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Abstract

This dissertation investigates visual feedback attitude/pose synchronization on the Special
Euclidean group SE(3) for a group of rigid bodies equipped with vision sensors. The
objective of attitude synchronization is to lead orientations of all the bodies with the
same linear body velocity to a common value. Therefore, all the bodies move in the
same direction when attitude synchronization is achieved. On the other hand, the goal
of pose synchronization is to drive orientations and virtual positions to common values.
Here, a virtual position is the position with a desired position bias to guarantee collision
avoidance and visibility to neighbor bodies when synchronization is achieved.

We first introduce a notion of visual robotic networks to be controlled throughout this
work. Visual robotic networks consist of multiple rigid bodies with kinematic models,
visibility structures representing visual information flows between bodies and measured
output, called visual measurements, extracted by monocular cameras which bodies equip.
We next define visual feedback attitude/pose synchronization as the goals of this work.
The definitions require each body to utilize only visual measurements for the implemen-
tation of control laws in addition to achieve synchronization, which is the main feature of
this work. We then propose visual feedback attitude/pose synchronization laws consist-
ing of vision-based observers to estimate relative poses of visible bodies and relative pose
information-based synchronization laws. Here, passivity of the kinematic models plays a
central role for the design of the present estimation and control mechanisms.

We next give convergence and performance analysis for the visual robotic network with
the present estimation and control schemes. In the analysis, we focus mainly on leader-
following visibility structures. It is first shown via Lyapunov methods that the present
laws achieve visual feedback attitude/pose synchronization under leader-following type
visibility structures. Then, for the leader moving independently, we analyze the tracking
performance of the network by employing the theory of input-to-state stability or input-
to-output stability. Here, we regard the individual velocity of the leader as an external
disturbance to the network and evaluate the total estimation and control errors in the
network.

We also give some further developments on visual feedback attitude/pose synchroniza-
tion in regard to (i) linear velocity observers for visual feedback attitude synchronization,
(ii) ring-type visibility structures which does not require the existence of a leader, (iii)
extension from velocity laws to force and torque ones by integrating Newton-Euler equa-
tions as rigid body dynamics, and (iv) collision avoidance and visibility maintenance. The
effectiveness and validity of the present estimation and control strategies and the conver-
gence and performance analysis are demonstrated through simulation in three dimensions
and experiments on a planar testbed.
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Chapter 1

Introduction

1.1 Motivation

Large-scale persistent environmental monitoring has been an urgent need due to recent
serious natural disasters including earthquakes, tsunamis, nuclear meltdowns, hurricanes,
floods, large forest fires, volcanic eruptions or oil spills [1, 2]. In fact, the Great East
Japan Earthquake has wreaked severe damage to Japan on March 11th, 2011, and the
radioactive contamination caused by the damage of nuclear power plants threatens health
of organism. The objective of the environmental monitoring is to reveal and understand
the states of the environment. However, it is hard for existing technologies using static
sensors to monitor them efficiently since such damage spreads through a wide area and
the measurement in general requires a large amount of sensing data.

For these kinds of issues, a solution to efficient data collection is a new technology called
mobile sensor network, and a large amount of research works have been devoted to mobile
sensor networks [3, 4, 5, 6]. The networks consist of collections of interconnected multiple
mobile sensors with appropriate data processing and sampling techniques. Therefore, this
technique has potential advantages in performances and robustness against sensor failures
especially in dynamical environments. In practice, each mobile sensor is often required
to behave cooperatively each other by using only limited information so that the group
achieves specified behavior.

Cooperative control [7, 8, 9] gives fundamentals to meet the requirement of mobile
sensor networks. Early works of cooperative control are motivated by scientific interests
in cooperative behavior in nature like flocking of birds [10, 11, 12] and schooling of fish [13,
14]. Its objective is to design a distributed control strategy using only local information so
that the aggregate system achieves specified behavior such as consensus [15, 16], flocking
[10, 11, 12, 17, 18, 19, 20], synchronization [21, 22], coordination [23, 24, 25, 26, 27, 28]
or coverage [29, 30]. In cooperative control problems, two distinctly different approaches
have emerged. One is to employ an agent taking on leader roles, and the other is to handle
the case that all the agent are fully autonomous. We focus mainly on the former case in

1



this dissertation. Among such cooperative behavior, control problems for mobile sensor
networks have been formulated as two dimensional (2D) or three dimensional (3D) pose
(position and attitude) coordination problems [3, 4, 5, 6].

In the stage of implementation, it is unavoidable to consider how to acquire neces-
sary information for cooperative control laws. In multi-agent systems, agents might be
capable of communicating with neighbor agents, where measurements on global informa-
tion might be assumed, or measuring relative information with respect to neighbors via
relative sensors without communication. This dissertation addresses the latter scenario
for ease of implementation and cost reduction. In such situations, it would be useful for
agents to estimate their necessary information from relative measurements [31]. Among
relative sensors, a vision sensor brings rich information including 3D poses of other agents
compressed into 2D image plane [32]. A vision sensor is also a powerful tool to grasp what
is going on in the environment [33, 34]. Furthermore, vision is considered to play a central
role in cooperative behavior in nature [35]. Due to this nature, we use only vision as a
tool to obtain necessary information for control strategies.

Numerous research works have been devoted to fusion of control theory and computer
vision so-called visual feedback control or visual servoing [36, 37]. Whereas early works are
mainly motivated by robot control as in [38], the motivating scenarios of the integration
have currently spread over the robotic systems into security and surveillance systems [39],
medical imaging procedures [40] and even understanding biological perceptual processing
[41]. Furthermore, a lot of researchers have recently gained attention to visual feedback
cooperative control not only for implementation of motion coordination but also for cam-
era/visual sensor networks to monitor environments [39, 42, 43]. Visual feedback control
is generally classified as image-based or position-based control [36, 37]. In image-based
control, 2D visual information is directly fedback, which might reduce the degree of free-
dom to be controlled and have difficulties in convergence analysis such as existence of local
minima or singularities. On the other hand, position-based control requires feedback of
a 3D target object pose relative to a vision camera. Therefore, it is often necessary for a
vision camera to estimate the relative pose from visual information, which makes conver-
gence analysis hard and the analysis for cooperative control much more difficult. Due to
this nature, not a few works propose only control schemes without theoretical guarantees
and experimental verifications, or tackle estimation and control problems separately. In
this dissertation, we propose a novel pose estimation mechanism for cooperative control
laws based on [44, 45] and give convergence and performance analysis for the integrated
systems.

1.2 Problem Statement and Overview

In view of the motivation, this dissertation studies visual feedback attitude/pose synchro-
nization on the Special Euclidean group SE(3) for a group of rigid bodies equipped with
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Common Linear Velocities 
      in the World Frame

Figure 1.1: Attitude Synchronization

Desired Configuration

Figure 1.2: Pose Synchronization

vision sensors. The objective of attitude synchronization is to drive the orientations of all
the bodies with the same linear body velocity to a common value. Therefore, all the bod-
ies move in the same direction when attitude synchronization is achieved (see Fig. 1.1).
On the other hand, the goal of pose synchronization is to lead orientations and virtual
positions of all the bodies to common values. Here, a virtual position is the position with
a desired position bias to guarantee collision avoidance and visibility to neighbor bodies
when synchronization is achieved (see Fig. 1.2). Although we have already proposed rel-
ative pose information-based attitude/pose synchronization laws in [46, 47, 48], the way
to obtain relative poses of neighbor bodies necessary for the present laws has not been
mentioned. Thus, in this dissertation, we newly propose visual feedback attitude/pose
synchronization laws using only visual measurements extracted by a monocular camera
and prove that the present estimation and control mechanisms achieve the same goals as
in [46, 47, 48] under leader-following type or ring-type interconnection topologies between
bodies. Moreover, we show that even if the leader moves independently in leader-following
type rigid body networks, the present laws work successfully and flocking-like behavior is
achieved.

We first introduce a notion of visual robotic networks to be controlled throughout this
dissertation. Here, visual robotic networks consist of multiple rigid bodies with kinematic
models called rigid body motion, visibility structures representing visual information flows
between bodies and measured output, called visual measurements, extracted by monoc-
ular cameras which bodies equip. Then, the visual robotic network becomes the robotic
network [7] regarding interconnection topologies between bodies as visibility structures
and adding explicit formulation of measured output. This setting enables each body to be
fully autonomous. We next define visual feedback attitude/pose synchronization as the
goals of this work. The definitions require each body to utilize only visual measurements
for control laws in addition to those in [46, 47, 48]. We then propose visual feedback atti-
tude/pose synchronization laws consisting of visual feedback observers based on [44, 45]
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and the synchronization laws presented in [46, 47, 48]. Here, passivity of rigid body motion
plays crucial roles for the design of the present estimation and control strategies.

We next give convergence and performance analysis for the visual robotic network with
the present estimation and control schemes. In the analysis, we focus mainly on leader-
following visibility structures. We first prove via Lyapunov methods that the present pro-
tocols achieve attitude/pose synchronization under leader-following type visibility struc-
tures, where passivity of rigid body motion also plays a central role. However, in the
present control scheme, the leader does not rotate/move, and as a result, the network
cannot rotate/move after attitude/pose synchronization. In order to overcome these is-
sues, we next consider the case that the leader rotates/moves independently. In this
situation, we analyze the tracking performance of the network for the leader by employ-
ing the theory of input-to-state stability and input-to-output stability [49, 50, 51]. Here,
we regard the individual velocity of the leader as an external disturbance to the network
and evaluate the total estimation and control errors in the network.

We moreover give some further developments on visual feedback attitude/pose syn-
chronization in regard to (i) linear velocity observers for attitude synchronization, (ii)
ring-type visibility structures which does not require the existence of a leader, (iii) con-
sideration of rigid body dynamics, i.e. extension from velocity laws to force and torque
ones, and (iv) visibility maintenance and collision avoidance. The effectiveness and valid-
ity of the present estimation and control schemes and the convergence and performance
analysis are demonstrated through simulation in three dimensions and experiments on a
planar testbed.

1.3 Literature Review

Attitude/Pose Synchronization

Synchronization on the Special Orthogonal group SO(3) or SE(3) is investigated in
[8, 24, 46, 47, 48, 52, 53, 54, 55, 56, 57]. Here, the papers [46, 47, 48, 52] handle kinematic
models of rigid body motion, [8, 24, 53, 54, 55] consider attitude dynamics represented by
Euler-Lagrange equations, and [56, 57] deal with general Lagrangian systems. [8, 52] pro-
pose attitude synchronization laws on SO(3) based only on relative attitude information,
but they assume that information exchanges between agents are modeled by undirected
graphs. On the other hand, [53, 54, 55, 56, 57] present synchronization laws with milder
assumptions of topologies. However, the present laws feedback information other than
relative attitudes. [24] tackles pose synchronization problems on SE(3), but it considers
undirected topologies. Inspired by [9, 58], our group has proposed passivity-based syn-
chronization laws on SO(3) [46] and SE(3) [47], where the notion of passivity plays a
central role in proving synchronization. However, while the control law in [46] is based
only on relative attitude information, [47] partially requires absolute pose information to
cancel the coupling term between a position and an orientation. These works have proved
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synchronization under milder topology assumptions than [8, 24, 52], but the assumptions
are still more restrictive than consensus/synchronization on vector space [16] where the
interconnection topology is assumed to contain a spanning tree. Based on these facts, we
have also proposed relative pose information-based pose synchronization protocols and
given a necessary and sufficient condition of fixed directed graphs in [48] by employing
the theory of perturbed systems [49] to prove synchronization. However, all these works
do not consider how to get information necessary for implementation of control laws.

Visual Feedback Motion Coordination

Vision-based motion coordination problems are tackled in [59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69]. [59] proposes vision-based control laws using only monocular vision images to
achieve 2D flocking for nonholonomic robots. It shows for complete or ring-type graphs
that the present control laws achieving some formation patterns are implementable by
using information extracted from the images. Also, [60] addresses 2D attitude alignment
problems by using epipoles computed from pairs of images to estimate the misalignment
between neighbor agents. However, these approaches deeply rely on complicated image
processing techniques which might yield long sampling time. [61] tackles vision-based con-
nectivity maintenance problems. The authors propose a two level control framework for
connectivity maintenance and cooperation of multi-agent systems, and image feedback is
used to maintain connectivity. However, they assume the usage of partial communication.
On the other hand, most of current works on visual feedback motion coordination handle
leader-following type formation control problems on 2D plane [62, 63, 64, 65, 66, 67, 68, 69].
[62] tackles the formation control problem via input-output feedback linearization to de-
sign control laws and a vision-based extended Kalman filter to get relative information.
The authors in [63, 64, 65] make use of a range estimator for leader-follower type for-
mation control. Although [63, 64] show stability of the closed-loop system via Lyapunov
arguments, the present control scheme premises communication between the leader and
follower. The range estimator proposed in [65] is based on the extended Kalman filter
and the validity is given through simulation results. The works in [66, 67, 68, 69] also
address the formation problem. In [66], the follower vehicle tracks the trajectory of the
leader delayed by constant time. The approaches in [67, 68] are based on visual servoing
control techniques, where the authors translate the problem from the configuration space
into a separate visual servoing control task for each follower and design a control law by
feedback linearization. [69] presents a new observability condition based on the extended
output Jacobian, and the state of the leader-follower system is estimated via the extended
Kalman filter. In summary, to the best of our knowledge, there exists no visual feedback
observer-based control law which guarantees achievement of 3D pose coordination in the
absence of communication.
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1.4 Contributions

The main contribution of this work is to give theoretical guarantees of visual feedback
3D attitude/pose synchronization for the total system integrating estimation and control
systems of multiple rigid bodies. Indeed, most of related works take one of the following
three approaches as mentioned in Section 1.3. One is that they assume acquisition of
information other than visual measurements for control laws. Another is to utilize ex-
tended Kalman filters in order to estimate necessary information and show the validity
through simulation or experimental results. The other is to consider only one leader and
one follower formation problems and give no stability analysis for the cascade connection
of the frameworks.

The other contributions are listed as follows.

• We propose a novel robotic network explicitly formalizing measured output of rigid
bodies. In fact, the visual robotic network is the network regarding interconnection
topologies as visibility structures and adding measured output extracted by vision
sensors to the robotic network defined in [7].

• We present a novel structure incorporating both attitude/pose synchronization laws
and visual feedback pose estimation mechanisms into a feedback loop, which enables
each rigid body to be fully autonomous.

• The present estimation and control laws achieve the same goals as in [46, 47, 48] in
spite of requiring each body to utilize only visual measurements for the protocols.

• In addition to 3D simulation, we perform experiments in order to confirm the effec-
tiveness and validity of the present control scheme and the convergence and perfor-
mance analysis.

1.5 Dissertation Outline

In Chapter 2, we formalize visual feedback attitude/pose synchronization problems in
three dimensions. We introduce a notion of visual robotic networks to be controlled
throughout this dissertation. We then define visual feedback attitude/pose synchroniza-
tion as the goals of this work. Finally, we introduce passivity properties which play a
crucial role to propose control laws, some stability concepts of dynamical systems for the
main analysis, and review of previous results related to this work.

We first investigate visual feedback attitude synchronization in Chapter 3. We pro-
pose a synchronization law based on the passivity-based attitude synchronization law and
the vision-based observer introduced in Chapter 2. In the present control law, we assume
that all the rigid bodies have a common linear velocity, and relative orientations nec-
essary for attitude synchronization laws are estimated by a vision-based observer. The
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present scheme is hence almost completely constructed by visual measurements extracted
by vision. We then prove synchronization for the case that there exists a leader in visual
robotic networks. However, in the present control strategy, the leader does not rotate,
and as a result, the network cannot change the direction of the movement. In order to
overcome this issue, we next consider the case that the leader rotates independently. In
this situation, we give tracking performance analysis of the network for the leader by
employing the theory of input-to-state stability and input-to-output stability. Here, we
regard the angular velocity of the leader as an external disturbance to the network. The
effectiveness of the present control scheme is demonstrated through simulation in three
dimensions and experiments on a planar testbed.

We next study visual feedback pose synchronization in Chapter 4. We first propose
a synchronization law based on the passivity-based pose synchronization law and the
vision-based observer introduced in Chapter 2. In the present control scheme, relative
poses necessary for pose synchronization laws are estimated by a vision-based observer.
The present mechanism is hence completely constructed by visual measurements extracted
by vision. This is the main point of this dissertation. We next prove pose synchronization
where passivity of rigid body motion plays a central role. Since the leader does not move
in the present control law similarly to the visual feedback attitude synchronization law,
the network cannot move after synchronization. In order to work out this problem, we
moreover consider the situation that the leader moves independently. In this case, we
analyze the tracking performance of the network by taking the same approaches as in
Chapter 3. The effectiveness of the present control protocol is also demonstrated through
simulation in three dimensions and experiments on a planar testbed.

Chapter 5 gives some further developments on visual feedback attitude/pose synchro-
nization in regard to (i) linear velocity observers for attitude synchronization, (ii) ring-type
visibility structures which does not require the existence of a leader, (iii) consideration of
rigid body dynamics by integrating Newton-Euler equations, i.e. extension from velocity
laws to force and torque ones, and (iv) collision avoidance and visibility maintenance.
Here, we not only propose new visual feedback synchronization protocols but also give
convergence analysis.

Finally, Chapter 6 concludes this dissertation.
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NOTATION: The following notations are to be used through this dissertation.

N set of natural numbers
R set of real numbers
C set of imaginary numbers
R+ set of positive real numbers
Rn n-dimensional Euclidean space
Rm×n set of m× n matrices with real entries
so(3) set of 3× 3 skew-symmetric matrices:

so(3) = {Ω ∈ R3×3 | ΩT = −Ω}
SO(3) special orthogonal group in 3 dimensions:

SO(3) = {R ∈ R3×3|RRT = I3, det(R) = 1}
se(3) product space of R3 with so(3):

se(3) = {(v, Ω) | v ∈ R3, Ω ∈ so(3)}
SE(3) product space of R3 with SO(3) (special Euclidean group):

SE(3) = {(p,R) | p ∈ R3, R ∈ SO(3)}
|x| absolute value of a scalar x
‖x‖2 Euclidean norm of a vector x
‖x‖L2 L2 norm of a signal x
‖A‖F Frobenius matrix norm of a matrix A
1 column vector with corresponding dimensions whose entries

are all 1
In n-dimensional identity matrix
AT (xT) transpose of a matrix A (vector x)
A−1 inverse matrix of a matrix A
A† pseudo inverse matrix of a matrix A
A > 0 (A ≥ 0) positive definite (semidefinite) matrix A
tr(A) trace of a square matrix A
det(A) determinant of a square matrix A
diag{a1, · · · , an} diagonal matrix with diagonal elements a1 to an

|V| cardinality of a set V
pab ∈ R3 position of a frame Σb relative to a frame Σa

eξ̂abθab ∈ SO(3) rotation matrix of a frame Σb relative to a frame Σa

(ξab ∈ R3 (‖ξ‖2 = 1) and θab ∈ R represent the rotation axis
and the rotation angle, respectively)

·̂ (·∧) operator R3 7→ so(3) or R6 7→ se(3):
for a = [a1 a2 a3]

T ∈ R3, V = (v, ω) ∈ R6, v, ω ∈ R3,

â =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 ∈ so(3), V̂ =

[
ω̂ v
0 0

]
∈ se(3)

·∨ inverse operator to ∧
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gab ∈ R4×4 homogeneous representation of a pose (pab, e
ξ̂abθab) ∈ SE(3):

gab =

[
eξ̂abθab pab

0 1

]
∈ R4×4

V b
ab = (vb

ab, ω
b
ab) ∈ R6 body velocity of a frame Σb relative to a frame Σa:

V b
ab = (g−1

ab ġab)
∨ =

[
vb

ab

ωb
ab

]
∈ R6

V̂ b
ab ∈ R4×4 homogeneous representation of a body velocity V b

ab ∈ R6:

V̂ b
ab = g−1

ab ġab =

[
ω̂b

ab vb
ab

0 0

]
∈ R4×4

Ad(gab) ∈ R6×6 adjoint transformation associated with gab ∈ SE(3):

Ad(gab) =

[
eξ̂abθab p̂abe

ξ̂abθab

0 eξ̂abθab

]
∈ R6×6

Ad(pab) ∈ R6×6 adjoint transformation associated with pab ∈ R3:

Ad(pab) =

[
I3 p̂ab

0 I3

]
∈ R6×6

Ad
(eξ̂abθab )

∈ R6×6 adjoint transformation associated with eξ̂abθab ∈ SO(3):

Ad
(eξ̂abθab )

=

[
eξ̂abθab 0

0 eξ̂abθab

]
∈ R6×6
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Chapter 2

Problem Settings and Foundations

2.1 Introduction

In this chapter, we give problem formulation of visual feedback attitude/pose synchro-
nization on SE(3). We first introduce a notion of visual robotic networks to be controlled
throughout this work. Visual robotic networks consist of multiple rigid bodies, visibility
structures and visual measurements. Whereas most works in cooperative control deal
with only multiple agents and interconnection topologies (e.g. robotic networks [7]), this
work explicitly formulates vision-based measured output available for bodies to imple-
ment control laws. This setting is one of the main contributions of this dissertation. As
a result, interconnection topologies between bodies are regarded as visibility structures,
where information flows are defined by who sees whom. We next give the definitions of
visual feedback attitude/pose synchronization for visual robotic networks as the goals of
this work. These goals are the same as in our previous works [46, 47] except for imposing
the restriction of measured output. Finally, as foundations, we introduce passivity prop-
erties which play a central role for the design of control laws, some stability concepts of
dynamical systems for the subsequent analysis, and review of previous results associated
with this work.

This chapter is organized as follows. In Section 2.2, we introduce a notion of visual
robotic networks to be controlled. Then, we give the definitions of visual feedback atti-
tude/pose synchronization in Section 2.3. In Section 2.4, we introduce some important
properties of dynamical systems and review our previous results as preliminaries of this
work. Section 2.5 concludes this chapter.

2.2 Visual Robotic Network

In this section, we introduce a notion of visual robotic networks on SE(3) to be controlled
throughout this dissertation. Visual robotic networks consist of multiple rigid bodies,
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World Frame

Frame

Frame Frame

Figure 2.1: Rigid Body Motion

visual measurements and visibility structures defining information flows between bodies.

2.2.1 Rigid Body Motion

Throughout this work, we consider a network of n rigid bodies V := {1, · · · , n} in 3D
space (see Fig. 2.1). Let Σw be an inertial coordinate frame and Σi, i ∈ V body-fixed
frames whose each origin is located at the center of mass of body i. Assume that all
the coordinate frames are right-handed and Cartesian. Then, we denote by pwi ∈ R3

the position of body i in Σw, and represent the rotation matrix of Σi relative to Σw by
eξ̂wiθwi ∈ SO(3). Here, ξwi ∈ R3 (‖ξwi‖2 = 1) and θwi ∈ (−π, π] specify the rotation
axis and angle, respectively. The notation ’∧’ for a ∈ R3 describes the skew-symmetric
operator such that âb = a×b, b ∈ R3 for the vector cross-product ×, i.e. â is an element of
the 3×3 skew-symmetric matrix group so(3). Also, the notation ’∨’ is the inverse operator
to ’∧’. Hereafter, we use ξ̂θwi to represent ξ̂wiθwi for simplicity. Then, the transformation
eξ̂θwi is orthogonal with unit determinant, i.e. an element of the Special Orthogonal group
SO(3). A configuration consists of the pair (pwi, e

ξ̂θwi) and hence the configuration space
of each body is the Special Euclidean group SE(3), which is the product space of R3

with SO(3). In this dissertation, we use the following homogeneous representation of

gwi = (pwi, e
ξ̂θwi) ∈ SE (3) to describe the pose (position and orientation) of body i in Σw.

gwi =

[
eξ̂θwi pwi

0 1

]
∈ R4×4, i ∈ V .

