systems for the case where the active operation mode, which is modeled as a

finite-state discrete-time Markov chain (see Sections 2.3.1 and 2.3.2), is observed only

at random time instants. Specifically, we assume that the length of intervals between

consecutive mode observation instants are identically distributed independent random

variables. We employ a renewal process (see Section 2.3.3) to characterize the occurrences

of random mode observations. This characterization allows us to also explore periodic

mode observations, which are discussed in Chapters 3, 6, and 7, as a special case.

We propose a linear feedback control law with a piecewise-constant gain matrix that
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is switched depending on the value of a randomly sampled version of the mode signal. In

order to investigate the evolution of the active mode together with its randomly sampled

version, we construct a stochastic process that represents sequences of values the mode

takes between random mode observation instants. This sequence-valued stochastic pro-

cess turns out to be a countable-state Markov chain defined over a set that is composed of

all possible mode sequences of finite length. We first analyze the probabilistic dynamics of

this sequence-valued Markov chain. Then based on our analysis, we obtain sufficient sta-

bilization conditions for the closed-loop switched stochastic system under our proposed

control framework. These stabilization conditions let us assess whether the closed-loop

system is stable for a given probability distribution for the length of intervals between

consecutive mode observation instants. As this probability distribution is not assumed to

have a certain structure, the result presented in this chapter can also be considered as

a generalization of the result provided in Chapter 8, where stabilization problem is dis-

cussed in continuous time and the random intervals between mode sampling instants are

specifically assumed to be exponentially distributed. In this chapter we also explore the

case where perfect information regarding the probability distribution for the length of in-

tervals between consecutive mode observation instants is not available. For this problem

setting, we present alternative sufficient stabilization conditions which can be used for

verifying stability even if the distribution is not exactly known.

The contents of this chapter are as follows. In Section 9.2, we propose our feedback

control framework for stabilizing discrete-time switched stochastic systems under ran-

domly available mode information. Then in Section 9.3, we present sufficient conditions

under which our proposed control law guarantees almost sure asymptotic stabilization.

In Section 9.4, we demonstrate the efficacy of our results with two illustrative numerical

examples. Finally, in Section 9.5 we conclude the chapter.

9.2 Stabilizing Discrete-Time Switched Stochastic Systems with

Randomly Available Mode Information

In this section, we propose a feedback control framework for stabilizing a switched stochas-

tic system by using only the randomly available mode information. Specifically, we con-
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Figure 9.1: Mode transition diagram for {r(k) ∈ M , {1, 2}}k∈N0

sider the discrete-time switched linear stochastic dynamical system with M ∈ N number

of modes given by (6.1) with the initial conditions x(0) = x0 and r(0) = r0. Hence,

the initial distribution of the mode signal {r(k) ∈ M , {1, 2, , . . . ,M}}k∈N0 is given by

ν : M → [0, 1] such that νr0 = 1 and νi = 0, i 6= r0.

We use the matrix P ∈ R
M×M to characterize probability of transitions between the

modes of the switched system. Specifically, pi,j ∈ [0, 1], which is the (i, j)th entry of the

matrix P , denotes the probability of a transition from mode i to mode j. Furthermore, we

use p
(l)
i,j to denote (i, j)th entry of the matrix P l. Note that p

(l)
i,j ∈ [0, 1] is in fact the l-step

transition probability from mode i to mode j, that is,

p
(l)
i,j , P[r(k + l) = j|r(k) = i], l ∈ N0, i, j ∈ M, (9.1)

with p
(0)
i,i = 1, i ∈ M, p

(0)
i,j = 0, i 6= j. Furthermore, p

(1)
i,j = pi,j , i, j ∈ M. Mode signal can

be represented using a transition diagram, which shows possible transitions between the

operation modes of the switched system. Mode transition diagram for a switched system

with two modes is shown in Figure 9.1.

In this chapter, we assume that the mode signal is an aperiodic, irreducible Markov

chain and has the invariant distribution π : M → [0, 1].

9.2.1 Feedback Control Under Randomly Observed Mode Information

In this chapter, active mode of the switched stochastic system (6.1) is assumed to be

observed only at random time instants, which we denote by ti ∈ N0, i ∈ N0. We assume

that t0 = 0 and τi , ti − ti−1 ∈ N, i ∈ N, are independent random variables that are

distributed according to a common distribution µ : N → [0, 1] for all i ∈ N such that

τ̂ ,
∑

τ∈N τµτ < ∞. In this problem setting, the initial mode information r0 is assumed

to be available to the controller, and a renewal process {N(k) ∈ N0}k∈N0 is employed for

counting the number of mode observations that are obtained after the initial time. We
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assume that the renewal process {N(k) ∈ N0}k∈N0 and the mode signal {r(k) ∈ M}k∈N0

are mutually independent.

Following our approach in Chapter 3, we employ a linear feedback control law with a

‘piecewise-constant’ feedback gain matrix that depends only on the obtained mode infor-

mation. Specifically, we consider the control law

u(k) = Kσ(k)x(k), k ∈ N0, (9.2)

where {σ(k) ∈ M}k∈N0 is the sampled version of the mode signal defined by

σ(k) , r(tN(k)), k ∈ N0. (9.3)

Note that the sampled mode signal {σ(k) ∈ M}k∈N0 acts as a switching mechanism for the

linear feedback gain, which remains constant between two consecutive mode observation

instants, that is, Kσ(k) = Kr(ti) for k ∈ [ti, ti+1).

Between two consecutive mode observation instants, the feedback gain Kσ(·) stays

constant, whereas the active mode r(·) of the dynamical system (6.1) may change its

value. Stabilization performance under the control law (9.2) hence depends not only on

the length of the intervals between random mode observation instants, but also on how

the active mode switches during the intervals.

In Figure 9.2, we show sample paths of the active mode signal r(·) and its sampled

version σ(·) for a switched stochastic system with M = 2 modes. In this example, active

mode is observed at time instants t0 = 0, t1 = 2, t2 = 5, t3 = 6, t4 = 8, . . .. Note that at

mode observation instants actual mode signal r(·) and its sampled version σ(·) have the

same value. However, at the other time instants, sampled mode signal may differ from

the actual mode, since between mode observation instants, the actual mode signal may

change its value.

In order to investigate the evolution of the active mode between consecutive mode

observation instants, we construct a new stochastic process {s(i)}i∈N0 that takes values

from a countable set of mode sequences of variable length. Specifically, we define the
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Figure 9.2: Actual mode signal r(k) and its sampled version σ(k)

sequence-valued stochastic process {s(i)}i∈N0 by

s(i) ,
(
r(ti), r(ti + 1), . . . , r(ti+1 − 1)

)
, i ∈ N0, (9.4)

with ti, i ∈ N0, being the random mode observation instants. By the definition given in

(9.4), s(i) represents the sequence of values that the active mode r(·) takes between the

mode observation instants ti and ti+1. Hence, sn(i), which denotes the nth element of the

sequence s(i), represents the value of the active mode r(·) at time ti+n−1. Furthermore,

the value of the sampled mode signal σ(·) between time instants ti and ti+1 is represented

by s1(i) = r(ti). Note that the active mode is observed and becomes available for control

purposes only at time instants ti, i ∈ N0. Thus, the controller has access only to the

observed mode data σ(ti) = r(ti), i ∈ N0, which correspond to the first elements of the

sequences s(i), i ∈ N0.

For the sample paths of active mode signal r(·) and its sampled version σ(·) shown in

Figure 9.2, mode sequences between mode observation instants t0 = 0, t1 = 2, t2 = 5,

t3 = 6, t4 = 8, are given as s(0) = (1, 2), s(1) = (2, 1, 2), s(2) = (2), s(3) = (2, 1). The key

property of the stochastic process {s(i)}i∈N0 is that, a given mode sequence s(i) indicates

full information of the active mode as well as the information the controller has during

the time interval between consecutive mode observation instants ti and ti+1.
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Figure 9.3: Transition diagram of the sequence-valued discrete-time countable-state

Markov chain {s(i) ∈ S , {(1), (2), (1, 1), . . .}}i∈N0 over the set of mode sequences of

variable length

In what follows, we explain the probabilistic dynamics of the stochastic process {s(i)}i∈N0

and provide key results that we will use in Section 9.3 for analyzing stability of the closed-

loop switched stochastic control system (6.1), (9.2).

9.2.2 Probabilistic Dynamics of Mode Sequences

The possible values of sequence that the stochastic process {s(i)}i∈N0 may take are char-

acterized by the set

S , {(q1, q2, . . . , qτ ) : pqn,qn+1 > 0, n ∈ {1, . . . , τ − 1};

qn ∈ M, n ∈ {1, . . . , τ}; µτ > 0}. (9.5)

Note that the sequence-valued stochastic process {s(i)}i∈N0 is a discrete-time Markov

chain on the countable state space represented by S, which contains all possible mode

sequences for all possible lengths of intervals between consecutive mode observation in-

stants. For example, consider the case where the switched system (6.1) has two modes.

Furthermore, suppose that µτ > 0 for all τ ∈ N. In other words, lengths of intervals

between mode observation instants may take any positive integer value. In this case,

the state space S = {(1), (2), (1, 1), (1, 2), . . .} contains all finite-length mode sequences

composed of elements from M = {1, 2}. See Figure 9.3 for the transition diagram of

countable-state Markov chain {s(i) ∈ S}i∈N0 of this example.
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It is important to note that if the set {τ ∈ N : µτ > 0} has finite number of ele-

ments, then set S will also contain finite number of sequences. In other words, if the

lengths of intervals between mode observation instants have finite number of possible

values, then the number of possible sequences is also finite. For example, consider the

case where the operation mode of the switched system, which takes values from the in-

dex set M = {1, 2}, is observed periodically with period 2, that is, µ2 = 1. In this case,

S = {(1, 1), (1, 2), (2, 1), (2, 2)} (see Figure 9.4).

We now characterize the initial distribution and the state-transition probabilities of the

discrete-time Markov chain {s(i) ∈ S}i∈N0 as functions of the initial distribution and the

state-transition probabilities of the mode signal {r(k) ∈ M}k∈N0 . Specifically, the initial

distribution λ : S → [0, 1] of the discrete-time Markov chain {s(i) ∈ S}i∈N0 is given by

λq = P[s(0) = q]

= P[t1 = |q|, r(0) = q1, . . . , r(|q| − 1) = q|q|]

= P[t1 = |q|
∣
∣ r(0) = q1, . . . , r(|q| − 1) = q|q|]

· P[r(0) = q1, . . . , r(|q| − 1) = q|q|], q ∈ S. (9.6)

Since the mode signal {r(k) ∈ M}k∈N0 and the mode observation counting process

{N(k) ∈ N0}k∈N0 are mutually independent, mode transitions and mode observations

occur independently. Hence, t1 = τ1 is independent of r(n) for every n ∈ N0. As a

consequence,

λq = P[t1 = |q|]P[r(0) = q1, . . . , r(|q| − 1) = q|q|]

= P[t1 = |q|]P[r(0) = q1]

·
|q|−1
∏

n=1

P[r(n) = qn+1|r(n− 1) = qn]

=







µ|q|
∏|q|−1

n=1 pqn,qn+1 , if q1 = r0,

0, otherwise,

(9.7)

for q ∈ S. Note that s1(0), which is the first element of the first mode sequence s(0), is

equal to the initial mode r0.
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Figure 9.4: Transition diagram of the sequence-valued discrete-time Markov chain {s(i) ∈
S , {(1, 1), (1, 2), (2, 1), (2, 2)}}i∈N0

Probability of a transition from a mode sequence q ∈ S to another mode sequence

q̄ ∈ S is given by

ρq,q̄ = P[s(i+ 1) = q̄|s(i) = q],

= P
[
τi+1 = |q̄|, r(ti+1) = q̄1, . . . ,

r(ti+1 + |q̄| − 1) = q̄|q̄|
∣
∣ τi = |q|,

r(ti) = q1, . . . , r(ti + |q| − 1) = q|q|
]
, (9.8)

for i ∈ N0. Note that τi+1 is independent of the random variables r(n), n ∈ N0, and τi.

Furthermore, given r(ti+ τi−1), the random variable r(ti+1) is conditionally independent

of r(ti), . . . , r(ti + τi − 2), and τi. It follows that

ρq,q̄ = P
[
τi+1 = |q̄|, r(ti+1) = q̄1, . . . ,

r(ti+1 + |q̄| − 1) = q̄|q̄|
∣
∣ r(ti + |q| − 1) = q|q|

]

= P[r(ti+1) = q̄1 | r(ti + |q| − 1) = q|q|]P[τi+1 = |q̄|]

·
|q̄|−1
∏

n=1

P[r(ti+1 + n) = q̄n+1|r(ti+1 + n− 1) = q̄n]

= pq|q|,q̄1 µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1 , i ∈ N0. (9.9)

Note that µ|q̄| in (9.9) represents the probability that length of the interval between two

mode observation instants is equal to the length of the sequence q̄, whereas pq|q|,q̄1 ∈ [0, 1]

represents the transition probability from the mode represented by the last element of

sequence q, to the mode represented by the first element of the sequence q̄. Furthermore,

the expression
∏|q̄|−1

n=1 pq̄n,q̄n+1 denotes the joint probability that the active mode takes the

values denoted by the elements of the sequence q̄ until the next mode observation instant.
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Since the mode signal {r(k) ∈ M}k∈N0 is aperiodic and irreducible, mode sequences

may start with any of the possible modes indicated by the index set M = {1, . . . ,M}.

Furthermore, it is possible to reach from any mode sequence to another mode sequence

in a finite number of mode observations. Hence, the discrete-time Markov chain {s(i) ∈

S}i∈N0 is irreducible. In Lemma 9.1 below, we provide the invariant distribution for the

countable-state discrete-time Markov chain {s(i) ∈ S}i∈N0 . The invariant distribution for

the case where S contains only sequences of fixed length T ∈ N is provided in [86]. In

Lemma 9.1, we consider the more general case where S may contain countably infinite

number of sequences of all possible lengths.

