T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 石油系分解油に含まれる芳香族炭化水素の溶媒抽出プロセス
Title(English)	
著者(和文)	吉村克久
Author(English)	Yoshihisa Yoshimura
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9241号, 授与年月日:2013年6月30日, 学位の種別:課程博士, 審査員:江頭 竜一,日野出 洋文,中崎 清彦,佐々木 正和,伊東 章
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第9241号, Conferred date:2013/6/30, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	
Type(English)	Doctoral Thesis

学位論文

石油系分解油に含まれる芳香族炭 化水素の溶媒抽出プロセス

東京工業大学大学院

理工学研究科 国際開発工学専攻

江頭研究室

10D18094

吉村克久

目次

第1章 緒論	1
1.1 背景	1
1.2 既往の研究	3
1.3 本研究の目的と構成	4
第2章 モデル炭化水素混合物-抽出溶媒間の液液平衡	6
2.1 実験	6
2.2 結果と考察	12
2.2.1 基礎的諸式	12
2.2.2 2成分系モデル混合物原料	13
2.2.3 多成分系モデル混合物原料	15
2.3 まとめ	23
第3章 分解油の回分平衡抽出	24
3.1 実験	24
3.1.1 分解油の分析	24
3.1.2 回分平衡抽出	27
3.2 結果と考察	28
3.2.1 分解油の分析	28
3.2.2 回分平衡抽出	33
3.3 まとめ	70
第4章 モデル炭化水素混合物の溶媒抽出プロセスにおける操作条件の影響	71
4.1 プロセスの概要	73
4.1.1 還流・カウンターソルベントを伴わない向流多段抽出プロセス	

73

=

4.	1.2	還流を用いた向流多段抽出プロセス <process2></process2>	74
4.	1.3	カウンターソルベントを用いた向流多段抽出プロセス <process3></process3>	75
4.	1.4	還流とカウンターソルベントを併用した向流多段抽出プロセス	
		<process4></process4>	76
4.2	計算		77
4.	2.1	プロセスを表す基礎式	77
4.	2.2	条件と計算方法	78
3.2	結郹	そと考察 したい しんしん しんしん しんしん しんしん しんしん しんしん しんしん	80
4.	3.1	原料組成の影響	80
4.	3.2	溶媒内水濃度の影響	83
4.	3.3	還流、カウンターソルベントの影響	84
4.	3.4	還流、カウンターソルベント供給段の影響	87
4.	3.5	総段数の影響	89
4.	3.6	カウンターソルベント成分の影響	91
4.	3.7	溶媒成分の影響	93
4.4	まと	: め	95

第5章	分解油に含まれる芳香族炭化水素の溶媒抽出プロセス	96
5.1 向	流多段抽出プロセス計算 1	96
5.1.1	向流多段抽出プロセス	96
5.1.2	計算	97
5.1.3	結果と考察	100
5.2 分的	解油の芳香族回収プロセス合成	103
5.2.1	還流・カウンターソルベントを伴わない分離プロセス	103
5.2.2	還流を用いた分離プロセス	105
5.2.3	カウンターソルベントを用いた分離プロセス	108

5.2.4 還流とカウンターソルベントを併用した分離プロセス	111
5.3 分離プロセスの比較	113
5.4 まとめ	116
第6章 総括	117
謝辞	120
付録	121
A 窒素・硫黄成分の分離	121
A.1 実験	121
A.2 結果と考察	123
B UNIFAC 法を用いた液液平衡推算	125
B.1 液液平衡関係を表す式	125
B.2 計算方法	129
B.3 結果と考察	130
C 分解油の性状	138
使用記号	140
引用文献	143

第1章 緒論

1.1 背景

現在、石油精製プロセスでは主製品のひとつであるガソリンを得るために常圧 蒸留だけではなく接触分解に代表される分解・精製プロセスが行われている。こ の中で重質留分は Figure 1.1 に示すプロセスを経て処理される。まず常圧残渣油 は減圧蒸留され減圧軽油と減圧残渣油が得られる。減圧軽油はまず水素化脱硫さ れ、ここで得られた軽油留分(脱硫減圧軽油)は流動接触分解(FCC)にて処理され接 触分解ガソリンが得られる。一方、減圧残渣油は熱分解され熱分解ガソリンが得 られる。これらのプロセスの中において副産物として水素化脱硫プロセスより分 解灯油(Cracked Kerosene, CK)が、FCC プロセスと熱分解プロセスより二種の分 解軽油(Light Cycle Oil, LCO; Coker Gas Oil, CGO)がそれぞれ得られる。

近年、ハイブリットや電気自動車といった自動車技術の発達によりガソリンの 需要はわずかに減少していっている。この需要の変化に合わせて重質油の分解プ ロセスの条件をガソリンの混合基材を減産する方向に変化させると副産物である 分解油は増産する。そこで分解油のより有効な活用が求められている。

分解灯油・分解軽油は一般的に芳香族化合物を多く含み、芳香族化合物は燃焼 性を低下させることで知られている。そのままでは同じ沸点範囲をもつ灯油・デ ィーゼル油製品の混合基材として使うことができない。予め何らかのプロセスで 分解油に含まれる芳香族炭化水素を分離することができれば、分解灯油・分解軽 油は重油製品より高質燃料である灯油・ディーゼル油製品の混合基材として使う ことができる。さらに分離された芳香族化合物については化学原料としての利用 が期待できる。なお化学原料としての芳香族炭化水素は一定した需要がある。こ れより分解灯油・分解軽油内の芳香族化合物の簡便な分離方法が求められる。な お、灯油・ディーゼル油製品は硫黄・窒素の含有量についても規制されており、 これらも同時に分離することができればより効果的である。

Figure 1.1 Process flow for cracked oils

1.2 既往の研究

分解灯油・分解軽油は多くの成分を含み広い沸点範囲をもつことより、簡便な 分離方法として確立している蒸留は適していない。このような分離に対して一般 的に広く採用されてきたのが溶媒抽出法である^{5,29)}。溶媒抽出法は成分の極性の差 を利用した分離法で、原料と 2 液相を形成する溶媒を用い原料相と溶媒相を接触 させ、溶解しやすい成分が多く溶媒相に移動することで分離がなされる。

芳香族溶媒抽出法はベンゼン・トルエン・キシレン(BTX)の分離を行う UDEX プロセス¹⁹⁾の工業化に始まり、ジメチルスルホキシド(DMSO)^{2,6)}、N-メチル-2-ピ ロリドン(NMP)¹⁴⁾、トリエチレングリコール³³⁾、テトラエチレングリコール³⁾等 の極性溶媒を用いて検討がなされている^{4,28)}。その中でもスルホランを用いたリフ オーメート内の芳香族成分の回収プロセスであるスルホラン法^{7,10,18,23,26,38,40)}は代 表的な芳香族溶媒抽出プロセスの一つである。フルフラールは潤滑油精製プロセ ス^{1,15,17,28,32,39)}で用いられる脱芳香族溶媒として工業的に用いられる溶媒である。 メタノールはコールタール吸収油の分離における抽出溶剤として研究が報告され ている^{8,9,11,12,13,27,31,37)}。この中では極性の差により含窒素複素環式化合物はその 他の炭化水素成分より選択的に抽出され、同様に芳香族一非芳香族間の分離にも 適用できると考えられる。さらに分解油中の窒素・硫黄成分の分離にも効果があ ると考えられる。沸点範囲の大きな原料油の取り扱いでは溶剤と溶質との沸点が 重複し溶媒回収においてプロセスが複雑となる可能性があるが、メタノールの沸 点は小さく分解油の沸点範囲と重ならないため分解油の分離を検討するうえで有 効な溶媒となる可能性がある。

1.3 本研究の目的と構成

本論文では、石油系分解油に含まれる芳香族炭化水素の溶媒抽出法を用いた分 離プロセスの合成を目的とした。まずモデル炭化水素混合物を用いた実験により 着目炭化水素成分の液液平衡関係について考察した。ついで実際の石油系分解油 を用いた回分平衡抽出により操作性を確認し、芳香族-非芳香族成分間の分離を検 討した。さらに、上記で得た分配係数の実測値を用い、芳香族-非芳香族 2 成分系 モデル混合物の分離計算を行い、プロセス合成に必要な情報を収集した。この情 報に基づいて、石油系分解油の分離プロセスを合成し、その分離計算より本プロ セスの実行可能性を確認した。

本論文は Figure 1.2 に示す6章より構成され、各章の要約を以下に示す。

第1章

本論文の背景と既往の研究、目的と構成を示した。

第2章

モデル炭化水素混合物を用いた実験により抽出における操作性と着目炭化水素成分の液液平衡関係について考察した。

第3章

石油系分解油の分析を行い、これを用いた回分平衡抽出を行った。抽出における操作性と芳香族-非芳香族成分間の分離を確認した。

第4章

前章で得た分配係数の実測値を用い芳香族-非芳香族 2 成分系モデル混合物の抽 出分離計算を行い,分解油分離プロセス合成に必要な情報を収集した。

第5章

石油系分解油の分離プロセスを合成し、その分離計算より本プロセスの実行可

第1章 緒論

能性を確認した。

第6章

本論文の総括を示した。

Figure 1.2 Schematic diagram of constitution of this thesis

第2章 モデル炭化水素混合物-抽出溶媒間の液液平衡

溶媒抽出法は溶媒相、油相における成分の濃度差を利用した分離法である。両 相間における分配は成分の分子構造に依存する。分解油は多くの成分を含み、そ れぞれ多様な分子構造をもつ。

本章では分解油の抽出分離を検討するに際し、モデル混合物を原料とした液液 平衡測定により着目成分の分子構造の両相間における分配へ与える影響を考察す る。本研究ではモデル混合物を用い窒素・硫黄成分の分離についても検討してお り、これについては付録 A に記載する。メタノール、フルフラール、スルホラン の三種が溶媒として検討された。なお、グループ溶液モデルである UNIFAC 法を 用いた液液平衡推算も行っており、これについても付録 B に記載する。

2.1 実験

液液平衡測定の実験の概略を Figure 2.1 に実験条件を Table2.1 に示す。指定し た量の原料と溶媒をスクリュー栓付き三角フラスコに仕込み、恒温振盪槽に入れ、 温度 303K で 48 時間接触させ平衡に至らせた。既往のコールタール吸収油ーメタ ノール系の液液平衡測定¹¹⁾では 48 時間の接触で十分であると確認されており、こ れを参考に平衡時間を決定した。その後分液漏斗を用いて抽出相・抽残相を分相 しそれぞれを分析した。本実験では原料油としてモデル混合物を、溶媒としてメ タノール、フルフラール、スルホランの 3 種を用いた。溶媒の主な物性を Table2.2 に、分子構造を Figure 2.2 に示す。さらにモデル混合物作成に用いた成 分の主な物性を Table2.3 に、分子構造を Figure 2.3 に示す。モデル混合物は MF1~7 の 7 種類を調整し、その組成を Table2.4 に示す。MF1,2 については芳香 族ー非芳香族成分の濃度を適宜変化させて液液平衡の測定を行い、溶媒を加えた 三成分系における 2 液相領域の確認を行った。

第2章 モデル炭化水素混合物-抽出溶媒間の液液平衡

Solvent		Extract
E _{ini} [kg], y _{i,ini} [–]	48[h], 303[K]	<i>E</i> _{eq} [kg], <i>y</i> _{<i>i</i>,eq} [–]
Feed oil		Raffinate
R _{ini} [kg], x _{i,ini} [–]		$R_{\rm eq}$ [kg], $x_{i,\rm eq}$ [–]

Figure 2.1 Schematic diagram of liquid-liquid equilibrium measurement

Table2.1 Experimental conditions for liquid-liquid equilibrium					
Feed		model mixture(MF1~MF7)			
Mass, <i>R</i> _{ini} Solvent	[kg]	0.02~0.002 methanol, furfural or sulfolane			
Mass ratio of solvent to feed, E_{ini}/R_{ini}	[-]	1			
Extraction temperature	[K]	303			
Shaking time	[h]	48			
Amplitude of shaking	[m]	0.04			
Frequency of shaking	[h ⁻¹]	5400			

Table2.2 Physical properties of solvents							
Solvent	blvent Formula		Molecular Weight	Boiling point	Density		
			[-]	[K]	[g·cm⁻³]		
Methanol	MEOH	CH₃OH	32.0	337.8	0.7914		
Furfural	FUR	C ₄ H ₃ OCHO	96.1	434.9	1.1594		
Sulfolane	SUL	$C_4H_8SO_2$	120.2	560.5	1.2723		
CH ₃ –OH		Ţ	ОН	O O O S S			
Methanol		Furfural		Sulfolane			

Figure 2.2 Molecular structures of solvents

Tablez.3 I hysical properties of components in model mixture for feed of								
Туре	i		Formula	MW [-]	b.p. [K]			
alkane	heptane	C7	$C_7 H_{16}$	100	372			
	octane	C8	C_8H_{18}	114	399			
	nonane	C9	C_9H_{20}	128	424			
	decane	C10	$C_{10}H_{22}$	142	447			
	undecane	C11	$C_{11}H_{24}$	156	469			
	dodecane	C12	$C_{12}H_{26}$	170	489			
	tridecane	C13	$C_{13}H_{28}$	184	509			
	tetradecane	C14	$C_{14}H_{30}$	198	527			
	pentadecane	C15	$C_{15}H_{32}$	212	544			
	hexadecane	C16	$C_{16}H_{34}$	226	560			
	heptadecane	C17	$C_{17}H_{36}$	241	575			
	octadecane	C18	$C_{18}H_{38}$	255	589			
	nonadecane	C19	$C_{19}H_{40}$	269	603			
	eicosane	C20	$C_{20}H_{42}$	283	616			
	heneicosane	C21	$C_{21}H_{44}$	297	630			
	docosane	C22	$C_{22}H_{46}$	311	642			
alkene	1-decene	O10	$C_{10}H_{20}$	140	440			
	1-dodecene	O12	$C_{12}H_{24}$	168	486			
	1-tetradecene	O14	$C_{14}H_{28}$	196	524			
	1-hexadecene	O16	$C_{16}H_{32}$	224	547			
	1-octadecene	O18	$C_{18}H_{36}$	252	588			
	1-eicosene	O20	$C_{20}H_{40}$	281	614			
mono cyclic aromatic	toluene	TOL	C ₇ H ₈	92	384			
	o-xylene	OX	C_8H_{10}	106	418			
	mesitylene	MS	C_9H_{12}	120	438			
	tetraline	Т	$C_{10}H_{12}$	132	481			
	hexylbenzene	HB	$C_{12}H_{18}$	162	499			
di cyclic aromatic	1-methylnaphthalene	1MN	$C_{11}H_{10}$	142	514			
	fluorene	FL	$C_{13}H_{10}$	166	571			
tri cyclic aromatic	phenanthrene	PHE	$C_{14}H_{10}$	178	613			

Table2.3 Physical properties of components in model mixture for feed oil

Figure 2.3 Chemical structures of components in model mixtures

1 001021			Alui OC	,	1,10	1000			
Туре	component	i	MF1	MF2	MF3	MF4	MF5	MF6	MF7
alkane	heptane	C7	*A		0.06				
	octane	C8			0.06				
	nonane	C9			0.06		0.64	0.50	0.80
	decane	C10			0.06				
	undecane	C11		*B	0.06				
	dodecane	C12			0.06				
	tridecane	C13			0.06				
	tetradecane	C14			0.06				0.01
	pentadecane	C15			0.06				
	hexadecane	C16			0.06				
	heptadecane	C17			0.06				
	octadecane	C18			0.06				
	nonadecane	C19			0.06				
	eicosane	C20			0.06				
	heneicosane	C21			0.06				
	docosane	C22			0.06				
alkene	1-decene	O10				0.167	0.06		
	1-dodecene	012				0.166	0.06		
	1-tetradecene	O14				0.165	0.06		
	1-hexadecene	O16				0.166	0.06		
	1-octadecene	O18				0.170	0.06		
	1-eicosene	O20				0.166	0.06		
mono cyclic aromatic	toluene	TOL	*A					0.06	0.18
	o-xylene	ОХ						0.06	
	mesitylene	MS						0.06	
	tetraline	Т						0.06	
	hexylbenzene	HB						0.06	
di cyclic aromatic	1-methylnaphthalene	1MN		*B				0.06	
	fluorene	FL						0.06	
tri cvclic aromatic	phenanthrene	PHE						0.06	0.01

