
論文 / 著書情報
Article / Book Information

題目(和文) 大規模並列ヘテロジニアス環境におけるメモリ構造を考慮したソーテ
ィングおよび配列アラインメントの最適化

Title(English) Memory-Conscious Optimizations for Sorting and Sequence Alignment
for Massively Parallel Heterogeneous Architectures

著者(和文) DROZD Aleksandr

Author(English) Aleksandr Drozd

出典(和文) 学位:博士(理学),
 学位授与機関:東京工業大学,
 報告番号:甲第9420号,
 授与年月日:2014年3月26日,
 学位の種別:課程博士,
 審査員:松岡　聡,遠藤　敏夫,山下　真,脇田　建,渡辺　治

Citation(English) Degree:Doctor (Science),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9420号,
 Conferred date:2014/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Memory-Conscious Optimizations for

Sorting and Sequence Alignment for

Massively Parallel Heterogeneous

Architectures

Aleksandr Drozd

Graduate School of Information Science and Engineering

Tokyo Institute of Technology

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2014 February

mailto:your@email.net
http://www.something.net
http://www.something.net

Academic Advisor: Satoshi Matsuoka

Reviewer: Toshio Endo

Reviewer: Ken Wakita

Reviewer: Osamu Watanabe

Reviewer: Makoto Yamashita

Day of the defense: January 6th, 2014

ii

Abstract

This work addresses the issue of improving performance of data-intensive

algorithms on modern computing architectures. Two case studies are pre-

sented: sorting and sequence alignment.

For sorting we developed CPU and GPU implementations of most-significant

digit radix sort algorithm using different parallelization strategies on differ-

ent execution stages to optimize the use of system resources and workload

balance. To overcome the limitations of PCIe bus bandwidth in the GPU

version we used communication-reducing strategy. Our solution achieves

sorting rates up to 6 ∗ 107 keys per second sorting throughput with good

scalability.

For the sequence alignment we adapted Burrows Wheeler transform based

index to reduce overall memory footprint on GPUs. A mathematical model

of computation and communication costs was developed to optimize mem-

ory partitioning for index and queries. Performance evaluation shows more

than ten-fold performance gain per device.

iv

Acknowledgements

I would like to give my most sincere appretiation to people who made this

dissertation possible. My advisors, colleagues, dear friends - well, these are

largely intersecting sets.

Спасибо!

ありがとうございます !