We next introduce the velocity of each rigid body to represent the motion of Σi relative
to Σw. We first define the body velocity of body i relative to Σw as

V̂ b
wi := g−1

wi ġwi =

[
ω̂b

wi vb
wi

0 0

]
∈ R4×4, (2.1)
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or the vector form

V b
wi =

[
vb

wi

ωb
wi

]
=

[
e−ξ̂θwi ṗwi

(e−ξ̂θwi ėξ̂θwi)∨

]
∈ R6, i ∈ V .

Here, vb
wi ∈ R3 and ωb

wi ∈ R3 represent the linear and angular body velocities of body i
relative to Σw, respectively. Also, the operator ’∧’ for V ∈ R6 generates an element of
se(3) as in (2.1), where se(3) is the product space of R3 with so(3). Then, each rigid body
motion is represented by the following kinematic model which is directly given by (2.1).

ġwi = gwiV̂
b
wi, i ∈ V . (2.2)

Let us next denote the pose of Σj relative to Σi by gij = (pij, e
ξ̂θij) ∈ SE(3), which is

defined as

gij := g−1
wi gwj =

[
e−ξ̂θwieξ̂θwj e−ξ̂θwi(pwj − pwi)

0 1

]
∈ R4×4.

We moreover define the body velocity of Σj relative to Σi as V b
ij := (g−1

ij ġij)
∨. Then, from

the direct calculation, each relative rigid body motion is given as

ġij = −V̂ b
wigij + gijV̂

b
wj

or the vector form

V b
ij = −Ad(g−1

ij )V
b
wi + V b

wj. (2.3)

Here, Ad(g) ∈ R6×6 is the adjoint transformation [32] associated with g which satisfies

V̂ ′ = gV̂ g−1 for V ′ = Ad(g)V . The block diagrams of the rigid body motion and the
relative rigid body motion are illustrated in Figs. 2.2 and 2.3, respectively.

2.2.2 Visibility Structure

In visual robotic networks, we regard interconnection topologies between rigid bodies as
visibility structures, where we say that body j is visible from body i if body i can extract
visual information associated with body j from its vision. We describe visibility structures
by similar notations to those in graph theory [70]. Namely, a set E ⊂ V × V is defined so
that (j, i) ∈ E means that body j is visible from body i. Then, similarly to neighbors in
graph theory, we define the set of visible bodies from body i as

Ni := {j ∈ V | (j, i) ∈ E}, i ∈ V . (2.4)

Let us now give the following assumptions on the visibility structure.

12



Figure 2.2: Block Diagram of Rigid
Body Motion

Relative Rigid Body Motion

Figure 2.3: Block Diagram of Relative Rigid
Body Motion

Assumption 1.

• N1 = ∅.
• |Ni| = 1 and Ni is fixed for all i ∈ V \ {1}.
• ∀i ∈ V\{1}, ∃v1, · · · , vr ∈ V | v1 = 1, vr = i and (vk, vk+1) ∈ EV

∀k ∈ {1, · · · , r−1}.
Assumption 2.

• N1 = {n}.
• Ni = {i− 1} for all i ∈ V \ {1}.

Here, |Ni| represents the number of components of Ni. Then, Assumption 1 implies that
visibility structures have leader-following structures since there exists one leader (rigid
body 1) which has no visible body, the other bodies have a fixed visible body, and there
exists a visibility path from each body to the leader. This visibility structure can be
interpreted as a directed graph G = (V , E) by regarding V and E as the node set and
the edge set, respectively (see Fig. 2.4). Then, Assumption 1 means that the visibility
structure makes up a directed spanning tree [70] whose root is body 1. On the other hand,
Assumption 2 means that the visibility structure has a ring topology (see Fig. 2.5).

2.2.3 Visual Measurements

We finally formulate visual measurements of each rigid body as measured output which
is available for estimation and control. Suppose that each body j has s (s ≥ 4) feature
points, whose positions relative to Σj are denoted by pjjk

∈ R3, k ∈ {1, · · · , s}. Then,
the coordinate transformation gij yields those positions defined in Σi as follows.

[
pijk

1

]
= gij

[
pjjk

1

]
,
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Figure 2.4: Visibility Structure Satisfying
Assumption 1

Figure 2.5: Visibility Structure Satisfying
Assumption 2

Hyperbolic 
Mirror

Panoramic CameraPinhole Camera

Figure 2.6: Camera Models

where pijk
∈ R3 is the position of the k-th feature point defined in Σi.

We now define visual measurements of each rigid body. Throughout this work, we
consider two kinds of camera models with perspective projection as vision models. One is
a typical pinhole camera model, and the other is a panoramic camera model consisting
of the pinhole camera model and a hyperbolic mirror to get a wider field of view (see
Fig. 2.6). We first introduce visual measurements extracted by the pinhole camera
model. We denote the k-th feature point pijk

projected onto the image plane of body i
by fijk

∈ R2, k ∈ {1, · · · , s}. Then, perspective projection [32] gives

fijk
=

λi

zijk

[
xijk

yijk

]
, (2.5)

where we use the notation pijk
= [xijk

yijk
zijk

]T, and λi > 0, i ∈ V is a focal length of
each vision (see Fig. 2.7).

We next formulate visual measurements extracted by the panoramic camera model.
We denote the mirror coordinate frame of rigid body i by Σmi

where the origin is located
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Figure 2.7: Perspective Projection Model

at the focus point (see Fig. 2.8), and the pose of Σmi
relative to Σw is described by

gwmi
= (pwmi

, eξ̂θwmi ) ∈ SE(3). We also denote the pose of body j and the position of

the k-th feature point on body j relative to Σmi
by gmij = (pmij, e

ξ̂θmij) ∈ SE(3) and
pmijk

∈ R3, respectively. Then, similarly to (2.3), relative rigid body motion of body j
relative to the mirror of body i is given by

ġmij = −g−1
imi

V̂ b
wigij + gmijV̂

b
wj,

or the vector form

V b
mij

:= (g−1
mij

ġmij)
∨ = −Ad(g−1

mij)
Ad(g−1

imi
)V

b
wi + V b

wj, (2.6)

where gimi
= (pimi

, eξ̂θimi ) ∈ SE(3) is the pose of Σmi
relative to Σi. We next denote

the point on the surface of the mirror of body i associated with the k-th feature point
on body j by hik as shown in Fig. 2.8. Then, the k-th feature point on the image plane
of body i, denoted by fijk

, is given by pijk
projected onto the image plane through hik.

Now, let ai, bi ∈ R+ and di :=
√

a2
i + b2

i be the hyperbolic mirror parameters of body i
satisfying

(zmihik
+ di)

2

a2
i

− x2
mihik

+ y2
mihik

b2
i

= 1. (2.7)

Here, pmihik
:= [xmihik

ymihik
zmihik

]T ∈ R3 is the position of the point hik relative to Σmi
.

We moreover denote the position of point hik relative to Σi by pihik
:= [xihik

yihiik zihik
]T ∈

R3. Then, perspective projection (2.5) gives

fijk
=

λi

zihik

[
xihik

yihik

]
.
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Figure 2.8: Panoramic Camera Model

We now set pimi
= [0 0 2di]

T and eξ̂θimi = I3, and note that pmihik
= cpmijk

holds for
c ∈ (0, 1) (see Fig. 2.8). Then, substituting cpmijk

into (2.7) yields

c(pmijk
) =

b2
i (dizmijk

+ ai‖pmijk
‖2)

a2
i x

2
mijk

+ a2
i y

2
mijk

− b2
i z

2
mijk

.

Finally, since zihik
= 2di + c(pmijk

)zmijk
holds, fijk

is given by

fijk
=

λic(pmijk
)

2di + c(pmijk
)zmijk

[
xmijk

ymijk

]
. (2.8)

Suppose that each rigid body can extract the feature points of visible bodies from
image data. Then, visual measurements of body i is defined as

fi := {fij}j∈Ni
, i ∈ V , (2.9)

where fij := [fT
ij1

· · · fT
ijs

]T ∈ R2s. We finally assume that pjjk
, k ∈ {1, · · · , s} are

known a priori. Then, the visual measurements fi depend only on the relative pose gij

or gmij, j ∈ Ni. Fig. (2.9) illustrates the block diagram of the relative rigid body motion
with the pinhole camera model.

Remark 1. If we select ai = 1 and bi =
√−1, the feature point extracted by the

panoramic camera model (2.8) is then equivalent to that of the pinhole camera model
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Figure 2.9: Block Diagram of Vision Model with Relative Rigid Body Motion

(2.5). Namely, a panoramic camera model includes a pinhole camera model as a special
case.

Hereafter, the aggregate system consisting of n rigid bodies with rigid body motion
(2.2), visibility structures (2.4) and visual measurements (2.9) is called visual robotic
network Σ which is the controlled system throughout this work.

In most parts of this work, we consider V b
wi as a control input. In contrast, some

practical mechanical systems such as spacecraft or UAV systems use torque and force
control. Even in such real systems, considering simplified dynamics can be useful at
least to build a high-level planning controller generating desired trajectories under the
assumption that these can be tracked by a lower level mechanical controller. In addition,
it is also useful as a preliminary step towards an integrated controller.

2.3 Goals

In this section, we give the goals of this work. We first introduce the definition of visual
feedback attitude synchronization for the visual robotic network Σ as the goal of the first
half of this work. Then, visual feedback pose synchronization is defined for the goal of
the second half of this work.

2.3.1 Definition of Visual Feedback Attitude Synchronization

As the goal of the first half of this work, we define attitude synchronization for the visual
robotic network Σ, called visual feedback attitude synchronization, as follows.

Definition 1. The visual robotic network Σ is said to achieve visual feedback attitude
synchronization if control laws of rigid bodies consist only of visual measurements (2.9)
and the following equations hold.

{
vb

wi = vb
wj

lim
t→∞

φ(eξ̂θij) = 0
∀i, j ∈ V . (2.10)
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Figure 2.10: Visual Feedback Attitude Synchronization

Here, φ(eξ̂θ) ≥ 0 is energy of rotation defined as follows (see Appendix B.3 for the prop-

erties of φ(eξ̂θ)).

φ(eξ̂θ) :=
1

4
‖I3 − eξ̂θ‖2

F =
1

2
tr(I3 − eξ̂θ) = 1− cos θ.

Equations (2.10) mean that the orientations of all the rigid bodies asymptotically converge
to a common value, and as the result, all the bodies move in the same direction (see Fig.
2.10).

2.3.2 Definition of Visual Feedback Pose Synchronization

We next give the definition of pose synchronization for the visual robotic network Σ,
called visual feedback pose synchronization, as the goal of the second half of this work.

We first define virtual relative poses g̃ij ∈ SE (3) as

g̃ij :=

[
eξ̂θij pij − dij

0 1

]
, i, j ∈ V ,

where dij ∈ R3, i, j ∈ V are constant biases for rigid bodies to guarantee collision avoid-
ance and visibility to neighbors when synchronization is achieved. We assume each body
knows biases relative to its visible bodies (i.e. dij, j ∈ Ni) a priori. Then, if Assump-
tion 1 or 2 is satisfied, all the biases dij, i, j ∈ V are uniquely determined when all the
orientations are synchronized (e.g. dji = −dij, dik = dij + djk). The second goal is now
to design control laws so that the visual robotic network Σ achieves visual feedback pose
synchronization defined as follows.
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Figure 2.11: Visual Feedback Pose Synchronization

Definition 2. The visual robotic network Σ is said to achieve visual feedback pose syn-
chronization if control laws of rigid bodies consist only of visual measurements (2.9) and
the following equation holds.

lim
t→∞

ψ (g̃ij) = 0 ∀i, j ∈ V . (2.11)

Here, ψ(g) ≥ 0 is the total energy of translation and rotation defined as

ψ(g) := ‖J(I4 − g)‖2
F =

1

2
‖p‖2

2 + φ(eξ̂θ), J :=

[1
2
I3 0
0 1√

2

]
∈ R4×4.

Since the function ψ(g̃ij) is defined by the weighted norm between I4 and g̃ij, (2.11) means
that the relative positions of all the rigid bodies asymptotically converge to desired ones
and all the orientations converge to a common value (see Fig. 2.11).

Remark 2. Equations (2.10) or (2.11) are the same as those of the definitions in [46]
or [47, 48], respectively. Unlike [46, 47, 48] premising the measurement of actual relative
poses gij, the objective of this work is to propose attitude/pose synchronization laws based
only on visual measurements (2.9).

2.4 Foundations

In this section, we give foundations for this work. We first give the definition of passivity
of dynamical systems, and we show that the rigid body motion (2.2) and the relative
rigid body motion (2.3) have passivity which plays important roles to propose control
laws for visual feedback attitude/pose synchronization. We next introduce some stability
concepts of dynamical systems useful for the subsequent analysis. Finally, we review
previous results associated with this work.
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2.4.1 Passivity of Rigid Body Motion

We first introduce passivity of dynamical systems based on [49]. Let us consider a dy-
namical system represented by the state model

{
ẋ = f(x, u)
y = h(x, u)

, (2.12)

where f : Rn×Rp → Rn is locally Lipschitz, h : Rn×Rp → Rp is continuous, f(0, 0) = 0,
and h(0, 0) = 0. Then, the definition of passivity is given as follows [49].

Definition 3. The system (2.12) is said to be passive if there exists a continuously dif-
ferentiable positive semidefinite function W (x), called storage function, such that

uTy ≥ Ẇ =
∂W

∂x
f(x, u) ∀(x, u) ∈ Rn × Rp.

We next show that the rigid body motion (2.2) has passivity.

Lemma 1. The time derivative of ψ(gwi) along the trajectory of (2.2) satisfies

ψ̇(gwi) = (V b
wi)

Tei, ei :=

[
e−ξ̂θwipwi

sk(eξ̂θwi)∨

]
∈ R6,

where sk : R3×3 → so(3) is the skew-symmetric operator defined as sk(eξ̂θ) := (1/2)(eξ̂θ −
e−ξ̂θ).

Proof. The time derivative of ψ(gwi) along the trajectories of (2.2) yields

ψ̇(gwi) =
d

dt

(
1

2
‖pwi‖2

2 + φ(eξ̂θwi)

)

= pT
wiṗwi + (sk(eξ̂θwi)∨)Tωb

wi (∵ Appendix B.3.2)

= pT
wie

ξ̂θwivb
wi + (sk(eξ̂θwi)∨)Tωb

wi (∵ Eq. (2.2))

=
[
(e−ξ̂θwipwi)

T (sk(eξ̂θwi)∨)T
] [

vb
wi

ωb
wi

]

= (V b
wi)

Tei.

Lemma 1 means that the rigid body motion (2.2) is passive from V b
wi to ei with the storage

function ψ(gwi). Attitude/Pose synchronization laws are build based on this passivity.
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Remark 3. The term sk(eξ̂θwi)∨ is equivalent to ξwi sin θwi (Appendix B.2.6), and hence

sk(eξ̂θwi)∨ is interpreted as an operator extracting the direction and angle of rotation

from eξ̂θwi . Note that sk(eξ̂θwi)∨ can be also viewed as the state vector with respect to the
rotation as long as θwi ∈ [−π/2, π/2] since the rotation axis and angle uniquely determine

the rotation matrix in the domain. The term φ̇(eξ̂θwi) is thus given by the inner product
of the angular velocity and the state vector with respect to the rotation.

We also give passivity of the relative rigid body motion (2.3).

Lemma 2. If V b
wj = 0 holds, then the time derivative of ψ(gij) along the trajectory of

(2.3) satisfies

ψ̇(gij) = (V b
wi)

T(−eij), eij :=

[
pij

sk(eξ̂θij)∨

]
∈ R6.

Proof. When V b
wj = 0 holds, the time derivative of ψ(gij) along the trajectories of (2.3)

gives

ψ̇(gij) = pT
ij ṗij + (sk(eξ̂θij)∨)Tωb

ij

= pT
ije

ξ̂θije−ξ̂θij ṗij + (sk(eξ̂θij)∨)Teξ̂θijωb
ij (∵ Appendix B.2.7)

=
[
pT

ij (sk(eξ̂θij)∨)T
] [

eξ̂θij 0

0 eξ̂θij

] [
vb

ij

ωb
ij

]

= eT
ijAd

(eξ̂θij )
V b

ij

= −eT
ijAd

(eξ̂θij )
Ad(g−1

ij )V
b
wi (∵ Eq. (2.3) with V b

wj = 0)

= −eT
ijAd(−pij)V

b
wi

= (V b
wi)

T(−eij) (∵ pT
ij p̂ijω

b
wi = −pT

ijω̂
b
wipij = 0, (Appendix B.1.2))

where we use the notation V b
ij = [(vb

ij)
T (ωb

ij)
T]T.

Lemma 2 means that the relative rigid body motion (2.3) is passive from V b
wi to −eij with

the storage function ψ(gij) when V b
wj = 0 holds. Estimation mechanism in control laws

are build based on this passivity.

Remark 4. It should be noted that the position dynamics of the relative rigid body
motion (2.3) has coupling terms associated with orientations as follows.

ṗij = −vb
wi + p̂ijω

b
wi + eξ̂θijvb

wj.

However, Lemma 2 says that we can decouple these terms by using the potential function
ψ(gij). This property plays important roles in this work.
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2.4.2 Stability of Dynamical Systems

We next give some stability concepts of dynamical systems based on [49, 50, 51] which
are useful for the subsequent analysis.

Lyapunov Stability

We first consider the autonomous system

ẋ = f(x), (2.13)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn. We
assume without loss of generality that f(x) satisfies f(0) = 0, i.e. the origin x = 0 is an
equilibrium point of the system (2.13). Then, [49] gives definitions of stability as follows.

Definition 4. The equilibrium point x = 0 of (2.13) is stable if, for each ε ∈ R+, there
exists δ = δ(ε) ∈ R+ such that

‖x(0)‖2 < δ ⇒ ‖x(t)‖2 < ε ∀t ≥ 0.

In addition, x = 0 is said to be asymptotically stable if it is stable and δ can be chosen
such that

‖x(0)‖2 < δ ⇒ lim
t→∞

x(t) = 0.

Moreover, the point is exponentially stable if there exist c, k, λ ∈ R+ such that

‖x(t)‖2 < k‖x(t0)‖2e
−λ(t−t0) ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖2 < c.

Exponential stability plays an important role for stability analysis of perturbed systems
mentioned later.

Input-to-state Stability

We next introduce the notion of input-to-state stability of dynamical systems. Let us
consider the system

ẋ = f(t, x, u), (2.14)

where f : [0,∞) × Rn × Rp → Rn is piecewise continuous in t and locally Lipschitz in x
and u. Then, [49] defines input-to-state stability as follows.

Definition 5. The system (2.14) is said to be input-to-state stable if there exist a class
KL function α and a class K function β such that for any initial states x(0) and any
bounded input u(t), the solution x(t) exists for all t ≥ 0 and satisfies

‖x(t)‖2 ≤ α(‖x(0)‖2, t) + β

(
sup

0≤τ≤t
‖u(τ)‖2

)
. (2.15)
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Inequality (2.15) guarantees that for any bounded input u(t), the state x(t) would be
bounded. Furthermore, as t increases, the state x(t) would be ultimately bounded by a
class K function of supt≥0 ‖u(t)‖2. If the system (2.14) is input-to-state stable and u(t)
converges to zero as t →∞, so does x(t).

L2 Stability

We next give the notion of L2 stability as a variation of input-to-output stability concepts
[49, 51]. In the context of this dissertation, it is sufficient to define L2 stability for the
dynamical system

{
ẋ = f(x, u)
y = h(x, u)

, (2.16)

where f : Rn×Rp → Rn and h : Rn×Rp → Rq. However, to ensure correctness, we start
with slightly formal descriptions using input-output maps.

Let us denote by Ξ the space of piecewise continuous, square-integrable functions
u : [0,∞) → Rp. Then, we define the space

L2 := {u ∈ Ξ | ‖u‖L2 < ∞}, ‖u‖L2 :=

√∫ ∞

0

‖u(t)‖2
2dt.

In order to deal with unbounded growing signals like u(t) = t, we also introduce the
extended L2 space, denoted by L2e, as follows.

L2e := {u ∈ Ξ | uτ ∈ L2
∀τ ∈ [0,∞)}, uτ (t) :=

{
u(t), 0 ≤ t ≤ τ
0, t > τ

.

Here, uτ is called truncation of u. It is clear from the definitions that the extended space
L2e contains the unextended space L2 as a subset.

We next consider a causal1 input-output mapping H : L2e → L2e. Then, L2 stability
is defined as follows [49, 51].

Definition 6. A mapping H : L2e → L2e is L2-stable if there exist a class K function α,
defined on [0,∞), and a nonnegative constant β such that

‖(Hu)τ‖L2 ≤ α(‖uτ‖L2) + β

for all u ∈ L2e and τ ∈ [0,∞). In addition, the mapping H is finite L2-gain stable if there
exist nonnegative constants γ and β such that

‖(Hu)τ‖L2 ≤ γ‖uτ‖L2 + β (2.17)
1A map H : L2e → L2e is said to be causal if the output (Hu)(τ) at any time τ ∈ [0,∞) is dependent

only on the past and current profile of input u(t), t ≤ τ , i.e. (Hu)τ = (Huτ )τ holds for all u ∈ L2e and
τ ∈ [0,∞).
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for all u ∈ L2e and τ ∈ [0,∞). Then, H is said to have finite L2-gain which is defined as

γ(H) := inf{γ ∈ [0,∞) | ∃β s.t. (2.17) holds.}.
The constant β is called bias term. It is included in the definition to allow for systems
where Hu does not vanish at u = 0. When the inequality (2.17) is satisfied, we are
usually interested in the smallest possible γ for which there exists β satisfying (2.17).
In visual feedback attitude/pose synchronization problems with Assumption 1, we utilize
this notion as an indicator of a performance by regarding an individual velocity of a leader
and total control errors of the visual robotic network Σ as the input and the output of
error systems, respectively.

Stability of Perturbed Systems

We finally introduce a part of stability theory of perturbed systems based on [49]. Let us
now consider the nonlinear system

ẋ = f(t, x) + g(t, x), (2.18)

where f : [0,∞) × D → Rn and g : [0,∞) × D → Rn are piecewise continuous in time t
and locally Lipschitz in x on [0,∞)×D, and D ⊂ Rn is a domain that contains the origin
x = 0. We think of this system as a perturbation of the nominal system

ẋ = f(t, x). (2.19)

Suppose the perturbation term g(t, x) satisfies the following bound.

‖g(t, x)‖2 ≤ δ(t) ∀t ≥ 0, ∀x ∈ D, (2.20)

where δ : R→ R is nonnegative, continuous and bounded for all t ≥ 0. Then, we get the
following proposition from Lemmas 9.4 and 9.6 in [49].