Table2.4 Compositions of model mixtures(MF1~7) for feed oil

*A, *B: Compositions were varied for measuring of two liquid phases region

<u>分析</u>

分析はガスクロマトグラフを用いて行い、原料内成分と溶媒成分の質量分率を 決定した。ガスクロマトグラフの分析条件を Table2.5 に示す。分析は一つのサン プルに対し 2~3回行い平均値をとった。本研究では基準物質として 1-プロパノー ルを用い、あらかじめ検定してある着目成分の基準物質に対するピーク面積比と 質量分率比の相関式より定量した。着目成分の濃度が大きく、ピークが分離され ない場合は希釈材としてベンゼンを用いた。

Table2	Table2.5 Apparatus and conditions of analysis by gas chromatography				
Gas chron	natograph	GC-2010 (SHIMADZU)			
Detector	type	Flame ionization detector (FID)			
	temperature	593 K			
Injector	temperature	593 K			
Column ov	/en				
	initial temperature	373 K (retention time : 4min)			
	increase rate	1 K/min(373~399K)			
		4 K/min(399~429K)			
		2 K/min(429~573K)			
	final temperature	573 K (retention time : 10 min)			
Carrier ga	S	N ₂			
-	flow rate	20.9 cm/sec			
Split ratio		33			
Colum		HR-1(Capillary Column)			
	inner diameter	0.025 cm			
length 3000 cm					

2.2 結果と考察

2.2.1 基礎的諸式

成分 *i* の液液平衡測定前後における物質収支は原料、溶媒、抽残相、抽出相の質 量 *R*_{ini}、*E*_{ini}、*R*_{eq}、*E*_{eq}を、質量分率 *x*_{*i*,ini}、*y*_{*i*,ini}、*x*_{*i*,eq}、*y*_{*i*,eq}を用い以下の式で定義さ れる。

 $R_{ini} \cdot x_{i,ini} - R_{eq} \cdot x_{i,eq} = E_{eq} \cdot y_{i,eq} - E_{ini} \cdot y_{i,ini}$ (2.1) 左辺は液液平衡測定前後における油相内成分の移動量を、右辺は溶媒相内成分の 移動量を表している。

成分iの溶媒相における収率 Yiは以下のように定義される。

$$Y_i = E_{eq} \cdot y_{i,eq} / R_{ini} \cdot x_{i,ini}$$
(2.2)

成分iの分配係数 miは以下のように定義される。

$$m_i = y_{i,eq} / x_{i,eq}$$
(2.3)

成分iの成分jに対する選択度 $\beta_{i,j}$ は以下のように定義される。

$$\beta_{i,j} = m_i / m_j \tag{2.4}$$

2.2.2 2成分系モデル混合物原料

トルエンーヘプタン(CN =7)のモデル混合物 MF1 と 1-メチルナフタレンーウン デカン(CN =11)のモデル混合物 MF2 における各溶媒との三角図をそれぞれ Figure 2.4、Figure 2.5 に示す。なおグラフ内における組成は質量基準のものであ る。すべての溶媒は芳香族成分であるトルエン、1-メチルナフタレンとの 2 成分 系において 1 液相となり、非芳香族成分であるヘプタン、ウンデカンと 2 液相を 形成した。トルエンーヘプタンのモデル混合物の場合ではメタノール、フルフラ ール、スルホランの順で 1 液相を形成する芳香族濃度が小さく、芳香族濃度が高 い条件で 1 液相となりやすい。一方、1-メチルナフタレンーウンデカンのモデル 混合物の場合ではスルホランの 1 液相を形成する芳香族濃度が一番大きいのは変 わらないが、メタノールとフルフラールでは同程度である。フルフラールの場合 ではトルエンーヘプタンと 1-メチルナフタレンーウンデカンの 3 成分系における 1 液相を形成する芳香族濃度はメタノールほど顕著に確認されなかった。スルホラ ンでも同様であった。

これら1液相を形成する濃度では抽出操作を行うことはできず、2液相となる条件にて操作を行う必要がある。

2.2.3 多成分系モデル混合物原料

アルカン混合物(MF3)

アルカンのみからなるモデル混合物 MF3 における炭素数 CN と分配係数 *m_i*の関係を Figure 2.6 に、炭素数 CN とノナンに対する選択度 β_{i,C9}の関係を Figure 2.7 に示す。抽出相の GC 分析においてスルホランとドデカン(CN =12)はピークの分離ができなかったためグラフには表示しない。アルキル基の炭素は極性が小さいため溶媒への親和性が小さくなり溶け込まなくなるためである。溶媒で比較すると分配係数はメタノール、フルフラール、スルホランの順で大きかった。選択度の傾きを比較すると溶媒による違いがなかった。これはアルキル基の炭素が分配係数に与える影響の大きさが 3 種類の溶媒で変わらないということである。

Figure 2.6 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF3

Figure 2.7 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF3

<u>アルケン混合物(MF4,5)</u>

アルケンのみからなるモデル混合物 MF4 とアルケンとノナンからなるモデル混 合物 MF5 における炭素数 CN と分配係数 *m*_iの関係を Figure 2.8、Figure 2.9 に、 MF5 における炭素数 CN とノナンに対する選択度 *β*_{i,C9}の関係を Figure 2.10 に示 す。抽出相の GC 分析においてスルホランとドデカン(CN =12)はピークの分離が できなかったためグラフには表示しない。すべての溶媒において炭素数が増加す るにつれてアルケンの分配係数は減少した。選択度はノナンより炭素数の大きな 1-デセン(CN =10)のほうが大きく、アルケンのほうがアルカンより溶媒相に抽出 されやすいことが確認された。これは極性が高い炭素の二重結合をアルケンが持 っためである。さらに溶媒で比較すると分配係数はメタノール、フルフラール、 スルホランの順で大きかった。これは上記のアルカンの場合と同じであった。選 択度はスルホランのみ CN≧16 で他の溶媒より大きい値であったが、それ以外で

第2章 モデル炭化水素混合物-抽出溶媒間の液液平衡

は溶媒の影響は見られなかった。原料 MF4 と MF5 を比較するとノナンの存在の 分配係数に対する影響は見られなかった。

これより芳香族-非芳香族成分の分離だけでなく、アルケン-アルカンの分離 も考えられる。

Figure 2.8 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF4

Figure 2.9 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF5

Figure 2.10 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF5

芳香族炭化水素混合物(MF6)

CN =7~14 の芳香族炭化水素を含むモデル混合物 MF6 における炭素数 CN と分 配係数 *m*_iの関係を Figure 2.11 に、炭素数 CN とノナンに対する選択度 β_{i,C9}の関 係を Figure 2.12 に示す。全溶媒において分配係数はノナンより芳香族炭化水素の ほうが大きく選択度も 1 より大きく、芳香族炭化水素が選択的に溶媒相に抽出さ れたことが確認された。スルホランを溶媒として用いた場合はほとんどの芳香族 成分において分配係数がほかの溶媒より小さかった。しかし芳香族炭化水素の選 択度についてはスルホランがほかの溶媒よりも大きく、これはノナンの分配係数 がほかの溶媒に比べ非常に小さいからである。1環芳香族炭化水素(CN =7~10, 12) に着目すると、テトラリン(CN =10)以外の成分で炭素数増加に伴い分配係数は減 少し、テトラリン(CN =10)のみこの減少傾向よりはずれ大きい値であった。この アルキル基の炭素の増加に伴う分配係数の減少は、上記のアルカン、アルケン混 合物で確認された傾向と同じであるが、テトラリン(CN =10)は分子内に極性の高 いナフテン環であるシクロヘキシル環を持ち溶媒相へ溶け込みやすいからと考え られる。同様にフルオレン(CN =13)はフルオレン環を分子内にもち 1-メチルナフ タレン(CN =11)より炭素数が大きいにもかかわらず、環構造の影響で分配係数が 大きくなった。トルエン(CN =7)、1-メチルナフタレン(CN =11)、フェナントレン (CN =14)を比較するとベンゼン環の影響で炭素数が増加に伴い分配係数は増加し た。環構造の分配係数に与える影響を溶媒で比較すると、メタノールよりフルフ ラール、スルホランのほうが分配係数の増加量が大きく、フルフラール、スルホ ランのほうがメタノールより環構造の分配係数の増加への影響が大きかった。こ れより芳香族―非芳香族炭化水素だけでなく芳香族内の環構造の違いによる分離 の可能性も考えられる。

Figure 2.11 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF6

Figure 2.12 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF6

フェナントレン混合物(MF7)

フェナントレン、トルエン、ノナン、テトラデカンからなる芳香族炭化水素モ デル混合物 MF7 における分配係数 *m_i*を Figure 2.13 に、ノナンに対する選択度 *β_{i,C9}*を Figure 2.14 に示す。トルエンの分配係数はフルフラール、メタノール、ス ルホランの順で大きいのに対し、フェナントレンはフルフラール、スルホラン、 メタノールの順で大きかった。ここでもスルホランにおいて環構造の分配係数の 増加への影響がメタノールより大きいことが確認された。さらに芳香族成分の選 択度はスルホラン、フルフラール、メタノールの順で大きく、MF6 と同じ傾向で あった。アルカンについても MF3 と同じ傾向を示し、炭素数の大きいテトラデカ ン(CN =14)よりノナン(CN =9)の分配係数が大きくなった。フェナントレン(CN =14)は同炭素数のテトラデカンと比べると分配係数が非常に大きく分離が容易で あると考えられる。

Figure 2.13 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF7

Figure 2.14 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF7

2.3 まとめ

モデル混合物の液液平衡測定を行い、以下の結論を得た。

- 1) 非芳香族-溶媒成分 2 成分系では 2 液相となったが、芳香族成分の濃度が大きい条件では 1 液相となり抽出操作が不能となる場合があった。
- 2) アルカンはアルケンに対し選択的に抽出された。
- 3) 芳香族炭化水素は非芳香族炭化水素に対し選択的に抽出された。
- 4) スルホランの芳香族炭化水素の分離の選択性はメタノール、フルフラールと 比較し大きかった。
- 5) 同炭化水素族の中では炭素数の増加に従い分配係数は減少した。
- 6) 環構造の存在により分配係数は増加した。

第3章 分解油の回分平衡抽出

本章ではまず分解油として1種の分解灯油と2種の分解軽油の分析を行い、着 目成分の質量分率を求めた。次にこれら分解油を原料とした回分平衡抽出を行っ た。溶媒としてメタノール、フルフラール、スルホランを用い芳香族-非芳香族成 分間の分離を確認した。さらに溶媒に水を添加し、分離性能や抽出操作性の検討 を行った。さらに前章の液液平衡関係に関する考察に基づいて着目成分の分配係 数を相関した。

3.1 実験

3.1.1 分解油の分析

国内の製油所より入手した一種の分解灯油(CK)と二種の分解軽油 (CGO.LCO)についてガスクロマトグラフを用いて分析した。これら分解油の主な 性状を Table3.1 に示す。その他の分解油の性状については付録 C に記載する。分 解油中には多くの成分が含まれるが本研究では Table3.2 に示す 41 成分を着目成 分として同定した。また着目成分の分子構造を Figure 3.1 に示す。なおガスクロ マトグラフによる分析条件は2.1と同様である。

lable3.1 Physical properties and contents of cracked oils						
Feed oil		CK	CGO	LCO		
Density	[g·cm⁻³]	0.8168	0.8929	0.9365		
Boiling range	[K]	414-551	431-660	425-631		
Sulfur content	[ppm]	54	28200	1540		
Nitrogen content	[ppm]	41.8	808	385		
Type of hydrocarbon content						
mono cyclic aromatic	[]	0.2695	0.1586	0.1882		
di cyclic aromatic	[-]	0.0291	0.1203	0.3876		
tri cyclic aromatic	[]	0.0007	0.0437	0.1448		
alkane	[]	0.7007	0.3908	0.2794		
alkene	[-]	0	0.2866	0		

Туре	component	i	Formula	MW [-]	b.p. [K]
alkane					
	heptane	C7	$C_7 H_{16}$	100	372
	octane	C8	C_8H_{18}	114	399
	nonane	C9	C_9H_{20}	128	424
	decane	C10	$C_{10}H_{22}$	142	447
	undecane	C11	$C_{11}H_{24}$	156	469
	dodecane	C12	$C_{12}H_{26}$	170	489
	tridecane	C13	$C_{13}H_{28}$	184	509
	tetradecane	C14	$C_{14}H_{30}$	198	527
	pentadecane	C15	$C_{15}H_{32}$	212	544
	hexadecane	C16	$C_{16}H_{34}$	226	560
	heptadecane	C17	$C_{17}H_{36}$	241	575
	octadecane	C18	$C_{18}H_{38}$	255	589
	nonadecane	C19	$C_{19}H_{40}$	269	603
	eicosane	C20	$C_{20}H_{42}$	283	616
	heneicosane	C21	$C_{21}H_{44}$	297	630
	docosane	C22	$C_{22}H_{46}$	311	642
alkene					
	1-decene	O10	$C_{10}H_{20}$	140	440
	1-dodecene	012	$C_{12}H_{24}$	168	486
	1-tetradecene	014	$C_{14}H_{28}$	196	524
	1-hexadecene	O16	$C_{16}H_{32}$	224	547
	1-octadecene	O18	$C_{18}H_{36}$	252	588
	1-eicosene	O20	$C_{20}H_{40}$	281	614
mono cyclic aromatic					
	toluene	TOL	C ₇ H ₈	92	384
	ethylbenzene	EB	C_8H_{10}	106	409
	m-xylene	MX	C_8H_{10}	106	412
	p-xylene	PX	C_8H_{10}	106	411
	o-xylene	ОХ	C_8H_{10}	106	418
	propylbenzene	PB	C_9H_{12}	120	432
	mesitylene	MS	C_9H_{12}	120	438
	pusedocumene	PC	C_9H_{12}	120	442
	tetraline	Т	$C_{10}H_{12}$	132	481
	hexylbenzene	HB	$C_{12}H_{18}$	162	499
	pentamethylbenzene	PMB	$C_{11}H_{16}$	148	510
di cyclic aromatic					
	naphthalene	Ν	$C_{10}H_8$	128	491
	2-methylnaphthalene	2MN	$C_{11}H_{10}$	142	514
	1-methylnaphthalene	1MN	$C_{11}H_{10}$	142	514
	fluorene	FL	$C_{13}H_{10}$	166	571
tri cyclic aromatic					
	phenanthrene	PHE	$C_{14}H_{10}$	178	613
	anthracene	ANT	$C_{14}H_{10}$	178	609
	2-methylanthracene	2MA	$C_{15}H_{12}$	192	620
	9-methylanthracene	9MA	$C_{15}H_{12}$	192	643
	phenylnaphthalene	PN	$C_{16}H_{12}$	204	598

Table3.2 Properties of components in cracked oils

Figure 3.1 Chemical structures of components in cracked oils

3.1.2 回分平衡抽出

分解油の平衡抽出実験の実験条件を Table3.3 に示す。実験手順は 2.1 実験と同様 である。ここでは溶媒としてメタノール、フルフラール、スルホランに水を添加 したもの用い、水の濃度を変化させて実験を行った。水の質量分率の決定にはカ ールフィッシャー滴定装置を用いて行い、その他の成分に関してはガスクロマト グラフを用いた。カールフィッシャー滴定における装置・分析条件を Table3.4 に 示す。なおガスクロマトグラフによる分析条件は 2.1 実験と同様である。

Table3.3 Experimental conditions for liquid-liquid equilibrium						
Feed		Cracked oils(CK, CGO, LCO)				
Mass, <i>R</i> _{ini} Solvent	[kg]	0.02 Aqueous solutions of methanol, furfural or sulfolane				
Water content in solvent, $y_{W,ini}$	[-]	0, 0.3, 0.5 and 0.7				
Mass ratio of solvent to feed, E_{ini}/R_{ini}	[-]	1				
Extraction temperature	[K]	303				
Shaking time	[h]	48				
Amplitude of shaking	[m]	0.04				
Frequency of shaking	[h ⁻¹]	5400				

Table3.4 Apparatus and conditions of analysis by Karl Fischer				
Water content meter	Karl Fischer water content meter			
	(Metrohm, Ltd.)			
Apparatuses	758 KFD Titrino			
	696 Exchanger Unit			
	703 Ti-Stand			
Titration method	Volume titration			
Titration reagent	Hydranal Composite 5			
Dehydrating agent	Methanol			