Lemma 9.1. Discrete-time Markov chain {s(i) ∈ S}i∈N0 has the invariant distribution

φ : S → [0, 1] : q 7→ φq given by

φq , πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1 , q ∈ S, (9.10)

where π : M → [0, 1] and pi,j , i, j ∈ M, respectively denote the invariant distribution and

transition probabilities of the finite-state Markov chain {r(k) ∈ M}k∈N0 .

Proof. We prove this result by showing that φq̄ =
∑

q∈S φqρq,q̄, for all q̄ ∈ S. It follows

from (9.9) and (9.10) that

∑

q∈S

φqρq,q̄ =
(∑

q∈S

πq1µ|q|
(
|q|−1
∏

n=1

pqn,qn+1

)
pq|q|,q̄1

)
µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1 , q̄ ∈ S. (9.11)

Now let Sτ , {q ∈ S : |q| = τ}, τ ∈ N. Note that the set Sτ contains all mode sequences

of length τ . We rewrite the sum in (9.11) to obtain

∑

q∈S

πq1µ|q|
(
|q|−1
∏

n=1

pqn,qn+1

)
pq|q|,q̄1 =

∑

τ∈N

µτ
∑

q∈Sτ

πq1
(
τ−1∏

n=1

pqn,qn+1

)
pqτ ,q̄1

=
∑

τ∈N

µτ
∑

qτ∈M

· · ·
∑

q1∈M

πq1
(
τ−1∏

n=1

pqn,qn+1

)
pqτ ,q̄1 . (9.12)

Note that since π : M → [0, 1] is the invariant distribution of the finite-state Markov

chain {r(k) ∈ M}k∈N0 , it follows that
∑

i∈M πipi,j = πj , i, j ∈ M. Thus, we have

∑

qn∈M
πqnpqn,qn+1 = πqn+1 , n ∈ {1, . . . , τ − 1}, and

∑

qτ∈M
πqτ pqτ ,q̄1 = πq̄1 . As a result,
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from (9.12) we obtain

∑

q∈S

πq1µ|q|
(
|q|−1
∏

n=1

pqn,qn+1

)
pq|q|,q̄1 =

∑

τ∈N

µτπq̄1

= πq̄1 . (9.13)

Finally, substituting (9.13) into (9.11) yields

∑

q∈S

φqρq,q̄ = πq̄1µ|q̄|

|q̄|−1
∏

n=1

pq̄n,q̄n+1

= φq̄, q̄ ∈ S, (9.14)

which completes the proof. �

We have now established that the countable-state Markov chain {s(k) ∈ S}k∈N0 is

irreducible and has the invariant distribution presented in Lemma 9.1. In the next section,

we use the ergodic theorem provided in Section 2.3.2 for {s(k) ∈ S}k∈N0 to obtain the

main results of this chapter.

9.3 Sufficient Conditions for Almost Sure Asymptotic Stabiliza-

tion

In this section, we employ the results presented in Section 9.2 to obtain sufficient con-

ditions for almost sure asymptotic stabilization of the closed-loop system (6.1) under the

control law (9.2).

Theorem 9.1. Consider the switched linear stochastic system (6.1). If there exist matrices

R̃ > 0, Li ∈ R
m×n, i ∈ M, and scalars ζi,j ∈ (0,∞), i, j ∈ M, such that

0 ≥ (AiR̃+BiLj)
TR̃−1(AiR̃+BiLj)− ζi,jR̃, i, j ∈ M, (9.15)

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0, (9.16)
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then the linear feedback control law (9.2) with the feedback gain matrix

Kσ(k) = Lσ(k)R̃
−1, (9.17)

guarantees that the zero solution x(k) ≡ 0 of the closed-loop system (6.1) and (9.2) is

asymptotically stable almost surely.

Proof. First, we define V (x) , xTRx, where R , R̃−1. It follows from (6.1) and

(9.2) that

V (x(k + 1)) = xT(k)(Ar(k) +Br(k)Kσ(k))
TR(Ar(k) +Br(k)Kσ(k))x(k), k ∈ N0. (9.18)

We set Lj = KjR
−1, j ∈ M, and use (9.15) and (9.18) to obtain

V (x(k + 1)) ≤ ζr(k),σ(k)V (x(k))

≤ η(k)V (x(0)), k ∈ N0, (9.19)

where η(k) ,
∏k

n=0 ζr(n),σ(n), k ∈ N. We will first show that η(k) → 0 almost surely as

k → ∞. Note that η(k) > 0, k ∈ N0. Then, it follows that

lnη(k) =
k∑

n=0

lnζr(n),σ(n). (9.20)

By using the definitions of stochastic processes {N(k) ∈ N0}k∈N0 and {s(i) ∈ S}i∈N0 , we

obtain

lnη(k) =

tN(k)−1
∑

n=0

lnζr(n),σ(n) +
k∑

n=tN(k)

lnζr(n),σ(n)

=

N(k)−1
∑

i=0

ξs(i) +
k∑

n=tN(k)

lnζr(n),σ(n), (9.21)

where ξq ,
∑|q|

n=1 ln ζqn,q1 , q ∈ S.

Next, in order to evaluate limk→∞
1
k
lnη(k), note that limk→∞

1
k

∑k
n=tN(k)

lnζr(n),σ(n) =
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0. Consequently,

lim
k→∞

1

k
lnη(k) = lim

k→∞

1

k

N(k)−1
∑

i=0

ξs(i)

= lim
k→∞

N(k)

k

1

N(k)

N(k)−1
∑

i=0

ξs(i). (9.22)

It follows as a consequence of the strong law of large numbers for renewal processes (Sec-

tion 2.3.3) that limk→∞
N(k)
k

= 1
τ̂
, where τ̂ =

∑

τ∈N τµτ . Furthermore, by the ergodic the-

orem for countable-state Markov chains (Section 2.3.2), it follows that limn→∞
1
n

∑n
i=0 ξs(i) =

∑

q∈S φqξq. Using the invariant distribution φ : S → [0, 1] given by (9.10), we get

lim
k→∞

1

k
lnη(k) =

1

τ̂

∑

q∈S

(
πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1

)
|q|
∑

m=1

ln ζqm,q1 . (9.23)

Now let Sτ , {q ∈ S : |q| = τ}, τ ∈ N. Note that the set Sτ contains all mode sequences

of length τ . It follows from (9.23) that

lim
k→∞

1

k
lnη(k) =

1

τ̂

∑

τ∈N

∑

q∈Sτ

(
πq1µ|q|

|q|−1
∏

n=1

pqn,qn+1

)
|q|
∑

m=1

ln ζqm,q1

=
1

τ̂

∑

τ∈N

µτ
∑

q∈Sτ

πq1(
τ−1∏

n=1

pqn,qn+1)
τ∑

m=1

ln ζqm,q1

=
1

τ̂

∑

τ∈N

µτ

τ∑

m=1

∑

q∈Sτ

πq1(

τ−1∏

n=1

pqn,qn+1) ln ζqm,q1 . (9.24)

Furthermore, let Si,j
τ,l , {q ∈ Sτ : q1 = i, ql = j}, i, j ∈ M, l ∈ {1, 2, . . . , τ − 1}. The set

Si,j
τ,l contains all mode sequences of length τ that have i ∈ M and j ∈ M as the 1st and

the lth elements, respectively. We use (9.1) to obtain

∑

q∈Sτ

πq1(
τ−1∏

n=1

pqn,qn+1) ln ζql,q1 =
∑

i,j∈M

∑

q∈Si,j
τ,l

πq1(
τ−1∏

n=1

pqn,qn+1) ln ζql,q1

=
∑

i,j∈M

πi ln ζj,i
∑

q∈Si,j
τ,l

(
τ−1∏

n=1

pqn,qn+1)

=
∑

i,j∈M

πi ln ζj,ip
(l−1)
i,j . (9.25)
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Substituting (9.25) into (9.24) yields

lim
k→∞

1

k
lnη(k) =

1

τ̂

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i. (9.26)

Now, since τ̂ =
∑

τ∈N τµτ <∞, as a result of (9.16), we have

lim
k→∞

1

k
lnη(k) < 0. (9.27)

Thus, limk→∞ ln η(k) = −∞ almost surely; furthermore, P[limk→∞ η(k) = 0] = 1. By

(9.19) we have V (x(k + 1)) ≤ η(k)V (x(0)), k ∈ N, and therefore,

P[ lim
k→∞

V (x(k)) = 0] = 1, (9.28)

which implies that the zero solution of the closed-loop system (6.1), (9.2) is asymptotically

stable almost surely. �

Theorem 9.1 provides sufficient conditions for almost sure asymptotic stability of the

closed-loop system (6.1) and (9.2). Conditions (9.15) and (9.16) of Theorem 9.1 indicate

dependence of stabilization performance on subsystem dynamics, mode transition proba-

bilities, and random mode observations. Specifically, ζi,j in (9.15) characterizes an upper

bound on the growth of a Lyapunov-like function, when the switched system evolves ac-

cording to dynamics of the ith subsystem and the jth feedback gain. Furthermore, the

effect of mode transitions on the stabilization is reflected in (9.15) through the limiting

distribution π : M → [0, 1] as well as l-step transition probabilities p
(l)
i,j , i, j ∈ M. Finally,

the effect of random mode observations is indicated in condition (9.15) by µ : N → [0, 1],

which represents the distribution of the lengths of intervals between consecutive mode

observation instants.

Remark 9.1. It is important to investigate conservativeness of the obtained stabilization

conditions. To this end, first note that we analyze the stability of the closed-loop system

through the Lyapunov-like function V (x) , xTRx with R = R̃−1, where R̃ is a positive-

definite matrix that satisfy (9.15). The scalar ζi,j ∈ (0,∞) in (9.15) characterizes an

upper bound on the growth of the Lyapunov-like function, when the switched system
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evolves according to dynamics of the ith subsystem and the jth feedback gain. Note

that if ζi,j ∈ (0, 1) for all i, j ∈ M, it is guaranteed that the Lyapunov-like function will

decrease at each time step. However, we do not require ζi,j ∈ (0, 1) for all i, j ∈ M.

There may be pairs i, j ∈ M such that ζi,j > 1, hence Lyapunov-like function V (·) may

grow when ith subsystem and the jth feedback gain is active. As long as ζi,j , i, j ∈

M, satisfy (9.16) the Lyapunov-like is guaranteed to converge to zero in the long-run

(even if it may grow at certain instants). Note that eventhough the conditions (9.15),

(9.16) allow unstable subsystem-feedback gain pairs, some conservativeness may still arise

due the characterization with single Lyapunov-like function. This conservatism can be

reduced with an alternative approach with multiple Lyapunov-like functions assigned for

each subsystem-feedback gain pairs (see Chapter 6).

Remark 9.2. In order to verify conditions (9.15) and (9.16) of Theorem 9.1, we take an

approach similar to the one presented in Chapters 6 and 7. Specifically, we use Schur

complements (see [115]) to transform condition (9.15) into the matrix inequalities

0 ≤






ζi,jR̃ ÂT
i,j

Âi,j R̃




 , i, j ∈ M, (9.29)

where Âi,j , (AiR̃ + BiLj), i, j ∈ M. Note that the inequalities (9.29) are linear in

R̃ and Li, i ∈ M. In our numerical method, we iterate over a set of the values of ζi,j ,

i, j ∈ M, that satisfy (9.16) and at each iteration we look for feasible solutions to the

linear matrix inequalities (9.29). In Section 9.4 below, we employ this method and find

values for matrices R̃ ∈ R
n×n, Li ∈ R

m×n, i ∈ M, and scalars ζi,j ∈ (0,∞), i, j ∈ M that

satisfy (9.15), (9.16) for a given discrete-time switched linear system. It is important to

note that the scalars ζi,j ∈ (0,∞), i, j ∈ M, that satisfy (9.16) form an unbounded set.

Note that this set is smaller than the entire nonnegative orthant in R
M2

. However, we still

need to reduce the search space of ζi,j , i, j ∈ M. To this end, first note that it is harder

to find feasible solutions to linear matrix inequalities given by (9.29) when the scalars

ζi,j , i, j ∈ M, are close to zero. Note also that if there exist a feasible solution to (9.29)

for certain values of ζi,j , i, j ∈ M, then it is guaranteed that feasible solutions to (9.29)

exist also for larger values of ζi,j , i, j ∈ M. Therefore, we can restrict our search space and
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iterate over large values of ζi,j , i, j ∈ M, that satisfy (9.16), and check feasible solutions

to (9.29). Specifically, we only iterate over ζi,j , i, j ∈ M, that is close to the search space’s

boundary identified by
∑

τ∈N µτ
∑τ

l=1

∑

i,j∈M πip
(l−1)
i,j ln ζj,i = 0. Now note that in order

for (9.16) to be satisfied, there must exist at least a pair i, j ∈ M such that ζi,j < 1. Since

the scalar ζi,j represens the stability/instability margin for the dynamics characterized by

the ith subsystem and the jth feedback gain, we expect ζi,i < 1 for stabilizable modes

i ∈ M. This further reduces the search space for our numerical method.

Remark 9.3. Note that conditions (9.15) and (9.16) presented in Theorem 9.1 can also

be used for determining almost sure asymptotic stability of the switched stochastic control

system (6.1), (9.2) with periodically observed mode information. The renewal process

characterization presented in this chapter in fact encompasses periodic mode observations

(explored previously in Chapters 6 and 7) as a special case. Specifically, suppose that

the mode observation instants are given by ti = iT , i ∈ N0, where T ∈ N denotes the

mode observation period. Our present framework allows us to characterize periodic mode

observations by setting the distribution µ : N → [0, 1] such that µT = 1 and µτ = 0, τ 6= T .