Proposition 1. Let x = 0 be an exponentially stable equilibrium point of the nominal
system (2.19). Let V (t, x) be a Lyapunov function the nominal system that satisfies

c1‖x‖2
2 ≤ V (t, x) ≤ c2‖x‖2

2,

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −c3‖x‖2

2,
∥∥∥∥
∂V

∂x

∥∥∥∥
2

≤ c4‖x‖2

for all (t, x) ∈ [0,∞) × D for some positive constants c1, c2, c3 and c4, where D :=
{x ∈ Rn | ‖x‖2 < r, r ∈ R+}. Suppose the perturbation term g(t, x) satisfies (2.20) and
limt→∞ δ(t) = 0 holds. Then, provided x(t0) satisfies ‖x(t0)‖ < r

√
c1/c2, the solution of

the perturbed system (2.18) satisfies limt→∞ x(t) = 0.

In this dissertation, we often utilize this proposition for convergence analysis.
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2.4.3 Review of Previous Works

We finally review the previous results presented in [46, 47, 48] and [44] as the basis of this
work.

Attitude/Pose Synchronization

We first review one of the previous results presented in [46]. In order to achieve attitude
synchronization (defined by (2.10) without the limitation of the measured output), [46]
proposes the velocity input





vb
wi = v

ωb
wi = kRi

∑
j∈Ni

sk(eξ̂θij)∨ , kRi ∈ R+, i ∈ V , (2.21)

where v ∈ R3 is a common body velocity among all the rigid bodies. Note that the present
angular velocity input is formed by the output errors of passivity of the rigid body motion
(2.2) (see Lemma 1). This passivity-based approach is originally proposed in [9, 58].

The authors in [46] show the following fact.

Fact 1. Suppose that there exists eξ̂θa ∈ SO(3) such that e−ξ̂θaeξ̂θwi ∀i ∈ V are positive
definite2 at the initial time and the fixed interconnection topology is strongly connected
[70]. Then, the velocity input (2.21) achieves attitude synchronization in the sense of
(2.10).

We next introduce the previous result presented in [47, 48]. The paper [47, 48] proposes
the following velocity input to achieve pose synchronization (defined by (2.11) without
the limitation of measured output).

V b
wi =

[
kpiI3 0

0 kRiI3

] ∑
j∈Ni

[
pij

sk(eξ̂θij)∨

]
, kpi, kRi ∈ R+, i ∈ V . (2.22)

It should be again noted that the present velocity input is formed by the output errors
of passivity of the rigid body motion (2.2) (see Lemma 1) which are dependent only on
relative poses.

The authors in [47, 48] show the following fact for dij = 0 ∀i, j ∈ V .

Fact 2. Suppose that there exists eξ̂θa ∈ SO(3) such that e−ξ̂θaeξ̂θwi ∀i ∈ V are positive
definite at the initial time and the fixed interconnection topology is strongly connected.
Then, the velocity input (2.22) achieves pose synchronization in the sense of (2.11). In

addition, if eξ̂θij ∀i, j ∈ V are positive definite at the initial time, then the velocity input
(2.22) achieves pose synchronization if and only if the fixed interconnection topology has
a directed spanning tree [70].

2Throughout this work, we refer to a real square matrix M ∈ Rn×n, not necessarily symmetric, as a
positive definite matrix if and only if xTMx > 0 holds for all nonzero vectors x ∈ Rn.
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Visual Motion Observer

We finally review the pose estimation mechanism of a target object relative to vision,
called visual motion observer, presented in [44]. Here, we deal with only the pinhole
camera model for a vision model.

We consider the case that rigid body i sees body j. Notice then that, in order to
implement the velocity input (2.21) or (2.22), body i has to estimate the relative pose gij

by building a nonlinear observer since visual measurements (2.9) are only available for

body i. Hereafter, we denote the estimate of gij by ḡij = (p̄ij, e
ˆ̄ξθ̄ij) ∈ SE(3). Similarly

to the Luenberger-type observer [71], we build a model of the actual relative rigid body
motion (2.3) as

V̄ b
ij := (ḡ−1

ij
˙̄gij)

∨ = −Ad(ḡ−1
ij )V

b
wi + ue. (2.23)

Here, the term ue ∈ R6 is external input to be determined so that the estimated value
ḡij is driven to its actual value gij. Once the estimate ḡij is determined, the estimated
measurements f̄ij is also computed by (2.5).

In order to establish the estimation error system, we define the estimation error geij =

(peij, e
ξ̂θeij) ∈ SE(3) between the actual relative pose gij and its estimate ḡij, and the

estimation error vector eeij ∈ R6 as

geij := ḡ−1
ij gij, eeij :=

[
peij

sk(eξ̂θeij)∨

]
.

Notice now that eeij = 0 if and only if geij = I4 for θeij ∈ (−π, π), i.e. ḡij = gij holds. It
should be also noted that eeij can be approximately reconstructed by visual measurements
fij and the estimated relative pose ḡij (see Appendix A.1). By differentiating geij with
respect to time with (2.3) and (2.23), the estimation error system is given by

ġeij = −ûegeij + geijV̂
b
wj,

or the vector form

V b
eij := (g−1

eij ġeij)
∨ = −Ad(g−1

eij)
ue + V b

wj. (2.24)

Then, we have the following lemma.

Lemma 3. If V b
wj = 0 holds, then the time derivative of ψ(geij) along the trajectory of

(2.24) satisfies

ψ̇(geij) = uT
e (−eeij).
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Body Motion Vision Camera

Visual Motion Observer

Relative Rigid 
Body Motion Model

Vision Camera 
Model

Figure 2.12: Block Diagram of Vision Motion Observer

Proof. When V b
wj = 0 holds, the time derivative of ψ(geij) along the trajectories of (2.24)

gives us

ψ̇(geij) = pT
eij ṗeij + (sk(eξ̂θeij)∨)Tωb

eij

= pT
eije

ξ̂θeije−ξ̂θeij ṗeij + (sk(eξ̂θeij)∨)Teξ̂θeijωb
eij (∵ Appendix B.2.7)

=
[
pT

eij (sk(eξ̂θeij)∨)T
] [

eξ̂θeij 0

0 eξ̂θeij

][
vb

eij

ωb
eij

]

= eT
eijAd

(eξ̂θeij )
V b

eij (2.25)

= −eT
eijAd

(eξ̂θeij )
Ad(g−1

eij)
ue (∵ Eq. (2.24) with V b

wj = 0)

= −eT
eijAd(−peij)ue

= uT
e (−eeij), (∵ pT

eij p̂eijueR = −pT
eijûeRpeij = 0 (Appendix B.1.2))

where we use the notations V b
eij = [(vb

eij)
T (ωb

eij)
T]T and ue = [uT

ep uT
eR]T.

Lemma 3 means that the estimation error system (2.24) is passive from ue to −eeij with
the storage function ψ(geij) when V b

wj = 0 holds.
Based on the passivity, the authors in [44] propose the observer input

ue = −k(−eeij) = keeij, k ∈ R+, (2.26)

and give the following fact.
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Fact 3. If V b
wj = 0 holds, then the equilibrium point eeij = 0 for the closed-loop system

(2.24) with (2.26) is asymptotically stable. In addition, given κ ∈ R+, if k satisfies

k − 1

2κ2
− 1

2
> 0,

then the closed-loop system with the input V b
wj and the output eeij has L2-gain smaller

than or equal to κ.

The first claim means that the visual motion observer leads the estimate ḡij to the actual
relative pose gij for a static body j. On the other hand, the second statement says that
the observer works even for a moving body j, and the parameter κ is an indicator on
estimation accuracy. The block diagram of the visual motion observer is illustrated in
Fig. 2.12.

2.5 Chapter Summary

In this chapter, we have given the problem formulation of visual feedback attitude/pose
synchronization on SE(3). We have first introduced visual robotic networks to be con-
trolled throughout this work. Here, in addition to multiple rigid bodies and intercon-
nection topologies between bodies, we explicitly formulate the measured output of each
body, which is one of the main contributions of this work. As a result, the interconnection
topologies are regarded as visibility structures where information flows are defined by who
sees whom. We have then given the definitions of visual feedback attitude/pose synchro-
nization for visual robotic networks as the goals of this work. These goals are the same as
in our previous works [46, 47, 48] except for imposing the restriction of measured output.
We have next introduced passivity of the rigid body motion and the relative rigid body
motion. This property would play a central role to propose visual feedback attitude/pose
synchronization laws in the subsequent chapters. Then, some stability concepts of dy-
namical systems have been introduced for the subsequent analysis. Here, in addition to
asymptotic stability analysis which implies synchronization in the sense of the definitions,
we have introduced the notions of input-to-state stability and L2 stability for performance
analysis of control laws for undesired disturbances. Finally, we have reviewed previous
results associated with this work as foundations.
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Chapter 3

Visual Feedback 3D Attitude
Synchronization

3.1 Introduction

In this chapter, we investigate a leader-following visual feedback attitude synchronization
problem for visual robotic networks Σ. The goal of this chapter is to propose a con-
trol law to achieve visual feedback attitude synchronization (2.10) for networks satisfying
Assumption 1. We first propose a synchronization law based on the passivity-based at-
titude synchronization law and the visual motion observer introduced in Chapter 2. In
the present estimation and control scheme, relative orientations necessary for the attitude
synchronization law are estimated by a visual motion observer. We then prove synchro-
nization, where passivity of the rigid body motion (2.2) and the relative rigid body motion
(2.3) plays a central role. However, in the present control scheme, the leader does not
rotate, and as a result, the network cannot change the direction of the movement. In order
to overcome this issue, we next consider the case that the leader rotates independently.
In this situation, we give tracking performance analysis of the network for the leader by
employing the theory of input-to-state stability or L2 stability. Here, we regard the an-
gular velocity of the leader as an external disturbance to the network. The effectiveness
of the estimation and control mechanism is demonstrated through simulation in three
dimensions and experiments on a planar testbed.

This chapter is organized as follows. In Section 3.2, we propose an estimation and
control mechanism for the visual robotic network Σ to achieve visual feedback attitude
synchronization. Then, we give the convergence analysis for a not rotating leader in
Section 3.3. In Section 3.4, we analyze the tracking performance analysis of the network
for a leader having arbitrary angular velocities. We finally give verifications of the present
convergence and performance analysis through simulation and experiments in Section 3.5.
Section 3.6 concludes this chapter.
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3.2 Visual Feedback Attitude Synchronization Law

In this section, we propose a visual feedback attitude synchronization law for rigid bodies
with the pinhole camera model (2.5). Unlike the previous work [46] premising the mea-

surement of eξ̂θij , the goal of this chapter is to propose a velocity law for visual feedback
attitude synchronization (2.10) by using only visual measurements (2.9). Note thus that
each body has to estimate relative poses gij, j ∈ Ni by a nonlinear observer since visual
measurements (2.9) are two dimensional.

We use the same notation ḡij ∈ SE(3) for the estimate of gij and definitions geij ∈
SE(3) and eeij ∈ R6 for the estimation error between gij and ḡij as in Subsection 2.4.3.
Notice again that eeij = 0 if and only if geij = I4 for θeij ∈ (−π, π), and then ḡij = gij

holds. Therefore, both sk(e
ˆ̄ξθ̄ij)∨ = 0 and eeij = 0 mean eξ̂θij = I3, i.e. visual feedback

attitude synchronization (2.10) is achieved if and only if sk(e
ˆ̄ξθ̄ij)∨ = 0, eeij = 0 with

vb
wi = v for all j ∈ Ni, i ∈ V (v ∈ R3 is a common linear velocity among all the rigid

bodies).
In order to achieve visual feedback attitude synchronization (2.10), we propose the

following control law.

Controller :





Observer :





vb
wi = v, (3.1a)

ωb
wi = kci

∑
j∈Ni

sk(e
ˆ̄ξθ̄ij)∨, (3.1b)

V̄ b
ij := (ḡ−1

ij
˙̄gij)

∨ = −Ad(ḡ−1
ij )V

b
wi + uij, (3.1c)

uij = kei

(
eeij −

[
0

sk(e
ˆ̄ξθ̄ij)∨

])
+

[
eξ̂θeijv

0

]
, (3.1d)

where j ∈ Ni, i ∈ V and kci, kei ∈ R+
∀i ∈ V . The block diagram of the estimation

and control mechanism (3.1) is shown in Fig. 3.1. The angular velocity input (3.1b)

is the same as (2.21) except for using e
ˆ̄ξθ̄ij instead of eξ̂θij . In the nonlinear observer,

(3.1c) simulates the relative rigid body motion (2.3) by utilizing the estimate ḡij as its
state. Here, uij ∈ R6 is external input to be determined so that the estimated value
ḡij is driven to its actual value gij, which is given by (3.1d). In (3.1d), eeij (and hence

eξ̂θeij) can be reconstructed by visual measurements fij (see Appendix A.1). This means
that the present control law (3.1) can be calculated only by visual measurements (2.9) in
the absence of communication or any measurements of own states. It is thus sufficient
for visual feedback attitude synchronization to show that the present control law (3.1)
achieves (2.10). For the panoramic camera model, if we deal with ḡmij, the appropriate
relative rigid body motion model associated with (2.6) and Ad(g−1

imi
)V

b
wi instead of ḡij, (2.3)

and V b
wi, respectively, then the subsequent discussions hold. The details on the panoramic
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Figure 3.1: Block Diagram of Visual Feedback Attitude Synchronization Law

camera model are given in Chapter 4.

Remark 5. The structure of the angular velocity input (3.1b) is based on the passivity of
the rigid body motion (2.2) similarly to (2.21). Moreover, the vision-based observer input
(3.1d) is designed based on the fact that the estimation error system (2.24) is passive.
Thus, the present estimation and control mechanism is called passivity-based mechanism.

3.3 Convergence Analysis

In this section, we give convergence analysis for the visual robotic network Σ with the
present visual feedback attitude synchronization law (3.1). We assume that visibility
structures in Σ satisfy Assumption 1. Then, it is shown that the control law (3.1) on Σ
achieves visual feedback attitude synchronization in the sense of (2.10).

We first note that similarly to Subsection 2.4.3, differentiating geij with respect to
time with (2.3) and (3.1c) gives the estimation error system (2.24) for each visible body
pair (i, j), (j, i) ∈ E , and the system (2.24) is passive from uij to −eeij with the storage

function ψ(geij) when V b
wj = 0 holds (see Lemma 3). We next regard e

ˆ̄ξθ̄ij as the control

error for each visible body pair (i, j), (j, i) ∈ E since both e
ˆ̄ξθ̄ij = I3 and eeij = I3 mean
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eξ̂θij = I3. Also, we think of the orientation part of (3.1c) as the control error system. We
next introduce a total error system for each visible body pair by combining the control
error system with the estimation error system (2.24) as follows.

[
ω̄b

ij

V b
eij

]
=

[
−e−

ˆ̄ξθ̄ij 0 I3

0 −Ad(g−1
eij)

][
ωb

wi

uij

]
+

[
0

V b
wj

]
, (3.2)

where we use the notation V̄ b
ij = [(v̄b

ij)
T (ω̄b

ij)
T]T. We now define a potential function

Uaij ≥ 0 as

Uaij := φ(e
ˆ̄ξθ̄ij) + ψ(geij). (3.3)

Then, we have the following lemma.

Lemma 4. If V b
wj = 0 holds, then the time derivative of Uaij along the trajectory of (3.2)

satisfies

U̇aij = [(ωb
wi)

T uT
ij]



−I3 0
0
I3

−I6




[
sk(e

ˆ̄ξθ̄ij)∨

eeij

]
.

Proof. The time derivative of Uaij along the trajectory of (3.2) yields

U̇aij = (sk(e
ˆ̄ξθ̄ij)∨)Tω̄b

ij + eT
eijAd

(eξ̂θeij )
V b

eij (∵ Appendix B.3.2 and Eq. (2.25))

= −(sk(e
ˆ̄ξθ̄ij)∨)T(e−

ˆ̄ξθ̄ijωb
wi − uRij)− eT

eijuij (∵ Eq. (3.2) with V b
wj = 0)

= −(sk(e
ˆ̄ξθ̄ij)∨)Tωb

wi + (sk(e
ˆ̄ξθ̄ij)∨)TuRij − eT

eijuij (∵ Appendix B.2.7)

= [(ωb
wi)

T uT
ij]



−I3 0
0
I3

−I6




[
sk(e

ˆ̄ξθ̄ij)∨

eeij

]
,

where we use the notation uij = [uT
pij uT

Rij]
T.

Lemma 4 means that the total error system (3.2) is passive, and hence it can be considered
that the present control law (3.1) is based on this passivity.

Based on Lemma 4, we get the following theorem.

Theorem 1. Consider the visual robotic network Σ with Assumption 1. Then, the control
law (3.1) on Σ achieves visual feedback attitude synchronization.
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Figure 3.2: Definition of Vk

Proof. We give the proof by dividing rigid bodies into some groups and using induction.
Note first that under Assumption 1, each body except for the leader (body 1) has one
fixed visible body and there exists a visibility path from each body to the leader (see Fig.
2.4). It should be also noted that the velocity input (3.1) makes the leader move with
only v. We define rigid body sets Vk, k ∈ N collecting bodies whose path length to the
leader is equal to k (see Fig. 3.2).

We first consider each rigid body i in V1 whose visible body is body 1. Consider the
potential function Uai1 (defined in (3.3) with j = 1) as a Lyapunov function candidate
of the closed-loop system (3.2) and (3.1). Then, the time derivative of Uai1 along the
trajectory of (3.2) yields

U̇ai1 = (sk(e
ˆ̄ξθ̄i1)∨)Tω̄b

i1 + eT
ei1Ad

(eξ̂θei1 )
V b

ei1 (∵ Appendix B.3.2 and Eq. (2.25))

= −(sk(e
ˆ̄ξθ̄i1)∨)T(e−

ˆ̄ξθ̄i1ωb
wi − uRi1)− eT

ei1(ui1 − Ad
(eξ̂θei1 )

V b
w1) (∵ Eq. (3.2))

= −(sk(e
ˆ̄ξθ̄i1)∨)T((kci + kei)sk(e

ˆ̄ξθ̄i1)∨ − keisk(eξ̂θei1)∨)

−keie
T
ei1e

T
ei1 + kei(sk(e

ˆ̄ξθ̄i1)∨)Tsk(e
ˆ̄ξθ̄i1)∨ (∵ Eq. (3.1))

= −xT
i1Qaixi1, (3.4)

where we use the following definitions.

xi1 :=

[
sk(e

ˆ̄ξθ̄i1)∨

eei1

]
∈ R9, Qai :=




(kci + kei)I3 0 −keiI3

0
−keiI3

keiI6


 ∈ R9×9.

Notice now that Qai is positive definite for any kci, kei ∈ R+, which can be shown by
calculating the Schur complement [72]. This means that the equilibrium point xi1 = 0 is
asymptotically stable. Then, we conclude from the definition of xi1 that all the bodies in
V1 achieve visual feedback attitude synchronization in the sense of (2.10).

We next consider each rigid body i in V2 whose visible body exists in V1. Notice first
that visible body j from body i has the transient angular velocity to achieve attitude
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synchronization (i.e. ωb
wj = kcjsk(e

ˆ̄ξθ̄j1)∨). We now substitute the present input (3.1) into
the total error system (3.2) as follows.

[
ω̄b

ij

V b
eij

]
=

[
−e−

ˆ̄ξθ̄ij 0 I3

0 −Ad(g−1
eij)

]


kcisk(e
ˆ̄ξθ̄ij)∨

kei

(
eeij −

[
0

sk(e
ˆ̄ξθ̄ij)∨

])

 +




0[
0

kcjsk(e
ˆ̄ξθ̄j1)∨

]

 . (3.5)

Here, it should be noted that the second term in (3.5) is equal to 0 when body j in V1

achieves visual feedback attitude synchronization. Notice also that ω̄b
ij, V b

eij and eeij are

functions of e
ˆ̄ξθ̄ij , ė

ˆ̄ξθ̄ij geij and ġeij. Therefore, if we define the state xij ∈ R9 for (3.5) as

xij :=

[
sk(e

ˆ̄ξθ̄ij)∨

eeij

]
, (3.6)

we can apply Proposition 1 to the convergence analysis by regarding (3.5) as the perturbed
system. Namely, it is sufficient to show that the equilibrium point xij = 0 for the system
(3.5) without the second term is exponentially stable.

Consider the potential function Uaij defined in (3.3). Then, the time derivative of Uaij

along the trajectory of (3.5) without the second term yields

U̇aij = −xT
ijQaixij ≤ −λmin(Qai)‖xij‖2

2 ≤ 0, (∵ Eq. (3.4))

where we use the following property for any symmetric and positive definite matrices
A ∈ Rn×n and vectors a ∈ Rn [72].

λmin(A)‖a‖2
2 ≤ aTAa ≤ λmax(A)‖a‖2

2.

Here, λmin(A) and λmax(A) denote the minimal eigenvalue and the maximum eigenvalue
of A, respectively. Now, since Uaij monotonically decreases until xij = 0 is satisfied, there

exists finite time T > 0 satisfying Uaij(T ) < 1. Then, φ(e
ˆ̄ξθ̄ij) < 1 and φ(eξ̂θeij) < 1 hold

from the definition of Uaij. We hence get the following inequalities for t ≥ T from the

fact that φ(eξ̂θ) ≤ ‖sk(eξ̂θ)∨‖2
2 for eξ̂θ > 0 (see Appendix B.3.3).

U̇aij ≤ −λmin(Qai)‖xij‖2
2 ≤ −λmin(Qai)

(
φ(e

ˆ̄ξθ̄ij) + ‖peij‖2
2 + φ(eξ̂θeij)

)
≤ −λmin(Qai)Uaij.

This means that the equilibrium point xij = 0 for the system (3.5) without the second
term is exponentially stable after time T . We thus conclude from the definition of xij that
all the rigid bodies in V2 achieves visual feedback attitude synchronization in the sense of
(2.10).

We finally assume that each rigid body in Vl (l ≥ 3) achieves visual feedback attitude
synchronization among the groups in {Vl,Vl−1, · · · ,V1, {1}} and consider each body in
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Vl+1. Then, from the definition of Vl+1, each body i in Vl+1 has its visible body j in Vl.
We hence obtain the following system.

[
ω̄b

ij

V b
eij

]
=

[
−e−

ˆ̄ξθ̄ij 0 I3

0 −Ad(g−1
eij)

]


kcisk(e
ˆ̄ξθ̄ij)∨

kei

(
eeij −

[
0

sk(e
ˆ̄ξθ̄ij)∨

])

 +




0[
0

kcjsk(e
ˆ̄ξθ̄jk)∨

]

 , (3.7)

where k ∈ Nj. Now, since visual feedback attitude synchronization is achieved among
the groups in {Vl,Vl−1, · · · ,V1, {1}}, the second term of (3.7) in this case also eventually
converges to 0. Namely, by the same analysis as for bodies in V2, we can show that each
body in Vl+1 also achieves visual feedback attitude synchronization among the groups in
{Vl+1, · · · ,V1, {1}}. This completes the proof.

Remark 6. It should be noted that Theorem 1 proves synchronization for the system in-
tegrating the observers instead employing certainly equivalence principle. It is well known
in robot control that proving stability for the integrated system in observer-based control
strategies is much more difficult than the individual estimation and control problems even
for a single passive system [73, 74, 75]. It should be also true or might be much harder for
synchronization since it is required to estimate not their own but the other individuals’
information only from relative measurements [76, 77].