ii

Contents

List of Figures vii

List of Tables ix

Glossary xi

1 Introduction 1

1.1 Computational Science and HPC . 1

1.2 Motivation . 2

1.3 Problem Statement . 4

1.4 Contributions . 5

1.5 Thesis Outline . 6

2 Background 7

2.1 High Performance Computing . 7

2.1.1 Programming Supercomputers 8

2.1.2 Application Performance Challenges 9

2.2 GPU Computing . 11

2.2.1 GPGPU History . 12

2.2.2 GPU Architecture . 13

2.2.3 Programming GPUs . 14

2.2.4 Programming with CUDA . 15

2.2.5 Challenges of GPU Programming 18

3 Sequence Alignment 23

3.1 Introduction to the Problem Domain . 23

3.1.1 Genes and DNA . 23

iii

CONTENTS

3.1.2 DNA sequencing . 25

3.1.3 Practical Applications and -omics 28

3.1.4 Human Genome Project . 29

3.1.5 1000 Genomes Project . 30

3.2 Sequence Alignment . 31

3.2.1 Definition . 31

3.2.2 Dynamic Programming . 31

3.2.3 Faster Methods . 32

3.2.4 Whole-Genome Structural Alignment 34

3.2.5 Read Alignment . 34

3.2.6 Defining our Problem . 34

3.3 Aproaches to Finding MUMs . 35

3.3.1 Suffix Trees and MUMmer . 35

3.3.2 Suffix Arrays and MUMmerGPU++ 37

3.4 Implementing BWT-based Aligner . 39

3.4.1 Burrows-Wheeler Transform . 40

3.4.2 Compressed Suffix Arrays . 42

3.4.3 Search Algorithm . 44

3.5 Implementation . 45

3.5.1 Preliminary Performance Evaluation 46

3.5.2 Partitioning Big Workloads . 47

3.5.3 Performance Model and Workload Balancing on single-GPU . . 49

3.5.4 Multiple GPUs . 52

3.6 Conclusion . 53

4 String Sorting 57

4.1 Introduction . 57

4.1.1 Approaches to Sorting . 58

4.1.2 Sorting by Counting . 59

4.1.3 Sorting Longer Keys . 61

4.1.4 Parallel Sorts . 62

4.2 Parallelizing String Sort . 63

4.2.1 MSD Radix Sort . 63

iv

CONTENTS

4.2.2 3-Way Radix Quicksort . 65

4.2.3 Implementing 3-Way Radix Quicksort Without Swaps 66

4.2.4 Parallelization Scheme . 68

4.3 Implementation . 70

4.3.1 CPU Implementation . 71

4.3.2 GPU Implementation . 71

4.4 Performance Analysis and Optimization 73

4.4.1 CPU Implementation Performance 74

4.4.2 GPU Implementation Performance 76

4.4.3 Alternative Approach to GPU String Sorting 79

4.4.4 Skewed Keys . 80

4.5 Conclusion . 80

5 Discussion and Conclusions 87

5.1 Main Findings . 87

5.2 Fitness of Algorithms and Architectures 88

5.3 Host-to-device Communication Expenses 89

5.4 Hybrid Algorithms . 90

5.5 Implications for Computational Biology 92

5.6 Implications for String Data Analysis on GPU 92

5.7 Implications for Supercomputer Design 93

5.8 Directions for Further Work . 94

References 95

v

CONTENTS

vi

List of Figures

1.1 Projected Supercomputers Performance 3

2.1 CUDA architecture . 13

2.2 CUDA Execution Model . 16

2.3 CUDA Memory Hierarchy . 17

2.4 Stack of Parallel Programming Technologies 18

3.1 DNA Structure . 24

3.2 The growth of biological databases . 27

3.3 Suffix tree . 36

3.4 Constructing Suffix Array . 38

3.5 Constructing Burrows-Wheeler transform 40

3.6 Reverse Transformation . 43

3.7 Procedure Backward search. 44

3.8 Effect of memory partitioning . 46

3.9 Data in GPU Memory . 47

3.10 Dealing with Bif Workloads . 48

3.11 Performance evaluation . 49

3.12 Performance details . 52

4.1 MSD radix sort . 64

4.2 Performance of sequential algorithms . 68

4.3 Recursive Bucketing: First Iteration Has Maximum Work 69

4.4 String Array in Memory . 70

4.5 First stages of sorting kernel . 72

4.6 Sorting throughput . 74

vii

LIST OF FIGURES

4.7 Time spent in different phases . 75

4.8 Performance details . 77

4.9 Scaling . 82

4.10 Execution time breakdown for CPU implementation 82

4.11 Correlation of performance and key length 83

4.12 GPU sorting throughput . 83

4.13 GPU execution time breakdown . 84

4.14 Sorting keys with zero-distribution . 84

4.15 Sorting throughput of improved implementation 85

viii

List of Tables

4.1 Frequency of instruction in the inner loop 59

ix

GLOSSARY

x

Glossary

DNA Molecule that encodes the genetic in-

structions used in the development

and functioning of all known living

organisms and many viruses

Gene The basic physical unit of heredity; a

linear sequence of nucleotides along

a segment of DNA that provides the

coded instructions for synthesis of

RNA, which, when translated into

protein, leads to the expression of

hereditary character.

Genome Entirety of an organism’s hereditary

information.

GPU Originally specialized electronic cir-

cuit designed to rapidly manipulate

and alter memory to accelerate the

creation of images in a frame buffer

intended for output to a display.

Nucleotides Organic molecules that serve as

the monomers, or subunits, of nucleic

acids like DNA and RNA.