Note that condition (9.16) of Theorem 9.1 for this case reduces to

T∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0. (9.30)

Furthermore, if the controller has perfect mode information at all time instants (T = 1,

hence σ(k) = r(k), k ∈ N0), condition (9.16) takes even a simpler form given by the

inequality

∑

i∈M

πi ln ζi,i < 0. (9.31)

Remark 9.4. Condition (9.16) of Theorem 9.1 has a simpler form also for the case where

the length of intervals between consecutive mode observation instants are uniformly dis-

tributed over the set {τL, τL + 1, . . . , τH} with τL, τH ∈ N such that τL ≤ τH. In this case
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Figure 9.1: Uniform distribution given by (9.32) with τL = 2 and τH = 5 for the length of

intervals between consecutive mode observation instants

the distribution µ : N → [0, 1] is given by

µτ ,







1
τH−τL+1 , if τ ∈ {τL, τL + 1, . . . , τH},

0, otherwise.

(9.32)

Figure 9.1 shows the distribution (9.32) for an example case with τL = 2 and τH = 5.

With (9.32), condition (9.16) of Theorem 9.1 reduces to the inequality

τH∑

τ=τL

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0. (9.33)

Remark 9.5. Note that our probabilistic characterization of mode observation instants

also allows us to explore the feedback control problem under missing mode samples.

Specifically, consider the case where the mode is sampled at all time instants; however,

some of the mode samples are lost during communication between mode sampling mech-

anism and the controller. Suppose that the controller receives a sampled mode data at

each time step k ∈ N with probability θ ∈ (0, 1). In other words, the mode data is lost with

probability 1− θ. We investigate this problem by setting

µτ , (1− θ)τ−1θ, τ ∈ N. (9.34)

Figure 9.2 shows the geometric distribution (9.34) with θ = 0.3.

It turns out that for µτ : N → [0, 1] given by (9.34), the left-hand side of condition

(9.16) has a closed-form expression. Note that by changing the order of summations and
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Figure 9.2: Geometric distribution given by (9.34) with θ = 0.3 for the length of intervals

between consecutive mode observation instants

using (9.34), we can rewrite the left-hand side of (9.16) as

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i =

∑

i,j∈M

πi ln ζj,i
∑

τ∈N

µτ

τ∑

l=1

p
(l−1)
i,j

=
∑

i,j∈M

πi ln ζj,i

∞∑

l=1

p
(l−1)
i,j

∞∑

τ=l

µτ

=
∑

i,j∈M

πi ln ζj,i

∞∑

l=1

p
(l−1)
i,j (1−

l−1∑

τ=1

µτ )

=
∑

i,j∈M

πi ln ζj,i

∞∑

l=1

p
(l−1)
i,j

(
1−

l−1∑

τ=1

(1− θ)τ−1θ
)
. (9.35)

Note that
(
1−∑l−1

τ=1(1− θ)τ−1θ
)
=

(
1− θ 1−(1−θ)l−1

1−(1−θ)

)
= (1− θ)l−1. Therefore,

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i =

∑

i,j∈M

πi ln ζj,i

∞∑

l=1

p
(l−1)
i,j (1− θ)l−1. (9.36)

Let Z ,
∑∞

l=1 P
l−1(1− θ)l−1, where P ∈ R

M×M denotes the transition probability matrix

for the mode signal {r(k) ∈ M}k∈N0 . Note that the infinite sum in the definition of Z

converges, because the eigenvalues of the matrix (1− θ)P are strictly inside the unit circle

of the complex plane. By using the formula for geometric series of matrices [115], we

obtain

Z =
(
I − (1− θ)P )−1. (9.37)
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Furthermore, it follows from (9.36) that

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i =

∑

i,j∈M

πi ln ζj,izi,j , (9.38)

and therefore, when µ : N → [0, 1] is given by (9.34), condition (9.16) of Theorem 9.1

takes the form

∑

i,j∈M

πi ln ζj,izi,j < 0, (9.39)

where zi,j is the (i, j)th entry of the matrix Z given by (9.37).

Remark 9.6. Note that in order to check condition (9.16) of Theorem 9.1, one needs to

have perfect information regarding the distribution µ : N → [0, 1], according to which

the lengths of intervals between consecutive mode observation instants are distributed.

In Theorem 9.2 below, we present alternative sufficient stabilization conditions, which do

not require exact knowledge of µ : N → [0, 1]. Specifically, we consider the case where the

mode observation instants ti, i ∈ N0, satisfy

P[ti+1 − ti ≤ τ̄ ] = 1, i ∈ N0, (9.40)

where τ̄ ∈ N is a known constant. Note that in this case time instants of consecutive mode

observations are assumed to be at most τ̄ ∈ N steps apart.

Theorem 9.2. Consider the switched linear stochastic system (6.1). Suppose that the

mode-transition probability matrix P ∈ R
M×M possesses only positive real eigenvalues. If

there exist matrices R̃ > 0, Li ∈ R
m×n, i ∈ M, and scalars τ̄ ∈ N, ζi,j ∈ (0,∞), i, j ∈ M,

such that (9.15), (9.40),

0 ≤ ζj,i − ζi,i, i, j ∈ M, (9.41)

τ̄∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i < 0, (9.42)

hold, then the linear feedback control law (9.2) with the feedback gain matrix (9.17)

guarantees that the zero solution x(k) ≡ 0 of the closed-loop system is asymptotically
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stable almost surely.

Proof. The mode signal {r(k) ∈ M}k∈N0 is an irreducible and aperiodic Markov chain;

therefore, the invariant distribution π : M → [0, 1] is also the limiting distribution [87].

Thus, for all i, j ∈ M and k ∈ N0,

lim
l→∞

p
(l)
i,j = lim

l→∞
P[r(k + l) = j|r(k) = i] = πj . (9.43)

Now, let p
(l)
i ∈ [0, 1]1×M ,i ∈ M, denote the row vector with the jth element given by

the l-step transition probability p
(l)
i,j . Note that p

(·)
i is the unique solution of the difference

equation

p
(l+1)
i = p

(l)
i P, l ∈ N0, (9.44)

with the initial condition p
(0)
i,i = 1 and p

(0)
i,j = 0, i 6= j, j ∈ M. Since all the eigenvalues

of the mode-transition probability matrix P ∈ R
M×M are positive real numbers, the solu-

tion p
(·)
i of the difference equation (9.44) does not comprise any oscillatory components,

and l-step transition probabilities p
(l)
i,j , i, j ∈ M, converge towards their limiting values

monotonically, that is,

p
(l+1)
i,i ≤ p

(l)
i,i , i ∈ M, l ∈ N0, (9.45)

p
(l+1)
i,j ≥ p

(l)
i,j , i 6= j, i, j ∈ M, l ∈ N0. (9.46)

Now note that for all i, j ∈ M, and τ ∈ N,

1

τ

τ∑

l=1

p
(l−1)
i,j =

1

τ + 1

(
τ∑

l=1

p
(l−1)
i,j +

1

τ

τ∑

l=1

p
(l−1)
i,j

)
. (9.47)

By (9.46), we have p
(l−1)
i,j ≤ pτi,j , l ∈ {1, 2, . . . , τ}, i, j ∈ M, i 6= j. Hence, it follows from
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(9.47) that

1

τ

τ∑

l=1

p
(l−1)
i,j ≤ 1

τ + 1

(
τ∑

l=1

p
(l−1)
i,j +

1

τ

τ∑

l=1

p
(τ)
i,j

)

=
1

τ + 1

(
τ∑

l=1

p
(l−1)
i,j + p

(τ)
i,j

)

=
1

τ + 1

τ+1∑

l=1

p
(l−1)
i,j , τ ∈ N, i 6= j. (9.48)

As a consequence, for all τ ≤ τ̄ it follows that

1

τ

τ∑

l=1

p
(l−1)
i,j ≤ 1

τ̄

τ̄∑

l=1

p
(l−1)
i,j , i 6= j, i, j ∈ M. (9.49)

Next, we show that (9.40)–(9.42) together with (9.49) imply (9.16). First, let

κi,jτ,τ̄ ,
1

τ

τ∑

l=1

p
(l−1)
i,j − 1

τ̄

τ̄∑

l=1

p
(l−1)
i,j , i, j ∈ M. (9.50)

It follows that

1

τ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i =

∑

i,j∈M

πi ln ζj,i
1

τ

τ∑

l=1

p
(l−1)
i,j

=
∑

i,j∈M

πi ln ζj,iκ
i,j
τ,τ̄ +

1

τ̄

τ̄∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

=
∑

i∈M

πi ln ζi,iκ
i,i
τ,τ̄ +

∑

i∈M

∑

j∈M,j 6=i

πi ln ζj,iκ
i,j
τ,τ̄

+
1

τ̄

τ̄∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i. (9.51)

Note that by (9.49), we have κi,jτ,τ̄ ≤ 0, τ ≤ τ̄ , i 6= j. It follows from (9.41) that, for τ ≤ τ̄ ,

ln ζj,iκ
i,j
τ,τ̄ ≤ ln ζi,iκ

i,j
τ,τ̄ , i 6= j, i, j ∈ M. (9.52)
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Furthermore, since
∑

j∈M p
(l)
i,j = 1, l ∈ N0, i ∈ M, we have

∑

j∈M

κi,jτ,τ̄ =
∑

j∈M

1

τ

τ∑

l=1

p
(l−1)
i,j −

∑

j∈M

1

τ̄

τ̄∑

l=1

p
(l−1)
i,j

=
1

τ

τ∑

l=1

∑

j∈M

p
(l−1)
i,j − 1

τ̄

τ̄∑

l=1

∑

j∈M

p
(l−1)
i,j

=
τ

τ
− τ̄

τ̄

= 0, i ∈ M. (9.53)

We use (9.51)–(9.53) to obtain

1

τ

τ∑

l=1

∑

i,j∈M

πip
(l)
i,j ln ζj,i ≤

∑

i∈M

πi ln ζi,iκ
i,j
τ,τ̄ +

∑

i∈M

∑

j∈M,j 6=i

πi ln ζi,iκ
i,j
τ,τ̄

+
∑

i,j∈M

πi ln ζj,i
1

τ̄

τ̄∑

l=1

p
(l−1)
i,j

=
∑

i∈M

πi ln ζi,i
∑

j∈M

κi,jτ,τ̄ +
∑

i,j∈M

πi ln ζj,i
1

τ̄

τ̄∑

l=1

p
(l−1)
i,j

=
1

τ̄

τ̄∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i, τ ≤ τ̄ . (9.54)

Finally, by (9.40) and (9.54), it follows that

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i =

∑

τ∈N

µττ
(1

τ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

)

≤
∑

τ∈N

µττ
(1

τ̄

τ̄∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i

)
. (9.55)

Note that (9.42) and (9.55) imply (9.16). Hence, the result follows from Theorem 9.1. �

Conditions of Theorem 9.2 can be utilized for assessing stability of a switched stochas-

tic control system, even if exact knowledge of the distribution µ : N → [0, 1] is not

available. Note that the requirement on the knowledge of µ : N → [0, 1] is relaxed

in Theorem 9.2 by imposing other conditions on the mode-transition probability matrix

P ∈ R
M×M and the scalars ζi,j ∈ (0,∞), i, j ∈ M.

In the following we provide an illustrative discussion on differences between Theo-
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rems 9.1 and 9.2.

Note that we can use Theorem 9.1 to find feedback gains that guarantee stabilization of

the closed-loop system for the case where mode is observed at every τ̄ ∈ N steps. Note also

that these feedback gains do not necessarily guarantee stabilization if mode is observed

more frequently. For example, for the case where the length of mode intervals are given

by τi = τ̄ − 1, i ∈ N, the stabilizing feedback gains obtained for the case where mode is

observed at every τ̄ ∈ N steps, may make the state diverge. In order to demonstrate this

issue, we first obtain a set of sufficient conditions for instability of the closed-loop system.

Theorem 9.3. Consider the switched linear stochastic control system (6.1), (9.2) with the

feedback gain matrices Ki ∈ R
m×n, i ∈ M. If there exist a matrix R > 0, and scalars

ζi,j ∈ (0,∞), i, j ∈ M, such that

0 ≤ (Ai +BiKj)
TR(Ai +BiKj)− ζi,jR, i, j ∈ M, (9.56)

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i > 0, (9.57)

then limk→∞ ‖x(k)‖2 = ∞, almost surely.