In Theorem 1, we show only qualitative stability analysis which enables us to set
any positive gains. However, it is often required us obtain good transient behavior until
attitude synchronization. Then, we can apply Lyapunov stability by considering the
total estimation and control system and introducing the total Lyapunov function for the
visual robotic network Σ. This analysis yields gain conditions and they give gain setting
guidelines. Refer to Publications [1] for the details.

Notice finally that the leader with the velocity input (3.1) does not rotate. Namely,
all the rigid bodies would stop rotating in the final configuration though it is sometimes
required for the visual robotic network Σ to move in the desired direction. Therefore,
in the next section, we consider the case that the leader rotates independently, and we
analyze the tracking performance of the other bodies based on the theory of input-to-state
stability or L2 stability.

3.4 Performance Analysis

In this section, we give tracking performance analysis of the visual robotic network Σ
for a leader having arbitrary angular velocities. In this analysis, we regard an angular
velocity of the leader as an external disturbance to the network and evaluate the estimation
and control errors by employing the theory of input-to-state stability or input-to-output
stability. We first apply input-to-state stability analysis to the performance analysis,

35



where we respectively think of the velocity of the leader and the total estimation and
control errors of all the other bodies as the external disturbance input to the network
and the state of the total error system of the network. We also employ the theory of L2

stability as one of input-to-output stability for the performance analysis by regarding the
total estimation and control errors as the output of the total error system.

3.4.1 Input-to-state Stability

We give input-to-state stability analysis for the visual feedback attitude synchronization
law (3.1) as one of tracking performance analysis of the visual robotic network Σ for a
rotating leader.

We first consider the case that rigid body i sees body j and apply the present control
law (3.1). Here, we assume that body j moves with the common linear velocity v and
arbitrary angular velocity ωb

wj. Then, the closed-loop system (3.2) and (3.1) with ωb
wj 6= 0

is given by

[
ω̄b

ij

V b
eij

]
=

[
−e−

ˆ̄ξθ̄ij 0 I3

0 −Ad(g−1
eij)

]


kcisk(e
ˆ̄ξθ̄ij)∨

kei

(
eeij −

[
0

sk(e
ˆ̄ξθ̄ij)∨

])

 +




0[
0

ωb
wj

]

 . (3.8)

We regard ωb
wj and xij defined in (3.6) as the input and the state of the system (3.8),

respectively. We then get the following lemma.

Lemma 5. Consider the system (3.8). If θ̄ij(0) ∈ (−π/2, π/2) and θeij(0) ∈ (−π/2, π/2)
hold and the gain conditions (3.9) are satisfied for any εi, ε

′
i ∈ R+ (ε′i > εi), then there

exist a class-KL function α2 and a class K function β2 satisfying (3.10).

{
kci + kei > εi
kei(kci−εi)
kci+kei−εi

> ε′i
, (3.9)

‖xij(t)‖2 ≤ α2(‖xij(0)‖2, t) + β2

(
sup

0≤τ≤t
‖ωb

wj(τ)‖2

)
. (3.10)

Proof. Consider the potential function Uaij defined in (3.3). Then, we get the following
equality from (3.4) with ωb

wj 6= 0.

U̇aij = −xT
ijQaixij + (sk(eξ̂θeij)∨)Teξ̂θeijωb

wj

= −xT
ijQaixij + (sk(eξ̂θeij)∨)Tωb

wj (∵ Appendix B.2.7). (3.11)

Let us now utilize completing square for any γ2 ∈ R+ as follows.

(sk(eξ̂θeij)∨)Tωb
wj = −γ2

2

∥∥∥∥ωb
wj −

1

γ2

sk(eξ̂θeij)∨
∥∥∥∥

2

2

+
γ2

2
‖ωb

wj‖2
2 +

1

2γ2

‖sk(eξ̂θeij)∨‖2
2.
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This yields

U̇aij ≤ −xT
ijQaixij +

γ2

2
‖ωb

wj‖2
2 +

1

2γ2

‖sk(eξ̂θeij)∨‖2
2.

Note here that by using the diagonal matrix Wa ∈ R9×9 whose (7,7), (8,8) and (9,9)
elements are 1/(2γ2) and the other elements are 0, the third term of the above inequality
can be written by xT

ijWaxij. This fact gives the following inequality for any εi ∈ R+.

U̇aij ≤ −xT
ijQaixij +

γ2

2
‖ωb

wj‖2
2 + xT

ijWaxij + εi‖xij‖2
2 − εi‖xij‖2

2

= −xT
ijPaixij +

γ2

2
‖ωb

wj‖2
2 − εi‖xij‖2

2,

where Pai ∈ R9×9 is defined as

Pai := Qai −Wa − εiI9.

Then calculating the Schur complement [72] of Pai with ε′i := 1/(2γ2) + εi gives the
necessary and sufficient condition (3.9) for positive definiteness of Pai. Therefore, if the
conditions (3.9) are satisfied, we have

U̇aij ≤ γ2

2
‖ωb

wj‖2
2 − εi‖xij‖2

2.

Integrating the above inequality from 0 to T with respect to time yields

Uaij(T )− Uaij(0) ≤ γ2

2

∫ T

0

‖ωb
wj(t)‖2

2dt− εi

∫ T

0

‖xij(t)‖2
2dt.

We thus obtain
∫ T

0

‖xij(t)‖2
2dt ≤ 1

εi

Uaij(0) +
γ2

2εi

∫ T

0

‖ωb
wj(t)‖2

2dt.

Finally, when θ̄ij(0) ∈ [−π/2, π/2] and θeij(0) ∈ [−π/2, π/2] hold, we get

Uaij(0) = φ(e
ˆ̄ξθ̄ij(0)) +

1

2
‖peij(0)‖2

2 + φ(eξ̂θeij(0))

≤ ‖sk(e
ˆ̄ξθ̄ij(0))∨‖2

2 + ‖peij(0)‖2
2 + ‖sk(eξ̂θeij(0))∨‖2

2 (∵ Appendix B.3.3)

= ‖xij(0)‖2
2.

This yields
∫ T

0

‖xij(t)‖2
2dt ≤ 1

εi

‖xij(0)‖2
2 +

γ2

2εi

∫ T

0

‖ωb
wj(t)‖2

2dt.

Then, we conclude from [50] that the closed-loop system (3.8) is input-to-state stable and
the definition of input-to-state stability gives (3.10).
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Figure 3.3: Chain-type Visibility Structure

Remark 7. Since εi and ε′i are arbitrary positive scalars, the gain conditions (3.9) are
satisfied for almost any positive gains kci and kei.

We next consider the case that m rigid bodies have the chain-type visibility structure,
where body i sees body i−1 for i ∈ {2, · · · ,m} (see Fig. 3.3). Then, we call the collection
of the closed-loop system (3.2) and (3.1) for all the bodies chain-type collective attitude
error system Σccola whose state, denoted by xca ∈ R9(m−1), is given by the stacked vector
of xi(i−1), i ∈ {2, · · · , m− 1}. We now get the following lemma for Σccola.

Lemma 6. Consider the chain-type collective attitude error system Σccola. If θ̄i(i−1)(0) ∈
(−π/2, π/2), θei(i−1)(0) ∈ (−π/2, π/2) and the gain conditions (3.9) are satisfied for any
εi, ε

′
i ∈ R+ (ε′i > εi), i ∈ {2, · · · ,m}, then there exist a class-KL function αc and a class

K function βc satisfying

‖xca(t)‖2 ≤ αc(‖xca(0)‖2, t) + βc

(
sup

0≤τ≤t
‖ωb

w1(τ)‖2

)
. (3.12)

Proof. Notice that Lemma 5 means that the closed-loop system of rigid body i with the
input ωb

w(i−1) and the state xi(i−1) is input-to-state stable. It should be also noted that
when we regard the angular velocity of body i as the input of the closed-loop system of

body i + 1, the input ωb
wi = kcisk(e

ˆ̄ξθ̄i(i−1))∨ is a part of the state of that of body i (see
Fig. 3.4). Therefore, we conclude from [50] that the cascade interconnection system of
these systems is also input-to-state stable. By applying this property from the closed-
loop system of body 2 to that of body m, we conclude that the chain-type collective
attitude error system Σccola is input-to-state stable. Finally, the definition of input-to-
state stability gives (3.12).

We now show the main result of this subsection by using Lemma 6.

Theorem 2. Consider the visual robotic network Σ with Assumption 1. Suppose that
the leader has its own angular velocity (i.e. ωb

w1 6= 0). If θ̄ij(0) ∈ (−π/2, π/2), θeij(0) ∈
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Figure 3.4: Chain-type Collective Attitude Error System Σccola

(−π/2, π/2) and the gain conditions (3.9) are satisfied for any εi, ε
′
i ∈ R+ (ε′i > εi), j ∈

Ni, i ∈ V, then there exist a class-KL function αa and a class K function βa satisfying

‖xa(t)‖2 ≤ αa(‖xa(0)‖2, t) + βa

(
sup

0≤τ≤t
‖ωb

w1(τ)‖2

)
, (3.13)

where xa ∈ R9(n−1) is the stacked vector of xij, j ∈ Ni, i ∈ V.

Proof. We first define the set of rigid bodies which are not visible bodies of any bodies
as Vq := {i ∈ V | i /∈ Nj

∀j ∈ V} (e.g. Vq = {4, 5, 6} in Fig. 3.2). We next denote each
chain-type collective error system from the leader to body i ∈ Vq by Σccolai. Then, we
conclude from Lemma 6 that each Σccolai is input-to-state-stable. Therefore, there exist
class KL functions αi and class K functions βi satisfying

‖xci(t)‖2 ≤ αi(‖xci(0)‖2, t) + βi

(
sup

0≤τ≤t
‖ωb

w1(τ)‖2

)
, i ∈ Vq, (3.14)

where xci are the stacked vectors of xij for each Σccolai. Note now that ‖ · ‖2 and βi(·, ·)
respectively have the following properties for any vectors a ∈ Rn, b ∈ Rm.

‖a‖2 ≤
∥∥∥∥
a
b

∥∥∥∥
2

≤ ‖a‖2 + ‖b‖2,

βi(‖a‖2, ·) + βj(‖b‖2, ·) ≤ βi

(∥∥∥∥
a
b

∥∥∥∥
2

, ·
)

+ βj

(∥∥∥∥
a
b

∥∥∥∥
2

, ·
)

.

Then, summation of (3.14) for all i ∈ Vq gives

‖xa(t)‖2 ≤
∑
i∈Vq

αi(‖xa(0)‖2, t) +
∑
i∈Vq

βi

(
sup

0≤τ≤t
‖ωb

w1(τ)‖2

)
.
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Figure 3.5: Definitions of Rigid Body Sets

Finally, defining αa and βa as

αa :=
∑
i∈Vq

αi, βa :=
∑
i∈Vq

βi (3.15)

yields (3.13).

Equation (3.13) evaluates the estimation and control errors for the angular velocity of the
leader. Therefore, this can be regarded as an indicator of the tracking performance of
the group. However, since the derivation of explicit αa and βa is one of our future works,
this analysis currently gives only qualitative evaluations for the performance. It is thus
hard to decide estimation and control gains for a good tracking performance from this
analysis. In the next subsection, we analyze the performance quantitatively by employing
L2 stability in order to give a guideline for gain settings.

3.4.2 L2 Stability

We analyze the tracking performance of the visual robotic network Σ based on the the-
ory of L2 stability, where we regard the angular velocity of the leader as an external
disturbance to the network.

We first define rigid body sets for visibility structures satisfying Assumption 1 as
follows (see Fig. 3.5).





Vp := {i ∈ V | 1 ∈ Ni}
Vq := {i ∈ V | i /∈ Nj

∀j ∈ V}
Vr := V \ ({1} ∪ Vp ∪ Vq)
V ′i := {j ∈ Vq | ∃v1, · · · , vr ∈ V s.t. v1 = i, vr = j

and (vk, vk+1) ∈ E ∀k ∈ {1, · · · , r − 1}}

.
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Figure 3.6: Collective Attitude Error System Σcola

We next reconsider the total error system (3.2). Then, the collection of the system (3.2)
for all j ∈ Ni, i ∈ V with the control law (3.1) is called collective attitude error system
Σcola, whose state is xa. The block diagram of the Σcola in the case of the visibility
structure in Fig. 2.4 is illustrated in Fig. 3.6.

Then, we have the following theorem for the tracking performance of the visual robotic
network Σ.

Theorem 3. Consider the visual robotic network Σ with Assumption 1. Suppose that the
leader has its own angular velocity (i.e. ωb

w1 6= 0). Then, for any εa, κai ∈ R+, i ∈ Vq,
the control law (3.1) on the visual robotic network Σ achieves

‖xa‖L2 ≤ κa‖ωb
w1‖L2 + δa, κa :=

√∑
i∈Vp

κai

2εa

(3.16)

with a nonnegative scalar δa ≥ 0 if





{
kei > εa + 1

2κai(
2kei − 2εa − 1

κai

) (
1
2
kci + kei − εa

)
> 2k2

ei

, i ∈ Vp

{
kcj < 2(kei − εa)
(2kei − kcj − 2εa)(kci + kei − εa) > 2k2

ei

, j ∈ Ni, i ∈ Vq

{
kcj < 2(kei − εa)
(2kei − kcj − 2εa)

(
1
2
kci + kei − εa

)
> 2k2

ei

, j ∈ Ni, i ∈ Vr

. (3.17)

Proof. Define a potential function Ua ≥ 0 based on passivity of the relative rigid body
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motion (2.3) and the estimation error system (2.24) as

Ua :=
∑
i∈V

∑
j∈Ni

qiUaij.

Here, qi ∈ N is |V ′i| for i ∈ V \ (Vq ∪ {1}) and qi = 1 for i ∈ Vq ∪ {1} (see Fig. 3.5). Then,
the time derivative of Ua along the trajectory of (3.2) yields

U̇a =
∑
i∈V

∑
j∈Ni

qi

(
−xT

ijQaixij + (sk(eξ̂θeij)∨)Tωb
wj

)
(∵ Eq. (3.11)).

Completing square for (sk(eξ̂θei1)∨)Tωb
w1, i ∈ Vp yields

(sk(eξ̂θei1)∨)Tωb
w1 = −κai

2

∥∥∥∥ωb
w1 −

1

κai

sk(eξ̂θei1)∨
∥∥∥∥

2

2

+
κai

2
‖ωb

w1‖2
2 +

1

2κai

‖sk(eξ̂θei1)∨‖2
2

≤ κai

2
‖ωb

w1‖2
2 +

1

2κai

‖sk(eξ̂θei1)∨‖2
2

for any κai ∈ R+, i ∈ Vp. On the other hand, we have for the other bodies in Vq ∪ Vr

(sk(eξ̂θeij)∨)Tωb
wj = kcj(sk(eξ̂θeij)∨)Tsk(e

ˆ̄ξθ̄jk)∨ (∵ Eq. (3.1))

=
kcj

2

(
‖sk(eξ̂θeij)∨‖2

2 + ‖sk(e
ˆ̄ξθ̄jk)∨‖2

2

−‖sk(eξ̂θeij)∨ − sk(e
ˆ̄ξθ̄jk)∨‖2

2

)
, (3.18)

where k ∈ Nj.
We next define nonpositive scalar functions Ψai ≤ 0, i ∈ V as

Ψai :=





−xT
i1




(
kci

2
+ kei

)
I3 0 −keiI3

0
−keiI3

keiI6


 xi1, i ∈ Vp

−xT
ij




(kci + kei) I3 0 −keiI3

0
−keiI3

(
kei − kcj

2

)
I6


 xij − kcj

2
‖sk(eξ̂θeij)∨ − sk(e

ˆ̄ξθ̄jk)∨‖2
2,

k ∈ Nj, j ∈ Ni, i ∈ Vq

−xT
ij




(
kci

2
+ kei

)
I3 0 −keiI3

0
−keiI3

(
kei − 1

2
kcj

)
I6


 xij − kcj

2
‖sk(eξ̂θeij)∨ − sk(e

ˆ̄ξθ̄jk)∨‖2
2,

k ∈ Nj, j ∈ Ni, i ∈ Vr

and Ψa1 = 0. Note here that the nonnegative terms in (3.18) are included in appropriate
quadratic terms. Namely, Ψai, i ∈ Vp∪Vr includes the first term of body i and the second
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term of the body seeing body i. Then, we obtain

U̇a≤
∑
i∈V

qiΨai +
∑
i∈Vp

(
κai

2
‖ωb

w1‖2
2 +

1

2κai

‖sk(eξ̂θei1)∨‖2
2

)

=
∑
i∈V

qiΨai +
∑
i∈Vp

(
κai

2
‖ωb

w1‖2
2 +

1

2κai

‖sk(eξ̂θei1)∨‖2
2

)
+

∑
i∈V

∑
j∈Ni

qi(εa‖xij‖2
2 − εa‖xij‖2

2)

≤
∑
i∈V

∑
j∈Ni

qi(Ψai + εa‖xij‖2
2) +

∑
i∈Vp

1

2κai

‖sk(eξ̂θei1)∨‖2
2 +

∑
i∈Vp

κai

2
‖ωb

w1‖2
2 − εa‖xa‖2

2(3.19)

for any εa ∈ R+. Here, we use the following property.

‖xa‖2
2 ≤

∑
i∈V

∑
j∈Ni

qi‖xij‖2
2.

Finally, note that if the gain conditions (3.17) are satisfied, the summation of the first
and second terms in (3.19) becomes nonpositive (this can be shown by calculating the
Schur complement [72]). We thus get

U̇a ≤
∑
i∈Vp

κai

2
‖ωb

w1‖2
2 − εa‖xa‖2

2.

Integrating this inequality from 0 to T with respect to time yields

Ua(T )− Ua(0) ≤
∑
i∈Vp

κai

2

∫ T

0

‖ωb
w1(t)‖2

2dt− εa

∫ T

0

‖xa(t)‖2
2dt.

Therefore, the following inequality holds true.

‖xa‖L2 ≤
√√√√∑

i∈Vp

κai

2εa

∫ T

0

‖ωb
w1(t)‖2

2dt +
1

εa

Ua(0)

≤
√∑

i∈Vp

κai

2εa

‖ωb
w1‖L2 +

√
1

εa

Ua(0).

Here, we utilize the property for any nonnegative scalars a, b ≥ 0 that
√

a + b ≤ √
a+

√
b.

This completes the proof.

Although κai appears in only conditions of rigid body i ∈ Vp, the arguments kci, i ∈ Vp

also appear in the other constraints. This fact implicitly means that κa influences gains
of all the bodies. Also, the conditions (3.17) for body i ∈ Vq ∪ Vr imply that rear bodies
should move faster than forward bodies. This explains the intuition that motion of forward
bodies has large influences on group motion while that of rear ones has small impact.
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Figure 3.7: Visibility Structure in Simulation

Remark 8. Theorem 3 means that if we regard ωb
w1 as the disturbance input and xa as

the output of the collective attitude error system Σcola, then Σcola has L2-gain less than
or equal to κa (see Fig. 3.6). This results can be regarded as extension of disturbance
attenuation analysis of robot motion control as studied in [78, 79, 80]. Since κa evaluates
the estimation and control errors for the individual angular velocity of the leader, it can be
regarded as an indicator of the tracking performance of the group. Therefore, by setting
control gains making κa small, we can achieve a high tracking performance. We can find
these gains by using existing solvers for linear matrix inequalities.

3.5 Verifications

In this section, we demonstrate the effectiveness of the present control law (3.1) through
simulation in three dimensions and experiments on a planar testbed. We first give sim-
ulation results to show the validity of the convergence analysis (Theorem 1) and the
performance analysis (Theorem 3). We then show an experimental result for the effec-
tiveness of the present control law.

3.5.1 Verifications through Simulation

We first demonstrate the validity of Theorems 1 and 3 through simulation in three di-
mensions. We consider the visual robotic network Σ with the visibility structure shown
in Fig. 3.7 satisfying Assumption 1. We let initial conditions be





pw1(0) = [5 − 5 5]T

pw2(0) = [0 0 0]T

pw3(0) = [0 0 − 5]T

pw4(0) = [−5 − 5 − 5]T

pw5(0) = [−5 0 − 10]T

[m],





ξθw1(0) = [0 π
4

0]T

ξθw2(0) = [0 0 0]T

ξθw3(0) = [0 − π
4

0]T

ξθw4(0) = [0 π
3

0]T

ξθw5(0) = [0 0 0]T

[rad].
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Figure 3.8: Position in Σw (κa = 2)
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Figure 3.9: Position in Σw (κa = 0.49)

The common linear velocity is v = [0 0 1]T [m/s]. Also, the angular velocity of the
leader (rigid body 1) is set as

ωb
w1(t) =





[0 0.1 0]T , t ∈ [0, 5)

[−0.1 0 0]T , t ∈ [5, 10)

[0 − 0.1 0]T , t ∈ [10, 20)

[0 0 0]T , t ∈ [20, 30)

[rad/s].

Then, it is expected that the network performs flocking-like behavior until 20s and visual
feedback attitude synchronization is achieved after 20s. We finally apply the present
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Figure 3.10: Rotation Angle Error (κa = 2)
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Figure 3.11: Rotation Angle Error (κa = 0.49)

control law (3.1) with the following gain settings.

Gain A :

{
kc2 = 2.73, kc3 = 4.45, kc4 = 5.69, kc5 = 8.38
ke2 = 3.37, ke3 = 3.94, ke4 = 6.65, ke5 = 7.72

,

Gain B :

{
kc2 = 11.28, kc3 = 19.93, kc4 = 18.99, kc5 = 19.99
ke2 = 19.98, ke3 = 19.92, ke4 = 19.99, ke5 = 19.99

.

Both settings satisfy the gain conditions (3.17) and give the performance indicators κa =
2.00 for Gain A and κa = 0.49 for Gain B (εa = 0.5).

The simulation results are shown in Figs. 3.8-3.13. Figs. 3.8 and 3.9 illustrate the
trajectories of the rigid bodies in 3D space, where the circles represent the initial positions.
The time responses of the absolute values of the relative rotation angles are shown in Figs.
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Figure 3.12: Control Performance (κa = 2)
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Figure 3.13: Control Performance (κa = 0.49)

3.10 and 3.11. We also depict the time responses of the norms of the total estimation
and control error xa in Figs. 3.12 and 3.13. We see from Figs. 3.8 and 3.9 that when the
leader rotates, the other bodies track it successfully, and all the bodies eventually move
in the same direction. Also, Figs. 3.10 and 3.11 show that all the orientations converge
to a common value at around 25s, i.e. visual feedback attitude synchronization (2.10) is
achieved by the present control law. We moreover see from Figs. 3.12 and 3.13 that the
tracking performance is improved for the smaller κa. Therefore, κa is adequate for the
performance indicator of the visual feedback attitude synchronization.
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Figure 3.14: Experimental Environment

123

Figure 3.15: Visibility Structure in Experiment

3.5.2 Verifications through Experiments

We next present experimental results on a planar testbed to verify the effectiveness of the
convergence analysis.