3.2 結果と考察

3.2.1 分解油の分析

分解油(CK, CGO, LCO)のガスクロマトグラムを Figure 3.2 に示す。ガスク ロマトグラムより分解油中には着目成分以外の成分が多く含まれることが確認で きる。メターキシレンとパラーキシレンについてはガスクロマトグラフによる分 析で分離できなかったため、同じものとして定量した。さらにそれぞれの分解油 (CK, CGO, LCO)における着目成分の質量分率を Table3.5 に示す。CK には 22 成 分が定量され、3 環芳香族炭化水素は検出されなかった。CGO では 39 成分が定 量され、この分解油のみアルケンを含んでいた。LCO では 35 成分が定量され、 他の分解油に比べ2環、3 環芳香族炭化水素を多く含んでいた。

Figure	3.2	Gas	chromatogram	of ((a`)CK
		040	onnatogrann	U 1	` ~,	,

hexylbenzene

16

8

propylbenzene

Figure 3.2 Gas chromatogram of cracked oils (b)CGO

Figure 3.2 Gas chromatogram of (c)LCO
Туре	i		Mas	Mass fraction [-]		
			СК	CGO	LCO	
alkane			0.274	0.1596	0.1007	
	heptane	C7	0.0017	0.0006	0.0002	
	octane	C8	0.0168	0.0013	0.0007	
	nonane	C9	0.0671	0.0021	0.0004	
	decane	C10	0.0337	0.0158	0.0003	
	undecane	C11	0.0319	0.0159	8000.0	
	dodecane	C12	0.0311	0.0141	0.0021	
	tridecane	C13	0.0357	0.0146	0.0078	
	tetradecane	C14	0.0254	0.0135	0.0064	
	pentadecane	C15	0.0194	0.0147	0.0154	
	hexadecane	C16	0.0086	0.0123	0.0101	
	heptadecane	C17	0.0026	0.0124	0.0104	
	octadecane	C18		0.0108	0.0105	
	nonadecane	C19		0.0088	0.0089	
	eicosane	C20		0.0079	0.0099	
	heneicosane	C21		0.0082	0.01	
	docosane	C22		0.0065	0.0069	
alkene				0.0428		
	1-decene	O10		0.0109		
	1-dodecene	012		0.0078		
	1-tetradecene	014		0.0067		
	1-hexadecene	O16		0.0058		
	1-octadecene	O18		0.0063		
	1-eicosene	O20		0.0053		
mono cyclic aromatic			0.1	0.0145	0.0337	
· · · ·	toluene	TOL	0.0026	0.0006	0.0012	
	ethylbenzene	EB	0.0067		0.0009	
	m,p-xylene	M,PX	0.0233	0.0009	0.0041	
	o-xylene	ОХ	0.0175	0.0012	0.002	
	propylbenzene	PB	0.0041		0.0008	
	mesitylene	MS	0.0142	0.0021	0.0018	
	pusedocumene	PC	0.0131	0.0012	0.0044	
	tetraline	Т	0.0094	0.003	0.0015	
	hexylbenzene	HB	0.0091	0.0032	0.0077	
	pentamethylbenzene	PMB		0.0021	0.0093	
di cyclic aromatic			0.0124	0.0159	0.0703	
	naphthalene	Ν	0.0044	0.0031	0.0066	
	2-methylnaphthalene	2MN	0.008	0.0035	0.0376	
	1-methylnaphthalene	1MN		0.0056	0.0219	
	fluorene	FL		0.0038	0.0043	
tri cyclic aromatic				0.0147	0.0241	
	phenanthrene	PHE		0.0023	0.0097	
	anthracene	ANT		0.0021	0.0024	
	2-methylanthracene	2MA		0.0034	0.0051	
	9-methylanthracene	9MA		0.0031	0.0031	
	phenylnaphthalene	PN		0.0038	0.0036	

Table3.5	Compositions	of cracked oils
----------	--------------	-----------------

3.2.2 液液平衡の測定

相の状態

多くの条件で抽出操作が適正に行うことができた。しかし、フルフラールに水 を添加した溶媒相(yw,ini = 0.3, 0.5, 0.7)は 2 液相を形成し、さらに分解油と接触さ せることによってフルフラール相、水相、油相の 3 液相を形成し抽出操作を行う ことはできなった。スルホラン(yw,ini = 0)を溶媒、CGOを原料油として接触させる と混合物は 1 液相となり抽出操作を行うことはできなった。しかし水を添加する こと(yw,ini = 0.3, 0.5, 0.7)によって混合物は 2 液相となり、抽出操作を行うことが できた。ほとんどの条件において比重の小さい抽残相が上に、比重の大きい抽出 相は下に位置した。しかし比重の小さいメタノールを使用した場合は抽残相が下 に、比重の大きい抽出相は上に位置した。

成分の影響

収率

分解軽油 CGO とメタノール($y_{W,ini}=0.3$)、フルフラール($y_{W,ini}=0$)、スルホラン ($y_{W,ini}=0.3$)をそれぞれ原料、溶媒とした実験で得られた着目成分の沸点と収率 Y_i の 関係を Figure 3.3 に示す。沸点の近い成分を比較すると芳香族成分の収率は非芳 香族より大きく、芳香族-非芳香族間の分離が確認された。さらにこれより、抽 出法によって沸点差による分離法である蒸留では適さない分離が行われることが 確認された。ここでは芳香族全体の収率はフルフラールを溶媒として用いたとき $Y_A=0.24$ で最大だった。

分配係数

各分解油、溶媒についての分子内炭素数 CN の分配係数 *m*_i に与える影響を Figure 3.4~Figure 3.12 に示す。CGO とスルホランを用いた実験では上述したようにデータを示さない。溶媒内の水の濃度が大きい場合では抽出相の着目成分濃 度が小さいため、GC 分析により検出されずプロットのない成分が存在する。一般 的に芳香族成分の分配係数は非芳香族成分より大きく、分解油を用いた本実験に おいても芳香族-非芳香族成分の分離が確認された。全成分において溶媒相内の 水濃度の増加に従い分配係数は減少した。これは極性の高い水には低極性の炭化 水素成分が溶け込まないためである。前章のモデル混合物での実験と同様に非芳 香族成分の分配係数は炭素数の増加に従い減少した。しかしスルホランの場合で はデータのばらつきがあり、この減少傾向がはっきりと確認できなかった。炭化 水素族別にみると、どの溶媒でもそれぞれの1環芳香族、2環芳香族、3環芳香族 成分では炭素数の増加に伴い分配係数の減少傾向が確認できる。前章のモデル混 合物を用いた実験では、ナフテン環であるシクロヘキシル環、フルオレン環をそ れぞれ持つテトラリン(CN=10)、フルオレン(CN=13)の分配係数は炭素数増加に伴 う分配係数減少傾向に反して高い値であったが、分解油を用いた実験では確認さ れなかった。フルフラール、スルホランの場合では2環芳香族、3環芳香族成分の 分配係数は 1 環芳香族成分に対し比較的大きい値である。特にメチルナフタレン (CN=11)、フェナントレン・アントラセン(CN=14)では顕著であった。しかしメタ ノールの場合では1環芳香族、2環芳香族、3環芳香族成分の違いに関係なく炭素 数の増加に従い分配係数が減少した。前章のモデル混合物を用いた実験では芳香 族成分の選択性の低いメタノール溶媒では環構造の分配係数増加への影響が小さ く、他の溶媒ほどその増加量が小さかったが、本実験では炭素数増加による分配 係数の減少の影響より小さいため、芳香環の数に関係なく炭素数の増加に従い分 配係数が減少した。

選択度

本実験において選択度の基準物質は原料油が分解灯油の場合ではノナン(CN=9) を、分解軽油の場合ではペンタデカン(CN=15)を選択した。これらの成分はそれぞ れの原料油内のアルカンにおいて大きな質量分率を持つため基準物質として選択

34

第3章 分解油の回分平衡抽出

した。液液平衡の測定によって得られた各分解油、溶媒についての分炭素数 CN の選択度 $\beta_{i,j}$ に与える影響を Figure 3.13~Figure 3.21 に示す。ほとんどの芳香族 成分において選択度は 1 を超え、芳香族炭化水素が選択的に抽出されたことが確 認できた。溶媒相内の水濃度の増加に従い芳香族炭化水素の選択度は増加した。 これは極性の高い水の添加によって、非芳香族炭化水素より極性の大きい芳香族 成分がより選択的に抽出されたためである。

Figure 3.3 The relationship between boiling and yield with CGO

Figure 3.4 The effect of number of carbon atoms in molecular on distribution coefficient with CK and methanol

Figure 3.5 The effect of number of carbon atoms in molecular on distribution coefficient with CGO and methanol

Figure 3.6 The effect of number of carbon atoms in molecular on distribution coefficient with LCO and methanol

Figure 3.7 The effect of number of carbon atoms in molecular on distribution coefficient with CK and furfural

Figure 3.8 The effect of number of carbon atoms in molecular on distribution coefficient with CGO and furfural

Figure 3.9 The effect of number of carbon atoms in molecular on distribution coefficient with LCO and furfural

Figure 3.10 The effect of number of carbon atoms in molecular on distribution coefficient with CK and sulfolane

Figure 3.11 The effect of number of carbon atoms in molecular on distribution coefficient with CGO and sulfolane

Figure 3.12 The effect of number of carbon atoms in molecular on distribution coefficient with LCO and sulfolane

Figure 3.13 The effect of number of carbon atoms in molecular on separation selectivity with CK and methanol

Figure 3.14 The effect of number of carbon atoms in molecular on separation selectivity with CGO and methanol

Figure 3.15 The effect of number of carbon atoms in molecular on separation selectivity with LCO and methanol

Figure 3.16 The effect of number of carbon atoms in molecular on separation selectivity with CK and furfural

Figure 3.17 The effect of number of carbon atoms in molecular on separation selectivity with CGO and furfural

Figure 3.18 The effect of number of carbon atoms in molecular on separation selectivity with LCO and furfural

Figure 3.19 The effect of number of carbon atoms in molecular on separation selectivity with CK and sulfolane

Figure 3.20 The effect of number of carbon atoms in molecular on separation selectivity with CGO and sulfolane

Figure 3.21 The effect of number of carbon atoms in molecular on separation selectivity with LCO and sulfolane

炭化水素族の影響

分配係数

液液平衡の測定によって得られた各炭化水素族の分配係数 *m_i* に対する抽出相内 の水の濃度 *y_{W,eq}* の影響を Figure 3.22~Figure 3.24 に示す。水の添加のない場合 では、芳香族成分が多く含まれる LCO において炭化水素の分配係数が CK、CGO より大きい値であった。アルカンとアルケンでは前者のほうが分配係数が高く、 スルホラン溶媒の場合では非芳香族成分の分配係数は他の溶媒より小さくなり、 これらは前章のモデル混合物を用いた実験と一致した。すべての場合で抽出相内 の水の濃度の増加と共に分配係数は減少した。芳香族炭素の影響の大きいスルホ ランの場合では抽出相内の水濃度が大きく分析により検出されない成分が多い条 件を除いて 2 環芳香族成分の分配係数が 1 環芳香族成分に対して大きい値であっ た。

選択度

液液平衡の測定によって得られた抽出相内の水濃度 yw,eq の選択度 β_{i,j}に与える 影響 Figure 3.25~Figure 3.27 に示す。ここでは 2 環、3 環芳香族成分については 1 環芳香族成分に対する選択度を、アルケンについてはアルカンに対しての選択度 を表す。水を添加した場合では検出できない成分があったが、多くの場合で 2 環 芳香族成分の選択度は大きく、他の芳香族より選択的に抽出された。さらに 2 環、 3 環芳香族成分は水の濃度の増加にともない増加した。アルケンの選択度は 1 を超 え、アルカンより選択的に抽出された。また水の濃度の増加によりアルケンの選 択度は増加した。

Figure 3.22 The effect of water content in extract phase on distribution coefficient with CK

Figure 3.23 The effect of water content in extract phase on distribution coefficient with CGO

Figure 3.24 The effect of water content in extract phase on distribution coefficient with LCO

Figure 3.25 The effect water of content in extract phase on separation selectivity with CK

Figure 3.26 The effect of water content in extract phase on separation selectivity with CGO

Figure 3.27 The effect of water content in extract phase on separation selectivity with LCO

芳香族ー非芳香族成分間の分離

分配係数

液液平衡の測定によって得られた抽出相内の水の濃度 yw,eq が全芳香族成分と全 非芳香族成分の分配係数 m_iに与える影響を Figure 3.28 に示す。全芳香族成分の 分配係数は全非芳香族成分に比べ大きく溶媒相への選択的抽出が確認された。さ らに抽出相内の水濃度の増加に従い分配係数は減少した。

選択度

液液平衡の測定によって得られた抽出相内の水の濃度 $y_{W,eq}$ が全芳香族成分の全 非芳香族成分に対する選択度 $\beta_{A,NA}$ に与える影響を Figure 3.29 に示す。選択度は 全条件で 1 を超え芳香族-非芳香族成分間の分離が確認された。選択度は抽出相内 の水の濃度の増加に従い増加した。LCO ではほとんど溶媒の種類による違いはみ られなかったが、スルホランが一番選択度が大きかった。原料油が CK の場合で はスルホランの選択度は他の溶媒に比べて高く、これは小さい非芳香族成分の分 配係数によるものである。

Figure 3.28 The effect of water content in extract phase on distribution coefficient of total aromatics and nonaromatics

Figure 3.29 The effect of water content in extract phase on separation selectivity of total aromatics relative to nonaromatics

分配係数の相関

前章のモデル混合物の液液平衡測定の考察に基づき各溶媒について着目成分の 炭素数に対し分配係数を相関した。ここではフルフラールでは2液相を形成する ため水の添加を想定していない。一方メタノール、スルホランでは抽出相内の水 の濃度の影響も考慮した。分配係数に与える水の影響は、前述の片対数グラフ上 において炭化水素の分配係数は水の増加に対し線型的に減少していることより、 分配係数 m_iは抽出相内水濃度 y_{W,eq}を用いて m_i=a·exp(b·y_{W,eq})の式で相関した。水 の添加を想定しないフルフラールの場合は m=c の式で相関した。なお a、b、c は 各成分における定数であり、これらの式に物理的な意味はない。分解油の実験デ ータと共に相関された芳香族、非芳香族成分の分配係数を溶媒ごとに Figure 3.30~Figure 3.35 に示す。環構造を持つテトラリン(CN=10)、メチルナフ タレン(CN=11)、フルオレン(CN=13)、フェナントレン・アントラセン(CN=14)に ついては炭素数増加に従い線形的に増加し、、他の着目成分についてはそれぞれの 1 環芳香族、2 環芳香族、3 環芳香族成分内では炭素数増加により線型的に減少し た。環構造の影響はスルホラン、フルフラール、メタノールの順で大きく、抽出 相内水濃度の増加によって環構造の影響が大きくなった。非芳香族成分に関して は炭素数増加により線型的に減少し、アルケンのほうがアルカンより大きい値と なった。非芳香族成分の分配係数はメタノール、フルフラール、スルホランの順 で大きい値となった。

溶媒成分の相関された分配係数を実験結果と共に Figure 3.36 に示す。水は全条件において抽残相の分析の際検出されなかったため、抽残相への水の溶け込みは起こらないとした。フルフラールは水の添加を想定してないので分配係数は一定とした。メタノールは抽出相内水濃度 $y_{W,eq}$ <0.3 の範囲では m_i =a·exp(b· $y_{W,eq}$)の式で増加し、抽出相内水濃度 $y_{W,eq}$ ≥0.3 の範囲では分配係数は一定となった。スルホランは m_i =a·exp(b· $y_{W,eq}$)の式に従い減少した。

以上より得られたフルフラールにおける分配係数を Table3.6 に、メタノール、

59

第3章 分解油の回分平衡抽出

スルホランにおける分配係数を Table3.7 に示す。これら実験結果に基づいた分配 係数の相関は分解油の分離プロセス合成の際、有益な情報となる。

Figure 3.30 The relationship between number of carbon atoms in molecular and distribution coefficients of aromatic components with methanol

Figure 3.32 The relationship between number of carbon atoms in molecular and distribution coefficients of aromatic components with furfural

Figure 3.33 The relationship between number of carbon atoms in molecular and distribution coefficients of nonaromatic components with furfural

Figure 3.34 The relationship between number of carbon atoms in molecular and distribution coefficients of aromatic components with sulfolane

Figure 3.35 The relationship between number of carbon atoms in molecular and distribution coefficients of nonaromatic components with sulfolane