Proof. It follows from (6.1) and (9.2) that

V (x(k + 1)) = xT(k)(Ar(k) +Br(k)Kσ(k))
TR(Ar(k) +Br(k)Kσ(k))x(k), k ∈ N0. (9.58)

We use (9.56) and (9.58) to obtain

V (x(k + 1)) ≥ ζr(k),σ(k)V (x(k))

≥ η(k)V (x(0)), k ∈ N0, (9.59)

where η(k) ,
(∏k

n=0 ζr(n),σ(n)
)
, k ∈ N. By using the same approach that we employed in

proof of Theorem 9.1, we show that

lim
k→∞

1

k
lnη(k) =

1

τ̂

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈M

πip
(l−1)
i,j ln ζj,i. (9.60)
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where τ̂ =
∑

τ∈N τµτ <∞. Now as a result of (9.57), we have

lim
k→∞

1

k
lnη(k) > 0. (9.61)

Thus, limk→∞ ln η(k) = ∞ almost surely; furthermore, P[limk→∞ η(k) = ∞] = 1. By

(9.59) we have V (x(k + 1)) ≥ η(k)V (x(0)), k ∈ N, and therefore,

P[ lim
k→∞

V (x(k)) = ∞] = 1, (9.62)

which implies that limk→∞ ‖x(k)‖2 = ∞, almost surely. �

Now, consider the switched linear scalar stochastic system (6.1), (9.2) with M = 2

modes described by A1 = A2 = 1.1, B1 = 1, B2 = −1. The mode signal {r(k) ∈ M ,

{1, 2}}k∈N0 is assumed to be characterized by the mode transition probability matrix given

by

P =






0.5 0.5

0.5 0.5




 . (9.63)

Mode is assumed to be periodically observed at every 2 steps. Periodic observations for

this case can be characterized by setting µ2 = 1, and µτ = 0, τ 6= 2. Note that R̃ = 1

and L1 = 1, L2 = −1, and scalars ζ1,1 = ζ2,2 = 4.41, ζ1,2 = ζ2,1 = 0.01, satisfy the

conditions (9.15), (9.16) of Theorem 9.1. Therefore, the proposed feedback control law

(9.2) with the feedback gains K1 = L1R̃
−1 = 1 and K2 = L2R̃

−1 = −1, guarantees

almost sure stabilization of the zero solution of the closed-loop system. On the other

hand, now suppose that mode is observed at every step k ∈ N0. Periodic observations

for this case can be characterized by setting µ1 = 1, and µτ = 0, τ 6= 1. Furthermore,

suppose that the control law has the feedback gains K1 = 1 and K2 = −1. For the

case where mode is observed at every time step, R = 1, and scalars ζ1,1 = ζ2,2 = 4.41,

ζ1,2 = ζ2,1 = 0.01 satisfy conditions of Theorem 9.3. Hence, the state diverges almost

surely, that is, P[limk→∞ ‖x(k)‖2 = ∞] = 1. Note that the proposed control law (9.16)

with gains K1 = 1 and K2 = −1 stabilize the system when mode is observed at every 2

steps, and destabilize the system when mode is observed at every step. This issue arrieses
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due to the fact that feedback gain K1 works better for mode 2, and feedback gain K2

works better for mode 1. When mode is observed at every step, feedback gain K1 is always

used with mode 1 and feedback gain K2 is always used with mode 2, since r(k) = σ(k),

k ∈ N0. On the other hand, when mode is observed at every 2 steps, for some time steps

k, r(k) 6= σ(k). Hence, when mode is observed at every 2 steps, occasionaly feedback gain

is set to K1 when mode 2 is active, and occasionaly feedback gain is set to K2 when mode

1 is active. This results in stabilization of the system.

It is important to note that Theorem 9.2 provides a form of monotonicity with respect

to frequency of mode observations that Theorem 9.1 does not provide. Specifically, con-

sider feedback gains Ki = LiR̃
−1, i ∈ M, with R̃ ∈ R

n×n and Li ∈ R
m×n, i ∈ M,

that satisfy conditions of Theorem 9.2 for constant τ̄ ∈ N. It follows that these feedback

gains guarantee stabilization if mode observation intervals satisfy τi ≤ τ̄ , i ∈ N. Hence,

feedback gains obtained with Theorem 9.2 for periodic mode observation interval τ̄ ∈ N

are guaranteed to achieve stabilization also for the case where mode is observed more

frequently, that is, mode observations intervals are smaller than τ̄ ∈ N.

9.3.1 Stabilization Conditions for Reducible Mode Signal

Theorems 9.1 and 9.2 provide stabilization conditions for the case where the mode signal

{r(k) ∈ M}k∈N0 is an irreducible Markov chain (see Sections 2.3.1 and 2.3.2). In this

section, our goal is to extend our framework to the case where the mode signal {r(k) ∈

M}k∈N0 is not necessarily irreducible. In order to deal with this problem setting, we

first give definitions of communicating set (also called communicating class) and closed

communicating set for discrete-time Markov chains [87].

A mode i ∈ M is said to communicate with mode j ∈ M if there exist n1, n2 ∈ N0

such that P[s(k + n1) = j|s(k) = i] > 0, P[s(k + n2) = i|s(k) = j] > 0, k ∈ N0. Note

that mode i communicates with mode j if there is a directed path from node i to node j

in the transition diagram of the mode signal. Note also that every mode communicates

with itself. A set of modes C ⊂ M is called a communicating set if mode i communicates

with mode j for all i, j ∈ C, and mode i does not communicate with mode j for all i ∈ C

and j ∈ M \ C. Note that M (the set of all modes) is partitioned to a number of disjoint

communicating sets. A communicating set C is called closed communicating set if for all
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i ∈ C and j ∈ M \ C, P[s(k + n) = j|s(k) = i] = 0, k, n ∈ N0. Note that a transition

from a mode belonging to a closed communicating set to another mode outside of the

closed communicating set is not possible. In other words, there is no path to outside from

a closed communicating set in the transition diagram of the mode signal {r(k) ∈ M}k∈N0 .

Note that there is at least one closed communicating set in M, since M has finitely

many modes [87]. If the mode signal {r(k) ∈ M}k∈N0 is irreducible, then M is a closed

communicating set itself. Now, note that if the initial mode r0 belongs to a closed com-

municating set C ⊂ M, then the mode does not leave outside set C, that is r(k) ∈ C,

k ∈ N0. In that case, mode signal is given by {r(k) ∈ C}k∈N0 . The stationary distribu-

tions πi ∈ [0, 1], i ∈ C, in this case, satisfy πj =
∑

i∈C πipi,j , j ∈ C. For checking the

stability of the closed-loop system, we can use Theorem 9.1 with M replaced with C.

On the other hand, if r0 does not belong to a closed communicating set, then the mode

r(·) will reach a closed communicating set in finite time with probability one. Now let

Ch ⊂ M, h ∈ {1, 2, . . . , c}, denote all closed communicating sets such that there ex-

ist nh ∈ N0, h ∈ {1, 2, . . . , c}, with P[r(nh) ∈ Ch|r(0) = r0] > 0, h ∈ {1, 2, . . . , c},

where c ∈ {1, 2, . . . ,M} is the total number of such sets. Note that in the transition

diagram of the mode signal {r(k) ∈ M}k∈N0 , Ch ⊂ M, h ∈ {1, 2, . . . , c}, correspond

to all closed communicating sets that has a directed path from the initial mode r0. Fur-

thermore, note that after the mode signal reaches one of the closed communicating sets

Ch ⊂ M, h ∈ {1, 2, . . . , c}, in finite time, it stays in that set. Now let πi ∈ [0, 1], i ∈ Ch,

h ∈ {1, 2, . . . , c}, be distributions such that πj =
∑

i∈Ch
πipi,j , j ∈ Ch, h ∈ {1, 2, . . . , c}. The

distributions πi ∈ [0, 1], i ∈ Ch, denote the stationary probabilities for modes after mode

signal reaches in set Ch.

Using the definitions provided above, we now present sufficient stabilization condi-

tions for the case where the mode signal {r(k) ∈ M}k∈N0 is not necessarily irreducible.

Corollary 9.1. Consider the switched linear stochastic system (6.1). Let Ch ⊂ M, h ∈

{1, 2, . . . , c}, denote closed communicating sets with the property that there exist nh ∈ N0

such that P[r(nh) ∈ Ch|r(0) = r0] > 0, h ∈ {1, 2, . . . , c}, where c ∈ {1, 2, . . . ,M} is

the total number of such sets. If for all h ∈ {1, 2, . . . , c}, there exist matrices R̃h > 0,
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Li ∈ R
m×n, i ∈ Ch, and scalars ζi,j ∈ (0,∞), i, j ∈ Ch, such that

0 ≥ (AiR̃h +BiLj)
TR̃−1

h (AiR̃h +BiLj)− ζi,jR̃h, i, j ∈ Ch, (9.64)

∑

τ∈N

µτ

τ∑

l=1

∑

i,j∈Ch

πip
(l−1)
i,j ln ζj,i < 0, (9.65)

then the control law (9.2) with the feedback gain matrices

Ki =







LiR̃
−1
h , if i ∈ Ch,

0, otherwise,

(9.66)

guarantees that the zero solution x(k) ≡ 0 of the closed-loop system (6.1) and (9.2) is

asymptotically stable almost surely.

Proof. First, we define

tC , inf{k ∈ N0 : r(k) ∈
⋃

h∈{1,2,...,c}

Ch}. (9.67)

Note that tC ∈ N0 denotes the time instant at which the mode reaches one of the closed

communicating sets Ch ⊂ M, h ∈ {1, 2, . . . , c}. Now let rC , r(tC), xC , x(tC). Futher-

more, let hC ∈ {1, 2, . . . , c} denote index of the closed communicating set that includes

the mode rC. Note that r(k) ∈ ChC
for k ≥ tC. Hence, after time tC, the dynamics charac-

terized by (6.1) can be considered as a switched linear stochastic system with mode signal

{r(k) ∈ ChC
}k≥tC . The initial state and mode of this switched system is given by xC ∈ R

n

and rC ∈ ChC
, respectively. Now, note that (9.64) and (9.65) imply (9.15) and (9.16) with

M replaced by ChC
. Hence, the result follows from Theorem 9.1. �

9.4 Illustrative Numerical Examples

In this section we provide numerical examples to demonstrate the results presented in this

chapter.

Example 9.1. Consider the switched linear stochastic system (6.1) with M = 2 modes
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described by the subsystems matrices

A1 =






0 1

1.6 −0.3




 , A2 =






0 1

−0.5 1.4




 ,

B1 = [0, 1]T, and B2 = [0, −1]T. The mode signal {r(k) ∈ M , {1, 2}}k∈N0 of the

switched system is assumed to be an aperiodic and irreducible Markov chain characterized

by the transition probabilities p1,2 = p2,1 = 0.3 and p1,1 = p2,2 = 0.7. The invariant

distribution for {r(k) ∈ M , {1, 2}}k∈N0 is given by π1 = π2 = 0.5.

Moreover, µ : N → [0, 1], according to which the lengths of intervals between consecu-

tive mode observation instants are distributed, is assumed to be given by µτ = (1 − θ)τθ,

τ ∈ N, with θ = 0.3. In this case, at each time step k ∈ N, the mode may be observed with

probability θ = 0.3 (see Remark 9.5).

Note that

R̃ =






3.0143 −0.1485

−0.1485 1.5280




 , (9.68)

L1 = [−3.5326 0.9608] , (9.69)

L2 = [−3.0029 1.8284] , (9.70)

and the scalars ζ1,1 = 0.7, ζ1,2 = 1.8, ζ2,1 = 2, and ζ2,2 = 0.8 satisfy (9.15) and (9.16).

Now, it follows from Theorem 9.1 that the proposed control law (9.2) with feedback gain

matrices

K1 = L1R̃
−1 = [−1.1465 0.5174] , (9.71)

K2 = L2R̃
−1 = [−0.9718 1.1021] , (9.72)

guarantees almost sure asymptotic stability of the closed-loop system (6.1), (9.2).

Sample paths of the state x(k) and the control input u(k) (obtained with initial con-

ditions x(0) = [1, −1]T and r(0) = 1) are shown in Figures 9.1 and 9.2. Furthermore,

Figure 9.3 shows a sample path of the actual mode signal r(k) and its sampled version

σ(k). Figures 9.1–9.3 indicate that our proposed control framework guarantees stabiliza-
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Figure 9.1: State trajectory versus time
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Figure 9.2: Control input versus time

tion even for the case where operation mode of the switched system is observed only at

random time instants.

The control law (9.2) with feedback gain matrices (9.71) and (9.72) guarantee stabi-

lization of the closed-loop system with random mode observations characterized by dis-

tribution µτ = (1 − θ)τ−1θ with θ = 0.3. Note that for each time step, θ represents the

probability of mode information being available for control purposes. In order to inves-

tigate conservativeness of our results, we search all values of parameter θ for which the

control law (9.2) with feedback gains (9.71) and (9.72) achieve stabilization. To this end,

first, we search values of θ such that there exist a positive-definite matrix R̃, and scalars

ζi,j , i, j ∈ M that satisfy conditions (9.15) and (9.16) of Theorem 9.1 with L1 = K1R̃

and L2 = K2R̃, where K1 and K2 are given by (9.71) and (9.72). We find that for pa-

rameter values θ ∈ [0.2, 1], conditions (9.15) and (9.16) are satisfied. Hence Theorem 9.1
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Figure 9.3: Actual mode signal r(k) and sampled mode signal σ(k)

guarantees stabilization for the case where parameter θ is inside the range [0.2, 1]. On

the other hand, through repetitive numerical simulations we observe that the states of the

closed-loop system converge to the origin in fact for a larger range of parameter values

(θ ∈ [0.12, 1]), which indicate some conservativeness in the conditions of Theorem 9.1

(see Remark 9.1).

Example 9.2. Consider the switched linear stochastic system (6.1) with M = 3 modes

described by the subsystems matrices

A1 =






0 1

1.5 0.5




, A2 =






0 1

1 0.5




 , A3 =






0 −1

1.1 1.2




 ,

B1 = [0, 1]T, B2 = [0, 0.2]T, and B3 = [0, 0.7]T. The mode signal {r(k) ∈ M ,

{1, 2, 3}}k∈N0 of the switched system is assumed to be an aperiodic and irreducible Markov

chain characterized by the transition matrix

P ,









0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6









.

The invariant distribution for {r(k) ∈ M , {1, 2, 3}}k∈N0 is given by π1 = π2 = π3 = 1
3 .

Furthermore, note that the transition matrix P possesses positive real eigenvalues 0.4

205



(with algebraic multiplicity 2) and 1.

The lengths of intervals between consecutive mode observation instants are assumed

to be uniformly distributed over the set {2, 3, 4, 5} (see Remark 9.4). In other words, the

distribution µ : N → [0, 1] is assumed to be given by (9.32) with τL = 2 and τH = 5.

In this example, we will demonstrate Theorem 9.2, which can be utilized for assessing

closed-loop system stability for the case where the exact knowledge of µ : N → [0, 1] is

not available. Note that for this example the mode observation instants ti, i ∈ N0, satisfy

(9.40) with τ̄ = 5.