Sequence Alignment a way of arranging the

sequences of DNA, RNA, or protein

to identify regions of similarity that

may be a consequence of functional,

structural, or evolutionary relation-

ships between the sequences.

xi

GLOSSARY

xii

1

Introduction

1.1 Computational Science and HPC

Invention of computers revolutionized science and technology. Through history people

invented new instruments which allowed them to work faster and make new discoveries

which, in their turn, led to creation of even better instruments. As of now, the top of

this pyramid is the computer. Since the appearance of the first electronic computing

machines they have been used for calculation-intensive scientific simulations (1).

Modern computers have come a long way; currently even the simplest home systems

have more computational power than the computers used in the first space explorations.

Computers have already enabled people to create more efficient vehicles, new ways of

communication, new life-saving drugs, etc. The rate of progress is increasing, and

it requires increasingly precise simulations, which requires more and more powerful

computers.

Another factor that came into play with computerization of society is that people

are now generates huge amounts of information. We have exabytes of data from World

Wide Web, sensor networks, hight-throughput DNA sequencing machines, and the

Large Hadron Collider, to name a few. Where do we get the computational power to

process all this data?

Originally the microprocessor technology was pampering us with reasonable perfor-

mance improvement due to frequency scaling and more powerful instruction sets. In

1965 Intel co-founder Gordon E. Moore described the trend of doubling of the number

of transistors on integrated circuits approximately every two years(2). Over the his-

1

1. INTRODUCTION

tory of computing hardware this trend proved to be true so far, though even G. Moore

himself admits that there are fundamental barriers in miniaturization levels (since we

can not go beyond the atomic level), and the problems like heat dissipation efficiency

prevent us from getting even to the atomic level.

Processor vendors are already out of room for driving clock speeds and straight-

line instruction throughput higher, but the overall performance of computing systems

continues to grow steadily. This is achieved via parallelizm (3), a form of computation

coupled with hardware architecture capable of carrying out many calculations simul-

taneously. Typically large problems can be divided into smaller ones, which are then

solved in parallel.

1.2 Motivation

Supercomputers are the state of the art in high-performance computing. Modern su-

percomputers employ immense parallelizm. First supercomputers in 1960-1970s used

only a few processors, but already in the 1990s we had machines with thousands of

processors. By the end of the 20th century massively parallel supercomputers featured

tens of thousands of processors.(4).

The computational power grows in Moore’s law-like fashion. Today the most

powerful computers in the world achieved petaFLOP-level performance, performing

quadrillions of operations per second. As of November 2013, China’s Tianhe-2 super-

computer is the fastest in the world at 33.86 petaFLOPS.

It is the supercomputers that allow us to perform numerical simulation of experi-

ments we would never be able to conduct in real life and to analyse enormous amounts

of data that human brain could never process on its own. Allowing us to do more with

less, computers created a new breed of ”computational science”.

Figure 1.1 shows current and projected performance of systems in Top 500 list. We

are talking now about achieving symbolic barrier of exa-scale performance in several

years to come.

However, all this computational power is not easy to use. Traditional processors

provide performance increase with little effort from computer programmers, but su-

percomputers are posing lots of problems. It is very difficult to program efficiently for

supercomputers (5). Many existing algorithms and data structures are not scalable for

2

1.2 Motivation

Figure 1.1: Projected Supercomputers Performance

large number of nodes available on Petascale HPC systems. So, it is often necessary to

modify an existing algorithm or develop new ones, which would efficiently exploit high

performance of a Petascale systems;

• Inefficient communications patterns can become a bottleneck for increasing per-

formance.

• Applications become increasingly complicated, combining a variety of languages,

libraries, programming models, data structures and algorithms. Therefore we

need techniques which would provide code flexibility and portability.

• Load imbalance becomes increasingly critical when hundreds of thousands of

threads are kept waiting to get the result form just one thread.