Figure 3.36 The relationship between water content in extract phase and distribution coefficient of solvent
Туре	i		m _i
alkane	heptane	C7	0.149
	octane	C8	0.135
	nonane	C9	0.122
	decane	C10	0.110
	undecane	C11	0.100
	dodecane	C12	0.090
	tridecane	C13	0.082
	tetradecane	C14	0.074
	pentadecane	C15	0.067
	hexadecane	C16	0.061
	heptadecane	C17	0.055
	octadecane	C18	0.050
	nonadecane	C19	0.045
	eicosane	C20	0.041
	heneicosane	C21	0.037
	docosane	C22	0.033
alkene	1-decene	O10	0.147
	1-dodecene	O12	0.120
	1-tetradecene	O14	0.099
	1-hexadecene	O16	0.081
	1-octadecene	O18	0.066
	1-eicosene	O20	0.054
mono cyclic aromatic	toluene	TOL	0.432
	ethylbenzene	EB	0.383
	m,p-xylene	MPX	0.383
	o-xylene	OX	0.383
	propylbenzene	PB	0.340
	mesitylene	MS	0.340
	pusedocumene	PC	0.340
	tetraline	Т	0.302
	hexylbenzene	HB	0.237
	pentamethylbenzene	PMB	0.267
di cyclic aromatic	naphthalene	Ν	0.452
	2-methylnaphthalene	2MN	0.362
	1-methylnaphthalene	1MN	0.362
	fluorene	FL	0.519
tri cyclic aromatic	phenanthrene	PHE	0.621
	anthracene	ANT	0.621
	2-methylanthracene	2MA	0.413
	9-methylanthracene	9MA	0.413
	phenylnaphthalene	PN	0.367
solvent	furfural	FUR	9.30

第3章 分解油の回分平衡抽出

	$i = a \exp(b^2 y_{W_i})$	eq)				<u>.</u>
			Methanol		Sultolane	
Туре	Ì		а	b	а	<u>b</u>
alkane	heptane	C7	0.199	-9.71	0.015	-9.49
	octane	C8	0.180	-9.78	0.013	-9.56
	nonane	C9	0.163	-9.84	0.012	-9.63
	decane	C10	0.147	-9.91	0.011	-9.69
	undecane	C11	0.133	-9.98	0.010	-9.76
	dodecane	C12	0.120	-10.04	0.009	-9.83
	tridecane	C13	0.109	-10.11	0.008	-9.89
	tetradecane	C14	0.099	-10.18	0.007	-9.96
	pentadecane	C15	0.089	-10.24	0.007	-10.03
	hexadecane	C16	0.081	-10.31	0.006	-10.09
	heptadecane	C17	0.073	-10.38	0.005	-10.16
	octadecane	C18	0.066	-10.44	0.005	-10.23
	nonadecane	C19	0.060	-10.51	0.004	-10.29
	eicosane	C20	0.054	-10.58	0.004	-10.36
	heneicosane	C21	0.049	-10.64	0.004	-10.43
	docosane	C22	0.044	-10.71	0.003	-10.49
alkene	1-decene	O10	0.151	-9.38	0.020	-9.38
	1-dodecene	O12	0.123	-9.52	0.016	-9.52
	1-tetradecene	O14	0.101	-9.65	0.013	-9.65
	1-hexadecene	O16	0.083	-9.78	0.011	-9.78
	1-octadecene	O18	0.068	-9.92	0.009	-9.92
	1-eicosene	O20	0.055	-10.05	0.007	-10.05
mono cyclic aromatic	toluene	TOL	0.345	-9.24	0.149	-8.75
	ethylbenzene	EB	0.306	-9.24	0.135	-8.82
	m,p-xylene	MX	0.306	-9.24	0.135	-8.82
	o-xylene	OX	0.306	-9.24	0.135	-8.82
	propylbenzene	PB	0.272	-9.24	0.122	-8.88
	mesitylene	MS	0.272	-9.24	0.122	-8.88
	pusedocumene	PC	0.272	-9.24	0.122	-8.88
	tetraline	Т	0.218	-9.00	0.146	-9.03
	hexylbenzene	HB	0.190	-9.24	0.090	-9.08
	pentamethylbenzene	PMB	0.214	-9.24	0.100	-9.02
di cyclic aromatic	naphthalene	Ν	0.244	-8.97	0.368	-9.53
	2-methylnaphthalene	2MN	0.224	-9.02	0.188	-9.03
	1-methylnaphthalene	1MN	0.224	-9.02	0.188	-9.03
	fluorene	FL	0.235	-9.05	0.309	-9.03
tri cyclic aromatic	phenanthrene	PHE	0.241	-9.07	0.397	-9.03
	anthracene	ANT	0.241	-9.07	0.397	-9.03
	2-methylanthracene	2MA	0.136	-8.72	0.312	-8.45
	9-methylanthracene	9MA	0.136	-8.72	0.312	-8.45
	phenylnaphthalene	PN	0.120	-8.72	0.283	-8.51
solvent	methanol *	MEOH	42.2	5.2		
	sulfolane	SUL			29.772	-0.879

Table3.7 The relationship betwwen distribution coefficient and water content in solvent with methanol and sulfolane $m = a \exp(h \cdot y_m)$

*methanol : m_i =200.51 at $y_{W,eq}$ ≥0.3

3.3 まとめ

メタノール、フルフラール、スルホラン水溶液を溶媒とした分解油の回分平衡 抽出を行い、以下の結論を得た。

1) 3種の分解油内の着目成分の濃度を測定した。

2) いずれの分解油でも2液相を形成する場合があり抽出操作が可能であった。

3) 分解油内の芳香族炭化水素は非芳香族炭化水素に対し選択的に抽出された。

4) スルホランの芳香族炭化水素の選択性は大きかった。

5) 水の添加により炭化水素の分配係数は減少し、芳香族炭化水素の選択性は増加した。さらに2環芳香族炭化水素の選択性は大きくなった。

6) 芳香族-非芳香族成分間の分離だけでなく、芳香族内の分離やアルケンの分離の可能性も示唆された。

第4章 モデル炭化水素混合物の溶媒抽出プロセスにおける 操作条件の影響

抽出を用いた分離プロセスを合成するうえで連続式プロセスの検討は必須であ る。単抽出では高い仕様で製品を得ることは困難であり、一般的にこれを多数繰 り返した多回抽出が適用される。多段プロセスにおいて溶媒相と原料相を向流で 接触させた向流多段抽出は高効率の抽出操作である。しかし通常の向流多段抽出 は回収部のみの操作であり、製品純度の上限が存在する。抽出相側においてカウ ンターソルベントもしくは環流を用い濃縮部と回収部からなる構成にすることに よって高濃度の抽出物製品を得ることができる。ここで BTX の回収を目的とした スルホランプロセス ¹⁸⁾について説明する。Figure 4.1 にプロセスの概略図を示す。 ①ではスルホラン溶媒(含水率:約 4%)とカウンターソルベントによって抽出が行 われ、②の蒸留では抽出相内にふくまれる非芳香族成分が取り除かれる。③では 蒸留により芳香族製品とスルホランが回収される。④では抽残相に溶け込んだス ルホランが水を溶媒とした抽出によって回収されている。このプロセスにおける 水の添加の大きな目的は蒸留において留出物を 2 液相とすることと抽残相内のス ルホラン回収の溶媒として用いることである。カウンターソルベントは低沸点の 非芳香族成分と芳香族成分からなり、この非芳香族成分は抽出において非芳香族 成分濃度を上げ 2 液相とすることと蒸留にて非芳香族成分を留出物として回収す ることの2つを目的としている。なお芳香族成分については還流として働いてい る。しかしカウンターソルベント・環流について詳細な検討はされていない。

本章では2成分系のモデル混合物を原料とした向流多段抽出プロセスの計算を 行い、分解油分離プロセス合成に必要な情報を収集した。ここでは前章で得た分 配係数の実測値を用いた。カウンターソルベントとして非芳香族成分を、還流と して抽出相内の芳香族成分をそれぞれ別に供給することで分離性能に対する操作

条件の影響を検討した。

Figure 4.1 Process flow diagram of Sulfolane process

4.1 プロセスの概略

4.1.1 還流・カウンターソルベントを伴わない向流多段抽出プロセス<**Process1** >

Figure 4.2 に総段数 n 段の向流多段抽出のプロセス図を示す。原料油 F と溶媒 S はそれぞれ両端の段より供給され、抽出相 E₁と抽残相 R_nはそれぞれ原料供給段 (1 段)と溶媒供給段(n 段)より得られる。得られた抽出相内の溶媒は回収され抽出 物製品 P と分離される。本プロセスでは原料供給段(k=1)において原料油と平衡と なる濃度までしか濃縮できない。しかし選択性の高い溶媒を用いることによって 仕様を満たすことができる可能性もある。

Figure 4.2 Process flow diagram of multi-stage countercurrent extraction without reflux and countersolvent

4.1.2 還流を用いた向流多段抽出プロセス<Process2>

Figure 4.3 に総段数 n 段の還流を用いた向流多段抽出のプロセス図を示す。還 流物 R_rと溶媒 S はそれぞれ両端の段より供給され、原料油 F は n_r段より供給され る。得られた抽出相内の溶媒は回収され抽出成分と分離される。得られた抽出成 分の一部は還流物 R_rとなり、抽出物製品 P が得られる。本プロセスでは抽出相出 ロ段(k=1)において芳香族成分濃度の高い還流物が供給され、さらに原料供給段よ り抽出相出ロ段の間の濃縮部(k=1~n_f)において分配係数の小さい非芳香族成分が油 相に多く分配されるため原料内芳香族一非芳香族成分間の分離は進む。これによ り < Process1>より高い純度の製品を得ることができる。しかし、抽出相出ロ付 近では段内の芳香族成分濃度が大きいため 1 液相となり操作不能となる可能性が 考えられる。

Figure 4.3 Process flow diagram of multi-stage countercurrent extraction with reflux

4.1.3 カウンターソルベントを用いた向流多段抽出プロセス<Process3>

Figure 4.4 に総段数 n 段のカウンターソルベントを用いた向流多段抽出のプロ セス図を示す。カウンターソルベント Scと溶媒 S はそれぞれ両端の段より供給さ れており、原料油 F は n_f 段より供給される。得られた抽出相内の溶媒成分は回収 されカウンターソルベント成分と抽出成分の混合物が得られる。この混合物から カウンターソルベント成分が回収され抽出物製品は得られる。本プロセスでは非 芳香族炭化水素であるカウンターソルベントの使用によって段内の非芳香族濃度 を上げることができ、1 液相形成による操作不能を回避できると考えられる。さ らに濃縮部において原料内芳香族-非芳香族成分間の分離は進む。しかし抽出相 出口段(*k*=1)において芳香族成分の供給は溶媒相由来のものだけであり高収率を得 るためには多量の溶媒が必要になることが予想され、溶媒成分だけでなくカウン ターソルベントの回収も行う必要があるため分離器がさらに多く必要となる。

Figure 4.4 Process flow diagram of multi-stage countercurrent extraction with countersolvent

4.1.4 還流とカウンターソルベントを併用した向流多段抽出プロセス<**Process4** >

Figure 4.5 に総段数 n 段の還流とカウンターソルベントを併用した向流多段抽 出のプロセス図を示す。本プロセスではカウンターソルベント S_c と還流物 R_r の混 合物が抽出相出口段(k=1)より供給される。得られた抽出相の溶媒成分は回収され カウンターソルベント成分と抽出成分の混合物が得られる。還流物はこの混合物 を用い、抽出物製品はさらにカウンターソルベント成分を分離して得られる。本 プロセスでは還流のみを使用した場合よりカウンターソルベントの併用によって 1 液相形成による操作不能を回避しやすくなると考えられる。ここでは還流物と カウンターソルベントをそれぞれ抽出相出口段(k=1)で供給するプロセス (n_s =1, n_r =1)を示しているが、それぞれ異なる段に供給することも可能であり、そ れぞれカウンターソルベント供給段を変えたもの(n_s ≠1, n_r =1)、還流物供給段を変 えたもの(n_s =1, n_r ≠1) についても本章で検討している。

Figure 4.5 Process flow diagram of multi-stage countercurrent extraction with reflux and countersolvent

4.2 計算

4.2.1 プロセスを表す基礎式

物質収支式

プロセス内抽出部における各段の物質収支式を示す。

$$F_{k} \cdot x_{fk,i} + S_{k} \cdot y_{sk,i} + R_{rk} \cdot x_{pk,i} + S_{ck} \cdot x_{ck,i} + E_{k+1} \cdot y_{k+1,i} + R_{k-1} \cdot x_{k-1,i} = E_{k} \cdot y_{k,i} + R_{k} \cdot x_{k,i}$$

$$<\!\!k=1\sim\!n\!\!> \qquad (4.1)$$

左辺の第1項は原料、第2項は溶媒、第3項は還流物、第4項はカウンターソル ベントを表し、それぞれの供給段以外の段数*k*では0である。

溶媒回収部・カウンターソルベント回収部では以下の式が成り立つ。

$$E_1 \cdot y_{1,i} = D_{sp} \cdot y_{Dsp,i} + B_{sp} \cdot y_{Bsp,i}$$

$$(4.2)$$

$$B_1 \cdot y_{B1,i} = D_{spc} \cdot y_{Dspc,i} + B_{spc} \cdot y_{Bspc,i}$$

$$(4.3)$$

平衡関係式

平衡関係は分配係数を用いて以下の式となる。

$$y_{k,i} = m_i \cdot x_{k,i} \tag{4.4}$$

制約式

組成について以下の制約式が存在する。

$$\Sigma y_{k,i} = 1, \ \Sigma x_{k,i} = 1, \ \Sigma x_{fk,i} = 1, \ \Sigma y_{sk,i} = 1, \ \Sigma x_{pk,i} = 1, \ \Sigma x_{sck,i} = 1,$$

$$\Sigma y_{Dsp,i} = 1, \ \Sigma y_{Bsp,i} = 1, \ \Sigma y_{Dspc,i} = 1, \ \Sigma y_{Bspc,i} = 1$$
(4.5~14)

定義式

還流比**X**は以下のように定義される。

$$X = R_r / (B_{sp} - R_r)$$
 (4.15)

抽出物製品における芳香族成分純度 y_{P,A}は以下で表される。

$y_{\rm P,A} = \Sigma y_{\rm P,i}$	<i=芳香族成分></i=芳香族成分>	(4.16)
• • • • • •		· · ·

さらに抽出相側の原料成分、溶媒成分、カウンターソルベント成分の収率 **Y**_iは 以下のように定義した。

 Y_i= P·y_{P,i} / (F·x_{f,i})
 <i=原料成分>
 (4.17)

 Y_i= D_{sp}·y_{Dsp,i} / (S·y_{s,i})
 <i=溶媒成分>
 (4.18)

Y_i= D_{spc}·y_{Dspc,i} / (S_c·y_{c,i}) <i=カウンターソルベント成分> (4.19)

4.2.2 条件と計算方法

本計算における仮定を Table4.1 に示す。抽出段は平衡段であり、分配係数は前 章において測定されたものと仮定とした。さらに溶媒・カウンターソルベント回 収部ではそれぞれ完全分離が行われるとした。計算条件を Table4.2 に示す。原料 はトルエンーヘプタンの二成分系モデル混合物を用い、トルエン濃度 0.3, 0.5, 0.7 とした。溶媒はメタノール、スルホラン水溶液とフルフラールの 3 種を用い、水 の濃度は適宜変化させた。カウンターソルベントは炭素数 8、11、14 のアルカン について検討した。原料供給段は油相内の芳香族成分濃度が原料内芳香族成分濃 度にいちばん近い段を選択した。仕様は芳香族成分の純度・収率共に 0.8 で十分 だとした。

計算は Microsoft Visual Basic を用いて行われた。設計型の計算が行われ、仕様 となる芳香族成分の純度・収率 $y_{P,A}$ Y_A を得るための操作変数である溶媒原料比 S/F、還流比 X、カウンターソルベント原料比 S_c/F が求められた.