Furthermore, note that

R̃ =






2.6465 −0.7851

−0.7851 1.2568




 , (9.73)

L1 = [−3.5858 0.1413] , (9.74)

L2 = [−4.7066 − 0.3329] , (9.75)

L3 = [−3.2532 − 0.3601] , (9.76)

and the scalars ζ1,1 = 0.6, ζ1,2 = 1.7, ζ1,3 = 1.5, ζ2,1 = 1.6, ζ2,2 = 0.7, ζ2,3 = 2, ζ3,1 = 2,

ζ3,2 = 2, and ζ3,3 = 0.5 satisfy (9.15), (9.41), and (9.42). Therefore, it follows from

Theorem 9.2 that the proposed control law (9.2) with feedback gain matrices

K1 = L1R̃
−1 = [−1.6222 − 0.9009] , (9.77)

K2 = L2R̃
−1 = [−2.2794 − 1.6888] , (9.78)

K3 = L3R̃
−1 = [−1.6132 − 1.2942] , (9.79)

guarantees almost sure asymptotic stability of the closed-loop system (6.1), (9.2).

Figures 9.4 and 9.5 respectively show sample paths of the state x(k) and the control

input u(k) obtained with initial conditions x(0) = [1, −1]T and r(0) = 1. Furthermore,

a sample path of the actual mode signal r(k) and its sampled version σ(k) are shown in

Figure 9.6. As it is indicated in Figures 9.4–9.6, the proposed control framework (9.2)

achieves asymptotic stabilization of the zero solution. It is important to note that the

feedback gains K1, K2, and K3 are designed by utilizing Theorem 9.2 without using in-
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Figure 9.5: Control input versus time

formation on the distribution µ : N → [0, 1], according to which the lengths of intervals

between consecutive mode observation instants are distributed. Note that Theorem 9.2

requires only the knowledge of an upper-bounding constant τ̄ ∈ N for the length of in-

tervals between consecutive mode observation instants, instead of the exact knowledge of

µ : N → [0, 1].

9.5 Conclusion

We proposed a feedback control framework for stochastic stabilization of discrete-time

switched linear stochastic systems under randomly available mode information. In this

problem setting, information on the active operation mode of the switched system is as-

sumed to be available for control purposes only at random time instants. We presented

a probabilistic analysis concerning a sequence-valued stochastic process that captures the
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Figure 9.6: Actual mode signal r(k) and sampled mode signal σ(k)

evolution of active operation mode between mode observation instants. We then used the

results of this analysis to obtain sufficient almost sure asymptotic stability conditions for

the zero solution of the closed-loop system. These conditions can be used to verify almost

sure asymptotic stability of the closed-loop system for the case where stochastic properties

of mode observation instants are fully known. Furthermore, we characterized a numerical

method (based on linear matrix inequalities) for finding feedback gain matrices so that

the proposed control law with those gains achieves almost sure asymptotic stabilization.

Note that we also explored the case where exact knowledge of the stochastic properties of

mode observation instants is not available. For this case, we presented a set of alternative

stabilization conditions.
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Chapter 10

Sampled-Parameter Feedback

Control of Discrete-time Linear

Stochastic Parameter-Varying

Systems

10.1 Introduction

Feedback control of dynamical systems with stochastic parameters have been explored in

several studies [4,51,55–60]. Most of the documented control frameworks for stochastic

parameter-varying systems require the availability of parameter information at all time

instants. Note that the parameters of a system usually describe the state of external envi-

ronment, and may not be directly measurable or may not be observed as frequently as the

state of the system itself. Hence, it is important to investigate the control problem for the

case where the parameters are not available for control purposes at all time instants.

In Chapters 3–9, we investigated stabilization problem for Markov jump systems for

the case where the controller has access only to sampled information of the system mode,

which is modeled by a finite-state Markov chain.

In this chapter we explore feedback control of discrete-time linear stochastic parameter-

varying systems under sampled parameter information. Specifically, the parameter of the

system is modeled as a discrete-time aperiodic, stationary, and ergodic Markov process

defined on R
l (see Section 2.3.4). We assume that this parameter is observed (sampled)
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periodically. In order to achieve stabilization, we develop a control framework that de-

pends only on the sampled version of the parameter. We obtain sufficient conditions of

almost sure asymptotic stabilization of the closed-loop system by utilizing the stationarity

and ergodicity properties of a stochastic process that represents the sequences of values

that the system parameter takes between consecutive observation instants. We then ex-

plore a special class of linear parameter-varying systems where the state matrix is an affine

function of the entries of the parameter vector. Note that linear parameter-varying sys-

tems with affine parameter dependence has been previosly studied by many researchers

(see [2, 82, 83], and the references therein). Our goal in this chapter is to show that sta-

bilization for this class of parameter-varying systems can be achieved through a control

law with a feedback gain that is an affine function of the entries of the sampled parameter

vector.

This chapter is organized as follows. In Section 10.2, we provide a key result con-

cerning discrete-time Markov processes on R
l. In Section 10.3, we present the mathe-

matical model for discrete-time linear stochastic parameter-varying systems and explain

the feedback control problem under periodically sampled parameter information. We ob-

tain sufficient conditions under which our proposed control law guarantees almost sure

asymptotic stabilization in Section 10.4. Then, in Section 10.5 we discuss almost sure

asymptotic stabilization problem for linear parameter-varying systems with affine param-

eter dependence. In Section 10.6, we present an illustrative numerical example. Finally,

in Section 10.7 we conclude the chapter.

10.2 Mathematical Preliminaries

In this section, we present a key result that is necessary for developing the main results in

the following sections.

In Section 10.3 below, we consider a discrete-time linear stochastic parameter-varying

dynamical system. The parameter of the dynamical system is modeled as an aperiodic,

stationary, and ergodic discrete-time Markov process {ξ(k) ∈ R
l}k∈N0 . Note that Sec-

tion 2.3.4 provides a detailed characterization of discrete-Time Markov processes on R
l;

furthermore, Section 2.3.5 provides the definitions of stationarity and ergodicity notions

210



for discrete-time stochastic processes. We investigate the stabilization problem for the case

where the parameter process {ξ(k) ∈ R
l}k∈N0 is observed (sampled) at every τ ∈ N time

steps. The sequences of values that the parameter ξ(·) takes between consecutive observa-

tion instants are characterized through the stochastic process {ξ̂(n) ∈ R
l × R

l × · · · × R
l

︸ ︷︷ ︸

τ terms

}n∈N0

defined by

ξ̂(n) ,
(
ξ(nτ), ξ(nτ + 1), . . . , ξ((n+ 1)τ − 1)

)
, (10.1)

for n ∈ N0. Our main results presented in Section 10.3 rely on Lemma 10.1 below, where

we show that the stochastic process {ξ̂(n)}n∈N0 defined in (10.1) is also stationary and

ergodic.

Lemma 10.1. Suppose that {ξ(k) ∈ R
l}k∈N0 is a discrete-time aperiodic, stationary, and

ergodic Markov process. Then the stochastic process {ξ̂(n)}n∈N0 that is defined in (10.1)

for a given τ ∈ N is stationary and ergodic.

Proof. We first show that {ξ̂(n)}n∈N0 is stationary. For all Sk,m ∈ B(Rl), m ∈

{1, 2, . . . , τ}, k ∈ {1, 2, . . . , n}, n ∈ N, and i ∈ N0,

P[ξ̂(i) ∈ Ŝ1, ξ̂(i+ 1) ∈ Ŝ2, . . . ξ̂(i+ n− 1) ∈ Ŝn]

= P[ξ(iτ) ∈ S1,1, . . . , ξ((i+ 1)τ − 1) ∈ S1,τ ,

ξ((i+ 1)τ) ∈ S2,1, . . . , ξ((i+ 2)τ − 1) ∈ S2,τ , . . . ,

ξ((i+ n− 1)τ) ∈ Sn,1, . . . , ξ((i+ n)τ − 1) ∈ Sn,τ ], (10.2)

where Ŝk , Sk,1 × Sk,2 × · · · × Sk,τ , k ∈ {1, 2, . . . , n}. The stationarity of {ξ(k) ∈ R
l}k∈N0

implies that for every n ∈ N,

P[ξ(iτ) ∈ S1,1, . . . , ξ((i+ n)τ − 1) ∈ Sn,τ ]

= P[ξ(jτ) ∈ S1,1, . . . , ξ((j + n)τ − 1) ∈ Sn,τ ], (10.3)

for all Sk,m ∈ B(Rl), m ∈ {1, 2, . . . , τ}, k ∈ {1, 2, . . . , n}, and i, j ∈ N0. Now it follows
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from (10.2), (10.3), and the definition of {ξ̂(n)}n∈N0 given in (10.1) that for every n ∈ N,

P[ξ̂(i) ∈ Ŝ1, ξ̂(i+ 1) ∈ Ŝ2, . . . ξ̂(i+ n− 1) ∈ Ŝn]

= P[ξ̂(j) ∈ Ŝ1, ξ̂(j + 1) ∈ Ŝ2, . . . ξ̂(j + n− 1) ∈ Ŝn], (10.4)

for all Sk,m ∈ B(Rl), m ∈ {1, 2, . . . , τ}, k ∈ {1, 2, . . . , n}, and i, j ∈ N0, which shows that

{ξ̂(n)}n∈N0 is stationary.

Next, we show that {ξ̂(n)}n∈N0 is an ergodic stochastic process. Now let Ω ,
(
R
l
)N0

denote the space that includes all infinite-sequences of R
l-valued vectors, and let F ,

B
((
R
l
)N0

)
denote the product σ-algebra. Furthermore, let P be the probability measure

induced by {ξ(k) ∈ R
l}k∈N0 . For a fixed ω ∈ Ω, the stochastic process {ξ(k) ∈ R

l}k∈N0

is given by ξ(k) = ω(k), k ∈ N0. The measure preserving transformation Tξ : Ω → Ω

associated with the stationary process {ξ(k) ∈ R
l}k∈N0 is given by

Tξ({ω(k)}k∈N0) , {ω(k + 1)}k∈N0 , ω ∈ Ω. (10.5)

Now, for a fixed ω ∈ Ω, the stochastic process {ξ̂(n)}n∈N0 is given by ξ̂(n) =
(
ω(nτ), ω(nτ+

1), . . . , ω((n + 1)τ − 1)
)
, n ∈ N0. Furthermore, the measure preserving transformation

T
ξ̂
: Ω → Ω associated with the stochastic process {ξ̂(n)}n∈N0 is given by

T
ξ̂
({ω(k)}k∈N0) , {ω(k + τ)}k∈N0 , ω ∈ Ω. (10.6)

Moreover, note that T
ξ̂
(ω) = T τ

ξ (ω), ω ∈ Ω. Hence, for all F ∈ F ,

T−1

ξ̂
(F ) = {ω ∈ Ω : T

ξ̂
(ω) ∈ F}

= {ω ∈ Ω : T τ
ξ (ω) ∈ F}. (10.7)

Note that for the case of τ = 1, T
ξ̂
(ω) = Tξ(ω), ω ∈ Ω, and hence ergodicity of {ξ(k)}k∈N0

implies ergodicity of {ξ̂(n)}n∈N0 . Now, consider the case where τ ≥ 2. Let F ∈ F be a set

such that {ω ∈ Ω : T τ
ξ (ω) ∈ F} = F . Then in the case where {ω ∈ Ω : Tξ(ω) ∈ F} = F ,

we have P[F ] = 0 or P[F ] = 1. Otherwise, aperiodicity of {ξ(k)}k∈N0 implies that P[F ] ∈

{0, 1}. Hence, for all F ∈ F such that T−1

ξ̂
(F ) = F , we obtain P[F ] = 0 or P[F ] = 1, which
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shows that the stationary stochastic process {ξ̂(n)}n∈N0 is ergodic. �

10.3 Sampled-Parameter Feedback Control of Discrete-Time Lin-

ear Stochastic Parameter-Varying Systems

In this section, we first provide the mathematical model for a discrete-time linear stochas-

tic parameter-varying system. Then we explain the feedback control problem under pe-

riodically observed (sampled) parameter information and present our proposed sampled-

parameter control framework for stabilizing discrete-time linear stochastic parameter-

varying systems.

10.3.1 Mathematical Model

We consider the discrete-time linear stochastic dynamical system given by

x(k + 1) = A(ξ(k))x(k) +B(ξ(k))u(k), k ∈ N0, (10.8)

with the initial condition x(0) = x0, where x(k) ∈ R
n is the state vector, u(k) ∈ R

m

is the control input. Furthermore, A : R
l → R

n×n and B : R
l → R

n×m denote the

parameter-dependent system matrices. The parameter denoted by {ξ(k) ∈ R
l}k∈N0 is

assumed to be an aperiodic, stationary, and ergodic Markov process characterized by the

transition probability function P : Rl×B(Rl) → [0, 1] and the initial stationary distribution

ν : B(Rl) → [0, 1]. Note that

P[ξ(0) ∈ S] = ν(S), S ∈ B(Rl), (10.9)
ˆ

Rl

P (s, S)ν(ds) = ν(S), S ∈ B(Rl). (10.10)

Note that a class of switched stochastic systems can be modeled as stochastic parameter-

varying systems of the form (10.8). For instance, the discrete-time switched linear stochas-

tic system discussed in Chapters 6, 7, and 9 is a special case of the dynamical system

(10.8), where {ξ(k)}k∈N0 is modeled as an aperiodic and irreducible finite-state Markov

chain (see Remark 10.1). Note that in Chapters 6, 7, and 9, the parameter ξ(·) indicates
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Figure 10.1: Actual parameter ξ(k) and its sampled version φ(k)

the active mode (subsystem) that governs the overall dynamics of a switched system. Fur-

thermore, note that linear systems with stationary and ergodic autoregressive parameters

can also be characterized through (10.8), since vector autoregressions are Markov pro-

cesses (see [89]). In Section 10.6, we present an illustrative discussion on the almost

sure asymptotic stabilization of a stochastic parameter-varying system with stationary and

ergodic autoregressive parameters.