We use three wheeled mobile robots e-nuvo WHEEL (ZMP) as rigid bodies. We attach
a plate with four colored circles to each robot in order to improve accuracy of extracting
feature points. Each robot has a wireless on-board radio camera RC-12 (RF SYSTEM)
to obtain visual measurements. We also use a camera MTV-7310 (komoto) attached
above the experimental field to measure the actual poses of robots for verification. The
frame rates of both cameras are 30fps. Transmitted video signals are loaded into PC
via a frame grabber board PICOLO DILLIGENT (Euresys) and manipulated by image
processing software HALCON (MVTec). The control and observer models are designed
by Simulink (The Math Works) and calculated by DSP board DS1104 (dSPACE) in real
time. Then, the control input is sent to robots via an embedded wireless communication
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Figure 3.17: Rotation Angle in Σw

device Wiport (LANTRONIX). The sampling period of the controller is around 33ms.
This experimental schematic is shown in Fig. 3.14. Although each robot can move only
on 2D plane, the pose estimation algorithm is executed in three dimensions. Therefore,
each robot implements the visual feedback velocity input projected onto the experimental
field.

We use the visibility structure depicted in Fig. 3.15. Initial conditions are set as





pw1(0) = [0.823 0.682 0]T

pw2(0) = [1.315 0.572 0]T

pw3(0) = [1.663 0.421 0]T
[m],





ξθw1(0) = [0 0 2.563]T

ξθw2(0) = [0 0 2.978]T

ξθw3(0) = [0 0 2.800]T
[rad].

We also set the common linear velocity as v = [0 0.04 0]T [m/s] and do not apply any
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Figure 3.18: Actual (Measured) and Estimated Rotation Angle between 2 and 1
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Figure 3.19: Actual (Measured) and Estimated Rotation Angle between 3 and 2

individual angular velocities to the leader. Therefore, we demonstrate only the validity
of the convergence analysis (Theorem 1) in this experiment (the verification for the per-
formance analysis is given in Chapter 4). We finally apply the control law (3.1) with the
gains kc2 = kc3 = 1 and ke2 = ke3 = 15.

The experimental results are shown in Figs. 3.16-3.19. Fig. 3.16 illustrates the trajec-
tories of the robots on the experimental field, Fig. 3.17 the time responses of the actual
(measured) orientations and Figs. 3.18 and 3.19 the actual (measured) and the estimated
relative orientations. We see from Figs. 3.16 and 3.17 that all the orientations converge to
a common value (robot 1’s value) at around 20s. This means that the proposed control law
achieves visual feedback attitude synchronization in the sense of (2.10). Moreover, Fig.
3.19 shows that the error between actual (measured) and estimated orientations is small

50



enough to achieve stable attitudes. Thus, the visual feedback attitude synchronization
law (3.1) works successfully.

3.6 Chapter Summary

In this chapter, we have investigated a visual feedback attitude synchronization problem
for visual robotic networks Σ. We have first proposed a synchronization law to achieve
visual feedback attitude synchronization in the sense of (2.10). Then, we have proved
that the present estimation and control mechanism achieves synchronization under leader-
following visibility structures in the absence of communication or any other measurements
of the states. Here, passivity of the rigid body motion (2.2) and the relative rigid body
motion (2.3) plays central roles for the design of the control law and the convergence anal-
ysis. We have also given both qualitative and quantitative tracking performance analysis
of the network for a leader having individual angular velocities by employing the theory
of input-to-state stability or L2 stability. Moreover, we have shown that the performance
analysis based on L2 stability gives a guideline to decide estimation and control gains.
The simulation results and the experimental results have finally demonstrated the validity
of the main results in this chapter.

The main issues to be tackled are (i) to eliminate the assumption that all the rigid
bodies have a common linear velocity v, (ii) to weaken the assumption of visibility struc-
tures, (iii) to introduce rigid body dynamics, and (iv) to employ a visibility maintenance
algorithm. We address these issues in Chapter 5.
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Chapter 4

Visual Feedback 3D Pose
Synchronization

4.1 Introduction

In this chapter, we study a leader-following visual feedback pose synchronization problem
for visual robotic networks Σ. The objective of this chapter is to present a control law to
achieve visual feedback pose synchronization (2.11) for networks satisfying Assumption 1.
We first propose a synchronization law based on the passivity-based pose synchronization
law and the visual motion observer introduced in Chapter 2. In the present control scheme,
relative poses necessary for pose synchronization laws are estimated by a visual motion
observer. The present mechanism is hence completely constructed by visual measurements
(2.9) extracted by vision. This means that each body is fully autonomous, which is one
of the main contributions of this dissertation. We next prove pose synchronization, where
passivity of the rigid body motion (2.2) and the relative rigid body motion (2.3) plays
a crucial role. However, in the present control law, the leader does not move, and as a
result, the network cannot move. In order to overcome this problem, we also consider
the situation that the leader moves independently. In this case, we analyze the tracking
performance of the network for the leader by employing the theory of input-to-state
stability or L2 stability. Here, we regard the body velocity of the leader as an external
disturbance to the network. The effectiveness of the control protocol is demonstrated
through simulation in three dimensions and experiments on a planar testbed.

This chapter is organized as follows. In Section 4.2, we present an estimation and
control law for the visual robotic network Σ to achieve visual feedback pose synchroniza-
tion. We then analyze the convergence for a not moving leader in Section 4.3. In Section
4.4, we give the tracking performance analysis of the other rigid bodies in Σ for a leader
having individual velocities. Finally, we perform simulation and experiments in order to
confirm the effectiveness and validity of the present control scheme and the convergence
and performance analysis in Section 4.5. Section 4.6 concludes this chapter.
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4.2 Visual Feedback Pose Synchronization Law with

a Panoramic Camera Model

In this section, we propose a visual feedback pose synchronization law. Unlike the previ-
ous work [47, 48] premising the measurement of gij, the goal of this chapter is to propose
a velocity law for visual feedback pose synchronization (2.11) by using only visual mea-
surements (2.9). Throughout this chapter, we deal with the panoramic camera model
(2.8).

Note first that each rigid body has to estimate relative pose gmij, denoted by ḡmij ∈
SE(3) by a nonlinear observer similarly to Chapter 3. We define the desired relative pose

gdij ∈ SE(3), the control error gcij = (pcij, e
ξ̂θcij) ∈ SE(3) and the control error vector

ecij ∈ R6 as

gdij :=

[
I3 dij

0 1

]
, gcij := g−1

dijgimi
ḡmij, ecij :=

[
pcij

sk(eξ̂θcij)∨

]
.

It should be noted that ecij = 0 if and only if gcij = I4 for θcij ∈ (−π, π) and hence

gimi
ḡmij = gdij. We also define the estimation error geij = (peij, e

ξ̂θeij) ∈ SE(3) between
the actual relative pose gmij and its estimate ḡmij and the estimation error vector eeij ∈ R6

as

geij := ḡ−1
mij

gmij, eeij :=

[
peij

sk(eξ̂θeij)∨

]
,

where the definition of geij is different from that of Chapter 3. Then, both ecij = 0 and
eeij = 0 mean gij = gdij, i.e. visual feedback pose synchronization (2.11) is achieved if
and only if ecij = 0, eeij = 0, j ∈ Ni

∀i ∈ V .
In order to achieve visual feedback pose synchronization (2.11), we propose the fol-

lowing control law.

Controller :

Observer :





V b
wi = kci

∑
j∈Ni

Ad(gdij)ecij, (4.1a)

V̄ b
mij

:= (ḡ−1
mij

˙̄gmij)
∨ = −Ad(ḡ−1

mij)
Ad(g−1

imi
)V

b
wi + uij, (4.1b)

uij = kei

(
eeij − Ad

(e−ξ̂θcij )
ecij

)
, (4.1c)

where j ∈ Ni, i ∈ V and kci, kei ∈ R+
∀i ∈ V .

The block diagram of the estimation and control law (4.1) is shown in Fig. 4.1.
The difference from the visual feedback attitude synchronization law (3.1) is to impose
position feedback so as to achieve position coordination in addition to attitude feedback.
As a result, the observer input is slightly different from (3.1d). In the nonlinear observer,
(4.1b) simulates the relative rigid body motion (2.6) for the panoramic camera model by
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Figure 4.1: Block Diagram of Visual Feedback Pose Synchronization Law

utilizing the estimate ḡmij as its state. Here, uij ∈ R6 is external input to be determined
so that the estimated value ḡmij is driven to its actual value gmij, which is given by (4.1c).
In (4.1c), eeij can be reconstructed by visual measurements fij (see Appendix A.2). Also,
the difference from the pose synchronization scheme (2.22) proposed in [47, 48] is to
feedback the estimated relative pose gimi

ḡmij (with the biase dij) instead of the actual
gij. Namely, the present estimation and control law (4.1) can be calculated only by visual
measurements (2.9) in the absence of communication or any measurements of own states
which makes rigid bodies fully autonomous.

4.3 Convergence Analysis

In this section, we give convergence analysis for the visual robotic network Σ with the
present visual feedback pose synchronization law (4.1). We first assume that visibility
structures in Σ satisfy Assumption 1. Then, it is shown that the control law (4.1) on Σ
achieves visual feedback pose synchronization in the sense of (2.11). However, note that
the control law (4.1) with Assumption 1 implies that the leader body does not move,
and as a result, the network cannot move. Thus, we also give a control law containing a
common desired body velocity among rigid bodies.

We first introduce control error systems for visible body pairs (i, j), (j, i) ∈ E by
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differentiating control errors gcij with respect to time as follows.

ġcij = g−1
dijgimi

˙̄gmij (∵ dij and gimi
is constant)

= g−1
dijgimi

(−g−1
imi

V̂ b
wigimi

ḡmij + ḡmijûij) (∵ Eq. (4.1b))

= −g−1
dij V̂

b
wigdijgcij + gcijûij.

In the vector form, the control error system is written by

V b
cij := (g−1

cij ġcij)
∨ = −Ad(g−1

cij )Ad(g−1
dij)

V b
wi + uij. (4.2)

Then, combining the control error system (4.2) and the estimation error system (2.24)
yields the following total error system.

[
V b

cij

V b
eij

]
=

[
−Ad(g−1

cij ) I6

0 −Ad(g−1
eij)

] [
Ad(g−1

dij)
V b

wi

uij

]
+

[
0

V b
wj

]
. (4.3)

We now define a potential function Uij ≥ 0 as follows.

Uij := ψ(gcij) + ψ(geij). (4.4)

Then, the following lemma holds for the total error system (4.3),

Lemma 7. If V b
wj = 0 holds, then the time derivative of Uij along the trajectory of (4.3)

satisfies

U̇ij = uT
ceijνij,

where

uceij :=

[
Ad(g−1

dij)
V b

wi

uij

]
∈ R12, νij :=

[
−I6 0

Ad
(e−ξ̂θcij )

−I6

]
eij ∈ R12, eij :=

[
ecij

eeij

]
∈ R12.

Proof. When V b
wj = 0 holds, the time derivative of Uij along the trajectories of (4.3) yields

U̇ij = eT
cijAd

(eξ̂θcij )
V b

cij + eT
eijAd

(eξ̂θeij )
V b

eij (∵ Appendix B.3.2 and Eq. (2.25))

= eT
ij

[
Ad

(eξ̂θcij )
0

0 Ad
(eξ̂θeij )

][
V b

cij

V b
eij

]

= eT
ij

[
Ad

(eξ̂θcij )
0

0 Ad
(eξ̂θeij )

][
−Ad(g−1

cij ) I6

0 −Ad(g−1
eij)

]
uceij (∵ Eq. (4.3) with V b

wj = 0)

= eT
ij

[
−Ad(−pcij) Ad

(eξ̂θcij )

0 −Ad(peij)

]
uceij

= eT
ij

[
−I6 Ad

(eξ̂θcij )

0 −I6

]
uceij (∵ pTp̂u = −pTûp = 0 ∀p, u ∈ R3 (Appendix B.1.2))

=uT
ceijνij.
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Lemma 7 means that total error system (4.3) is passive from uij to νij with the storage
function Uij when V b

wj = 0 holds. Also, unlike the passivity of the relative rigid body
motion (2.3), there exists the coupling term between position dynamics and orientation
dynamics. It should be noted that the present input (4.1a) and (4.1c) are constructed by
the output of the passivity.

We get the following theorem from Lemma 7.

Theorem 4. Consider the visual robotic network Σ with Assumption 1. Then, the control
law (4.1) on Σ achieves visual feedback pose synchronization.

Proof. We use the same approach as in Theorem 1 to the proof. We first consider each
rigid body i in V1 whose visible body is body 1 (see Fig. 3.2). Consider the potential
function Ui1 (defined in (4.4) with j = 1) based on passivity of the total error system
(4.3). Then, the time derivative of Ui1 along the trajectory of (4.3) yields

U̇i1 = νT
i1ucei1 (∵ Lemma 7)

= −eT
i1

[−I6 Ad
(eξ̂θci1 )

0 −I6

] [
kciI6 0

0 keiI6

] [ −I6 0
Ad

(e−ξ̂θci1 )
−I6

]
ei1 (∵ Eq. (4.1))

= −eT
i1Qi1ei1, Qi1 :=

[
(kci + kei)I6 −keiAd

(eξ̂θci1 )

−keiAd
(e−ξ̂θci1)

keiI6

]
.

Notice here that Qi1 is positive definite for any kci, kei ∈ R+ and eξ̂θcij ∈ SO(3), which
can be shown by calculating the Schur complement [72]. Namely, the equilibrium point
ei1 = 0 is asymptotically stable. Then, we conclude from the definition of ei1 that all the
bodies in V1 achieves visual feedback pose synchronization in the sense of (2.11).

We next consider each rigid body i in V2 whose visible body exists in V1. Note first
that visible body j from i has V b

wj = kcjAd(gdj1)ecj1. We now substitute the present input
(4.1) into the total error system (4.3) as follows.

[
V b

cij

V b
eij

]
=

[
−Ad(g−1

cij ) I6

0 −Ad(g−1
eij)

][
kciecij

kei

(
eeij − Ad

(e−ξ̂θcij )
ecij

)
]

+

[
0

kcjAd(gdj1)ecj1

]
. (4.5)

Here, it should be noted that the second term in (4.5) eventually goes to 0 since body j
in V1 achieves visual feedback pose synchronization. Notice also that V b

cij, V b
eij, ecij and

eeij are the functions of gcij, ġcij, geij and ġeij. Therefore, if we regard eij as the state of
(4.5), we can apply Proposition 1 to the convergence analysis by regarding (4.5) as the
perturbed system. Namely, it is sufficient to show that the equilibrium point eij = 0 for
the system (4.5) without the second term is exponentially stable. This can be proved by
the same analysis as in the proof of Theorem 1 by introducing the potential function Uij.
Also, the convergence analysis for the other bodies in {V3,V4, · · · } is the same as in the
proof of Theorem 1.
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In Theorem 4, we show only qualitative stability analysis which enables us to set
any positive gains. However, it is often required us obtain good transient behavior until
attitude synchronization. Then, we can apply Lyapunov stability by considering the total
estimation and control system and introducing the total Lyapunov function for the visual
robotic network Σ. Refer to Publications [2] for the details.

Notice now that all the rigid bodies would stop in the final configuration though it
is sometimes required for bodies to move in the desired direction while achieving pose
synchronization. Therefore, we next add a common desired body velocity to all the
bodies. Suppose that all the bodies have a common desired velocity Vd ∈ R6 and let us
fix the form of each body velocity as

V b
wi = Ṽ b

wi + Vd

for some Ṽ b
wi ∈ R6. Then, the control error system (4.2) can be simply represented by

V b
cij = −Ad(g−1

cij )Ad(g−1
dij)

(Ṽ b
wi + Vd) + uij.

Also, the estimation error system (2.24) is derived as

V b
eij = −Ad(g−1

eij)
uij + Ṽ b

wj + Vd.

Then, by proposing the following control law,

Controller :

Observer :





V b
wi = kci

∑
j∈Ni

Ad(gdij)ecij + Ad(gdij)Vd, (4.6a)

V̄ b
mij

= −Ad(ḡ−1
mij)

Ad(g−1
imi

)V
b
wi + uij, (4.6b)

uij = kei

(
eeij − Ad

(e−ξ̂θcij )
ecij

)
, (4.6c)

we get the following equality from Lemma 7 with V b
wj 6= 0.

U̇ij = −eT
ijQieij + kcje

T
eijAd(gdjk)ecjk − eT

cijVd + eT
eijAd(gdjk)Vd, k ∈ Nj.

Here, Qi ∈ R12×12 is defined as

Qi :=

[
(kci + kei)I6 −keiAd

(e−ξ̂θcij )

−keiAd
(eξ̂θcij )

keiI6

]
. (4.7)

Note now that the new third and fourth terms vanish when eij = 0 which is exponentially
stable for the corresponding nominal system. Therefore, we can apply Proposition 1 as
in Theorem 1. Namely, even in the case with Vd, the following corollary holds.

Corollary 1. Consider the visual robotic network Σ with Assumption 1. Then, the control
law (4.6) on Σ achieves visual feedback pose synchronization.
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In the control law (4.6), each rigid body has to share a common desired velocity for the
desired movement of the visual robotic network Σ. However, even without such common
knowledge, it is often expected for followers to track the leader having arbitrary velocities
within a bounded error and achieve flocking-like behavior. We thus analyze the tracking
performance in the presence of arbitrary V b

w1 based on the theory of input-to-state stability
or L2 stability in the next section.

4.4 Performance Analysis

In this section, we give tracking performance analysis of the visual robotic network Σ for
a leader having individual velocities. In this analysis, we regard a body velocity of the
leader as an external disturbance to the network and evaluate the estimation and control
errors by employing the theory of input-to-state stability or L2 stability. We first apply
input-to-state stability analysis to the performance analysis, where we respectively think
of the velocity of the leader and the total estimation and control errors of all the other
bodies as the external disturbance input and the state of the total error system of the
network. We next employ the theory of L2 stability as one of input-to-output stability
for the performance analysis by regarding the total estimation and control errors as the
output of the total error system.

4.4.1 Input-to-state Stability

We give input-to-state stability analysis for the visual feedback pose synchronization law
(4.1) as one of tracking performance analysis of the visual robotic network Σ for a leader
moving independently.

We first consider the case that rigid body i sees body j and apply the present control
law (4.1). Here, we assume that body j moves with arbitrary body velocity V b

wj. Then,
the closed-loop system (4.3) and (4.1) with V b

wj 6= 0 is given by

[
V b

cij

V b
eij

]
=

[
−Ad(g−1

cij ) I6

0 −Ad(g−1
eij)

][
kciecij

kei

(
eeij − Ad

(e−ξ̂θcij )
ecij

)
]

+

[
0

V b
wj

]
. (4.8)

We regard V b
wj and eij as the input and the state of the system (4.8), respectively. We

then get the following lemma.

Lemma 8. Consider the system (4.8). If θ̄ij(0) ∈ (−π/2, π/2) and θeij(0) ∈ (−π/2, π/2)
hold and the gain conditions (4.9) are satisfied for any εi, ε

′
i ∈ R+ (ε′i > εi), then there
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exist a class-KL function α2 and a class K function β2 satisfying (4.10).
{

kci + kei > εi
kei(kci−εi)
kci+kei−εi

> ε′i
, (4.9)

‖eij(t)‖2 ≤ α2(‖eij(0)‖2, t) + β2

(
sup

0≤τ≤t
‖V b

wj(τ)‖2

)
. (4.10)

Proof. We reconsider the potential function Uij defined in (4.4). Then, we get the follow-
ing equality from Lemma 7 with V b

wj 6= 0.

U̇ij = −eT
ijQieij + eT

eijAd
(eξ̂θeij )

V b
wj, (4.11)

where Qi ∈ R12×12 is defined as (4.7). Furthermore, completing square for eT
eijAd

(eξ̂θeij )
V b

wj

with any γ2 ∈ R+ yields

U̇ij = −eT
ijQieij +

γ2

2
‖V b

wj‖2
2 +

1

2γ2

‖eeij‖2
2 −

γ2

2

∥∥∥∥Ad
(eξ̂θeij )

V b
wj −

1

γ2

eeij

∥∥∥∥
2

2

≤ −eT
ijQieij +

γ2

2
‖V b

wj‖2
2 +

1

2γ2

‖eeij‖2
2.

Note here that by using the diagonal matrix W ∈ R12×12 whose (7,7), · · · , (12,12) elements
are 1/(2γ2) and the other elements are 0, the third term of the above inequality can be
written by eT

ijWeij. This fact gives the following inequality for any εi ∈ R+.

U̇ij ≤ −eT
ijQieij +

γ2

2
‖V b

wj‖2
2 + eT

ijWeij + εi‖eij‖2
2 − εi‖eij‖2

2

= −eT
ijPieij +

γ2

2
‖V b

wj‖2
2 − εi‖eij‖2

2,

where Pi ∈ R12×12 is defined as

Pi := Qi −W − εiI12.

Then, calculating the Schur complement [72] of Pi with ε′i := 1/(2γ2) + εi gives the
necessary and sufficient condition (4.9) for positive definiteness of Pi. Therefore, if the
conditions (4.9) are satisfied, we have

U̇ij ≤ γ2

2
‖V b

wj‖2
2 − εi‖eij‖2

2.

The remaining discussion is the same as in Lemma 5.

We next consider the case that m rigid bodies have the chain-type visibility structure,
where body i sees body i − 1 for i ∈ {2, · · · , m} (see Fig. 3.3). Then, we call the
collection of the closed-loop system (4.3) and (4.1) for all the bodies chain-type collective
error system Σccol whose state, denoted by xcp ∈ R12(m−1), is given by the stacked vector
of ei(i−1), i ∈ {2, · · · ,m− 1}. We now get the following lemma for Σccol.
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Chain-type Collective Error System
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Figure 4.2: Chain-type Collective Error System Σccol

Lemma 9. Consider the chain-type collective error system Σccol. If θ̄i(i−1)(0) ∈ (−π/2, π/2),
θei(i−1)(0) ∈ (−π/2, π/2) and the gain conditions (4.9) are satisfied for any εi, ε

′
i ∈

R+ (ε′i > εi), i ∈ {2, · · · ,m}, then there exist a class-KL function αc and a class K
function βc satisfying

‖xcp(t)‖2 ≤ αc(‖xcp(0)‖2, t) + βc

(
sup

0≤τ≤t
‖V b

w1(τ)‖2

)
.

Proof. The approach of the proof is the same as in Lemma 6 (see Fig. 4.2).

We finally show the main result of this subsection based on Lemma 9.

Theorem 5. Consider the visual robotic network Σ with Assumption 1. Suppose that
the leader has its own body velocity (i.e. V b

w1 6= 0). If θ̄ij(0) ∈ (−π/2, π/2), θeij(0) ∈
(−π/2, π/2) and the gain conditions (4.9) are satisfied for any εi, ε

′
i ∈ R+ (ε′i > εi), j ∈

Ni, i ∈ V, then there exist a class-KL function α and a class K function β satisfying

‖xp(t)‖2 ≤ αa(‖xp(0)‖2, t) + βa

(
sup

0≤τ≤t
‖V b

w1(τ)‖2

)
, (4.12)

where xp ∈ R12(n−1) is the stacked vector of eij, j ∈ Ni, i ∈ V.