Table4.1 Assumptions for calculation of multi-stage countercurrent extraction						
Extraction stage	Equilibrium stage					
Distribution coefficients	Measured equilibrium					
	→Table3.12					
Recovery of solvent and countersolvent	Complete separation					
	$y_{\text{Dsp},i} = 0, y_{\text{Dspc},i} = 0$ (<i>i</i> =feed components)					
	$y_{Bsp,i} = 0$ (<i>i</i> =solvent components)					
	<i>y</i> _{Bspc,<i>i</i>} =0 (<i>i</i> =countersolvent components)					

Feed	Toluene-Heptane binary mixture (CN=7)
Composition Solvent	x _{F,TOL} =0.3, 0.5, 0.7 Aqueous solution of methanol and sulfolane and furfural
Composition Countersolvent	y _{s,w} =0, 0.1, 0.3, 0.5 octane (CN=8) undecane(CN=11) tetradecane(CN=14)
Feed stage	$ x_{F,A}-x_{nf,A} < x_{F,A}-x_{k,A} (n_f \neq k)$

4.3 結果と考察

4.3.1 原料組成の影響

メタノール、フルフラール、スルホランにおける < Process1>の計算結果をそれぞれ Figure 4.6~8 に示す。本計算では仕様としてトルエンの収率 Y_{TOL}=0.8 を与え、原料組成 x_{F,TOL}、段数 n を変化させて溶媒原料比 S/F、抽出物製品内トルエン 純度 y_{P,TOL}を計算した。全溶媒において段数 n>10 で溶媒原料比 S/F、純度 y_{P,TOL} が一定となった。原料内トルエン濃度 x_{F,TOL}の増加に従い、溶媒原料比 S/F が減少 し、純度 y_{P,TOL}が増加した。純度 y_{P,TOL}は全条件においてスルホラン、フルフラー ル、メタノールの順で大きかった。溶媒原料比 S/F は全条件においてスルホラン が一番大きく他の溶媒に比べ 2 倍以上の値であった。メタノールは純度 y_{P,TOL}の低 い条件のみ溶媒原料比 S/F が最も小さく、ほかの条件ではフルフラールが最も小 さい溶媒原料比 S/F で仕様を得た。高トルエン濃度原料(x_{F,TOL}=0.7)の場合は全溶 媒において純度 y_{P,TOL}≥0.8 が得られ、スルホランの場合では低トルエン濃度原料 (x_{F,TOL}=0.3)の場合でも純度 y_{P,TOL}≥0.8 が得られた。分解油の抽出プロセスを想定し た場合、スルホランを用いることによって還流、カウンターソルベントを使用す ることなく目的の純度・収率を得る可能性がある。さらに芳香族成分濃度の高い LCO ではほかの溶媒でも同様に可能性がある。

Figure 4.6 The effect of composition of feed in multi-stage countercurrent extraction without reflux and countersolvent with methanol solvent

Figure 4.7 The effect of composition of feed in multi-stage countercurrent extraction without reflux and countersolvent with furfural solvent

Figure 4.8 The effect of composition of feed in multi-stage countercurrent extraction without reflux and countersolvent with sulfolane solvent

4.3.2 溶媒内水濃度の影響

メタノール、スルホランにおける < Process1>の計算結果を Figure 4.9 に示す。 本計算ではトルエン濃度 $x_{F,TOL}=0.5$ の原料を用い段数 n=10 とし、溶媒内水濃度 $y_{S,W}$ を変化させて仕様としてトルエンの収率 $Y_{TOL}=0.8$ を与え、溶媒原料比 S/F、 抽出物製品内トルエン純度 $y_{P,TOL}$ を計算した。メタノール、スルホランの両溶媒に おいて溶媒内水濃度 $y_{S,W}$ を増加させると、溶媒原料比 S/F と純度 $y_{P,TOL}$ は増加し た。しかし、溶媒原料比 S/Fの増加量に対し純度の純度 $y_{P,TOL}$ の増加量は小さい。 水の添加により1液相の形成を回避できるが、スルホラン-CGO において 2 液相 の形成を確認した溶媒内水濃度 $y_{S,W}=0.3$ では溶媒原料比 S/F=35と大きい値であ った。さらに水の添加により溶媒回収部も複雑になるため、溶媒への水の添加は 実用的ではないと考えられる。

Figure 4.9 The effect of water content in solvent in multi-stage countercurrent extraction without reflux and countersolvent

4.3.3 還流、カウンターソルベントの影響

還流、カウンターソルベントを使用したプロセス<Process2, 3, 4>を比較する ために溶媒としてメタノール、カウンターソルベントとしてオクタン(CN=8)を用 い、トルエン濃度 XFTOI=0.5 の原料を用いた計算を行った。仕様はトルエンの純度 VPTOI =0.8、収率 YTOI =0.8 を与え、還流比 X に対応する溶媒原料比 S/F、カウンタ ーソルベント原料比 S_c/F を求めた。段数 n=10 における計算結果を Figure 4.10 に示す。横軸の還流比 X=0 ではカウンターソルベントのみを使用した< Process3>、縦軸のカウンターソルベント原料比 Sc/F=0 では還流のみを使用した <Process2>、その間の範囲が還流とカウンターソルベントを併用した< Process4>である。いずれの条件においても溶媒原料比 S/F はカウンターソルベ ント原料比 S_c/F より大きく、これら二つは還流比 X の増加と共に減少した。カウ ンターソルベントのみを使用した < Process3> でも環流のみを使用した < Process2>より高い溶媒原料比 S/F が必要となるが仕様を満たす製品が得られ、 還流と同様にカウンターソルベント適用によって分離の促進が確認された。抽出 相出口段(k=1)における油相と溶媒相の平均組成を Table4.3 に、さらに第2章で得 られたトルエンーヘプタンーメタノール三成分系の2液相領域と共に Figure 4.11 に示す。カウンターソルベント使用の際の非芳香族成分濃度はヘプタンとオクタ ンの濃度の和である。カウンターソルベント原料比 Sc/F の増加に従い抽出相出口 段(k=1)における油相と溶媒相の平均の非芳香族成分濃度は増加し、二液相を形成 しやすいと考えられる。特に環流比 X=0 の条件ではトルエンーへプタンーメタノ ール三成分系の2 液相領域内の組成となり、カウンターソルベントの使用により 二液相を形成することが確認できた。さらにフルフラール、スルホランを溶媒と した場合でも、カウンターソルベントの使用により二液相の形成が可能になると 考えられる。

Figure 4.10 The effect of reflux and countersolvent on multi-stage countercurrent extraction

Table 4.5 Average composition of solvent and familiate phase at A=1					
Conditions			Ave	compsition of $(E_1 + R_1)$)
S/ F	$S_{\rm c}/F$	X	Aromatics	Nonaromatics	Solvent
8.09	2.16	0	0.054	0.293	0.653
5.95	0.93	0.5	0.106	0.246	0.648
4.99	0.46	1	0.161	0.202	0.637
4.41	0.21	1.5	0.220	0.159	0.621
4.00	0.05	2	0.280	0.117	0.603
3.85	0	2.23	0.309	0.097	0.594

Table4.3 Average composition of solvent and raffinate phase at *k*=1

Figure 4.11 The effect of countersolvent on average composition of solvent and oil phase at k=1

4.3.4 還流、カウンターソルベント供給段の影響

還流供給段 n_s、カウンターソルベント供給段 n_rの影響を検討するために溶媒と してメタノールを、カウンターソルベントとしてオクタン(CN=8)を用い、トルエ ン濃度 x_{F,TOL}=0.5 の原料を用いた計算を行った。ここでは段数 n=10、還流比 X=1 の下でカウンターソルベント供給段 ns、還流供給段 n_rを 1~4 で変化させ、トルエ ンの純度 y_{P,TOL}=0.75、収率 Y_{TOL}=0.75 の仕様を満たす溶媒原料比 S/F、カウンタ ーソルベント原料比 S_c/F を求めた。カウンターソルベント供給段 n_sの影響を Figure 4.12、還流供給段 n_rの影響を Figure 4.13 に示す。カウンターソルベント 供給段 n_s、還流供給段 n_rの増加により溶媒原料比 S/F、カウンターソルベント原 料比 S_c/F は共に増加した。これよりカウンターソルベント・還流は共に抽出相出 口段 k=1 より供給するべきであることが確認された。

Figure 4.12 The effect of stage of countersolvent inlet on multi-stage countercurrent extraction

Figure 4.13 The effect of stage of reflux inlet on multi-stage countercurrent extraction

4.3.5 総段数の影響

還流、カウンターソルベントを使用するプロセス<Process2, 3, 4>において総 段数 n の影響を検討するために溶媒としてメタノール、カウンターソルベントと してオクタン(CN=8)を用い、トルエン濃度 x_{F,TOL}=0.5 の原料を用いた計算を行っ た。総段数 nを 8~20 で変化させ、トルエンの純度 y_{P,TOL}=0.8、収率 Y_{TOL}=0.8 の仕 様を満たす、それぞれの還流比 X に対応する溶媒原料比 S/F、カウンターソルベ ント原料比 S_d/F を求めた。総段数 n の溶媒原料比 S/F に対する影響を Figure 4.14、カウンターソルベント原料比 S_d/F に対する影響を Figure 4.15 に示 す。総段数 n の増加により必要となる溶媒原料比 S/F、カウンターソルベント原 料比 S_d/F、還流比 X は減少した。総段数 n≥12 において溶媒原料比 S/F、カウンタ ーソルベント原料比 S_d/F はほぼ一定となった。実際のプロセス導入においては総 段数 n を増加させることによるイニシャルコストの増加や溶媒原料比 S/F、カウ ンターソルベント原料比 S_d/F の増加によるランニングコストの増加の検討が必要 であるが、これより分解油の分離で段数 n=12 を用いて設計を行う。

Figure 4.14 The effect of number of stage on solvent-to-feed ratio

Figure 4.15 The effect of number of stage on countersolvent-to-feed ratio

4.3.6 カウンターソルベント成分の影響

カウンターソルベント成分の影響を検討するために溶媒としてメタノール、ト ルエン濃度 XETOL=0.5 の原料を用いた計算を行った。カウンターソルベント成分と してオクタン(CN=8)、ウンデカン(CN=11)、テトラデカン(CN=14)の3種を用い、 トルエンの純度 VPTOI=0.8、収率 YTOI=0.8 の仕様を満たす、それぞれの還流比 X に対応する溶媒原料比 S/F、カウンターソルベント原料比 S_c/F を求めた。計算結 果を Figure 4.16 に示す。 還流比 X=0 以外では炭素数が大きくなるにつれて微小 ではあるが溶媒原料比 S/F、カウンターソルベント原料比 S/F が増加した。還流 比 X=0 では炭素数が一番大きなテトラデカン(CN=14)では溶媒原料比 S/F、カウ ンターソルベント原料比 Sc/F が小さい値であった。これは他の条件では段供給で ある本プロセスにおいて油相濃度によって決定した原料供給段 n_fが 4 であるのに 対し、この条件だけ原料供給段 n:が 5 であったからである。以上の結果よりカウ ンターソルベント成分は溶媒原料比 S/F とカウンターソルベント原料比 Sc/F に影 響がないとみなせる。抽出相におけるメタノールとカウンターソルベント成分の 収率 Yiを Figure 4.17 に示す。メタノールの収率はどのカウンターソルベントを 使用した場合でも同程度であった。一方でカウンターソルベント成分の収率は炭 素数が増加につれて減少した。これは炭素数の大きな成分では分配係数が小さく 抽出相に溶け込む量が小さいためである。しかし、カウンターソルベント成分の 収率 Yiは 0.3~0.7 であり、回収を想定するといずれの場合でも抽残相・抽出相の 両相からの分離が必要である点は変わらない。以上よりカウンターソルベント成 分は抽出プロセスでは影響はなく、溶媒回収等の下流のプロセスを考慮に入れて 選択する必要がある。

Figure 4.16 The effect of countersolvent spices on multi-stage countercurrent extraction

Figure 4.17 The effect of countersolvent spices on yield

4.3.7 溶媒成分の影響

カウンターソルベント成分としてオクタン(CN=8)、トルエン濃度 XETOL=0.5 の 原料を用いた計算を行い溶媒成分の比較を行った。トルエンの純度 yerol=0.8、収 率 Y_{TOI} = 0.8 の仕様を満たす、それぞれの還流比 X に対応する溶媒原料比 S/F、カ ウンターソルベント原料比 Sc/F を求めた。スルホランを溶媒とした場合では還流、 カウンターソルベントの使用をせず段数 n=2 の向流多段抽出プロセス<Process1 >において仕様を満たす純度 VPTOI=0.853、収率 YTOI=0.8 で製品を獲得できたた め、これと同時に計算結果を Figure 4.18 に示す。溶媒原料比 S/F はフルフラール、 メタノール、スルホランの順で小さく、フルフラールはメタノールの半分以下と 良好な結果を得た。炭化水素の分配係数の小さいスルホランは他の溶媒と比較し て大きな溶媒原料比 S/F が必要であり装置設計の上で各段のサイズが大きくなる ことが予想されるが、環流・カウンターソルベントの必要がなく、総段数 n も小 さくすることができた。メタノールは溶媒原料比 S/F について他の溶媒と比較し て中程度であるが、分解油の分離を想定すると沸点範囲が溶媒の沸点と重ならな いため溶媒回収において有利である。溶媒とカウンターソルベント成分の収率 Yi を Figure 4.19 に示す。どの溶媒の場合でも溶媒成分の収率は 0.97 を超えた。フ ルフラールにおいてカウンターソルベント成分の収率は 0.97 を超え、抽残相とし てカウンターソルベント成分がほとんど回収されなかった。

Figure 4.18 The effect of solvent spices on multi-stage countercurrent extraction

Key	Solvent	i
0	MEOH	MEOH
Δ	FUR	FUR
	SUL	SUL
\bullet	MEOH	80
	FUR	30

Figure 4.18 The effect of solvent spices on yield

第4章 モデル炭化水素混合物の溶媒抽出プロセスにおける操作条件の影響

4.4 まとめ

分解油内芳香族炭化水素の分離を想定したトルエンーヘプタン 2 成分混合物の 向流多段抽出プロセス計算を行い、以下の結論を得た。

1) 向流多段抽出プロセスにより高純度・高収率の芳香族製品が得られた。

2) 還流により芳香族-非芳香族成分間の分離が促進され、溶媒量を小さくする ことができた。

3) カウンターソルベントにより芳香族-非芳香族成分間の分離が促進され、 さらに1液相になりにくい。

4) 分離に対するカウンターソルベント成分の違いによる影響は小さく、回収部等の下流のプロセスを考慮に入れ選択するべき。

5) スルホランは還流・カウンターソルベントの適用が必要なかったが、溶媒量 が大きかった。フルフラールは溶媒・カウンターソルベント量が小さかった。メ タノールはフルフラールより溶媒・カウンターソルベント量が大きかった。

第5章 分解油内芳香族炭化水素の抽出分離プロセス

分解油の抽出分離プロセスを想定すると、前章の 2 成分系モデル混合物と異な り多成分系であり、溶媒・原料の種類によって抽出分離プロセスが変わることが 予想される。溶媒についてはメタノールの沸点は分解油の沸点範囲と重ならず溶 媒回収が 1 回の蒸留操作で可能であるのに対し、分解油の沸点範囲内に沸点を持 つフルフラール、スルホランの場合では 2 回以上の蒸留操作によって溶媒を回収 しなくてはならない。

本章では前章で得られた情報を基に、分解油の向流多段抽出プロセス計算を行い、さらに分離プロセス合成を行った。

5.1 向流多段抽出プロセス計算

5.1.1 向流多段抽出プロセス

前章で示した還流・カウンターソルベントを伴わない向流多段抽出プロセス<

Process1>、還流を用いた向流多段抽出プロセス<Process2>、カウンターソル

ベントを用いた向流多段抽出プロセス<Process3>、還流とカウンターソルベン

トを併用した向流多段抽出プロセス<Process4>について検討を行った。前章に

おいて還流とカウンターソルベントの供給段は抽出相出口段(*k*=1)が最適であると

いうことが確認されているので、供給段の影響については検討しない。

5.1.2 計算

本プロセス計算における諸式は 4.2.1 プロセスを表す基礎式と同様である。さら に本計算における仮定は前章と同様(Table4.1)であり、抽出段は平衡段、分配係数 は第3章において測定されたものと仮定とした。さらに溶媒回収部、カウンター ソルベント回収部では完全分離が行われるとした。計算条件を Table5.1 に、分解 油の組成を基にして決められた原料の組成を Table5.2 に示す。この原料組成は分 解油の各炭化水素族の含有量(Table3.1)に対し分解油の分析で得られた着目成分濃 度を比例配分して質量分率の合計を 1 とした。なお分解灯油 CK の場合では、本 研究における分析において 3 環芳香族炭化水素が検出されなかったため、工業分 析値における 3 環芳香族炭化水素の濃度を 2 環芳香族炭化水素の濃度に加えて組 成を決定した。溶媒は純メタノール、スルホラン、フルフラールの3種を用い、 水の添加は非常に溶媒量が大きくなることが前章にて確認されているため、1 液相 となり操作不能となった CGO-スルホランの系のみ溶媒内の水の濃度 Vsw=0.3 で 検討した。カウンターソルベントはヘプタン(CN=7)を用いた。これは前章におい てカウンターソルベント成分の抽出分離プロセスの影響は確認されなかったが、 分解油と沸点範囲が重ならず回収部において分離が容易であるからである。総段 数は還流・カウンターソルベント使用しない場合では仕様を満たす最少の段数を 選択し、還流・カウンターソルベント使用する場合では前章において溶媒量、カ ウンターソルベント量、還流比減少の影響が確認されなくなった段数 n=12 として 計算した。原料供給段は前章と同じく油相内の芳香族成分の濃度が原料内芳香族 成分の濃度にいちばん近い段を選択した。仕様は芳香族成分の純度・収率共に 0.8とした。