10.3.2 Control Under Periodic Parameter Observations

In this chapter, we investigate feedback stabilization of the linear parameter-varying dy-

namical system (10.8) under the assumption that only a periodically-sampled version of

the parameter process {ξ(k) ∈ R
l}k∈N0 is available for control purposes. Specifically,

we assume that the parameter ξ(·) is observed (sampled) periodically at time instants

0, τ, 2τ, . . ., where τ ∈ N denotes the parameter observation period. The sampled param-

eter information that is available to the controller is characterized through the stochastic

process {φ(k) ∈ R
l}k∈N0 defined by

φ(k) = ξ(nτ), k ∈ {nτ, nτ + 1, . . . (n+ 1)τ − 1}, (10.11)

for n ∈ N0.

In order to achieve stabilization of the dynamical system (10.8), we propose the con-
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trol law

u(k) = K(φ(k))x(k), k ∈ N0, (10.12)

where K : Rl → R
m×n denotes the sampled-parameter-dependent feedback gain. Note

that the control law (10.12) requires only sampled parameter information.

Figure 10.1 shows sample paths of a parameter process {ξ(k) ∈ R}k∈N0 (modeled as

an autoregressive process), and its sampled version {φ(k) ∈ R}k∈N0 . In this example, the

parameter ξ(·) is observed (sampled) at every τ = 3 steps. At these parameter observa-

tion instants, actual parameter and its sampled version share the same value. However,

at other time instants, actual parameter may differ from its sampled version, since the

parameter may change its value between the observation instants. Hence, the perfect

knowledge of the actual parameter is available to the controller only at the parameter ob-

servation instants. In the following, we obtain sufficient conditions for stabilization of the

parameter-varying system (10.8) under the proposed control law (10.12) that depends

only on the sampled parameter information.

Note that the system dynamics in (10.8) depend on the actual parameter {ξ(k) ∈

R
l}k∈N0 , whereas the feedback gain of the control law (10.12) depends on the sampled

version of the parameter, {φ(k) ∈ R
l}k∈N0 . In the following lemma we present an ergodic

theorem for the coupled stochastic process {(ξ(t), φ(k)) ∈ R
l×R

l}k∈N0 , which is composed

of the original parameter process and its sampled version. Note that the result provided

in Lemma 10.2 below is crucial for developing the main results of this chapter presented

in Theorems 10.1, 10.2, and Corollary 10.1.

Lemma 10.2. Suppose {ξ(k) ∈ R
l}k∈N0 is an aperiodic, stationary, and ergodic Markov

process characterized by the transition probability function P : Rl×B(Rl) → [0, 1] and the

initial stationary distribution ν : B(Rl) → [0, 1]. Furthermore, let {φ(k) ∈ R
l}k∈N0 defined

as in (10.11) be the periodically sampled version of {ξ(k) ∈ R
l}k∈N0 for a given sampling

period τ ∈ N. Then for any Borel measurable function γ : Rl × R
l → R, it follows that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P (i)(φ̄, dξ̄)ν(dφ̄), (10.13)
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almost surely.

Proof. Let {ξ̂(n) ∈ R
l × R

l × · · · × R
l

︸ ︷︷ ︸

τ terms

}n∈N0 be the stochastic process defined in (10.1).

Note that ξ̂(n) denotes the sequence of values that the parameter ξ(·) takes between con-

secutive observation instants nτ and (n + 1)τ . Furthermore, let N(k) , ⌊k/τ⌋, k ∈ N0.

The number of mode samples obtained upto time k ∈ N0 is given by N(k) + 1. Note that,

for all n̄ ∈ N such that n̄ > τ , we have

n̄−1∑

k=0

γ(ξ(k), φ(k)) =

N(n̄)−1
∑

n=0

τ−1∑

i=0

γ(ξ(nτ + i), φ(nτ + i)) +
n̄−1∑

k=N(n̄)τ

γ(ξ(k), φ(k)). (10.14)

Since limn̄→∞
1
n̄

∑n̄−1
k=N(n̄)τ γ(ξ(k), φ(k)) = 0, it follows from (10.14) that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) = lim
n̄→∞

1

n̄

N(n̄)−1
∑

n=0

τ−1∑

i=0

γ(ξ(nτ + i), φ(nτ + i))

= lim
n̄→∞

N(n̄)

n̄

1

N(n̄)

N(n̄)−1
∑

n=0

τ−1∑

k=0

γ(ξ(nτ + i), φ(nτ + i))

= lim
n̄→∞

N(n̄)

n̄

1

N(n̄)

N(n̄)−1
∑

n=0

γ̂(ξ̂(n)), (10.15)

where γ̂(ξ̂(n)) ,
∑τ−1

k=0 γ(ξ(nτ + k), φ(nτ + k)). Now, by using the definition of N(·), we

obtain limn̄→∞
N(n̄)
n̄

= 1
τ
. Furthermore, it follows from Lemma 10.1 that the stochastic

process {ξ̂(n)}n∈N0 is stationary and ergodic. Thus, by the ergodic theorem for station-

ary and ergodic stochastic processes, we obtain limN→∞
1
N

∑N−1
n=0 γ̄(ξ̂(n)) = E[γ̂(ξ̂(0))].

Therefore,

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ
E[γ̂(ξ̂(0))]

=
1

τ
E[

τ−1∑

i=0

γ(ξ(i), φ(i))]

=
1

τ

τ−1∑

i=0

E[γ(ξ(i), φ(i))]. (10.16)

Note that since the value of sampled parameter process φ(·) does not change between

parameter observation instants, we have φ(i) = φ(0) = ξ(0), i ∈ {0, 1, . . . , τ − 1}. It then
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follows that

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ

τ−1∑

i=0

E[γ(ξ(i), ξ(0))]. (10.17)

Now by using the transition probability function P : Rl × B(Rl) → [0, 1] and the initial

stationary distribution ν : B(Rl) → [0, 1], we obtain

lim
n̄→∞

1

n̄

n̄−1∑

k=0

γ(ξ(k), φ(k)) =
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P[ξ(i) ∈ dξ̄, ξ(0) ∈ dφ̄]

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

γ(ξ̄, φ̄)P (i)(φ̄, dξ̄)ν(dφ̄), (10.18)

which completes the proof. �

10.4 Sufficient Conditions for Almost Sure Asymptotic Stabi-

lization

In this section, we utilize the result presented in Lemma 10.2 and obtain sufficient almost

sure asymptotic stabilization conditions for the closed-loop stochastic parameter-varying

system (10.8), (10.12).

Theorem 10.1. Consider the linear parameter-varying control system (10.8), (10.12). If

there exist a matrix R > 0 and a measurable function λ : Rl × R
l → (0,∞) such that

0 ≥ (A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))− λ(ξ̄, φ̄)R, ξ̄, φ̄ ∈ R
l, (10.19)

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

ln(λ(ξ̄, φ̄))P (i)(φ̄, dξ̄)ν(dφ̄) < 0, (10.20)

then the zero solution x(k) ≡ 0 of the closed-loop system (10.8), (10.12) is asymptotically

stable almost surely.

Proof. First, let V : Rn → [0,∞) be the positive-definite function defined by V (x) ,
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xTRx. It follows from (10.8) and (10.12) that for k ∈ N0,

V (x(k + 1)) = xT(k)
(
A(ξ(k)) +B(ξ(k))K(φ(k))

)T
R
(
A(ξ(k)) +B(ξ(k))K(φ(k))

)
x(k).

(10.21)

We now use (10.19), (10.21) and definition of V (·) to obtain

V (x(k + 1)) ≤ λ(ξ(k), φ(k))V (x(k))

≤ θ(k)V (x(0)), k ∈ N0, (10.22)

where θ : N0 → (0,∞) is given by

θ(k) ,
k∏

n=0

λ(ξ(n), φ(n)), k ∈ N0. (10.23)

Now, it follows from (10.23) that

ln(θ(k)) =
k∑

n=0

ln(λ(ξ(n), φ(n))), k ∈ N0. (10.24)

Furthermore, as a consequence of Lemma 10.2,

lim
k→∞

1

k
ln(θ(k)) = lim

k→∞

1

k

k∑

n=0

ln(λ(ξ(n), φ(n)))

=
1

τ

τ−1∑

i=0

ˆ

Rl

ˆ

Rl

ln(λ(ξ̄, φ̄))P (i)(φ̄, dξ̄)ν(dφ̄). (10.25)

It then follows from (10.20) and (10.25) that

lim
k→∞

1

k
ln(θ(k)) < 0, (10.26)

almost surely. Hence, limk→∞ ln θ(k) = −∞, almost surely, and therefore,

P[ lim
k→∞

θ(k) = 0] = 1. (10.27)
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Now, as a result of (10.22) and (10.27), P[limk→∞ V (x(k)) = 0] = 1, which implies that

the zero solution x(k) ≡ 0 of the closed-loop system (10.8), (10.12) is asymptotically

stable almost surely. �

Theorem 10.1 provides sufficient conditions for almost sure asymptotic stability of the

zero solution of the closed-loop system (10.8) under the control law (10.12). Conditions

(10.19) and (10.20) of Theorem 10.1 reflect that the stabilization performance depend

not only on the system dynamics but also on the probabilistic dynamics of parameter

transitions as well as the parameter observation period τ ∈ N.

Remark 10.1. Note that the parameter-varying dynamical system model defined by (10.8)

includes switched linear stochastic system models (explored in Chapters 6, 7, and 9) as a

special case. Consequently, conditions (10.19) and (10.20) allow us to also assess almost

sure asymptotic stability of closed-loop switched linear stochastic systems. Specifically, let

the parameter process {ξ(k) ∈ R}k∈N0 be characterized through the transition probability

function P : R × B(R) → [0, 1] and the initial stationary distribution ν : B(R) → [0, 1]

given by

P (φ̄, {ξ̄}) = pφ̄,ξ̄, φ̄, ξ̄ ∈ M , {1, 2, . . . ,M}, (10.28)

ν({φ̄}) = νφ̄, φ̄,∈ M, (10.29)

where pφ̄,ξ̄ ∈ [0, 1], νφ̄ ∈ [0, 1], φ̄, ξ̄ ∈ M, are scalars that satisfy
∑

ξ̄∈M pφ̄,ξ̄ = 1, φ̄ ∈ M,

∑

φ̄∈M νφ̄ = 1, and
∑

φ̄∈M νφ̄pφ̄,ξ̄ = νξ̄, ξ̄ ∈ M. With this characterization, the parameter-

varying system (10.8) represents a switched linear stochastic system composed of M ∈ N

number of subsystems (modes); moreover, the parameter process {ξ(k)}k∈N0 corresponds

to the mode signal that is modeled as an aperiodic and irreducible Markov chain with

transition probabilities pφ̄,ξ̄ ∈ [0, 1], φ̄, ξ̄ ∈ M, and initial stationary distributions νφ̄ ∈

[0, 1], φ̄ ∈ M. Furthermore, the condition (10.20) for this case reduces to

τ−1∑

i=0

∑

ξ̄∈M

∑

φ̄∈M

ln(λ(ξ̄, φ̄))p
(i)

φ̄,ξ̄
νφ̄ < 0, (10.30)

where p
(i)

φ̄,ξ̄
∈ [0, 1], φ̄, ξ̄ ∈ M, denote i-step mode transition probabilities of the switched

system.
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In the next section, we explore the sampled-parameter control problem for a linear

parameter-varying system with a state matrix that depend affinely on the stochastic pa-

rameter {ξ(k)}k∈N0 .

10.5 Stabilization of Linear Parameter-Varying Systems with

Affine Parameter Dependence

We now consider a special case of the parameter-varying dynamical system (10.8) where

the state matrix A(·) is defined as an affine function of the entries of the parameter vector

ξ(·) ∈ R
l; moreover, the input matrix B(·) is defined as a constant matrix. Specifically, we

consider the linear parameter-varying system (10.8) with

A(ξ̄) ,
(
Ā0 +

l∑

i=1

ξ̄iĀi

)
, (10.31)

B(ξ̄) , B̄, ξ̄ ∈ R
l, (10.32)

where Āi ∈ R
m×n, i ∈ {0, 1, . . . , l}, and B̄ ∈ R

n×m are constant matrices. In order

to achieve stabilization of the zero solution of dynamical system (10.8) with state and

input matrices given by (10.31) and (10.32), we employ the control law (10.12) with the

sampled-parameter-dependent feedback gain function

K(φ̄) , K̄0 +
l∑

i=1

φ̄iK̄i, φ̄ ∈ R
l, (10.33)

where K̄i ∈ R
m×n, i ∈ {0, 1, . . . , l}, are constant matrices. Note that the feedback gain

(10.33) is an affine function of the entries of the sampled parameter vector φ(·).

In Theorem 10.2 below, we present sufficient conditions under which the proposed

control law (10.12) with the feedback gain (10.33) guarantees almost sure asymptotic

stabilization of the linear stochastic parameter-varying system (10.8) with state and input

matrices given by (10.31) and (10.32).

Theorem 10.2. Consider the linear parameter-varying system (10.8) with state and input

matrices given by (10.31) and (10.32). If there exist a matrix R > 0 and scalars αi ∈
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(0,∞), i ∈ {1, 2, . . . , l}, βi ∈ (0,∞), i ∈ {0, 1, . . . , l}, such that

0 ≥ ĀT
i RĀi − αiR, i ∈ {1, . . . , l}, (10.34)

0 ≥ (Āi + B̄K̄i)
TR(Āi + B̄K̄i)− βiR, i ∈ {0, 1, . . . , l}, (10.35)

and (10.20) hold with λ : Rl × R
l → (0,∞) given by

λ(ξ̄, φ̄) , (2l + 1)
(
β20 +

l∑

i=1

(
(ξ̄i − φ̄i)

2α2
i + φ̄2i β

2
i

))
, (10.36)

then the control law (10.12) with the feedback gain (10.33) guarantees that the zero

solution x(k) ≡ 0 of the closed-loop system (10.8), (10.12) is asymptotically stable almost

surely.