Proof. We consider the body set Vq = {i ∈ V | i /∈ Nj
∀j ∈ V} defined in Chapter 3. We

denote each chain-type collective error system from the leader to body i ∈ Vq by Σccoli.
Then, we conclude from Lemma 9 that each Σccoli is input-to-state-stable. Therefore,
there exist class KL functions αi and class K functions βi satisfying

‖xpi(t)‖2 ≤ αi(‖xpi(0)‖2, t) + βi

(
sup

0≤τ≤t
‖V b

w1(τ)‖2

)
, i ∈ Vq, (4.13)

where xpi are the stacked vectors of eij for each Σccoli.
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Figure 4.3: Collective Error System Σcol

Then, summation of (4.13) for all i ∈ Vq gives

‖xp(t)‖2 ≤
∑
i∈Vq

αi(‖xpi(0)‖2, t) +
∑
i∈Vq

βi

(
sup

0≤τ≤t
‖V b

w1(τ)‖2

)
.

Finally, defining α and β as

α :=
∑
i∈Vq

αi, β :=
∑
i∈Vq

βi (4.14)

yields (4.12).

Similarly to the case of attitude synchronization, the gain conditions (3.9) are satisfied
for almost any positive gains kci and kei since εi and ε′i are arbitrary positive scalars.

Equation (4.12) evaluates the estimation and control errors for the velocity of the
leader. Therefore, this can be regarded as an indicator of the tracking performance of
the group. However, this analysis currently gives only qualitative evaluations for the
performance, and hence it is hard to decide estimation and control gains for a good track-
ing performance from this analysis. In the next subsection, we analyze the performance
quantitatively by employing L2 stability in order to give a guideline for gain settings.

4.4.2 L2 Stability

In this subsection, we analyze the tracking performance of the visual robotic network
Σ for the leader moving independently (i.e. V b

w1 6= 0) based on the theory of L2-gain
performance analysis, where we regard V b

w1 as an external disturbance to the network.
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We reconsider the total error system (4.3). Then, the collection of the system (4.3)
for all j ∈ Ni, i ∈ V with the control law (4.1) is called collective error system Σcol whose
state is xp. The block diagram of the Σcol in the case of the visibility structure in Fig.
2.4 is illustrated in Fig. 4.3.

Then, we have the following theorem for the tracking performance of the visual robotic
network Σ.

Theorem 6. Consider the visual robotic network Σ with Assumption 1 and suppose the
leader has its own body velocity (V b

w1 6= 0). Then, for any ε, κi ∈ R+, i ∈ Vq, the control
law (4.1) on the visual robotic network Σ achieves

‖xp‖L2 ≤ κ‖V b
w1‖L2 + δ, κ :=

√∑
i∈Vp

κi

2ε
(4.15)

with a nonnegative scalar δ ≥ 0 if




{
kei − 1

2κi
− ε > 0(

kci + kei − ε− 2κik
2
ei

2κi(kei−ε)−1

)
I6 − kciDi1 > 0

, i ∈ Vp

{
kcj < 2(kei − ε)

kcj < 2((kci−ε)(kei−ε)−keiε)
kci+kei−ε

, j ∈ Ni, i ∈ Vq

{
kcj < 2(kei − ε)(
kci + kei − ε− 2k2

ei

2kei−kcj−2ε

)
I6 − kciDij > 0

, j ∈ Ni, i ∈ Vr

, (4.16)

where Dij := (1/2)AdT
(gdij)

Ad(gdij) ∈ R6×6.

Proof. Define a potential function Up ≥ 0 based on passivity of the relative rigid body
motion (2.3) and the estimation error system (2.24) as

Up :=
∑
i∈V

∑
j∈Ni

qiUij.

Here, qi ∈ N is defined as in Theorem 3. Then, the time derivative of Up along the
trajectory of (4.3) yields

U̇p =
∑
i∈V

∑
j∈Ni

qi

(
−eT

ijQieij + eT
eijAd

(eξ̂θeij )
V b

wj

)
. (∵ Eq. (4.11))

Completing square for eT
eijAd

(eξ̂θeij )
V b

wj, i ∈ Vp yields

eT
ei1Ad

(eξ̂θei1)
V b

w1 = −κi

2

∥∥∥∥Ad
(eξ̂θei1 )

V b
w1 −

1

κi

eei1

∥∥∥∥
2

2

+
κi

2
‖V b

w1‖2
2 +

1

2κi

‖eei1‖2
2

≤ κi

2
‖V b

w1‖2
2 +

1

2κi

‖eei1‖2
2

62



for any κi ∈ R+, i ∈ Vp. On the other hand, we have for the other bodies in {Vq,Vr}

eT
eijAd

(eξ̂θeij )
V b

wj = kcje
T
eijAd

(eξ̂θeij )
Ad(gdjk)ecjk (∵ Eq. (4.1))

=
kcj

2

(
‖eeij‖2

2 + ‖Ad(gdjk)ecjk‖2
2 − ‖Ad

(e−ξ̂θeij )
eeij − Ad(gdjk)ecjk)

∨‖2
2

)
,

(4.17)

where k ∈ Nj. We now define Ψi ≤ 0, i ∈ V as

Ψi :=





−eT
i1

[
(kci + kei)I6 − kciDi1 −keiAd

(eξ̂θci1)

−keiAd
(e−ξ̂θci1 )

keiI6

]
ei1, i ∈ Vp

−eT
ij

[
(kci + kei)I6 −keiAd

(eξ̂θcij )

−keiAd
(e−ξ̂θcij )

(
kei − kcj

2

)
I6

]
eij

−kcj

2
‖Ad

(e−ξ̂θeij )
eeij − Ad(gdjk)ecjk)

∨‖2
2, k ∈ Nj, j ∈ Ni, i ∈ Vq

−eT
ij

[
(kci + kei)I3 − kciDij −keiAd

(eξ̂θcij )

−keiAd
(e−ξ̂θcij )

(
kei − kcj

2

)
I6

]
eij

−kcj

2
‖Ad

(e−ξ̂θeij )
eeij − Ad(gdjk)ecjk)

∨‖2
2, k ∈ Nj, j ∈ Ni, i ∈ Vr

and Ψ1 = 0. Here, it should be noted that the nonnegative terms in (4.17) are included
in appropriate quadratic terms.

Then, we obtain

U̇p≤
∑
i∈V

qiΨi +
∑
i∈Vp

(
κi

2
‖V b

w1‖2
2 +

1

2κi

‖eei1‖2
2

)
+

∑
i∈V

∑
j∈Ni

qi(ε‖eij‖2
2 − ε‖eij‖2

2)

≤
n∑

i=2

∑
j∈Ni

qi(Ψi + ε‖eij‖2
2) +

∑
i∈Vp

1

2κi

‖eei1‖2
2 +

∑
i∈Vp

κi

2
‖V b

w1‖2
2 − ε‖xp‖2

2 (4.18)

for any ε ∈ R+, where we use the following property.

‖xp‖2
2 ≤

∑
i∈V

∑
j∈Ni

qi‖eij‖2
2.

Finally, note that if the gain conditions (4.16) are satisfied, the summation of the first
and second terms in (4.18) becomes nonpositive (this can be shown by calculating the
Schur complement [72]). We thus get

U̇p ≤
∑
i∈Vp

κi

2
‖V b

w1‖2
2 − ε‖xp‖2

2.
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Integrating this inequality from 0 to T with respect to time yields

Up(T )− Up(0) ≤
∑
i∈Vp

κi

2

∫ T

0

‖V b
w1(t)‖2

2dt− ε

∫ T

0

‖xp(t)‖2
2dt.

Therefore, the following inequality holds true.

‖xp‖L2 ≤
√∑

i∈Vp

κi

2ε
‖V b

w1‖L2 +

√
1

ε
Up(0).

This completes the proof.

Similarly to Theorem 3, although κi appears in only the conditions of rigid body
i ∈ Vp, the arguments kci, i ∈ Vp also appear in the other constraints. This fact implicitly
means that κ influences gains of all the bodies. Compared with the conditions (3.17) for
visual feedback attitude synchronization, the conditions (4.16) include the information of
desired biases dij. This is because the goal of visual feedback pose synchronization is to
drive relative positions to the desired ones and thus control errors gcij contain dij.

Remark 9. Theorem 6 means that if we regard V b
w1 as the disturbance input and xp as

the output of the collective error system Σcol, then Σcol has L2-gain less than or equal to κ.
Since κ evaluates the estimation and control errors for the individual velocity of the leader,
it can be regarded as an indicator of the tracking performance of the group. Therefore,
by setting control gains making κ small, we can achieve a high tracking performance. We
can find these gains by using existing solvers for linear matrix inequalities.

4.5 Verifications

In this section, we demonstrate the effectiveness of the present control law (4.1) through
simulation in three dimensions and experiments on a planar testbed. We first give simu-
lation results to show the validity of the convergence analysis (Theorem 4 and Corollary
1). We then show an experimental result for the effectiveness of the convergence and
performance analysis (Theorems 4 and 6).

4.5.1 Verifications through Simulation

Consider five rigid bodies with the visibility structure depicted in Fig. 4.4 satisfying
Assumption 1. We set biases as d21 = [0 0 5]T , d32 = [0 − 5 5]T and d42 = d53 = [0 5 5]T

[m] (see Fig. 4.5). Then, the control law (4.6) with kc2 = 15, kc3 = 36, kc4 = 20, kc5 =
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Figure 4.5: Final Configuration in Simula-
tion

50, kei = 30, j ∈ Ni, i ∈ V and Vd = [0.707 0 0.707 0 0 0]T [m/s, rad/s] is applied to
each body under the following initial conditions.





pw1(0) = [10 0 10]T

pw2(0) = [0 − 10 0]T

pw3(0) = [0 0 − 10]T

pw4(0) = [−10 0 − 10]T

pw5(0) = [−10 0 − 20]T

[m],





ξθw1(0) = [0 π
4

0]T

ξθw2(0) = [0 0 0]T

ξθw3(0) = [0 − π
4

0]T

ξθw4(0) = [π
3

0 0]T

ξθw5(0) = [π
4

π
4

0]T

[rad].

Simulation results are shown in Figs. 4.6-4.8. Fig. 4.6 shows the trajectory of each
rigid body in 3D space, where the circles represent the initial positions. Figs. 4.7 and
4.8 illustrate the errors between the desired relative positions and the actual ones, and
the relative orientations, respectively. We see from Figs. 4.6 and 4.7 that every body
eventually forms the desired configuration at around 1.5s. Fig. 4.8 shows that all the
relative orientations asymptotically converge to 0 at around 2s, that is, the orientations
of all the bodies asymptotically converge to that of body 1 . Thus, the present estimation
and control scheme (4.6) achieves visual feedback pose synchronization (2.11).

4.5.2 Verifications through Experiments

We next present experimental results on a planar testbed to verify the effectiveness of the
convergence and performance analysis.

We use three omnidirectional mobile robots (TOSADENSHI) with four wheels as rigid
bodies. Each body is equipped with a pinhole camera FMVU-03MTC-CS (ViewPLUS)
with a panoramic mirror HM-M15 (Accowle Vision). We attach a plate with four colored
circles to each robot in order to improve accuracy of extracting feature points. We also
utilize a camera FMVU-03MTC-CS attached above the experimental field to measure
the actual poses of robots. The frame rate of the camera is 30fps. Transmitted video
signals are loaded into PC and manipulated by image processing software Visual C++
(Microsoft). The control and observer models are designed by Simulink (The Math Works)
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and calculated by DSP board DS1104 (dSPACE) in real time. Then the control input in
sent to robots via an embedded wireless communication device XBee (Digi International).
The sampling period of the controller is around 20ms. This experimental schematic is
shown in Fig. 4.9. Although each robot can move only on 2D plane, the pose estimation
algorithm is executed in three dimensions. Therefore, each robot implements the visual
feedback velocity input projected onto the experimental field.

We use the visibility structure depicted in Fig. 4.10. Let the position biases be
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d21 = d32 = [0 0.25 0]T [m] (see Fig. 4.11). The estimation and control gains are set as

Gain A :

{
kc2 = 5.0, kc3 = 5.7
ke2 = 8.0, ke3 = 9.3

,

Gain B :

{
kc2 = 0.37, kc3 = 0.5
ke2 = 3.0, ke3 = 3.0

,

where both settings satisfy the gain conditions (4.16) and we get the performance indi-
cators κ = 2.70 for Gain A and κ = 18.10 for Gain B (ε = 0.5). We also set the initial
conditions as





pw1(0) = [0.96 0.27 0]T

pw2(0) = [0.53 0.41 0]T

pw3(0) = [0.13 0.51 0]T
[m],





ξθw1(0) = [0 0 − 0.06]T

ξθw2(0) = [0 0 − 0.72]T

ξθw3(0) = [0 0 − 1.54]T
[rad].

Finally, we set the body velocity of the leader (rigid body 1) as

V b
w1(t) =





[0.1 sin t 0.1 0 0 0 0]T , t ∈ [0, 5)

[0.1 sin t 0.1 0 0 0 0.15]T , t ∈ [5, 15)

[0.1 sin t 0.1 0 0 0 0]T , t ∈ [15, 30)
0, t ∈ [20, 30)

[m/s, rad/s].

The experimental results are shown in Figs. 4.12-4.15. Fig. 4.12 illustrates the
trajectories of the robots on the experimental field for Gain A, Fig. 4.13 time responses
of the relative positions and Fig. 4.14 the orientations in Σw. Also, Fig. 4.15 shows
‖xp(t)‖L2 for Gain A and Gain B, respectively. We see from Figs. 4.12 and 4.13 that
when the leader moves independently, the other robots track it successfully, and the
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Figure 4.9: Experimental Environment
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Figure 4.11: Final Configuration in Experi-
ment

desired relative positions are almost achieved at around 35s when the leader is static.
Moreover, Fig. 4.14 shows that all the orientations converge to almost a common value
(robot 1’s value) at that time. The results mean that the present control law (4.1) achieves
visual feedback pose synchronization and thus the synchronization law works successfully.

Figs. 4.15 shows that the tracking performance is improved for the smaller κ. There-
fore, κ is adequate for the performance indicator of the visual feedback pose synchroniza-
tion.
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4.6 Chapter Summary

In this chapter, we have studied a visual feedback pose synchronization problem for visual
robotic networks Σ. We have first presented a synchronization law to achieve visual
feedback pose synchronization in the sense of (2.11). We have then proved that the
present estimation and control scheme achieves synchronization under leader-following
visibility structures in the absence of communication or any other measurements of the
states. Here, passivity of the rigid body motion (2.2) and the relative rigid body motion
(2.3) plays crucial roles for the design of the control law and the convergence analysis. We
have next given both qualitative and quantitative tracking performance analysis of the
network for a leader having individual body velocities by employing the theory of input-
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to-state stability or L2 stability. Moreover, we have shown that the performance analysis
based on L2 stability gives a guideline to design estimation and control gains. Finally,
the simulation results and the experimental results have demonstrated the validity of the
main results in this chapter.

The main issues to be tackled are (i) to weaken the assumption of visibility structures,
(ii) to take account of rigid body dynamics, and (iii) to employ a visibility maintenance
algorithm and a collision avoidance mechanism. We address these issues in the next
chapter.
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Chapter 5

Further Developments on Visual
Feedback Attitude/Pose
Synchronization

5.1 Introduction

In this chapter, we give further developments on visual feedback attitude/pose synchro-
nization investigated in Chapters 3 and 4. Although we deal with only the pinhole camera
model (2.5) throughout this chapter, the model can be easily extended to the panoramic
camera model (2.8) as shown in Chapter 4. We first propose a visual feedback atti-
tude synchronization law integrating a linear velocity observer to overcome the issue that
the present control protocol (3.1) presumes using a common linear velocity. Here, we
newly present a velocity estimation mechanism incorporating passive velocity models of
the leader. We next study visual feedback attitude synchronization in the absence of a
leader. In this situation, we propose a different synchronization law from the present one
for the visual robotic network Σ with ring-type visibility structures and prove synchro-
nization in the different approach. Then, we also clarify the difficulties to handle wider
classes of visibility structures for synchronization. We then integrate rigid body dynamics
into visual robotic networks. Namely, we newly present a force and torque law to achieve
visual feedback pose synchronization. Even here, passivity of the dynamics plays cen-
tral roles for the design of the control scheme and the convergence analysis. We finally
mention about collision avoidance and visibility maintenance necessary in practical.

This chapter is organized as follows. In Section 5.2, we newly propose an estimation
and control mechanism for the visual robotic network Σ to achieve visual feedback attitude
synchronization without common knowledge. We next tackle a visual feedback attitude
synchronization problem without a leader in Section 5.3. In Section 5.4, we introduce
rigid body dynamics and present a dynamic visual feedback pose synchronization law to
achieve the same goal as in Chapter 4. In Sections 5.2-5.4, we prove that synchronization
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is achieved by the present schemes. We finally address collision avoidance and visibility
maintenance problems and propose their mechanisms in Section 5.5. Section 5.6 concludes
this chapter.

5.2 Visual Feedback Attitude Synchronization with

a Linear Velocity Observer

This section studies a visual feedback attitude synchronization problem taking account of
linear velocity estimation. Although we have already proposed the attitude synchroniza-
tion law (3.1) for visual robotic networks Σ in Chapter 3, we have supposed that all the
rigid bodies in the network have a common linear velocities. Therefore, we newly present
a control law with a linear velocity observer to make the bodies completely autonomous
by integrating passive linear velocity models of the leader. Throughout this section, we
consider leader-following type visibility structures satisfying Assumption 1.

5.2.1 Linear Velocity Model

Suppose that the linear velocity of the leader is given in the form of a finite Fourier series
expansion as follows.

vb
w1(t) = c +

l∑
i=1

(ai sin(wit) + bi cos(wit)) , (5.1)

where ai, bi, c ∈ R3 and the frequencies wi ∈ R+, i ∈ {1, · · · , l} are supposed to be
known a priori. Note here that a constant velocity model is the special case of (5.1)
(ai = bi = 0 ∀i).

Let us now show the passivity of (5.1). We define zv0 ∈ R3, zvi ∈ R3, i ∈ {1, · · · , l},
zv ∈ R3l and xv ∈ R6l+3 as

zv0 := c, zvi := ai sin(wit) + bi cos(wit), zv := [zT
v1 · · · zT

vl]
T, xv := [zT

v0 zT
v żT

v ]T.

Then, it is straightforward to see that the time evolution of vb
w1 is represented by the

following linear time invariant system.

ẋv = Avxv, Av :=




0 0 0
0 0 I3l

0 −diag(w2
1, · · · , w2

l )⊗ I3 0


 ∈ R(6l+3)×(6l+3), (5.2a)

vb
w1 = Cvxv, Cv := [1T

l+1 ⊗ I3 0] ∈ R3×(6l+3). (5.2b)

We get the following lemma for the linear system (5.2b).
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Lemma 10. Define Bv ∈ R(6l+3)×3 as Bv := CT
v . Then, the linear system (Av, Bv, Cv, 0)

with the state xv is passive with respect to the storage function Sv(xv) := (1/2)xT
v Pvxv ≥ 0

with

Pv :=

[
I3(l+1) 0

0 diag(1/w2
1, · · · , 1/w2

l )⊗ I3

]
∈ R(6l+3)×(6l+3).

Proof. We denote the input of the system by uv ∈ R3. Then, the time derivative of Sv

along the trajectory of (5.2b) is given as follows.

Ṡv = xT
v Pv(Avxv + Bvuv) = xT

v




0 0 0
0 0 I3l

0 −I3l 0


 xv + xTBvuv = (Cvxv)

Tuv.

This completes the proof.

Remark 10. A key example of (5.1) is a constant velocity (i.e. vb
w1 = cv [36, 37, 81] or

a typical rectangular wave. The model is in practice useful not only for really constant
velocities since any signal can be approximated by a piecewise step function and it can
be also approximated by finite Fourier series expansions. Similarly, (5.1) is helpful even
if vb

w1 is not really periodic, since a future profile of vb
w1 over a finite interval can be

approximated as (5.1). Namely, it is possible to regard the estimation process over the
infinite time interval as repeats of the estimation over a finite time interval. A variety of
real periodic motion is also approximately described in the form of (5.1).

5.2.2 Visual Feedback Attitude Synchronization Law Integrat-
ing a Linear Velocity Observer

Based on Lemma 10, we propose the following control law.

Controller :





Velocity Observer :

{

Pose Observer :





vb
wi = v̄i, (5.3a)

ωb
wi = kci

∑
j∈Ni

sk(e
ˆ̄ξθ̄ij)∨, (5.3b)

˙̄xvi = Avx̄vi + Bvuvi, v̄i = Cvx̄vi, (5.3c)

uvi = kvipeij, (5.3d)

V̄ b
ij := (ḡ−1

ij
˙̄gij)

∨ = −Ad(ḡ−1
ij )V

b
wi +

[
v̄i

0

]
+ uij, (5.3e)

uij = kei

(
eeij −

[
0

sk(e
ˆ̄ξθ̄ij)∨

])
, (5.3f)
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where j ∈ Ni, i ∈ V and kci, kvi, kei ∈ R+
∀i ∈ V . Equations (5.3a) and (5.3b) represent

velocity input where each rigid body feedbacks the estimated linear velocity denoted by
v̄i ∈ R3 instead of a common v in (3.1a). In order to estimate the linear velocity of the
leader, we newly build a linear velocity observer as in (5.3c) and (5.3d). Notice here that
since each rigid body whose visible body is not the leader (body 1) cannot get the visual
information associated with the leader, each body feedbacks the visual measurement of
its visible body. Then, x̄vi ∈ R6l+3 is the estimate of xv, and uvi ∈ R3 is external input to
be determined so that the estimated value v̄i is driven to vb

wj, j ∈ Ni (as a result, vb
w1),

which is given by (5.3d). Equations (5.3e) and (5.3f) represent the visual motion observer
including the estimated linear velocity v̄i.

5.2.3 Convergence Analysis

We first define the estimation errors vei ∈ R3 and xei ∈ R6l+3 as follows.

vei := vb
wj − v̄i, j ∈ Ni, xei :=

{
xv − x̄vi, i ∈ Vp

x̄vj − x̄vi, j ∈ Ni, i ∈ Vq ∪ Vr
.

Then, when the linear velocity law (5.3a) is applied to every rigid body, we get the
following estimation error system.

ẋv = Avxv, vb
w1 = Cvxv, ˙̄xvi = Avx̄vi, vb

wi = Cvx̄vi, i ∈ V \ {1}, (5.4)

ġeij = −ûijgeij − ˆ̄Vigeij + geijV
b
wj, (5.5)

ẋei = Avxei −Bvuvi, vei = Cvxei, (5.6)

where V̄i := [v̄T
i 0]T ∈ R6. On the other hand, since the linear velocity estimation

mechanism does not influence the orientation part of the relative rigid body motion model
(see (5.3e)), we think of the orientation part of (5.3e) as the control error system similarly
to Chapter 3.

We now get the following theorem for the present control law (5.3).

Theorem 7. Consider the visual robotic network Σ with Assumption 1 and suppose that
the leader moves with the velocity given by (5.1). Then, the control law (5.3) on Σ achieves
visual feedback attitude synchronization.

Proof. We give the proof by using induction. We first consider each rigid body i in V1

whose visible body is body 1 (Vk is defined in the proof of Theorem 1). Since the linear
velocity estimation mechanism does not influence the orientation parts of the estimation
error system and the control error system, the convergence analysis for the orientations
is the same as in Theorem 1. It is thus sufficient for the proof to show that the linear
velocity observer estimates vb

w1 correctly (i.e. vei = 0). We now consider the position part
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of the estimation error system (5.5) and (5.6). Then, substituting the present control law
(5.3) into the systems gives

ẋei = Avxei − kviBvpei1,

ṗei1 = −ûRi1pei1 − upi1 − v̄i + eξ̂θei1vb
w1

= −kei

(
sk(eξ̂θei1)− sk(e

ˆ̄ξθ̄i1)
)

pei1 − keipei1 + vei − vb
w1 + eξ̂θei1vb

w1.