Feed Cracked oils (CK, CGO, LCO) methanol, sulfolane and furfural Solvent Countersolvent heptane (CN=7) Total stage Process without reflux and countersolvent *n*≥1 *n*=12 Process withreflux and countersolvent Feed stage $|x_{\mathsf{F},\mathsf{A}}-x_{n\mathsf{f},\mathsf{A}}| < |x_{\mathsf{F},\mathsf{A}}-x_{k,\mathsf{A}}| \ (n_{\mathsf{f}}\neq k)$ *y*_{P,A}=0.8 Specification Y_A=0.8

Table5.1 Conditions for calculation of multi-stage countercurrent extraction

第5章 分解油内芳香族炭化水素の抽出分離プロセス

Type	i		Mass fraction [-]		
, jpo			CK CLO1 CLO2		
saturate			0.701 0.391 0		0 279
	heptane	C7	0.004	0.001	0.001
	octane	C8	0.043	0.003	0.002
	nonane	CQ	0.0172	0.005	0.002
	decane	C10	0.086	0.000	0.001
	undocano	C11	0.000	0.039	0.001
	dodooono	C12	0.002	0.039	0.002
	douecane	C12	0.000	0.035	0.000
			0.091	0.036	0.022
	tetradecane	014	0.065	0.033	0.018
	pentadecane	C15	0.050	0.036	0.043
	hexadecane	C16	0.022	0.030	0.028
	heptadecane	C17	0.007	0.030	0.029
	octadecane	C18		0.026	0.029
	nonadecane	C19		0.022	0.025
	eicosane	C20		0.019	0.027
	heneicosane	C21		0.020	0.028
	docosane	C22		0.016	0.019
olefin				0.287	
	1-decene	O10		0.073	
	1-dodecene	O12		0.052	
	1-tetradecene	O14		0.045	
	1-hexadecene	O16		0.039	
	1-octadecene	O18		0.042	
	1-eicosene	O20		0.035	
mono cyclic aromatic			0.270	0.159	0.188
	toluene	TOL	0.007	0.007	0.007
	ethvlbenzene	EB	0.018		0.005
	m.p-xvlene	M.PX	0.063	0.010	0.023
	o-xvlene	OX	0.047	0.013	0.011
	propylbenzene	PB	0.011	01010	0.004
	mesitylene	MS	0.038	0.023	0.010
	nusedocumene	PC	0.000	0.020	0.025
	tetraline	т	0.025	0.033	0.020
	hevylhenzene	HR	0.025	0.000	0.000
	nontamothylbonzono		0.025	0.033	0.043
di avalia aramatia	pentametryibenzene		0.020	0.020	0.002
	nonhthalana	NI	0.030	0.120	0.300
	2 mothylpophthologo	21/10	0.011	0.023	0.030
	2-methylnaphthalene		0.019	0.020	0.207
	fluorono			0.042	0.121
tai evelie evene et	tiuorene	۲L		0.029	0.024
tri cyclic aromatic	1 4			0.044	0.145
	phenanthrene	PHE		0.007	0.059
	anthracene	ANT		0.006	0.015
	2-methylanthracene	2MA		0.010	0.031
	9-methylanthracene	9MA		0.009	0.019
	phenylnaphthalene	PN		0.011	0.022

Table5.2 Feed compositions in cracked oils

5.1.3 結果と考察

分解灯油(CK)の分離

原料として CK を用いた計算結果を Figure 5.1 に示す。芳香族炭化水素の選択 性が高いスルホラン溶媒の場合では還流、カウンターソルベントの使用は必要な く、段数 n=3 で仕様を満たした。メタノール、フルフラールの場合では還流、カ ウンターソルベントの使用が必要となり、溶媒量・カウンターソルベント量は芳 香族炭化水素の選択性の大きいフルフラールのほうが小さくなった。スルホラン の場合では段数が小さいが溶媒量はフルフラールよりも大きかった。メタノール では還流比を大きくすることによりスルホランより溶媒量を小さくすることがで きたが、フルフラールでは還流比を増加させても溶媒量・カウンターソルベント 量はあまり変化がなかった。

Figure 5.1 The effect of reflux and countersolvent on multi-stage countercurrent extraction with CK

分解軽油 1(CGO)の分離

原料として CGO を用いた計算結果を Figure 5.2 に示す。CGO とスルホランを 用いた実験では 1 液相を形成したため、2 液相となることが確認されている水の濃 度 y_{S,W}=0.3 で検討している。この条件では還流、カウンターソルベントの使用が 必要となく段数 n=2 で収率 Y_A=0.8・純度 y_{P,A}=0.840 と仕様を満たし、溶媒原料比 S/F は 115.4 と前章で示したように非常に大きく非現実的なものであった。メタノ ール、フルフラールの場合では還流、カウンターソルベントの使用が必要となり、 溶媒量、カウンターソルベント量は芳香族炭化水素の選択性の大きいフルフラー ルのほうが小さくなった。メタノールでは還流比を大きくすることにより溶媒量 を小さくすることができたが、フルフラールでは還流比を増加させても溶媒量・ カウンターソルベント量はあまり変化がなかった。

Figure 5.2 The effect of reflux and countersolvent on multi-stage countercurrent extraction with CGO

分解軽油 2(LCO)の分離

原料として LCO を用いた計算結果を Figure 5.3 に示す。芳香族濃度の高い LCO(x_{F,A}=0.721)を原料とした場合ではどの溶媒を用いた場合でも還流、カウンタ ーソルベントとの必要がなく仕様を満たすことができた。段数もメタノールでは *n*=2、フルフラールでは *n*=1、 スルホランでは *n*=1 と小さい値となった。溶媒量 はスルホランが一番大きく、メタノール、フルフラールでは大きな違いがなかっ た。

Figure 5.3 The effect of reflux and countersolvent on multi-stage countercurrent extraction with LCO

5.2 分解油の芳香族回収プロセス合成

5.2.1 還流・カウンターソルベントを用いない分離プロセス

上記の結果より CK-スルホラン、LCO-メタノール、フルフラール、スルホラン を用いたプロセスでは還流・カウンターソルベントを用いることなく小さい段数 で仕様を満たすことができた。LCO-メタノールにおける還流・カウンターソルベ ントを用いない分離プロセスを Figure 5.4 に、CK-スルホランにおけるプロセス Figure 5.5 に、CGO-スルホランと LCO-フルフラール、スルホランにおけるプロセス マロセス Figure 5.6 に示す。沸点が分解油よりも低いメタノール(MEOH:b.p.=338K) を使用したプロセスでは一回の蒸留操作で抽出相内の溶媒成分を回収することが できる。スルホラン(SUL:b.p.=561K)の場合では分解灯油(CK:b.p.=414~551K)の 沸点と重ならないため一回の蒸留操作で抽出相内の溶媒成分を回収することがで きるが、分解軽油(CGO:b.p.=431~660K, LCO:b.p.=425~631K)の場合では蒸留器 は二つ必要となるが溶媒より沸点の小さい芳香族成分製品と高い芳香族成分製品 を別々に得ることもできる。フルフラール(FUR:b.p.=435K)の場合では分解灯油、 分解軽油どちらの場合でも沸点が重なり二つの蒸留器が必要となる。

Figure 5.4 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction without reflux and countersolvent (Methanol)

Figure 5.6 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction without reflux and countersolvent (Furfural, Sulfolane)

5.2.2 還流を用いた分離プロセス

CK-メタノール、フルフラール、CGO-メタノール、フルフラールを用いたプロ セスでは還流を用いることによって仕様を満たすことができた。溶媒としてメタ ノールを使用する還流を用いた分離プロセスを Figure 5.7 に、フルフラールを用 いたものを Figure 5.8 に示す。蒸留器の沸点が分解油よりも低いメタノールを使 用したプロセスでは一回の蒸留操作で溶媒を回収することができる。一方フルフ ラールでは蒸留器は二つ必要となる。上記の計算結果よりカウンターソルベント を用いるプロセスよりも小さい溶媒量で仕様を満たすことができる。しかし本プ ロセスでは特に抽出相出口において芳香族成分濃度が大きいので 1 液相の形成に なりやすいという特徴もある。

Figure 5.7 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction with reflux (Methanol)

Figure 5.8 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction with reflux (Furfural)

5.2.3 カウンターソルベントを用いた分離プロセス

CK-メタノール、フルフラール、CGO-メタノール、フルフラールを用いたプロ セスではカウンターソルベントを用いることによって仕様を満たすことができた。 メタノールを使用するカウンターソルベントを用いた分離プロセスを Figure 5.9 に、フルフラールを用いたものを Figure 5.10 に示す。メタノールを用いる場合で は、メタノール(b.p.=338K)とヘプタン(b.p.=372K)の二つが抽出相において低沸点 成分であり、蒸留により同時に留出物として得ることができると考えられる。第 2章のモデル混合物を用いた液液平衡関係の測定より、メタノールとヘプタンの混 合物は凝縮させ液体にするとそれぞれ 2 液相となる。この 2 液相を分相すること により、一つの蒸留器により抽出相から抽出製品、溶媒、カウンターソルベント が分離できる。一方フルフラールの場合では、まず溶媒沸点(b.p.=435K)より抽出 相を二つに分離し、得られた留出物と缶出物のそれぞれに対し蒸留を行いカウン ターソルベント、溶媒の回収を行う必要があるので 3 つの蒸留器が必要となる。 本プロセスでは他のプロセスに比べ溶媒量が大きくなるが、非芳香族成分である カウンターソルベントの使用によって 1 液相を回避しやすいという特徴がある。

Figure 5.10 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction with reflux (Furfural)

5.2.4 還流とカウンターソルベントを併用した分離プロセス

CK-メタノール、フルフラール、CGO-メタノール、フルフラールを用いた場合 では還流とカウンターソルベントの併用によるプロセスによって仕様を満たすこ とができた。溶媒としてメタノールを使用する還流とカウンターソルベントの併 用する分離プロセスを Figure 5.11 に、フルフラールを用いたものを Figure 5.12 に示す。本プロセスの溶媒・カウンターソルベント回収部は上記のカウンターソ ルベントを用いた分離プロセスと同様だが、本プロセスのほうが還流の使用によ り小さい溶媒量で製品が得られる。

Figure 5.12 Process flow diagram of separation process of cracked oil using multi-stage countercurrent extraction with reflux and countersolvent (Furfural)

5.3 分離プロセスの比較

本研究で提案した分解油の抽出分離プロセスの特徴を Table5.3 に示す。還流・ カウンターソルベント使用しない向流多段抽出プロセスは小さい段数で設計され たが、原料や溶媒が限定される。還流を用いたプロセスでは選択性の低い溶媒を 用いても分離が可能となり、さらに溶媒原料比は小さくなる。しかし抽出相出口 において芳香族成分の濃度が大きくなるため 1 液相となり操作不能の可能性があ る。カウンターソルベントを使用したプロセスでは非芳香族成分の濃度が大きく なるため 1 液相による操作不能を回避しやすくなるが、カウンターソルベントの 回収も行う必要がありさらに溶媒量も増加する。しかしカウンターソルベントと 還流を併用することにより溶媒量を減少させることができた。なお溶媒としてメ タノールを使用した場合では留出物を 2 液相とすることで一つの蒸留器によって 溶媒成分とカウンターソルベント成分の回収が同時に可能となる。

分解油の抽出分離プロセスにおける 3 種の溶媒のそれぞれの特徴を Table5.4 に 示す。メタノールの場合では芳香族成分の選択性が他の溶媒より小さいため、芳 香族成分濃度の小さい原料(CK, CGO)では他の溶媒に対して多量の溶媒が必要で あった。芳香族成分の選択性の高いスルホランの場合では 1 液相を形成すること が確認されている CGO 以外の分解油(CK, LCO)に対して還流・カウンターソルベ ントの適用の必要がなく小さい段数で仕様の製品を得ることができた。しかし炭 化水素成分の分配係数が小さいため溶媒原料比はフルフラールより大きかった。 フルフラールではどの原料に対しても小さな溶媒量で製品を得ることができた。 溶媒・カウンターソルベント回収においては、メタノールの沸点は分解油と重な らないため溶媒成分が 1 つの蒸留器で留出物として回収できるのに対し、フルフ ラールは沸点が重なり溶媒成分の回収において 2 つの蒸留器が必要となりカウン ターソルベントを使用する際はもう 1 つ蒸留器が必要となる。スルホランの場合 では分解灯油(CK)より沸点が高いため 1 つの蒸留器で溶媒回収が可能だが、分解 軽油(LCO)では 2 つの蒸留器が必要となる。

	without reflux and countersolvent	with reflux	with countersolvent	with reflux and countersolvent
抽出装置の段数	\[/	к	к	к
溶媒量	×	\[/	к	Ŧ
還流比	0	к	0	₽
カウンターソルベント量	0	0	¥	₽
抽出の下流で必要となる 分離	・溶媒の回収	・溶媒の回収	・溶媒の回収 ・カウンターン/ (メタノール :一	レベントの回収 つの蒸留)
その色	・高芳香族濃度の原料 ・高選択性の溶媒 のみ適用可能	1液相形成によ る操作不能の可 能性	2液相にな	いやすい

Table5.3 Simple comparison of separation process of cracked oils

eq
Ř
ra
U U
ō
SS
g
2
d
P
ati
ar
ep
S
ē
ъ
é
ó
fs
0
Ы
ris [.]
ра
Ĕ
8
Ð
لط
ЗіП
い サ
<u>ъ</u>
ě
ab
Ĕ

		Methanol b.p.=338K	Furfural b.p.=435K	Sulfolane b.p.=561K
分解灯油(CK)	プロセス	with reflux and/or countersolvent	with reflux and/or counter solvent	without reflux and countersolvent
x _{F,A} =0.30	溶媒量	к	1/1	к
b.p.=414~551K	蒸留の数	L	2 or 3	1
分解輊油(CGO)	プロセス	with reflux and/or counter solvent	with reflux and/or counter solvent	
x _{F,A} =0.32	溶媒量	¥	1/1	1液相
b.p.=431~660K	蒸留の数	1	2 or 3	
分解軽油(LCO)	プロセス	without reflux and countersolvent	without reflux and countersolvent	without reflux and countersolvent
x _{F,A} =0.72	溶媒量	/ار	1/1	¥
b.p.=425~631K	蒸留の数	L	2	2

第5章 分解油内芳香族炭化水素の抽出分離プロセス

5.4 まとめ

溶媒としてメタノール、フルフラール、スルホランを用いた分解灯油、分解軽 油の向流多段抽出プロセス計算を行い、以下の結論を得た。

1) 向流多段抽出プロセスを用いることで 3 種の分解油より高純度・収率の芳香 族製品を得た。

2) スルホランは還流・カウンターソルベントの必要はなく小さな総段数の抽出 プロセスとなったが、多量の溶媒が必要となった。フルフラールは溶媒量を他の 溶媒と比較して少量に抑えることができた。メタノールは芳香族成分濃度の高い LCOの場合では小さい溶媒量で製品を得ることができた。

3) 高芳香族濃度の LCO ではどの溶媒でも還流・カウンターソルベントが必要なかった。

4) 原料の沸点範囲と溶媒の沸点が重なると複数の蒸留が必要となった。メタノ ールの場合では溶媒とカウンターソルベントが1つの蒸留で回収できた。

第6章 総括

本論文では、溶媒抽出法による石油系分解油に含まれる芳香族炭化水素の分離 プロセスの適用およびその実行可能性の評価を目的とした。石油系分解油として 1種の分解灯油(CK)と2種の分解軽油(CGO, LCO)が、溶媒としてメタノール、フ ルフラール、スルホランの3種が検討され、以下の結論を得た。