Proof. Using the definitions (10.31), (10.32), we obtain

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

=
(
Ā0 +

l∑

i=1

ξ̄iĀi + B̄(K̄0 +
l∑

i=1

φ̄iK̄i)
)T
R
(
Ā0 +

l∑

i=1

ξ̄iĀi + B̄(K̄0 +
l∑

i=1

φ̄iK̄i)
)

=
(
Ā0 + B̄K̄0 +

l∑

i=1

(ξ̄iĀi + φ̄iB̄K̄i)
)T
R
(
Ā0 + B̄K̄0 +

l∑

i=1

(ξ̄iĀi + φ̄iB̄K̄i)
)
. (10.37)

Note that for i ∈ {1, 2, . . . , l},

ξ̄iĀi + φ̄iB̄K̄i = ξ̄iĀi − φ̄iĀi + φ̄iĀi + φ̄iB̄K̄i

= (ξ̄i − φ̄i)Āi + φ̄i(Āi + B̄K̄i). (10.38)

As a consequence of (10.37) and (10.38), we have

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

=
(
Ā0 + B̄K̄0 +

l∑

i=1

(ξ̄i − φ̄i)Āi +
l∑

i=1

φ̄i(Āi + B̄K̄i)
)T

·R
(
Ā0 + B̄K̄0 +

l∑

i=1

(ξ̄i − φ̄i)Āi +
l∑

i=1

φ̄i(Āi + B̄K̄i)
)
. (10.39)
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Now, let Ci ∈ R
n×n, i ∈ {0, 1, . . . , 2l}, be defined by C0 , Ā0 + B̄K̄0, Ci , (ξ̄i − φ̄i)Āi,

Ci+l , φ̄i(Āi + B̄K̄i), i ∈ {1, 2, . . . , l}. Then, it follows from (10.39) that

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

=
(

2l∑

i=0

Ci

)T
R
(

2l∑

i=0

Ci

)T

=
2l∑

i=0

2l∑

j=i

(
CT
i RCj + CT

j RCi

)
−

2l∑

i=0

CT
i RCi (10.40)

Note that for any pair of matrices Ci, Cj ∈ R
n×n, we have CT

i RCi + CT
j RCj −

(
CT
i RCj +

CT
j RCi

)
= (Ci − Cj)

TR(Ci − Cj) ≥ 0. Hence, (10.40) yields

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

≤
2l∑

i=0

2l∑

j=i

(
CT
i RCi + CT

j RCj

)
−

2l∑

i=0

CT
i RCi

=
2l∑

i=0

2l∑

j=i

CT
i RCi +

2l∑

i=0

2l∑

j=i

CT
j RCj −

2l∑

i=0

CT
i RCi. (10.41)

Now note that

2l∑

i=0

2l∑

j=i

CT
j RCj =

2l∑

j=0

2l∑

i=j

CT
i RCi =

2l∑

i=0

i∑

j=0

CT
i RCi. (10.42)

Inserting (10.42) into (10.41) yields

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

≤
2l∑

i=0

2l∑

j=i

CT
i RCi +

2l∑

i=0

i∑

j=0

CT
i RCi −

2l∑

i=0

CT
i RCi

=
2l∑

i=0

2l∑

j=0

CT
i RCi +

2l∑

i=0

CT
i RCi −

2l∑

i=0

CT
i RCi

= (2l + 1)
2l∑

i=0

CT
i RCi. (10.43)

By using the definitions of Ci ∈ R
n×n, i ∈ {0, 1, . . . , 2l}, together with (10.34)–(10.36) we
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obtain

(A(ξ̄) +B(ξ̄)K(φ̄))TR(A(ξ̄) +B(ξ̄)K(φ̄))

≤ (2l + 1)
(
(Ā0 + B̄K̄0)

TR(Ā0 + B̄K̄0) +
l∑

i=1

(ξ̄i − φ̄i)
2ĀT

i RĀi

+
l∑

i=1

φ̄2i (Āi + B̄K̄i)
TR(Āi + B̄K̄i)

)

= (2l + 1)
(
β20R+

l∑

i=1

(
(ξ̄i − φ̄i)

2α2
i + φ̄2i β

2
i

)
R
)

= λ(ξ̄, φ̄)R, (10.44)

which implies (10.19). Hence, the result follows from Theorem 10.1. �

Note that the conditions presented in Theorem 10.2 can be used for assessing almost

sure asymptotic stability of the closed-loop system (10.8), (10.12) with the system matri-

ces (10.31), (10.32) when the gain matrices K̄i ∈ R
m×n, i ∈ {0, 1, . . . , l}, for the control

law (10.12), (10.33) are already known. In practice, we often need to employ numerical

methods for finding gain matrices so that the proposed control law (10.12) with those

gains achieves almost sure asymptotic stabilization. In Corollary 10.1 below, we present

an alternative set of sufficient almost sure asymptotic stabilization conditions, which are

well suited for finding stabilizing gain matrices K̄i ∈ R
m×n, i ∈ {0, 1, . . . , l}, through

numerical methods.

Corollary 10.1. Consider the linear parameter-varying system (10.8) with state and input

matrices given by (10.31) and (10.32). If there exist matrices R̃ > 0, L̄i ∈ R
m×n, i ∈

{0, 1, . . . , l}, and scalars αi ∈ (0,∞), i ∈ {1, 2, . . . , l}, βi ∈ (0,∞), i ∈ {0, 1, . . . , l}, such

that

0 ≥ (ĀiR̃)
TR̃−1(ĀiR̃)− αiR̃, i ∈ {1, 2, . . . , l}, (10.45)

0 ≥ (ĀiR̃+ B̄L̄i)
TR̃−1(ĀiR̃+ B̄L̄i)− βiR̃, i ∈ {0, 1, . . . , l}, (10.46)

and (10.20) hold with λ : Rl×R
l → (0,∞) given in (10.36), then the control law (10.12),

(10.33) with gain matrices K̄i = L̄iR̃
−1, i ∈ {0, 1, . . . , l}, guarantees that the zero solution

x(k) ≡ 0 of the closed-loop system (10.8), (10.12) is asymptotically stable almost surely.
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Proof. The result is a direct consequence of Theorem 10.2 with R = R̃−1. �

Remark 10.2. We verify conditions (10.20), (10.45), and (10.46) of Corollary 10.1 by

employing a numerical technique. Specifically, following the approach presented in Chap-

ter 9, we transform conditions (10.45) and (10.46) into the matrix inequalities

0 ≤






αiR̃ (ĀiR̃)
T

(ĀiR̃) R̃




 , i ∈ {1, . . . , l}, (10.47)

0 ≤






βiR̃ (ĀiR̃+ B̄L̄i)
T

(ĀiR̃+ B̄L̄i) R̃




 , i ∈ {0, 1, . . . , l}, (10.48)

by using Schur complements (see [115]). Note that the inequalities (10.47) and (10.48)

are linear in R̃ and L̄i, i ∈ {0, 1, . . . , l}. Our numerical method is based on iterating over

a set of the values of αi, i ∈ {1, 2, . . . , l}, and βi, i ∈ {0, 1, . . . , l}, that satisfy (10.20) with

λ(·) calculated according to (10.36). At each iteration we look for feasible solutions to

the linear matrix inequalities (10.47) and (10.48). We use this method in Section 10.6

below to find matrices R̃ > 0, L̄i ∈ R
m×n, i ∈ {0, 1, . . . , l}, and scalars αi ∈ (0,∞), i ∈

{1, 2, . . . , l}, and βi ∈ (0,∞), i ∈ {0, 1, . . . , l}, that satisfy (10.20), (10.45), and (10.46)

for a given discrete-time linear stochastic parameter-varying system (10.8) with affine

parameter dependence characterized in (10.31) and (10.32).

10.6 Illustrative Numerical Example

In this section, we present an illustrative numerical example to demonstrate the main

results of this chapter. Specifically, we consider the linear parameter-varying stochastic

system (10.8) with state and input matrices given by

A(ξ̄) =






0.3 + 0.1ξ̄2 0.3 + 0.1(ξ̄1 + ξ̄2)

4 + ξ̄1 1 + ξ̄2




 , (10.49)
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and B(ξ̄) = B̄ = [0, 1]T, for all ξ̄ ∈ R
2. Note that the state matrix A(·) given in (10.49) is

an affine function of the form (10.30) with

Ā0 =






0.3 0.3

4 1




 , Ā1 =






0 0.1

1 0




 , Ā2 =






0.1 0.1

0 1




 . (10.50)

The parameter {ξ(k) ∈ R
2}k∈N0 of the system is assumed to be a Markov process with

autoregressive entries characterized by

ξ1(k + 1) = ρ1ξ1(k) + w1(k + 1), (10.51)

ξ2(k + 1) = ρ2ξ2(k) + w2(k + 1), (10.52)

where ρ1 = 0.8, ρ2 = 0.4; furthermore, {w1(k) ∈ R}k∈N and {w2(k) ∈ R}k∈N are mutually

independent stochastic processes. We assume that the random variables w1(k), k ∈ N, are

independent and identically distributed by normal distribution N (0, σ21 = 0.7) (i.e., mean

value = 0, variance = 0.7). Similarly, the random variables w2(k), k ∈ N, are assumed to

be independent and identically distributed by normal distribution N (0, σ22 = 0.3). The ini-

tial values ξ1(0) and ξ2(0) are assumed to be distributed by normal distributions N (0,
σ2
1

1−ρ21
)

and N (0,
σ2
2

1−ρ22
), respectively. Note that {ξ(k) ∈ R

2}k∈N0 defined in (10.51) and (10.52)

is an aperiodic, stationary, and ergodic Markov process characterized through the transi-

tion probability function P : R2 × B(R2) → [0, 1] and the initial stationary distribution

ν : B(R2) → [0, 1] given by

P (φ̄, [a1, b1)× [a2, b2)) =

ˆ b2

a2

ˆ b1

a1

f1(ξ̄1 − φ̄1)f2(ξ̄2 − φ̄2)dξ̄1dξ̄2, (10.53)

ν([a1, b1)× [a2, b2)) =

ˆ b2

a2

ˆ b1

a1

f̃1(φ̄1)f̃2(φ̄2)dφ̄1dφ̄2, (10.54)

for a1, b1, a2, b2 ∈ R with a1 ≤ b1 and a2 ≤ b2, where f1 : R → [0,∞), f2 : R → [0,∞),

f̃1 : R → [0,∞), and f̃2 : R → [0,∞) respectively denote the probability density functions

for the normal distributions N (0, σ21), N (0, σ22), N (0,
σ2
1

1−ρ21
), and N (0,

σ2
2

1−ρ22
). Moreover, by

using (10.53) we obtain the i-step transition probability function P (i) : Rl×B(Rl) → [0, 1]
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Figure 10.1: State trajectory of the uncontrolled system versus time

as

P (i)(φ̄, [a1, b1)× [a2, b2)) =

ˆ b2

a2

ˆ b1

a1

f
(i)
1 (ξ̄1 − ρi1φ̄1)f

(i)
2 (ξ̄2 − ρi2φ̄2)dξ̄1dξ̄2, (10.55)

for a1, b1, a2, b2 ∈ R with a1 ≤ b1 and a2 ≤ b2, where the functions f
(i)
1 : R → [0,∞)

and f
(i)
2 : R → [0,∞) denote the probability density functions for the normal distributions

N (0,
∑i

j=1 ρ
j−1
1 σ21) and N (0,

∑i
j=1 ρ

j−1
2 σ22) for a given step size i ∈ N.

Figure 10.1 shows state trajectory of the uncontrolled system (10.8) (with u(t) ≡ 0).

Note that the uncontrolled parameter-varying system clearly indicates unstable behavior.

In the remainder of this section, we will show that stabilization of the system (10.8)

can be achieved through our proposed control law (10.12) with the affine feedback gain

(10.33) even if only a sampled version of the parameter is available for control purposes.

Specifically, we assume that the parameter {ξ(k) ∈ R
2}k∈N0 is observed (sampled) at every

τ = 3 steps. Hence the controller receives information about the parameter only at the

time instants 0, 3, 6, . . ..
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Now, note that

R̃ =






4.6524 −2.1804

−2.1804 4.1509




 , (10.56)

L̄0 = [−16.7758 4.2915] , (10.57)

L̄1 = [−4.5515 1.9864] , (10.58)

L̄2 = [2.0641 − 4.2430] , (10.59)

and the scalars α1 = α2 = 1.5, β0 = 0.1, β1 = β2 = 0.01 satisfy (10.45), (10.46), and

(10.20). Therefore, it follows from Corollary 10.1 that the proposed sampled-parameter-

dependent control law (10.12), (10.33) with gain matrices

K̄0 = L̄0R̃
−1 = [−4., 1407 − 1.1412] , (10.60)

K̄1 = L̄1R̃
−1 = [−1.0003 − 0.0469] , (10.61)

K̄2 = L̄2R̃
−1 = [−0.047 − 1.0469] , (10.62)

guarantees almost sure asymptotic stabilization of the closed-loop system (10.8), (10.12).

Sample paths of the state x(k) and the control input u(k) obtained with initial condi-

tion x(0) = [1, −1]T are shown in Figs. 10.2 and 10.3, respectively. Moreover, a sample

path of the actual parameter ξ(k) and its sampled version φ(k) are shown in Figure 10.4.

Figures 10.2–10.4 indicate that our proposed control framework (10.12) which affinely

depends on the sampled parameter φ(k) achieves asymptotic stabilization of the zero so-

lution.