Therefore, we obtain

[
ẋei

ṗei1

]
=

[
Av −kviBv

Cv −keiI3

] [
xei

pei1

]

+

[
0

(eξ̂θei1 − I3)v
b
w1 + kei

(
sk(I3 − e

ˆ̄ξθ̄i1)− sk(I3 − eξ̂θei1)
)

pei1

]
. (5.7)

Note here that the second term in (5.7) is equal to 0 when the orientation of body i in
V1 converges to that of the leader. Therefore, if we define the state x′i1 ∈ R6l+6 for (5.7)
as x′i1 := [xT

ei pT
ei1]

T, we can apply Proposition 1 to the convergence analysis by regarding
(5.7) as the perturbed system. Namely, it is sufficient to show that the equilibrium point
x′i1 = 0 for the system (5.7) without the second term is exponentially stable.

We view the system (5.7) as a linear time invariant system ẋ′i1 = Γx′i1 with the van-
ishing perturbation, where Γ ∈ R(6l+6)×(6l+6) is defined as

Γ :=

[
Av −kviBv

Cv −keiI3

]
.

Let [yT
0 · · · yT

2l+1]
T ∈ R6l+6, yj ∈ R3 be an eigenvector of Γ corresponding to an eigenvalue

σ ∈ C. Then, from the definition of Γ, we get the following equations.

(σ + kei)y2l+1 =
l∑

j=0

yj, kviy2l+1 = −σy0, (5.8)

kviy2l+1 = yl+j − σyj, σyl+j = −w2
jyj, j ∈ {1, · · · , l}. (5.9)

From (5.9), we have

yj = − kviσ

σ2 + w2
j

y2l+1. (5.10)

Substituting the second equations of (5.8) and (5.10) into the first equation of (5.8) yields

σ + kei = −kvi

σ
−

l∑
j=1

kviσ

σ2 + w2
j

.
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We now denote σ = σ1 +
√−1σ2, σ1, σ2 ∈ R. Then, by comparing the coefficients of the

real part, we have

σ1 + kei = −kviσ1

(
1

σ2
1 + σ2

2

+
l∑

j=1

σ̃j

σ̄j

)
,

where

σ̃j := (σ2
1 + σ2

2 + w2
j ) ∈ R, σ̄j = (σ2

1 − σ2
2 + w2

j )
2 + 4σ2

1σ
2
2 ∈ R.

Since

kvi

( 1

σ2
1 + σ2

2

+
l∑

j=1

σ̃j

σ̄i

)
≥ 0

holds, we see that σ1 has to be negative. Therefore, the matrix Γ is Hurwitz and we
conclude from the linearity of the system ẋ′i1 = Γx′i1 that the origin of the system is
exponentially stable. This means that the linear velocity observer estimates vb

w1 correctly.
We next consider each rigid body i in V2 whose visible body is in V1. Notice again that

the linear velocity estimation mechanism does not influence the orientation parts of the
estimation error system and the control error system. Therefore, the convergence analysis
for the orientations is the same as in Theorem 1. On the other hand, since body j ∈ V1

applies the linear velocity along the trajectory of the state space model (Av, Bv, Cv, 0)
which is available for body i in V2 (see (5.3a) and (5.3c)), substituting the present control
law (5.3) into the estimation error systems gives

ẋei = Avxei − kviBvpeij + kvjBvpej1,

ṗeij = −kei

(
sk(eξ̂θeij)− sk(e

ˆ̄ξθ̄ij)
)

peij − keipeij + vei − vb
wj + eξ̂θeijvb

wj.

Therefore, we obtain

[
ẋei

ṗei1

]
=

[
Av −kviBv

Cv −keiI3

] [
xei

pei1

]

+

[
kvjBvpej1

(eξ̂θei1 − I3)v
b
wj + kei

(
sk(I3 − e

ˆ̄ξθ̄ij)− sk(I3 − eξ̂θeij)
)

peij

]
.

Notice now that similarly to the case of V1, the second term is equal to 0 when body j ∈ V1

achieves visual feedback attitude synchronization. The remaining convergence analysis is
thus the same as in the case of V1. Namely, we can conclude that the orientations and
the linear velocities of all the bodies in V2 converge to common values in {1} ∪ V1. We
can also apply the same analysis for the other bodies in Vk, k ∈ {3, 4, · · · }.
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Figure 5.2: Orientation Error

In the present estimation and control mechanism (5.3), each rigid body feedbacks
the estimated linear velocity and the velocity observer input is built by the estimation
error associated with positions. Since the estimation error can be constructed by visual
measurements (2.9) as shown in Appendix A, the present control law (5.3) is completely
autonomous.

5.2.4 Verifications

We finally demonstrate the effectiveness of the present control law (5.3) through simulation
in three dimensions. We consider the visual robotic network Σ with the visibility structure
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shown in Fig. 4.4 satisfying Assumption 1. Let initial conditions be




pw1(0) = [0 0 10]T

pw2(0) = [0 0 5]T

pw3(0) = [0 − 5 0]T

pw4(0) = [0 0 − 5]T

pw5(0) = [3 0 − 10]T

[m],





ξθw1(0) = [−π
4

0 0]T

ξθw2(0) = [0 0 0]T

ξθw3(0) = [−π
4

0 0]T

ξθw4(0) = [0 0 π
3
]T

ξθw5(0) = [0 − π
3

0]T

[rad].

Also, the linear body velocity of the leader (rigid body 1) is set as v(t) = [0.5 cos(2t) 0 1]T

[m/s], and the angular velocity of the leader is 0. We finally apply the present control
law (5.3) with kvi = 1, kci = 1, kei = 3 ∀i ∈ V .

The simulation results are shown in Figs. 5.1-5.5. Fig. 5.1 illustrates the trajectories
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of the rigid bodies in 3D space, where the circles represent the initial positions. The time
responses of the absolute values of the relative rotation angles are shown in Fig. 5.2. We
also depict the time responses of the linear body velocity of each body in Figs. 5.3-5.5.
We see from Figs. 5.1 and 5.2 that the present control law (5.3) achieves visual feedback
attitude synchronization. Also, Figs. 5.3-5.5 show that the present linear velocity observer
works successfully.

5.3 Visual Feedback Attitude Synchronization under

Ring-type Visibility Structures

This section investigates a visual feedback attitude synchronization problem under ring-
type visibility structures. We consider the visual robotic network Σ with visibility struc-
tures satisfying Assumption 2. The feature of the ring-type visibility structures is not to
require the existence of a leader.

5.3.1 Visual Feedback Attitude Synchronization Law for Ring-
type Visibility Structures

In order to achieve visual feedback attitude synchronization (2.10), we propose the fol-
lowing control law.
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Controller :





Observer :





vb
wi = v, (5.11a)

ωb
wi = k

∑
j∈Ni

sk(e
ˆ̄ξθ̄ij)∨, (5.11b)

V̄ b
ij := (ḡ−1

ij
˙̄gij)

∨ = −Ad(ḡ−1
ij )V

b
wi + uij, (5.11c)

uij = keeij +

[
eξ̂θeijv

0

]
, (5.11d)

where j ∈ Ni, i ∈ V and k ∈ R+ is a common gain among all the rigid bodies. It should
be noted that the observer input (5.11d) is different from (3.1d).

5.3.2 Convergence Analysis

The present control input (5.11) gives the following theorem for visual robotic networks
Σ with ring-type visibility structures.

Theorem 8. Consider the visual robotic network Σ with Assumption 2. Then, the control
law (5.11) on Σ achieves visual feedback attitude synchronization in the sense of (2.10) if

eξ̂θij(t) > 0, e
ˆ̄ξθ̄ij(t) > 0, eξ̂θeij(t) > 0, j ∈ Ni, i ∈ V hold for all t ≥ 0.

Proof. Without loss of generality, we deal with the case that rigid body i sees body i− 1
for i ∈ {2, · · · , n} and body 1 sees body n. Consider the potential function Ua ≥ 0
defined in Chapter 3. Then, Ua can be rewritten as follows under the ring-type visibility
structure.

Ua =
n∑

i=1

(
φ(e

ˆ̄ξθ̄i(i−1)) + ψ(gei(i−1))
)

,

where we regard the index ’0’ as ’n’, i.e. e
ˆ̄ξθ̄10 and ge10 represent e

ˆ̄ξθ̄1n and ge1n, respectively.
Similarly, we think of the index ’-1’ as ’n− 1’ in the subsequent discussion.

Then, the time derivative of Ua yields

U̇a = −k

n∑
i=1

(
‖pei(i−1)‖2

2 +
1

2
‖sk(e

ˆ̄ξθ̄i(i−1))∨ − sk(eξ̂θei(i−1))∨‖2
2

+
1

2
‖sk(e

ˆ̄ξθ̄(i−1)(i−2))∨ − sk(eξ̂θei(i−1))∨‖2
2

)
.

Therefore, U̇a is nonpositive. We next consider the set S := {xa ∈ R9(n−1) | U̇a = 0}.
Then, S can be written as

S = {xa ∈ R9(n−1) | pei(i−1) = 0,

sk(e
ˆ̄ξθ̄i(i−1))∨ = sk(eξ̂θei(i−1))∨ = sk(e

ˆ̄ξθ̄(i−1)(i−2))∨ = sk(eξ̂θe(i−1)(i−2))∨ ∀i ∈ V}.
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Note here that since sk(eξ̂θ)∨ = ξ sin θ holds, the following property is satisfied for θ ∈
(−π/2, π/2) and θ′ ∈ (−π/2, π/2).

sk(eξ̂θ) = sk(eξ̂′θ′) ↔ eξ̂θ = eξ̂′θ′ .

Therefore, if eξ̂θi(i−1)(t) > 0 and e
ˆ̄ξθ̄i(i−1)(t) > 0 hold for all i ∈ V , we get

e
ˆ̄ξθ̄i(i−1) = eξ̂θei(i−1) = e

ˆ̄ξθ̄(i−1)(i−2) = eξ̂θe(i−1)(i−2) ∀i ∈ V .

Then, from eξ̂θei(i−1) = e−
ˆ̄ξθi(i−1)eξ̂θi(i−1) = e−

ˆ̄ξθ(i−1)(i−2)eξ̂θ(i−1)(i−2) = eξ̂θe(i−1)(i−2) , we obtain

eξ̂θi(i−1) = eξ̂θ(i−1)(i−2) for all i ∈ V . Therefore, if eξ̂θij > 0 is satisfied for all time, this
means that eξ̂θij = I3 holds for all i ∈ V . We finally conclude from LaSalle’s Invariance
Principle [49] that all the state trajectories converge to the set {xa ∈ R9(n−1) | xa = 0}
and this set is positively invariant (see (5.11)). This completes the proof.

Theorem 8 shows that visual feedback attitude synchronization is achieved even if a
leader does not exist. However, to get this result, we utilize the additional assumptions
associated with gains and orientation configurations. To weaken these assumptions and to
tackle visual feedback pose synchronization problems under ring-type visibility structures
are our future directions.

Remark 11. Throughout this dissertation, we consider the case that each rigid body
sees only one body. The main reason of this limitation is that since each body has its
own estimates of relative poses, we cannot directly utilize geometric properties such as

gij = g−1
wi gwj, gji = g−1

ij , gijgjk = gik

as used in [46, 47, 48]. Namely, ḡji = ḡ−1
ij does not hold true.

5.4 Dynamic Visual Feedback Pose Synchronization

In this section, we integrate rigid body dynamics into visual robotic networks Σ. Namely,
we consider the case that each body cannot directly apply velocity laws. We first introduce
Newton-Euler equations to describe the dynamics. Then, we propose passivity-based force
and torque input to achieve visual feedback pose synchronization in the sense of (2.11)
and prove the synchronization.

5.4.1 Passivity of Newton-Euler Equations

In addition to the rigid body motion (2.2), we consider the following Newton-Euler equa-
tion [82] for the dynamics of rigid bodies.

[
miI3 0

0 Ji

] [
v̇b

wi

ω̇b
wi

]
+

[
miω̂

b
wiv

b
wi

ω̂b
wiJiω

b
wi

]
=

[
fi

τi

]
, i ∈ V (5.12)
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where, mi ∈ R+ and Ji ∈ R3×3 are the mass and the inertia tensor of body i, respectively.
Also, fi ∈ R3 and τi ∈ R3 are force and torque input of body i. In this problem, we take
the approach that the force and torque input drives the actual velocity to the desired
velocity consisting of the present velocity input (4.1a). In line with that, we use passivity
of the rigid body dynamics (5.12).

We now define the positive definite matrix Mi ∈ R6×6 and the skew-symmetric matrix
Ci ∈ R6×6 as

Mi :=

[
miI3 0

0 Ji

]
, Ci :=

[
miω̂

b
wi 0

0 − (
Jiω

b
wi

)∧
]

.

Then, the dynamics (5.12) is rewritten by

MiV̇
b
wi + Ci(ω

b
wi)V

b
wi = Fi, (5.13)

where Fi = [fT
i τT

i ]T ∈ R6 is force and torque input of body i. Then, the following lemma
holds for the rigid body dynamics (5.13).

Lemma 11. The time derivative of Udi := (1/2)(V b
wi)

TMiV
b
wi ≥ 0 along the trajectory of

(5.13) satisfies

U̇di = FT
i V b

wi.

Proof. The time derivative of Udi along the trajectory of (5.13) yields

U̇di = (V b
wi)

TMiV̇
b
wi

= −(V b
wi)

TCi(ω
b
wi)V̇

b
wi + (V b

wi)
TFi

= FT
i V b

wi.

Lemma 11 means that the rigid body dynamics (5.13) is passive from Fi to V b
wi. Namely,

if we respectively consider Fi and V b
wi as the input and the output of (5.13), there exists

no coupling term between the position and the orientation dynamics.

5.4.2 Dynamic Visual Feedback Pose Synchronization Law

We first consider the force and torque input Fi to drive the actual velocity to the desired
velocity, denoted by Vdi = [vT

di, ω
T
di]

T ∈ R6, which is equal to the present velocity input
(4.1a). We propose the following force and torque input based on [83].

Fi = MiV̇di + C(ωb
wi)Vdi + uai, (5.14)
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where uai ∈ R6 is new input to drive the actual velocity V b
wi to the desired one Vdi. Then,

by defining the velocity error as ri = [rT
pi rT

Ri]
T := V b

wi − Vdi ∈ R6, we get the following
error dynamics.

Miṙi + Ci(ω
b
wi)ri = uai. (5.15)

Then, the error dynamics (5.15) is passive from uai to ri as in Lemma 11. Therefore, we
can conclude that the equilibrium point ri = 0 is asymptotically stable for the following
input.

uai = −kairi, (5.16)

where kai ∈ R+.
We now propose the following visual feedback attitude synchronization law.

Controller :





Observer :





Fi = MiV̇di + C(ωb
wi)Vdi +

[
0

ecij

]
+ uai, (5.17a)

uai = −kairi, (5.17b)

Vdi = kci

∑
j∈Ni

Ad(gdij)ecij, (5.17c)

V̄ b
ij := (ḡ−1

ij
˙̄gij)

∨ = −Ad(ḡ−1
ij )V

b
wi + uij, (5.17d)

uij = kei

(
eeij − Ad

(e−ξ̂θcij )
ecij

)
, (5.17e)

where j ∈ Ni, i ∈ V . It should be noted that in the present control law (5.17), each
rigid body requires its own body velocity information in addition to visual measurements
(2.9). Moreover, V̇di depends on ṗeij and hence vb

wj which is not available only from the
visual measurements. In this work, we avoid the problem numerically by just replacing
ṗeij by the difference approximation of peij following [44]. A solution to work out this
issue rigorously is to assume more information like optical flow [32]. Notice also that due
to the limit of measured output, we propose slightly different force and torque input uai

from (5.16).

5.4.3 Convergence Analysis

Combining the dynamic error system with (5.17a) and the estimation and control error
systems yields the following total error system.




ṙi

V b
cij

V b
eij


=



−M−1

i Ciri + M−1
i ecij

−Ad(g−1
cij )ri

0


+




M−1
i 0 0
0 −Ad(g−1

cij ) I6

0 0 −Ad(g−1
eij)






uai

Ad(g−1
dij)

V b
wi

uij


+




0
0

V b
wj


 .

(5.18)
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We also define the total error vector edi ∈ R18 as edi := [rT
i eT

cij eT
eij]

T. We now define a
potential function Udij ≥ 0 as follows.

Udij :=
1

2
rT
i Miri + ψ(gcij) + ψ(geij). (5.19)

Then, the following lemma holds for the total error system (5.18),

Lemma 12. If V b
wj = 0 holds, then the time derivative of Udij along the trajectory of

(5.18) satisfies

U̇dij = uT
dijνdij,

where

udij :=




uai

Ad(g−1
dij)

V b
wi

uij


 ∈ R18, νdij :=




I6 0 0
0 −I6 0
0 Ad

(e−ξ̂θcij )
−I6


 edij ∈ R18.

Proof. Lemmas 7 and 11 give the proof.

Lemma 12 means that total error system (5.18) is passive from udij to νdij with the storage
function Udij when V b

wj = 0 holds. It should be noted that the present input (5.17) is
constructed by the output of the passivity.

We get the following theorem from Lemma 12.

Theorem 9. Consider the visual robotic network Σ with the dynamics (5.13) and Assump-
tion 1. Then, the control law (5.17) on Σ achieves visual feedback pose synchronization.

Proof. We can prove this theorem by using the same approach as in Theorem 4. The
difference is only that we introduce Udij instead of Uij and the time derivative of Udij

yields −kai‖ri‖2
2 which is negative definite associated with ri.

We can also analyze the tracking performance for the leader moving independently by
utilizing the same approach as in Chapter 4. However, note again that the present control
law (5.17) requires own velocity information and the difference approximation of vb

wj.

5.5 Collision Avoidance and Visibility Maintenance

In motion coordination problems, it is necessary to tackle collision avoidance problems. On
the other hand, in vision-based cooperative control, visibility has to be maintained since
a neighbor is captured by a vision sensor. Visibility maintenance also requires collision
avoidance since it is undesirable for rigid bodies to get too close to each other. We thus
propose collision avoidance and connectivity maintenance algorithms in this section.
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Figure 5.6: Collision

5.5.1 Definitions of Collision and Visibility

We first define collision as follows (see Fig. 5.6).

Definition 7. Rigid bodies i and j are said to collide if and only if ||pij|| ≤ rc, where
rc ∈ R+ is a collision distance.

In order to avoid collisions with neighbors, we employ the following potential function
Ucaij ≥ 0 as in [47] (see Fig. 5.7).

Ucaij :=

(
min

{
0,
‖pij‖2

2 −R2
c

‖pij‖2
2 − r2

c

})2

, j ∈ Ni, (5.20)

where Rc ∈ R+ (Rc > rc) is the distance from which the function works to avoid collision.
Then, the partial derivative of Ucaij by pwi gives

e−ξ̂θwi

(
∂Ucaij

∂pwi

)T

=





0 if Rc ≤ ||pij||2
−4

(R2
c−r2

c )(||pij ||22−R2
c)

(||pij ||22−r2
c )3

pij if rc < ||pij||2 < Rc

not defined if||pij||2 = rc

0 if ||pij||2 < rc

.

Notice here that e−ξ̂θwi(∂Ucaij/∂pwi) requires only relative pose information.
We next define visibility for the pinhole camera model (2.5). We denote the bearing

angles of i with respect to its visible body j ∈ Ni by χij, ζij ∈ R, where χij and ζij are
associated with the z-axis and x-axis of Σi, respectively. Then, the angles are given as
follows (see Fig. 5.8).

χij := arctan




√
x2

ij + y2
ij

zij


 , ζij := arctan

(
xij

yij

)
,
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Figure 5.7: Artificial Potential Function for Collision Avoidance

where we use the notation pij = [xij yij zij]
T. We now define visibility.

Definition 8. Visibility of rigid body i for its visible body j is said to be maintained when
|χij| < χM holds, where χM ∈ R+ is the maximum view angle of the pinhole camera.

Similarly to (5.20), we define the following potential function Uvmij ≥ 0 to maintain
visibility (see Fig. 5.9).

Uvmij :=
1

2
(χvmij + χvmji), χvmij :=

(
min

{
0,

χ2
ij − χ2

m

χ2
ij − χ2

M

})2

≥ 0, (5.21)

where χm ∈ R+ (χM > χm) is the absolute angle from which the function works to
maintain the visibility. Then, the partial derivative of Uvmij with respect to pwi gives

e−ξ̂θwi

(
∂Uvmij

∂pwi

)T

=





0 if χM < χij

not defined if χij = χM

−4χij(χ
2
ij−χ2

m)(χ2
M−χ2

m)

‖pij‖22(χ2
M−χ2

ij)
3

[
zij cos ζij zij sin ζij −

√
x2

ij + y2
ij

]T

if χm ≤ χij < χM

0 if χij < χm

.

On the other hand, the partial derivative of Uvmij with respect to Φwi = [Φwix Φwiy Φwiz]
T ∈
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Figure 5.8: Visibility

R3 (the rotation of body i associated with Σw) yields

e−ξ̂θwi

(
∂Uvmij

∂Φwi

)T

=





0 if χM < χij

not defined if χij = χM

−4χij(χ
2
ij−χ2

m)(χ2
M−χ2

m)

(χ2
M−χ2

ij)
3 [− sin ζij cos ζij 0]T if χm ≤ χij < χM

0 if χij < χm

.

Similarly to Ucaij, the time derivatives require only relative pose information.

5.5.2 Collision Avoidance and Visibility Maintenance Law

We now propose a collision avoidance and visibility maintenance algorithm. We first
consider the previous work introduced in Subsection 2.4.3. Namely, we suppose that each
rigid body has actual relative poses gij, j ∈ Ni and consider the pose synchronization
law (2.22). Then, by employing functions (5.20) and (5.21), we modify the velocity input
(2.22) as

V b
wi =

[
kpiI3 0

0 kRiI3

] ∑
j∈Ni

([
pij

sk(eξ̂θij)∨

]
−

[
e−ξ̂θwi

(
∂Ucaij

∂pwi

)T

0

]

−

e−ξ̂θwi

(
∂Uvmij

∂pwi

)T

e−ξ̂θwi

(
∂Uvmij

∂Φwi

)T




)
, kpi, kRi ∈ R+, i ∈ V . (5.22)

Then, the following fact holds [84].
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Figure 5.9: Artificial Potential Function for Visibility Maintenance

Fact 4. Consider n rigid bodies represented by (2.2). Suppose that there exists eξ̂θa ∈
SO(3) such that e−ξ̂θaeξ̂θwi ∀i ∈ V are positive definite at the initial time, the undirected
interconnection topology between bodies is fixed, connected, and the initial conditions sat-
isfy ||pij(0)||22 > rc and |χij(0)| < χM for all j ∈ Ni, i ∈ V. Then, the control input
(5.22) leads each body to avoid collisions with its neighbors and keep them within its field
of view. In addition, all the poses converge to the poses satisfying





∑
j∈Ni

(
pij −

(
∂Ucaij

∂pwi

)T

−
(

∂Uvmij

∂pwi

)T
)

= 0

∑
j∈Ni

(
sk(eξ̂θij)∨ −

(
∂Uvmij

∂Φwi

)T
)

= 0

∀i ∈ V .