「2. モデル炭化水素混合物-溶媒間の液液平衡」では、モデル混合物を原料と した液液平衡測定を行い、着目成分の分子構造の両相間における分配へ与える影 響を検討した。非芳香族-溶媒成分 2 成分系では 2 液相となったが、芳香族成分 の濃度が大きい条件では 1 液相となり抽出操作が不能となる場合があった。モデ ル混合物中のアルケンはアルカンより溶媒相に抽出されやすく、さらに芳香族成 分は非芳香族成分に対して選択的に溶媒相に抽出された。分離の選択性はスルホ ランが他の溶媒と比較して大きく、メタノールは小さかった。分子内の炭素数が 大きい成分は溶媒相に少なく分配される傾向が確認されたが、環構造を持つ場合 は多く分配された。この環構造の影響は芳香族炭化水素の選択性の大きいフルフ ラール、スルホランの場合で顕著であった。これより抽出における操作性を確認 し、着目成分の分子構造の両相間における分配へ与える影響を明らかにした。さ らに溶媒抽出法により芳香族-非芳香族成分間の分離だけでなくアルケンの分離 や芳香族成分間の分離も示唆された。

「3. 分解油の回分平衡抽出」では、まず石油系分解油として 1 種の分解灯油と 2 種の分解軽油の分析を行われ、アルカン、アルケン、1 環芳香族炭化水素、2 環芳 香族炭化水素、3 環芳香族炭化水素である着目成分が同定された。溶媒としてメタ ノール、フルフラール、スルホランを用いた回分液液平衡抽出を行い、いずれの 分解油でも 2 液相を形成する場合があり抽出操作が可能であることを確認した。 分解油内の芳香族炭化水素の選択的な抽出を確認した。あ同様にアルケンについ

第6章 総括

てもアルカンに対し選択的な抽出を確認した。「2.」と同様に分解油においても同 炭化水素族では炭素数の増加により分配係数の減少の傾向が確認され、芳香族成 分の選択性の大きいフルフラール、スルホランを溶媒とすると環構造を多く持つ 2 環芳香族炭化水素、3 環芳香族炭化水素の分配係数は炭素数にかかわらず大きか った。溶媒への水の添加により炭化水素の分配係数は減少するが芳香族成分の選 択性は増加した。スルホランと分解軽油(CGO)の 1 液相になる系においては水の 添加により 2 液相を形成し抽出操作を可能にすることができたが、フルフラール は水と 2 液相を形成し水の添加が限定される。環構造による分配係数の増加への 影響は水の添加により大きくなった。これより分解油の抽出における操作性を確 認し、成分の分子構造の影響、操作条件の影響を明らかにした。さらに溶媒抽出 法により芳香族-非芳香族成分間の分離だけでなくアルケンの分離や芳香族成分 間の分離も示唆された。

「4. モデル炭化水素混合物の溶媒抽出プロセスにおける操作条件の影響」では、 還流・カウンターソルベントを用いた向流多段抽出プロセスについて、計算によ り検討した。「3.」で実測された分配係数を用い、トルエンーへプタンの 2 成分系 モデル混合物の分離が計算された。向流多段抽出プロセスにより高純度、高収率 の芳香族炭化水素が分離できた。還流・カウンターソルベントを用いることによ り分離が促進された。還流を用いることにより溶媒量は小さくなり、カウンター ソルベントにより非芳香族の濃度が増加し 1 液相になりにくい。分離に対するカ ウンターソルベント成分の違いによる影響は小さく、回収部等の下流のプロセス を考慮に入れ選択するべきであった。選択性の高いスルホラン溶媒では還流・カ ウンターソルベントの適用をせずに目的の分離を行うことができた。これらより 分解油の抽出分離プロセス合成における操作条件の指標を得た。

「5. 分解油に含まれる芳香族炭化水素の溶媒抽出プロセス」では、「4.」における 2 成分系混合物の抽出分離計算の結果に基づいて合成したプロセスを、実際の

石油系分解油内の芳香族炭化水素の分離に適用した。向流多段抽出プロセスによ り分解油中からの芳香族炭化水素の良好に分離される結果を得た。芳香族成分に 対して高い選択性を持つスルホランを用いることによって還流・カウンターソル ベントの適用の必要がなく、段数を小さくできた。フルフラールを溶媒として用 いることによって小さい溶媒量で芳香族炭化水素製品を得ることができた。芳香 族濃度の高い分解軽油(CGO)ではどの溶媒の場合でも還流・カウンターソルベン トの必要がなかった。原料の沸点範囲と溶媒の沸点が重なると複数の蒸留が必要 となり、メタノールの場合では溶媒とカウンターソルベントが 1 つの蒸留で回収 できた。

以上より、メタノール、フルフラール、スルホランを用いた溶媒抽出プロセス を化学原料としての芳香族炭化水素と燃料油の混合基材としての脱芳香族油の利 用を目的とした石油系分解油の分離法として提案した。

本研究を進めるにあたり、懇切なるご指導を頂き、また研究室におけるゼミ等 を通じて化学工学的な研究手法をご教授くださいました本理工学研究科国際開発 工学専攻准教授 江頭竜一先生、助教授 鎺広顕先生に厚く御礼申し上げます。

本研究の実験データの一部を測定して頂いた宮崎和亮氏に厚く御礼申し上げます。

最後になりましたが、本論文の作成に際してご協力いただいた本理工学研究科 国際開発工学専攻江頭研究室関係者の皆様に心から感謝いたします。

A 窒素・硫黄成分の分離

A.1 実験

平衡抽出実験の実験条件を Table A.1 に示す。実験手順は 2.1 実験と同様である。 モデル混合物 MF8 内に含まれる窒素・硫黄成分であるインドール、ベンゾチオフ ェンの主な物性を Table A.2 に、分子構造を Figure A.1 に示す。さらに MF8 の組 成を Table A.3 に示す。ここでは溶媒としてメタノール、フルフラール、スルホ ランを用いた。分析はガスクロマトグラフを用いて行い、分析条件は 2.1.2 分析と 同様である。

Table A.1 Experimental	conditions	for liquid-liquid equilibrium
Feed		model mixture(MF8)
Mass, <i>R</i> _{ini}	[kg]	0.003
Solvent		methanol, furfural or sulfolane
Mass ratio of solvent to feed,		
Eini/Rini	[-]	1
Extraction temperature	[K]	303
Shaking time	[h]	48
Amplitude of shaking	[m]	0.04
Frequency of shaking	[h ⁻¹]	5400

Table A 1	Evnerimental	conditions fo	r liquid-liquid	equilibrium
I apre A. I	Experimental		n ilgulu-ilgulu	equilibrium

Table A.2 Physical properties of indole a	and benzothiophene
--	--------------------

Туре	component	i	Formula	MW [-]	b.p. [K]
nitrogen compound	indole	IN	C8H7N	117	526
sulfuric compound	benzothiophene	ΒT	C8H6S	134	494

Figure A.1 Chemical structures of indole and benzothiophene

Table A.3 Composition of model mixture (MF8) for feed oil							
Туре	component	i	X i,1				
alkane	nonane	C9	0.81				
mono cyclic aromatic	toluene	TOL	0.16				
	o-xylene	OX	0.01				
nitrogen compound	indole	IN	0.01				
sulfuric compound	benzothiophene	BT	0.01				

A.2 結果と考察

分配係数 *m*_iを Figure A.2 に、ノナンに対する選択度 β_{i,C9} を Figure A.3 に示す。 抽出相の GC 分析においてインドールとスルホランの分離ができなかったためこ の場合のみ物質収支式より濃度を求めた。どの溶媒の場合でもそれぞれ極性の高 い窒素、硫黄原子を分子内に含むインドール、ベンゾチオフェンは同じ炭素数(CN =8)のオルト-キシレンより分配係数が高く、選択度も大きくなった。これより分解 油に対しこれらの溶媒を用いた抽出法を適用することによって窒素・硫黄成分も 芳香族炭化水素と同時に分離できることが確認された。メタノール、スルホラン の場合ではインドールの分配係数はベンゾチオフェンの分配係数より大きく、フ ルフラールでは同程度であった。特に窒素・硫黄成分に対し高い選択性を持つス ルホランではあるが、抽残相への溶け込みにより抽残相における硫黄濃度はスル ホラン分子内に硫黄原子を含むため増加する可能性がある。

Figure A.2 Distribution coefficient of component *i* with MF8

Figure A.3 Separation selectivity of component *i* relative to nonane with MF8

B UNIFAC 法を用いた液液平衡推算

B.1 液液平衡関係を表す式

基礎的式

平衡関係を求めるにあたり基礎となる式を確認する。

<熱力学的式>

<物質収支式>

$$F = L^{A} + L^{B} \tag{B.2}$$

$$F \cdot z_i = L^A \cdot x_i^A + L^B \cdot x_i^B$$
 (*i*=1.2...,C) (B.3)

F、 L^A 、 L^B はそれぞれ仕込み原料、液相 A、液相 B のモル量である。物質収支式 は全体(2.2)と各成分(2.3)の二種類で表される。さらに各相の組成、 \mathbf{x}_i^A 、 \mathbf{x}_i^B は以下 の制約式を持つ。

$$\sum_{C} \boldsymbol{x}_{i}^{A} = 1 \tag{B.4}$$

$$\sum_{C} \boldsymbol{x}_{i}^{B} = 1 \tag{B.5}$$

熱力学的モデル

液液平衡を求める際必要な活量係数 γ の推算法として、本研究では UNIFAC 法 を利用した。UNIFAC 法は分子内の官能基(サブグループ)についてのパラメータ を用いるモデルであり、成分の分子構造の液液平衡へ与える影響を考察するうえ で適していると考えられるからである。さらに成分間のパラメータがないために 他の推算法が利用できない成分に対しても適用できるという利点もある。 UNIFAC 法では成分 *i* の液相での活量係数 γ*i* は以下に示す式を用いて計算される。

$$\ln \gamma_i = \ln \gamma_i^{C} + \ln \gamma_i^{R} \tag{B.6}$$

$$\ln\gamma_{i}^{C} = \ln(\phi_{i} / x_{i}) + 0.5zq_{i}\ln(\theta_{i} / \phi_{i}) + I_{i} - (\phi_{i} / x_{i})\sum_{j}(x_{j} I_{j})$$
(B.7)

$$\ln\gamma_i^{R} = \sum_k v_k^{(1)} (\ln\Gamma_k - \ln\Gamma_k^{(1)})$$
(B.8)

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m} \Theta_{m} \Psi_{m k} \right) - \sum_{m} \left(\Theta_{m} \Psi_{k m} / \sum_{n} \Theta_{n} \Psi_{n m} \right) \right]$$
(B.9)

$$\ln\Gamma_{k}^{(i)} = Q_{k} \left[1 - \ln\left(\sum_{m} \Theta_{m}^{(i)} \Psi_{m k}\right) - \sum_{m} \left(\Theta_{m}^{(i)} \Psi_{k m} / \sum_{n} \Theta_{n}^{(i)} \Psi_{n m}\right) \right]$$
(B.10)

$$I_{i} = 0.5 \ z \ (r_{i} - q_{i}) - (r_{i} - 1) \tag{B.11}$$

$$r_{i} = \sum_{k} v_{k}^{(i)} R_{k}$$
(B.12)
(B.12)

$$q_i = \sum_k v_k^{(i)} Q_k \tag{B.13}$$

$$\boldsymbol{\Phi}_i = r_i x_i / \sum_j r_j x_j \tag{B.14}$$

$$\theta_i = q_i x_i / \sum_j q_j x_j \tag{B.15}$$

$$\Theta_m = Q_m X_m / \sum_n Q_n X_n \tag{B.16}$$

$$\Theta_m^{(i)} = Q_m X_m^{(i)} / \sum_n Q_n X_n^{(i)}$$
(B.17)

$$\Psi_{mn} = \exp\left(-a_{mn}/T\right) \tag{B.18}$$

ここでは活量係数 γ_i は、成分の大きさ、形(体積パラメータ Q_k 、表面積パラメ ータ R_k)の活量係数への寄与を考慮した Combinatorial 項、 γ_i^c と、官能基間の相 互作用(相互作用パラメータ a_{mn})の活量係数への寄与を考慮した Residual 項、 γ_i^R で表される。

なお UNIFAC 法を用いるにあたって、体積パラメータ Q_k、表面積パラメータ R_k、 相互作用パラメータ a_{mn} が必要になる。各官能基はサブグループとしてそれぞれ の体積パラメータ Q_k 、表面積パラメータ R_k をもつ。各サブグルーブはメイングル ープに振り分けられ、メイングループ間の相互作用パラメータ a_{mn} をもつ。例え ば、ACH と AC は違うサブグルーブとしてそれぞれの体積パラメータ Q_k 、表面積 パラメータ R_k をもつ。しかし、メイングループは同じものになるので同じ相互作 用パラメータ a_{mn} をもつ。

溶媒とモデル混合物に用いた成分に対し UNIFAC 法を適用するにあたり、使用 するサブグループとその表面積パラメータ *R*_k、体積パラメータ *Q*_kを Table B.1 に、 各成分内のサブグループの種類とその数を Table B.2 に示す。相互作用パラメー タは液液平衡推算用のパラメータと気液平衡推算用のパラメータが報告されてお り^{16,21,23,32,33)}、溶媒としてフルフラールを用いる場合は液液平衡推算用のパラメ ータを用いたが、メタノール、スルホランを用いる場合には報告されていない液 液平衡推算用のパラメータがあり気液平衡推算用のパラメータを用いて計算した。 それぞれについての相互作用パラメータを Table B.3、Table B.4 に示す。

Subgroup	R_k	Q_k
CH3	0.9011	0.848
CH2	0.6744	0.54
CH2=CH	1.3454	1.176
ACH	0.5313	0.4
AC	0.3652	0.12
ACCH3	1.2663	0.968
ACCH2	1.0396	0.66
CH3OH	1.4311	1.432
furfural	3.168	2.481
sulfone	2.6869	2.12
H2O	0.92	1.4

Table B.1 R_k and Q_k value of used subgroups

i	CH3	CH2	CH2=CH	ACH	AC	ACCH3	ACCH2	CH3OH	furfural	sulfone
heptane	2	5								
octane	2	6								
nonane	2	7								
decane	2	8								
undecane	2	9								
dodecane	2	10								
tridecane	2	11								
tetradecane	2	12								
pentadecane	2	13								
hexadecane	2	14								
heptadecane	2	15								
octadecane	2	16								
nonadecane	2	17								
eicosane	2	18								
heneicosane	2	19								
docosane	2	20								
1-decene	1	7	1							
1-dodecene	1	9	1							
1-tetradecene	1	11	1							
1-hexadecene	1	13	1							
1-octadecene	1	15	1							
1-eicosene	1	17	1							
toluene				5		1				
o-xylene				4		2				
mesitylene				3		3				
tetraline		4		4	2					
hexylbenzene	1	5		5			1			
1-methylnaphthalene				7	2	1				
fluorene		1		8	4					
phenanthrene				10	4					
methanol								1		
furfural									1	
sulfolane		2								1

 Table B.2 Number of functional groups in studied components

a(i,j)	CH3,CH2	CH2=CH	ACH,AC	ACCH3,ACCH2	H2O	furfural
CH3,CH2	0	74.54	-114.8	-115.7	1300	383
CH2=CH	292.3	0	340.7	4102	896	262.9
ACH,AC	156.5	-94.78	0	167	859.4	31.14
ACCH3,ACCH2	104.4	-269.7	-146.8	0	5695	715.6
H2O	342.4	220.6	372.8	203.7	0	66.95
furfural	14.78	82.64	-10.44	-184.9	211.6	0

Table B.3 UNIFAC interaction parameters for the system with furfural

Table B.4 UNIFAC interaction parameters for the system with methanol or sulfolane

	CH3,CH2	CH2=CH	ACH,AC	ACCH3, ACCH2	СНЗОН	H2O	sulphone
CH3,CH2	0	86.02	61.13	76.5	697.2	1318	808.59
CH2=CH	-35.36	0	38.81	74.15	787.6	270.6	200.94
ACH,AC	-11.12	3.446	0	167	637.3	903.8	360.82
ACCH3,ACCH2	-69.7	-113.6	-146.8	0	603.2	5695	233.51
CH3OH	16.51	-12.52	-50	-44.5	0	-181	150.02
H2O	300	496.1	362.3	377.6	289.6	0	-255.63
sulfone	245.21	384.45	47.05	347.13	265.75	627.39	0