10.7 Conclusion

In this chapter, we investigated feedback control of discrete-time linear stochastic sys-

tems with time-varying parameters under sampled parameter information. Specifically,

we considered the case where the parameter of the system is observed (sampled) period-

ically; furthermore, we proposed a control law that depends only on the sampled version

of the parameter. We obtained sufficient conditions under which our control framework
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Figure 10.3: Control input versus time

guarantees almost sure asymptotic stabilization of the zero solution. With a numerical

example, we presented an illustrative discussion on the almost sure asymptotic stabiliza-

tion of a stochastic parameter-varying system with stationary and ergodic autoregressive

parameters. The results obtained in this chapter suggest that our proposed control law

successfully achieves almost sure asymptotic stabilization even if only a sampled version

of the parameter is available for control purposes.
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Chapter 11

Concluding Remarks and

Recommendations for Future

Research

11.1 Conclusions

The goal of this thesis was to address sampled-parameter feedback control of dynamical

systems with stochastic parameters. Specifically, we considered linear dynamical systems

with time-varying parameters that are modeled by stochastic processes. These stochastic

parameters describe the state of a randomly varying environment in which the dynami-

cal system under consideration operates. We proposed control frameworks for the case

where the parameter of the dynamical system is observed (sampled) only at certain time

instants. Furthermore, we obtained conditions under which our proposed control frame-

works guarantee convergence of the system state trajectories towards origin.

In this thesis, we explored the case where the parameter takes values from a finite

set as well as the case where the parameter evolves in a space of uncountably many

values. The case where the parameter of a dynamical system takes values from a finite set

is characterized by switched stochastic system models. Switched stochastic systems are

dynamical systems that are composed of a number of subsystems (modes). Each mode of

the switched stochastic system describes the dynamics for a specific parameter value.

In Chapter 3, we investigated feedback control of continuous-time switched stochas-
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tic systems under the assumption that the mode of the switched system is sampled only

at periodic time instants. In this problem setting, the information of the system state is

continuously available for control purposes, however, the controller is assumed to have

only sampled information of the mode signal. This problem setting is appropriate for ap-

plications where the perfect knowledge of the mode is not available for control purposes

at all time instants. We developed a sampled-mode control framework in Chapter 3. This

control framework incorporates a piecewise-constant linear feedback gain. It is important

to note that the feedback gain in our control law depends only on the sampled mode

signal. Specifically, feedback gain of our control law is switched periodically between a

number of constant gains depending on the sampled mode information. We showed that

under certain conditions, our proposed control law guarantees that the state trajectory of

the closed-loop system converges to the origin almost surely. These sufficient stabiliza-

tion conditions depend not only on the subsystem and mode transition dynamics but also

on the mode sampling period. In order to obtain these conditions, we developed a form

of strong law of large numbers (ergodic theorem) for a bivariate stochastic process com-

posed of the actual mode and its sampled version. Using this key mathematical tool, we

also showed that, our proposed control law can be used for stabilizing the system state

even if the dynamics also include Wiener noise. Specifically, in Section 3.5, we considered

a switched stochastic dynamical system where the dynamics of each mode is described

by Ito-type stochastic differential equations which involve Wiener processes. We obtained

sufficient stabilization conditions under which our proposed sampled-mode control frame-

work achieves stabilization of the zero solution of the closed-loop system. The numerical

examples, which we presented in Chapter 3, illustrate the efficacy of our sampled-mode

control strategy in stabilizing continuous-time switched stochastic systems.

In Chapter 4, we explored sampled-mode feedback control of continuous-time switched

stochastic systems under the effect of mode information delays. In this problem setting,

the mode of the switched system is assumed to be periodically sampled, and each sam-

pled mode data becomes available to the controller after a delay. This problem setting

is important for applications, because in practice there may be delays in mode detection.

In order to address this problem, we proposed a control law that depends only on the

sampled and delayed mode information. We obtained some sufficient conditions under
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which the asymptotic stability of the state of the closed-loop switched stochastic system is

guaranteed with our proposed control law.

We directed our attention to developing a new probability-based feedback gain schedul-

ing mechanism in Chapter 5. Specifically, we investigated feedback control of continuous-

time switched stochastic systems under delayed and sampled mode information (which

was also explored in Chapter 4). Our probability-based feedback gain scheduling scheme

utilizes the available delayed sampled mode data as well as a priori information concern-

ing the probabilistic dynamics of the mode signal. In this scheme, the feedback gain of

our controller is set to the gain associated with the mode that has the highest conditional

probability of being active given the most recent sampled mode information. We demon-

strated the utility of this new scheme through a numerical example. In our demonstration,

we showed that probability-based feedback gain scheduling mechanism offers less conser-

vative stabilization conditions with respect to the mode sampling period and the sampled

mode information delay. In other words, with the probability-base feedback gain schedul-

ing, stabilization can be guaranteed for larger values of the mode sampling period and

the mode sample information delay compared to the case where we use the control law

developed in Chapter 4.

In addition to continuous-time switched stochastic systems, we also explored feedback

control of discrete-time switched stochastic systems. Specifically, in Chapter 6, we con-

sidered a discrete-time switched stochastic system which incorporates a stochastic mode

signal that characterizes the switching between a number of deterministic subsystems that

are described by difference equations. We investigated feedback control of discrete-time

switched stochastic systems for the case where the mode is observed periodically. In order

to achieve stabilization of the system state, we proposed a time-varying control strategy.

Our proposed control law incorporates a feedback gain that depends not only on the sam-

pled mode signal and but also on the time explicitly. Specifically, in this control strategy,

a time-varying, periodic feedback gain is assigned to each mode of the switched system.

When a sampled mode information becomes available to the controller, the gain associ-

ated with the sampled mode is set to be the feedback gain of the controller. Until the next

mode sample becomes available, this time-varying gain is used. We obtained the dynami-

cal equations that govern the evolution of the expectation of a stochastic process related to
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the covariance of the system state. We showed that these dynamical equations are deter-

ministic and show periodic behavior due to periodicity of mode observations and periodicity

of the feedback gains associated with the modes. By using discrete-time Floquet theory we

obtained necessary and sufficient conditions for second-moment asymptotic stabilization of

the zero solution. These conditions let us assess the stability of the closed-loop system for

known feedback gains. However, for practical applications, we are required to find the

feedback gains that we use in our control law. To this end, we also obtained alternative

stabilization conditions that are better suited for finding feedback gains. In this regard,

we provided efficient numerical methods to find stabilizing feedback gains. It is impor-

tant to note that mode observation (sampling) period and the number of subsystems that

we consider are finite. Hence, eventhough we consider a time-varying control strategy,

the number of feedback gains we have to find is finite due to the discrete-time setting.

Furthermore, our numerical methods can be used to efficiently determine these feedback

gains.

In the literature, switched stochastic systems have been used for modeling fault-tolerant

control systems which are composed of a normal operation mode and a number of faulty

modes that are associated with failures of different components of the process. When

there is a failure, information about this failure may not be instantaneously available to

the controller. The failure is often detected through diagnostic tests. However, these tests

may fail to identify the exact type of the failure. Hence, although the controller has the

information that there was a failure and the system is in one of the faulty modes, it does

not have the exact information of the mode. In order to develop control frameworks that

can deal with such situations, in Chapter 7, we investigated the feedback control problem

for a discrete-time switched stochastic system for the case where mode information ob-

tained through the observations is not precise. We assumed that the modes of the switched

system are divided into a number of groups, and the controller periodically receives in-

formation of the group that contains the active mode. We then proposed a control law

that depends only on the periodically available imprecise mode information, rather than

the exact information of the mode. We obtained a set of numerically verifiable conditions

under which our proposed control law guarantees stabilization of the closed-loop system.

In practical applications, it would be ideal if the mode information of a switched sys-
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tem is available for control purposes at all time instants or at least periodically. However,

there are certain cases where mode information is obtained at random time instants. This

situation occurs for example when the mode is sampled at all time instants; however,

some of the mode samples are randomly lost during communication between mode sam-

pling mechanism and the controller. On the other hand, in some applications, the mode

has to be detected, but the detected mode information may not be always accurate. In

this case each mode detection has a confidence level. Mode information with low con-

fidence is discarded. As a result, depending on the confidence level of detection, the

controller may or may not receive the mode information at a particular mode detection

instant. In order to deal with such cases where the information of the mode signal is

randomly available to the controller, the methods that we developed in Chapters 8 and 9

can be employed. Note that in Chapter 8, we investigated sampled-mode feedback control

problem for continuous-time switched stochastic systems for the case where the lengths

of intervals between mode sampling time instants are exponentially distributed random

variables. Futhermore, in Chapter 9, we proposed a sampled-mode feedback controller

for stabilizing discrete-time switched stochastic systems. In Chapter 9, we did not assume

a particular distribution for the length of intervals between mode observation (sampling)

time instants. In fact, the sufficient stabilization conditions that we obtained in Chapter 9

can be used in various situations related to the nature mode observations. For example,

these sufficient conditions can be used to assess stability of the closed-loop system un-

der our proposed sampled-mode-dependent control law for cases such as uniformly or

geometrically distributed mode observation intervals, or for the case where the mode is

sampled periodically.

In Chapters 3–9, we investigated sampled-mode stabilization of switched stochastic

control systems. Switched stochastic systems constitute an important class of dynamical

systems with randomly varying parameters. Specifically, switched stochastic system mod-

els can be used for modeling processes with parameters that take values from a finite set.

In the switched system framework, instantaneous change of the value of a parameter is

modeled as a mode switch. On the other hand, for certain applications, we may also need

to consider the case where the parameter of a process takes values from a space composed

of a continuum of points. In this case, there are uncountably many values that parameter
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may take over time. In Chapter 10, we investigated feedback control of a dynamical sys-

tem with stochastic parameters that evolve in a multidimensional space. We developed a

stabilizing control framework for the case where the system parameter is observed (sam-

pled) periodically. We obtained sufficient conditions under which almost sure asymptotic

stabilization of the closed-loop stochastic parameter-varying system is guaranteed by our

proposed control law. As a key step towards obtaining these sufficient conditions, we

utilized the stationarity and ergodicity properties of a stochastic process that represents

the sequences of values that the system parameter takes between consecutive observation

instants. In Chapter 10, we also explored a special class of linear parameter-varying sys-

tems where the state matrix is an affine function of the entries of the parameter vector.

We proved that stabilization for this class of parameter-varying systems can be achieved

through a control law with a feedback gain that is an affine function of the entries of the

sampled parameter vector. We presented a numerical example to illustrate the efficacy of

our approach for stabilizing linear systems with autoregressive parameters.

In conclusion, in this thesis, we investigated feedback control of dynamical systems

with parameters that evolve randomly. Specifically, we explored the case where the in-

formation of the system parameter is only available for control purposes at certain obser-

vation (sampling) instants. We proposed a range of different control methods to achieve

stabilization of the system state by using only sampled mode information. We proved that

our proposed control frameworks guarantee stabilization despite the uncertainty of the

parameter between the observation instants. The sampled-parameter control frameworks

that we developed are well-suited for controlling complex systems that work under the

effect of stochastically varying environments, as the changes in the environmental con-

ditions may not be observed exactly, instantaneously, or as frequently as the state of the

system itself.

11.2 Recommendations for Future Research

In this thesis we worked on the sampled-parameter feedback control problem for linear

systems with randomly varying parameters. We considered the case where the probabilis-

tic dynamics that govern the evolution of the parameter is available a priori. Specifically,
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in Chapters 3–9, where we considered feedback control of switched stochastic systems, we

assumed to have the knowledge of mode transition rates for the continuous-time case and

mode transition probabilities for the discrete-time case. Furthermore, in Chapter 10, we

investigated feedback control of a linear parameter-varying system with parameters that

are Markov processes that evolve in R
l according to known transition probability func-

tions. A future direction to thesis is the investigation of the case where the probabilistic

dynamics of the parameters are unknown. In such cases one may develop adaptive control

frameworks. A possible approach is to estimate the probabilistic dynamics of the parame-

ter process by using the observed values of the parameter, and adjust the controller based

on this estimation in an iterative fashion. A second approach would be considering a di-

rect adaptive control framework. In this case, the feedback gain is directly adjusted based

on the system state and parameter observations, since direct adaptive control does not

require estimation of the probabilistic dynamics of the parameter.

For certain applications, we need to consider the case where the evolution of the pa-

rameters also depend on the system state. In such cases, when a switched stochastic

system is considered, we can model the evolution of the mode through state-dependent

transition rate or transition probability matrices. On the other hand, if the parameter takes

values in R
l, transition probability functions would be state-dependent. In this thesis, we

considered the case where the evolution of the parameter is not state-dependent. As a

future work, the results presented in this thesis can be extended to include the case where

the parameter variation depends also on the state.

In Chapter 7, we considered the feedback control of a switched stochastic system for

the case where only sampled and imprecise information of the mode signal is available to

the controller. In that problem setting, the information of the mode was assumed to indi-

cate only the group of modes that include the active mode. This group information is not

an exact characterization of the active mode, although it accurately identifies the group of

modes, one of which is guaranteed to be active. For many applications, mode information

is provided to the controller by sensors, which may not have perfect accuracy. It is there-

fore important to address the feedback control problem for the case where the sampled

mode information is not accurate. In this case, the information about the active mode

may be wrong with a certain probability. Future research in this direction includes explo-
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ration of the relation between the accuracy of the mode information and the stabilization

performance.

In this thesis, randomness is introduced in the dynamics through parameters. Specif-

ically, we investigated feedback control problem for dynamical systems with parameters

that evolve randomly. Note that in practice, randomness also appear as an input to the dy-

namical system. In this case the dynamics for the continuous-time case can be represented

in the form

ẋ(t) = Ax(t) +Bu(t) + ξ(t), t ≥ 0, (11.1)

where ξ(·) represents a randomly evolving input. This type of dynamics with random

inputs are often seen in mechanical systems. In [121], response of a mechanical dynamical

system to random excitation is analyzed. Furthermore, when a liquid contained in a tank

is part of dynamical structure, the movement of liquid surface due to random excitation

affects the overall dynamics. Investigation of liquid sloshing due to random excitation

is conducted in [122, 123]. On the other hand, when the suspension system of a car is

considered, road profile acts as a randomly evolving input [124,125]. It is often the case,

where the random input ξ(·) can not be measured as frequently and as precisely as the

states x(·) of the system. Therefore, we are required to investigate the control problem for

the case where only sampled information of the random input ξ(·) is available for control

purposes.
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