Since the present input (5.22) is formed only by relative poses associated with neigh-
bors, we get the following corollary.

Corollary 2. The control law (5.22) is implementable with only visual measurements.

We have shown the effectiveness through experiments in [84]. However, Corollary 2 shows
only the possibility of the implementation of the collision avoidance and visibility mainte-
nance algorithm and each rigid body implements the algorithm by using the estimates ḡij

instead of the actual gij in our framework, which might cause collision or break visibility.
The design of the control law to completely guarantee collision avoidance and visibility
maintenance is one of our future works.
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5.6 Chapter Summary

In this chapter, we have given further developments on visual feedback attitude/pose syn-
chronization investigated in Chapters 3 and 4. We have first proposed a visual feedback
attitude synchronization law integrating the passive linear velocity model of the leader to
estimate the velocity, which enables for rigid bodies to be completely autonomous. We
have then showed that the present scheme achieves visual feedback attitude synchroniza-
tion. We have next studied visual feedback attitude synchronization for visual robotic
networks without a leader. We have proposed a new attitude synchronization law for
ring-type visibility structures and prove synchronization. In the convergence analysis, we
have also clarified the difficulties to handle wider classes of visibility structures for syn-
chronization. We have next integrated rigid body dynamics into visual robotic networks.
Here, we have introduced Newton-Euler equations to describe the dynamics and proposed
a force and torque input to achieve pose synchronization, where passivity of the dynamics
plays central roles for the design of the control law and the convergence analysis. We
have finally mentioned about collision avoidance and visibility maintenance necessary in
practical.
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Chapter 6

Conclusions

6.1 Dissertation Summary

In this dissertation, we have investigated visual feedback attitude/pose synchronization
on SE(3) for a group of rigid bodies equipped with vision sensors. The main feature of
this work is that visual information extracted by a monocular camera is only available
for each body to implement its control law. We have first introduced a notion of visual
robotic networks consisting of multiple bodies with rigid body motion, visibility struc-
tures and visual measurements. Then, the visual robotic network becomes the robotic
network regarding interconnection topologies between bodies as visibility structures and
adding explicit formulation of measured output. This setting enables each body to be
fully autonomous. We have next given the definitions of visual feedback attitude/pose
synchronization as the goals of this work. The definitions require each body to utilize
only visual measurements for the implementation of control laws in addition to those in
our previous works.

We have next proposed visual feedback attitude/pose synchronization laws consisting
of visual motion observers and synchronization laws. Here, passivity of rigid body motion
plays a crucial role for the design of the present estimation and control mechanisms. We
have then given the convergence and performance analysis for the visual robotic network
with the present estimation and control schemes. In the analysis, we have focused mainly
on leader-following visibility structures. It has first been shown via Lyapunov methods
that the present laws achieve attitude/pose synchronization under leader-following type
visibility structures, where passivity of rigid body motion also plays a central role. How-
ever, in the present control scheme, the leader does not rotate/move, and as a result, the
network cannot rotate/move after attitude/pose synchronization. In order to overcome
these issues, we have next considered the case that the leader rotates/moves indepen-
dently. In this situation, we have analyzed the tracking performance of the network for
the leader by employing the theory of input-to-state stability or L2 stability. Here, we
have regarded the individual velocity of the leader as an external disturbance to the net-
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work and evaluate the total estimation and control errors in the network. This analysis
gives the guidelines to design the estimation and control gains of the present estimation
and control mechanisms.

We have moreover given some further developments on visual feedback attitude/pose
synchronization in regard to (i) linear velocity observers for attitude synchronization, (ii)
ring-type visibility structures which does not require the existence of a leader, (iii) exten-
sion from velocity laws to force and torque ones by integrating Newton-Euler equations as
rigid body dynamics, and (iv) visibility maintenance and collision avoidance. The effec-
tiveness and validity of the present estimation and control schemes and the convergence
and performance analysis have been demonstrated through simulation in three dimensions
and experiments on a planar testbed.

6.2 Further Directions

The main further direction of this work is to extend the class of visibility structures
for visual feedback attitude/pose synchronization. In fact, the current classes are very
limited (the main reason of this problem is mentioned in Remark 11). Usage of more visual
information such as optical flows or time-to-collision used in [59, 62] might be helpful to
work out this issue.

Other future works are listed as follows.

• We propose visual feedback algorithms to guarantee collision avoidance and visibil-
ity maintenance. This dissertation has only shown that the collision avoidance law
proposed in [47] and the present visibility maintenance law presuming the measure-
ment of actual relative poses can be formed by estimated relative ones. A solution
to this problem is to build collision avoidance and visibility maintenance laws by
using visual measurements.

• We analyze the convergence analysis for switching visibility structures since visible
rigid bodies of each body depend on its visibility. A solution to this issue is to utilize
the concept of brief instability developed in [85] and introduce dwell time as used
in [46, 47].

• Since we utilize a first-order Taylor expansion approximation to construct estima-
tion errors from visual measurements in the present estimation mechanisms, we
investigate the region of attraction.
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Appendix A

Reconstruction of Estimation Errors
from Visual Measurements

A.1 Pinhole Camera Model

We first derive a relation between the actual and estimated visual measurements extracted
by the pinhole camera model (2.5). Suppose the attitude estimation error θeij is small

enough so that we can let eξ̂θeij ≈ I3 + sk(eξ̂θeij) (see Appendix B.2.8). We then have the
following relation between the actual feature point pijk

and the estimated one p̄ijk
.

pijk
− p̄ijk

= pij + eξ̂θijpjjk
− p̄ij − e

ˆ̄ξθ̄ijpjjk

= e
ˆ̄ξθ̄ijpeij + e

ˆ̄ξθ̄ij(e−
ˆ̄ξθ̄ijeξ̂θij − I3)pjjk

(∵ peij = e−
ˆ̄ξθ̄ij(pij − p̄ij))

≈ e
ˆ̄ξθ̄ijpeij + e

ˆ̄ξθ̄ijsk(eξ̂θeij)pjjk
(∵ eξ̂θ ≈ I3 + sk(eξ̂θ))

= e
ˆ̄ξθ̄ijpeij + (e

ˆ̄ξθ̄ijsk(eξ̂θeij)e−
ˆ̄ξθ̄ij)e

ˆ̄ξθ̄ijpjjk

= e
ˆ̄ξθ̄ijpeij + (e

ˆ̄ξθ̄ijsk(eξ̂θeij)∨)∧e
ˆ̄ξθ̄ijpjjk

(∵ eξ̂θω̂e−ξ̂θ = (eξ̂θω)∧ (Appendix B.2.3))

= e
ˆ̄ξθ̄ijpeij − (e

ˆ̄ξθ̄ijpjjk
)∧e

ˆ̄ξθ̄ijsk(eξ̂θeij)∨ (∵ âb = −b̂a (Appendix B.1.2))

= e
ˆ̄ξθ̄ijpeij − (e

ˆ̄ξθ̄ij p̂jjk
e−

ˆ̄ξθ̄ij)e
ˆ̄ξθ̄ijsk(eξ̂θeij)∨ (∵ eξ̂θω̂e−ξ̂θ = (eξ̂θω)∧)

= e
ˆ̄ξθ̄ij(peij − p̂jjk

sk(eξ̂θeij)∨)

= e
ˆ̄ξθ̄ij

[
I3 −p̂jjk

] [
peij

sk(eξ̂θeij)∨

]

= e
ˆ̄ξθ̄ij

[
I3 −p̂jjk

]
eeij.

On the other hand, by using a first-order Taylor expansion approximation, the relation
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between the actual and estimated visual measurements can be expressed as

fijk
− f̄ijk

≈
[
∂fijk

∂xijk

|pijk
=p̄ijk

∂fijk

∂yijk

|pijk
=p̄ijk

∂fijk

∂zijk

|pijk
=p̄ijk

]
(pijk

− p̄ijk
).

Thus, the relation is given by

fij(gij)− f̄ij(ḡij) = Jij(ḡij)eeij,

where Jij(ḡij) : SE(3) → R2s×6 is defined as

Jij(ḡij) :=
[
JT

ij1
· · · JT

ijs

]T
,

Jijk
(ḡij) :=

[
∂fijk

∂xijk

|pijk
=p̄ijk

∂fijk

∂yijk

|pijk
=p̄ijk

∂fijk

∂zijk

|pijk
=p̄ijk

]
e

ˆ̄ξθ̄ij
[
I3 −p̂jjk

]
, k ∈ {1, · · · , s}.

Suppose the matrix Jij(ḡij) is full column rank for all ḡij ∈ SE(3). Then, the relative
rigid body motion can be uniquely defined by the visual measurements vector. Since this
might not hold in some cases when s = 3, it is known that s ≥ 4 is desirable for the full
column rank of Jij(ḡij).

The above discussion shows that we can derive the estimation error vector eeij from
the visual measurements fij and the estimated relative pose ḡij as

eeij = J†ij(ḡij)(fij − f̄ij),

where † is the pseudo-inverse. Moreover, once eeij is reconstructed, eξ̂θeij can be calculated
by ξθeij for θeij ∈ (−π/2, π/2) which is derived as follows.

ξθeij =
sin−1 ‖sk(eξ̂θeij)∨‖2

‖sk(eξ̂θeij)∨‖2

sk(eξ̂θeij)∨.

A.2 Panoramic Camera Model

We next derive a relation between the actual and estimated visual measurements extracted
by the panoramic camera model (2.8). Similarly to the case of the pinhole camera model,
we get the following relation under the assumption that the attitude estimation error θeij

is small enough so that

pmijk
− p̄mijk

≈ e
ˆ̄ξθ̄mij

[
I3 −p̂jjk

]
eeij.

Moreover, using a first-order Taylor expansion approximation yields

fijk
− f̄ijk

≈
[

∂fijk

∂xmijk

|pmijk
=p̄mijk

∂fijk

∂ymijk

|pmijk
=p̄mijk

∂fijk

∂zmijk

|pmijk
=p̄mijk

]
(pmijk

− p̄mijk
),
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where

∂fijk

∂xmijk

=
2riλi

∂c(pmijk
)

∂xmijk

(2ri + c(pmijk
)zmijk

)2

[
xmijk

ymijk

]
+

λic(pmijk
)

2ri + c(pmijk
)zmijk

[
1
0

]
,

∂fijk

∂ymijk

=
2riλi

∂c(pmijk
)

∂ymijk

(2ri + c(pmijk
)zmijk

)2

[
xmijk

ymijk

]
+

λic(pmijk
)

2ri + c(pmijk
)zmijk

[
0
1

]
,

∂fijk

∂zmijk

=
2riλi

∂c(pmijk
)

∂zmijk

(2ri + c(pmijk
)zmijk

)2

[
xmijk

ymijk

]
− λic

2(pmijk
)

(2ri + c(pmijk
)zmijk

)2

[
xmijk

ymijk

]
.

Thus, by introducing the same image Jacobian Jij(ḡmij) : SE(3) → R2s×6 as that of
the pinhole camera case, we get

eeij = J†ij(ḡmij)(fij − f̄ij).
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Appendix B

Mathematical Formulas

B.1 Formulas of ’∧’

B.1.1 âa = 0

Since âb = a× b holds for any a, b ∈ R3, we get

âa = a× a = 0.

B.1.2 âb = −b̂a

Since âb = a× b holds, we obtain

âb = a× b = −b× a = −b̂a.

B.1.3 1
2tr(âb̂) = −aTb

We get from the notations a = [a1 a2 a3]
T, b = [b1 b2 b3]

T

1

2
tr(âb̂) =

1

2
tr







0 −a3 a2

a3 0 −a1

−a2 a1 0







0 −b3 b2

b3 0 −b1

−b2 b1 0







=
1

2
tr






−a2b2 − a3b3 ∗ ∗

∗ −a3b3 − a1b1 ∗
∗ ∗ −a1b1 − a2b2







= −(a1b1 + a2b2 + a3b3)

= −aTb.
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B.1.4 â2 = aaT − ‖a‖2
2I3

The direct calculation of â2 yields

â2 =




0 −a3 a2

a3 0 −a1

−a2 a1 0







0 −a3 a2

a3 0 −a1

−a2 a1 0




=



−a2

2 − a2
3 a1a2 a3a1

a1a2 −a2
3 − a2

1 a2a3

a3a1 a2a3 −a2
1 − a2

2




=




a2
1 a1a2 a3a1

a1a2 a2
2 a2a3

a3a1 a2a3 a2
3


−




a2
1 + a2

2 + a2
3 0 0

0 a2
1 + a2

2 + a2
3 0

0 0 a2
1 + a2

2 + a2
3




= aaT − ‖a‖2
2I3.

B.1.5 â3 = −‖a‖2
2â

We get from Appendices B.1.1 and B.1.4

â3 = â(â)2 = â(aaT − ‖a‖2
2I3) = âaaT − ‖a‖2

2â = −‖a‖2
2â.

B.2 Formulas of eξ̂θ

B.2.1 Rodrigues’ Formula

For any eξ̂θ ∈ SO(3), Rodrigues’ formula is given as follows [82]．

eξ̂θ = I3 + ξ̂ sin θ + ξ̂2(1− cos θ). (B.1)

This formula is derived from the definition of eξ̂θ and Appendix B.1.5 as follows.

eξ̂θ = I3 + ξ̂θ +
1

2!
ξ̂2θ2 +

1

3!
ξ̂3θ3 + · · ·

= I3 + ξ̂

(
θ − 1

3!
θ3 + · · ·

)
+ ξ̂2

(
1

2!
θ2 − 1

4!
θ4 + · · ·

)
(∵ ξ̂3 = −‖ξ‖2

2ξ̂ = −ξ̂)

= I3 + ξ̂ sin θ + ξ̂2(1− cos θ).

B.2.2 Positive Definiteness of eξ̂θ

A rotation matrix eξ̂θ is positive definite if and only if θ satisfies θ ∈ (−π/2, π/2), where
θ is defined in (−π, π]. This property can be proved as follows.
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Sufficiency: For any x ∈ R3, we get from Rodrigues’ formula (B.1) and Appendix
B.1.4

xTeξ̂θx = xT
(
I3 + ξ̂ sin θ + ξ̂2(1− cos θ)

)
x

= xTx + xTξ̂2(1− cos θ)x (∵ xTξ̂x = 0)

= xTx + xT(ξξT − I3)(1− cos θ)x (∵ ξ̂2 = ξξT − ‖ξ‖2
2I3)

= (1− cos θ)xTξξTx + cos θxTx.

Therefore, if θ ∈ (−π/2, π/2) holds, then the rotation matrix eξ̂θ is positive definite.
Necessity: We prove the necessity by using the contraposition. Namely, we show that

if θ /∈ (−π/2, π/2) holds, then the rotation matrix eξ̂θ is not positive definite. Here, note
that it is sufficient to show that ∃x 6= 0 s.t. xTAx ≤ 0, x ∈ R3 in order to prove that
a matrix A ∈ R3×3 is not positive definite. Let us now consider a vector x such that
ξTx = 0 and x 6= 0. Then, the quadratic form of eξ̂θ is given by

xTeξ̂θx = (1− cos θ)xTξξTx + cos θxTx

= cos θxTx (∵ ξTx = 0).

Note that this quadratic form becomes non-positive when θ /∈ (−π/2, π/2) holds. This
completes the proof.

B.2.3 eξ̂θω̂e−ξ̂θ = (eξ̂θω)∧

For any ω, v ∈ R3, we get

eξ̂θω̂e−ξ̂θv = eξ̂θω̂(e−ξ̂θv)

= eξ̂θ
(
ω × (e−ξ̂θv)

)
(∵ âb = a× b)

= (eξ̂θω)× (eξ̂θe−ξ̂θv)

= (eξ̂θω)× v

= (eξ̂θω)∧v (∵ âb = a× b).

Therefore, we obtain eξ̂θω̂e−ξ̂θ = (eξ̂θω)∧.

B.2.4 eξ̂θ(e−ξ̂θėξ̂θ)∨ = (ėξ̂θe−ξ̂θ)∨

The direct calculation of eξ̂θ(e−ξ̂θėξ̂θ)∨ yields

eξ̂θ(e−ξ̂θėξ̂θ)∨ =

((
eξ̂θ(e−ξ̂θėξ̂θ)∨

)∧)∨

= (eξ̂θe−ξ̂θėξ̂θe−ξ̂θ)∨ (∵ Appendix B.2.3)

= (ėξ̂θe−ξ̂θ)∨.
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B.2.5 Skew-symmetric Property of ėξ̂θe−ξ̂θ

The time derivative of the both sides of eξ̂θe−ξ̂θ = I3 yields

ėξ̂θe−ξ̂θ + eξ̂θė−ξ̂θ = 0.

Then, from this equality and the property that (eξ̂θ)T = e−ξ̂θ, we obtain

ėξ̂θe−ξ̂θ = −eξ̂θė−ξ̂θ = −eξ̂θ(ėξ̂θ)T = −(ėξ̂θe−ξ̂θ)T.

This means that ėξ̂θe−ξ̂θ is skew-symmetric.

B.2.6 sk(eξ̂θ) = ξ̂ sin θ

We get from Rodrigues’ formula (B.1)

sk(eξ̂θ) =
1

2
(eξ̂θ − e−ξ̂θ)

=
1

2

(
I3 + ξ̂ sin θ + ξ̂2(1− cos θ)−

(
I3 + ξ̂ sin(−θ) + ξ̂2 (1− cos(−θ))

))

=
1

2

(
I3 + ξ̂ sin θ + ξ̂2(1− cos θ)−

(
I3 − ξ̂ sin θ + ξ̂2(1− cos θ)

))

= ξ̂ sin θ.

B.2.7 eξ̂θsk(eξ̂θ)∨ = sk(eξ̂θ)∨

Since ’∨’ is the inverse operator to ’∧’, we obtain

eξ̂θsk(eξ̂θ)∨ =

((
eξ̂θsk(eξ̂θ)∨

)∧)∨

=
(
eξ̂θsk(eξ̂θ)e−ξ̂θ

)∨
(∵ Appendix B.2.3)

=

(
eξ̂θ 1

2
(eξ̂θ − e−ξ̂θ)e−ξ̂θ

)∨

=

(
1

2
(eξ̂θ − e−ξ̂θ)

)∨

= sk(eξ̂θ)∨.

Similarly, we get e−ξ̂θsk(eξ̂θ)∨ = sk(eξ̂θ)∨.
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B.2.8 eξ̂θ ≈ I3 + sk(eξ̂θ) for |θ| << 1

Since sk(eξ̂θ) = ξ̂ sin θ holds (Appendix B.2.6), Rodrigues’ formula (B.1) can be given by

eξ̂θ = I3 + sk(eξ̂θ) + ξ̂2(1− cos θ).

Thus, when |θ| << 1 (i.e. cos θ ≈ 1) holds, we obtain eξ̂θ ≈ I3 + sk(eξ̂θ).

B.3 Formulas of φ(eξ̂θ)

Consider the potential function φ(eξ̂θ) ∈ R defined as

φ(eξ̂θ) :=
1

4
‖I3 − eξ̂θ‖2

F =
1

2
tr(I3 − eξ̂θ).

Then, from the definition of the Frobenius norm, φ(eξ̂θ) has the properties that φ(eξ̂θ) ≥ 0

and φ(eξ̂θ) = 0 if and only if eξ̂θ = I3.

B.3.1 φ(eξ̂θ) = 1− cos θ

The direct calculation of φ(eξ̂θ) with Rodrigues’ formula (B.1) yields

φ(eξ̂θ) =
1

2
tr(I3 − eξ̂θ)

=
1

2
tr

(
−ξ̂ sin θ − ξ̂2(1− cos θ)

)

= −1

2
tr(ξ̂2)(1− cos θ) (∵ tr(ξ̂) = 0)

= ξTξ(1− cos θ) (∵ Appendix B.1.3)

= 1− cos θ. (∵ ξT ξ = 1)

B.3.2 φ̇(eξ̂θ) = (sk(eξ̂θ)∨)Tωb

The time derivative of φ(eξ̂θ) yields

φ̇(eξ̂θ) = −1

2
tr(ėξ̂θ)

= −1

2
tr(ėξ̂θe−ξ̂θeξ̂θ)

= −1

2
tr

(
ėξ̂θe−ξ̂θsk(eξ̂θ)

)
− 1

2
tr

(
ėξ̂θe−ξ̂θsym(eξ̂θ)

)
(B.2)
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Here, sym(eξ̂θ) ∈ R3×3 is the symmetric component of eξ̂θ defined as sym(eξ̂θ) := (1/2)(eξ̂θ+

e−ξ̂θ), and we use the property that A = sym(A) + sk(A) holds for any A ∈ Rn×n. Then,

since ėξ̂θe−ξ̂θ is skew-symmetric (Appendix B.2.5), we obtain

tr
(
ėξ̂θe−ξ̂θsym(eξ̂θ)

)
= tr

((
ėξ̂θe−ξ̂θsym(eξ̂θ)

)T
)

(∵ tr(A) = tr(AT))

= tr

(
sym(eξ̂θ)T

(
ėξ̂θe−ξ̂θ

)T
)

= tr
(
sym(eξ̂θ)

(
−ėξ̂θe−ξ̂θ

))
(∵ Appendix B.2.5)

= −tr
(
ėξ̂θe−ξ̂θsym(eξ̂θ)

)
(∵ tr(AB) = tr(BA))

We thus get tr
(
ėξ̂θe−ξ̂θsym(eξ̂θ)

)
= 0. Finally, substituting this equation into (B.2) yields

φ̇(eξ̂θ) = −1

2
tr

(
ėξ̂θe−ξ̂θsk(eξ̂θ)

)

= −1

2
tr

((
(ėξ̂θe−ξ̂θ)∨

)∧ (
sk(eξ̂θ)∨

)∧)

=
(
(ėξ̂θe−ξ̂θ)∨

)T

sk(eξ̂θ)∨ (∵ Appendix B.1.3)

=
(
sk(eξ̂θ)∨

)T

(ėξ̂θe−ξ̂θ)∨

=
(
sk(eξ̂θ)∨

)T

eξ̂θe−ξ̂θ(ėξ̂θe−ξ̂θ)∨

=
(
sk(eξ̂θ)∨

)T

eξ̂θe−ξ̂θ(eξ̂θω̂be−ξ̂θ)∨ (∵ ω̂b = e−ξ̂θėξ̂θ)

=
(
sk(eξ̂θ)∨

)T

eξ̂θe−ξ̂θeξ̂θωb (∵ Appendix B.2.3)

=
(
sk(eξ̂θ)∨

)T

eξ̂θωb

=
(
sk(eξ̂θ)∨

)T

ωb. (∵ Appendix B.2.7)

B.3.3 φ(eξ̂θ) ≤ ‖sk(eξ̂θ)∨‖2
2 for θ ∈ (−π/2, π/2)

Since sk(eξ̂θ)∨ = ξ sin θ, ‖ξ‖2 = 1 and φ(eξ̂θ) = 1− cos θ hold, we get for θ ∈ (−π/2, π/2)

‖sk(eξ̂θ)∨‖2
2 = ‖ξ sin θ‖2

2 = sin2 θ = 1− cos2 θ ≥ 1− cos θ = φ(eξ̂θ). (∵ cos θ > 0)
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