B.2 計算方法

原料として 2.1 実験と同じモデル混合物(MF3~7)を用いた。さらに水の添加の溶 媒の分配に与える影響を確認するため、MF9 としてトルエンーへプタン 2 成分混 合物($x_{TOL,ini}=0.1$)を用いた計算も行っている。溶媒としてメタノール、フルフラー ル、スルホランの 3 種を用い、平衡温度 303K、溶媒原料比 $E_{ini}/R_{ini}=1$ とし、MF9 ではメタノール、スルホラン内の水の濃度 $y_{W,ini}$ を 0~0.7 とした。本計算は Visual Basic で記述されたプログラムを用いて計算された。ここでは式(B.1)~(B.5)を満た すように L^A/F を変数とした Newton-Raphson 法によって計算された。

B.3 結果と考察

アルカン混合物(MF3)

アルカンのみからなるモデル混合物 MF3 における炭素数 CN と分配係数 *m_i*の関係を Figure B.1 に、炭素数 CN とノナンに対する選択度 β_{i,C9} の関係を Figure B.2 に示す。本推算結果は液液平衡測定の結果と同様に、すべての溶媒に おいて炭素数が増加するにつれてアルカンの分配係数と選択度は減少し、溶媒で 比較すると分配係数はメタノール、フルフラール、スルホランの順で大きかった。本推算結果では各溶媒で分配係数の傾きは異なり、アルキル基の炭素の分配係数 ヘ与える影響は異なる。しかし、実験よりこのアルキル基の炭素の分配係数 ヘ与える影響はメタノール、フルフラール、スルホランでは同程度であることが確認 された。

Figure B.1 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF3

Figure B.2 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF3

アルケン混合物(MF4,5)

アルケンのみからなるモデル混合物 MF4 とアルケンとノナンからなるモデル混 合物 MF5 における炭素数 CN と分配係数 *m_i*の関係を Figure B.3、Figure B.4 に、 MF5 における炭素数 CN とノナンに対する選択度 β_{i,C9}の関係 Figure B.5 に示す。 液液平衡測定の結果と同様、すべての溶媒において炭素数が増加するにつれてア ルケンの分配係数は減少し、アルケンのほうがアルカンより溶媒相に抽出された。 溶媒で比較すると分配係数はメタノール、フルフラール、スルホランの順で大き かった。これは上記のアルカンの場合と同じであった。

Figure B.3 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF4

Figure B.4 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF5

Figure B.5 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF5

芳香族炭化水素混合物(MF6)

CN =7~14 の芳香族炭化水素を含むモデル混合物 MF6 における炭素数 CN と分 配係数 m_i の関係を Figure B.6 に、炭素数 CN とノナンに対する選択度 $\beta_{i,C9}$ の関 係を Figure B.7 に示す。液液測定実験と同様に、全溶媒において分配係数はノナ ンより芳香族炭化水素のほうが大きく選択度も 1 より大きくなった。芳香族成分 の分配係数は本推算結果と液液平衡測定結果で同程度であったが、特にスルホラ ンにおけるノナンの分配係数の違いは大きかった。

Figure B.6 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF6

Figure B.7 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF6

フェナントレン混合物(MF7)

フェナントレン、トルエン、ノナン、テトラデカンからなる芳香族炭化水素モ デル混合物 MF7 における分配係数 *m*_i を Figure B.8 に、ノナンに対する選択度 *β*_{i,C9} を Figure B.9 に示す。どの溶媒の場合でも測定結果と同様にフェナントレン、 トルエン、ノナン、テトラデカンの順で分配係数は大きかった。測定結果と比べ て本推算結果ではスルホランにおける非芳香族成分の分配係数は特に大きくなり、 結果として芳香族成分の選択度が小さかった。さらにフルフラール、スルホラン においてフェナントレンとトルエンの選択度の差が測定結果より小さかった。

Figure B.8 The effects of the number of carbon atoms in molecular on distribution coefficient of component *i* with MF7

Figure B.9 The effects of the number of carbon atoms in molecular on separation selectivity of component *i* relative to nonane with MF7

溶媒成分の分配(MF9)

トルエンーヘプタン 2 成分混合物 MF9 における溶媒成分の分配係数 *m_i*を Figure B.10 に示す。メタノールの分配係数はスルホランよりも小さくなり、実験 結果と逆であった。メタノールの分配係数は水の増加とともに増加し、抽出相内 の水の濃度が 0.4 以上ではほとんど一定となった。これは実験と同様の結果であ った。スルホランでは抽出相内の水の濃度 0.2 で最大値を持つ減少傾向が確認さ れた。実験では最大値は測定されなかったが、減少傾向が確認されている。

Figure B.10 The effects of water contents in extract phase on distribution coefficient of solvent component with MF9

C 分解油の性状

本実験で使用した分解灯油(CK)と分解軽油(CGO,LCO)の各工業分析値を Table C.1 に示す。さらに各分解油の蒸留曲線を Figure C.1 に示す。これらのデ ータは分解油を提供して頂いた会社による分析結果である。

Feed oil		CK	CGO	LCO
Density (15°C)	[ka·cm⁻³]	0.8168	0.8929	0.9365
Sulfur content	[ppm]	54	28200	1540
Nitrogen content	[ppm]	41.8	808	385
Viscosity (30°C)	[mm ² ·s ⁻¹]	1.495	6.989	3.635
Bromine Number	[g-Br ₂ /100g]	0.5	21.9	6.1
Refractive index (20°C)	[ND]	1.4557	1.4994	1.4032
Elemental analysis				
С	[%]	86.4	85.1	90.0
Н	[%]	13.3	11.8	10.0
Distillation (ASTM-D86)				
IBP	[°C]	140.5	157.5	197.5
5%	[°C]	157	269.5	251.5
10%	[°C]	161.5	282.5	264.5
20%	[°C]	170	295.5	274.5
30%	[°C]	179.5	303	282.5
40%	[°C]	192	309.5	288.5
50%	[°C]	206.5	316	295.5
60%	[°C]	222.5	323	303
70%	[°C]	234.5	331	311
80%	[°C]	245	341.5	320.5
90%	[°C]	256.5	359	332.5
95%	[°C]	265	380.5	342.5
97%	[°C]	270	385	349.5
EP	[°C]	278	386.5	352.5
bottom	[vol%]	1.0	1.5	1.5
Type of hydrocarbon content (HPLC: JPI-5S-49-97)				
mono cyclic aromatic	[-]	0.2695	0.1586	0.1882
di cyclic aromatic	[-]	0.0291	0.1203	0.3876
tri cyclic aromatic	[—]	0.0007	0.0437	0.1448
alkane	[—]	0.7007	0.3908	0.2794
alkene	[-]	0	0.2866	0

Table C.1 Physical properties and contents of cracked oils

Figure C.1 The distillation curves of cracked oils
使用	記号
----	----

В	= mass of residue	[kg]
С	= number of components	[-]
CN	= carbon atoms in molecular	[-]
D	= mass of distillate	[kg]
E	= mass of solvent phase	[kg]
F	= mole of feed	[mol]
k	= number of total stage for extraction process	[-]
L	= mole of liquid phase	[mol]
т	= distribution coefficient	[-]
n	= number of total stage for extraction process	[-]
n _f	= feed stage	[-]
<i>n</i> r	= reflux stage	[-]
ns	= countersolvent stage	[-]
Ρ	= mass of product of extracted components	[kg]
R	= mass of oil phase	[kg]
S	= mass of solvent	[kg]
Т	= temperature	[K]
t	= time	[h]
X	= mass or mole fraction in oil phase	[-]
У	= mass or mole fraction in solvent phase	[-]
Y	= yield for extract phase	[-]
β	= separation selectivity	[-]
Y	= activity coefficient	[-]
<sub:< td=""><td>script></td><td></td></sub:<>	script>	
А	= total aromatics	
ANT	= anthracene	
ΒT	=benzothiophene	
С	= countersolvent	
C10	= decane	
C11	= undecane	
C12	= dodecane	
C13	= tridecane	
C14	= tetradecane	
C15	= pentadecane	
C16	= hexadecane	
C17	= heptadecane	
C18	= octadecane	
C19	= nonadecane	
C20	= eicosane	
C21	= heneicosane	

- C22 = docosane C7 = heptane C8 = octane C9 = nonane CK = cracked kerosene CLO1 = cracked light oil1 CLO2 = cracked light oil2 EB = ethylbenzene = equilibrium eq FL = fluorene FUR = furfural HB = hexylbenzene i = component *i* IN =indole ini = initial **MEOH=** methanol MPX = m,p-xylene MS = mesitylene MX = m-xylene Ν = naphthalene NA = total noaromatics O10 = 1-decene O12 = 1-dodecene O14 = 1-tetradecene O16 = 1-hexadecene O18 = 1-octadecene O20 = 1-eicosene OX = o-xylene PΒ = propylbenzene PC = pusedocumene PHE = phenanthrene PMB = pentamethylbenzene ΡN = phenylnaphthalenetetraline PΧ = p-xylene= reflux r = separator for solvent recovery sp = separator for countersolvent recovery spc SUL = sulfolane Т = tetraline TOL = toluene W =water 1MN = 1-methylnaphthalene
- 2MA = 2-methylanthracene
- 2MN = 2-methylnaphthalene

9MA = 9-methylanthracene

- 1) Sequeira, et al. "MP refining of lubes", Hydrocarbon processing, 155-160, 1979
- Al-Sahhaf T. A. *et al.*; "Liquid-Liquid Equilibria for the System Naphtha Reformate-Dimethyl Sulphoxide," *Fluid Phase Equilibria*, Vol.119, 153-163, 1996
- Al-Sahhaf T. A. *et al.*; "Measurement and Prediction of Phase Equilibria in the Extraction of Aromatics from Naphtha Reformate by Tetraethylene Glycol," *Fluid Phase Equilibria*, Vol.118, 271-285, 1996
- 4) Alvin L. Benham, *et al.* "REDEX process extract aromatics", *Hydrocarbon processing*, Vol.46, No.9, 134-138, 1967
- 5) Anderson R. *et al.*; "Physical and Chemical Forces in Solvent Selectivity for Hydrocarbons," *AIChE Journal*, Vol.8, No.1, 67-69, 1962
- Choffe, *et al.* "Extract aromatics with DMSO", *Hydrocarbon processing*, Vol.45, No.5, 188-192, 1966
- 7) Broughton, D.B. *et al.*; "Production of High Purity Aromatics by the Sulfolane Process," 7th World Petroleum Congress-New Concepts and Techniques for hydrocarbon separation, Section IV-Paper 5, 65-73
- Chris S. *et al.*; "Separation of Coal Tar Distillate by Solvent Extraction -Separation of Extract phase Using Distillation-," *Sekiyu Gakkaishi*, Vol50, No.4, 218-226, 2007
- Chris S. *et al.*; "Separation of Coal Tar Fractions by Solvent Extraction -Extractant/Solvent Separation by Secondary Extraction-," *Sekiyu Gakkaishi*, Vol48, No.1, 60-66, 2005
- 10)Deal, C. H. Jr. *et al.*; "Extraction of Aromatics with Sulfolane," *Fifth World Petroleum Congress*, Section III-Paper 22, 283-297, 1959
- 11)Egashira R. *et al.*; "Separation of Nitrogen Heterocyclic Compounds Contained in Coal Tar Absorption Oil Fraction by Solvent Extraction," *Sekiyu Gakkaishi*, Vol43, No.5, 339-345, 2000

- 12)Egashira R. *et al.*; "Solvent Extraction of Coal Tar Absorption Oil with Continuous Countercurrent Spray Column," *Sekiyu Gakkaishi*, Vol50, No.4, 218-226, 2007
- 13)Egashira R. *et al.*; "Solvent Extraction of Nitrogen Heterocyclic Compounds Contained in Coal Tar Absorption Oil Fraction by Solvent Extraction -Improvement of Separation Performance by Addition of Aluminum Chloride to Solvent-," *Sekiyu Gakkaishi*, Vol44, No.3, 178-182, 2001
- 14) Eugene Guccione, *et al.* "Aromatics via solvent extraction at ambient temperature", *Chemical engineering*, No.73,78-80, 1966
- 15) Eugene Guccione, *et al.* "New approach to lube oils production", *Chemical engineering*, 160-162, 1965
- 16)Eugenia Almeida Macedo, *et al.* "Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 3 Revised", *Industrial & engineering chemistry process design and development*, Vol.22, 676-678, 1983
- 17)Ferdinand Richter, *et al.* "Problems in furfural extraction", *Hydrocarbon processing*, 181,1978
- 18)G.H.Deal, *et al.* "A better way to extract aromatics", *Petroleum refiner*, Vol.38, No9, 185-192, 1959
- 19)H.W.Grote, *et al.* "The UDEX process", *Chemical engineering progress*, Vol.54, No.8, 43-48, 1958
- 20)Harrison J. M. et al.; "Azeotropic Distillation," Industrial and Engineering Chemistry, **36**, (10), 871-875 (1944)
- 21)I.D.G.A. Putrawan, S. Oshima, H. Habaki, R. Egashira and J. Kawasaki;
 "Extraction of Aromatics in the Light Cycle Oil. Extraction Equilibrium and Extraction Rate of Naphthalene Group," Sekiyu Gakkaishi, Vol.42, 136-144, 1999
- 22)J. C. Bastos, *et al.* "Infinite Dilution Activity Coefficients Predicted by UNIFAC Group Contribution", Industrial & engineering chemistry research, Vol.27, 1269-1277, 1988

- 23)Jae-Ouk Choo, *et al.* "Modeling and Simulation of a Sulfolane Extraction Process", *Korean J. Chent Eng.*, 15(1), 90-94, 1998
- 24)Jurgen Gmehling, *et al.* "Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2", *Industrial & engineering chemistry process design and development*, Vol.21, 118-127, 1982
- 25)S.J. Kim, R. Egashira and J. Kawasaki; "Recovery of Dimethylnaphthalene Isomer by O/W/O Emulsion Liquid Membrane Process," Sekiyu Gakkaishi, Vol.38, 114-120, 1995
- 26)Ki-Won Cho, *et al.* "Application of Partitioning and Tearing Techniques to Sulfolane Extraction Plant", *Korean J. Chem. Eng.*, 16(4), 462-469, 1999
- 27)Kodera Y. et al.; "Solvent Extraction of Nitrogen Compounds from Coal Liquids," *Fuel*, Vol.70, 765-769, 1991
- 28)L.C.Kemp, Jr., *et al.* "Furfural as a selective solvent in petroleum refinig", *Industrial and engineering chemistry*, Vol.40, No.2, 220-227, 1948
- 29)Mallock J. C. W.; "Solvent Extraction as a Unit Process," *The Industrial Chemist*, 343-347, 1949
- 30)Mueller, E. *et al.*; "Aromatics Extraction with Solvent Combinations," 7th World Petroleum Congress-New Concepts and Techniques for hydrocarbon separation Section IV, 13-20
- 31)Nagai, M., Master Thesis, Tokyo Institute of Technology, March (2001)
- 32)Philip.J.Bailies, *et al.* "Solvent extraction in the petrochemical industry -Solvent extraction in the petroleum and petrochemical industries-", *Chemistry and industry*, Vol.15, 69-73, 1977
- 33)Pokorskii V. N. *et al.*; "The Extraction of Aromatic Hydrocarbons and Catalyzates from the Reforming of Aqueous Triethyleneglycol," *Khimiya i Tekhnologiya Topliv i Masel*, No.9, 9-11, 1965
- 34)Roland Wittig, *et al.* "Vapor-Liquid Equilibria by UNIFAC Group Contribution. 6.
 Revision and Extension", *Industrial & engineering chemistry research*, Vol.42, 183-188, 2003

- 35)R. Song, D. Zhao, W. Xiao and F. Wang; "Effect of assistants in refining corker gas oil with furfural," *Energy Sources*, Vol.29, 1187-1193, 2007
- 36)Thomas Magnussen, *et al.* "UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria", *Industrial & engineering chemistry process design and development*, Vol.20, 331-339, 1981
- 37)Ukegawa K. *et al.*; "Solvent Extraction of Nitrogen Compounds from a Coal Tar Fraction (Part I) Effect of Extraction Conditions on the Extraction Rate and the Selectivities of Nitrogen Compounds," *Sekiyu Gakkaishi*, Vol.33, No.4, 250-254, 1990
- 38)Voetter, H. *et al.*; "The Sulfolane Extraction Process", 6th World Petroleum Congress, Section III-Paper 11, 131-145
- 39)W.C.G Kosters, *et al.* "Solvent extraction in the petrochemical industry -The role of extraction in luboil manufacture-", Chemistry and *industry*, Vol.15, 65-68, 1977
- 40)Yu-Jung Choi, *et al.* "Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation", *Korean J. Chem. Eng.*, 17(6), 712-718, 2000