The architecture of supercomputers becomes more and more heterogeneous. If we

take a look at the head of the Top 500 list we would find that most of the worlds fastest

supercomputers are based on hybrid (GPU+CPU) architecture. Tsubame 2.5, the su-

percomputer installed in Tokyo Tech, is featuring such a hybrid architecture. It was

upgraded from TSUBAME2, a production supercomputer operated by Global Scientific

3

1. INTRODUCTION

Information and Computing Center (GSIC), Tokyo Institute of Technology in cooper-

ation with industrial partners, including NEC, HP, NVIDIA, Microsoft, and Voltaire.

Since fall 2010 it has been one of the fastest and power-efficient supercomputers in the

world. Tsubame 2.5 boasts 2.4 PFlops peak performance achieved by aggressive GPU

acceleration, which allows scientists to enjoy faster computing than ever.

It is also worth mentioning that in terms of energy efficiency GPUS are considered

to be one of the greenest architectures up to date (6). Due to the fact that hybrid

systems show high performance, performing parallel tasks with comparatively little

power, we believe that heterogeneous architecture with GPUs is a strong candidate for

future Exascale systems.

In fact, all top 10 systems of November 2013 Green 500 list are GPU-based. The

list is headed by Tsubame KFC system - the prototype of Tsubame 3.0 supercomputer

to be installed in Tokyo Institute of Technology in 2015.

However, hybrid architectures introduce new difficulties and challenges into pro-

gramming for supercomputers. GPU accelerators add another level to the memory hi-

erarchy and utilize a different execution model. Specialized programming environments

are needed to use GPUs. Moreover, programming approaches for GPU substantially

differ from those for traditional architectures, which makes research in this area highly

relevant for many applied fields.

1.3 Problem Statement

To sum up, mankind has now accumulated unprecedented amounts of data which needs

to be processed in various scientific and applied tasks. In parallel to the growth of Big

Data, we witness the growth of massive parallel heterogeneous architectures. However,

their usage in data-intensive areas requires major adaptations in many core algorithms.

One of the new knowledge areas that particularly needs supercomputing is compu-

tational biology that deals with mathematical modeling and computational simulations

of biological systems. Computational genomics is one of the particularly data-intensive

subfields; one human genome (7) takes gigabytes of data, and now there are projects

that collect big banks of genomes (8)

One of the fundamental routines in computational genomics is sequence alignment

- arranging the sequences of DNA, RNA, or protein to identify regions of similarity

4

1.4 Contributions

that may be a consequence of functional, structural, or evolutionary relationships be-

tween the sequences.(9). This work addresses the issue of efficient sequence alignment

on GPU-based massively parallel heterogeneous architectures. In this work, we adapt

Burrows Wheeler transform based index to reduce overall memory footprint on GPUs

and also develop a mathematical model of computation and communication costs op-

timize memory partitioning for index and queries.

Another challenging area in supercomputing is the optimization of sorting algo-

rithms, which is particularly important in the context of Big Data. Most particularly,

the sorting of strings has received less attention than sorting of numerical data, and

this work addresses this gap. We analyse candidate sorting algorithms with reference

to their useability for particular data types and architectures and efficient data move-

ment across memory hierarchies. We then focus on the most-significant digit radix sort

algorithm which allows for sorting of variable length keys.

1.4 Contributions

For sorting we developed CPU and GPU implementations of most-significant digit radix

sort algorithm using different parallelization strategies on different execution stages to

optimize the use of system resources and workload balance. To overcome the limitations

of PCIe bus bandwidth in the GPU version wef used communication-reducing strategy.

Our solution achieves sorting rates up to 6x107 keys per second sorting throughput

with good scalability.

We develop CPU and GPU implementations of , optimizing the use of system

resources and workload balance by using different parallelization strategies on different

execution stages.

For the sequence alignment we adapted Burrows Wheeler transform-based index to

reduce overall memory footprint on GPUs. We introduced efficient CUDA implemen-

tation of pattern matching algorithm and verified its fitness to GPU architecture. We

exploited the interplay between the Burrows Wheeler Transform and Suffix Arrays to

minimize data transfers throught the PCIe bus. Finally, we developed a a mathemat-

ical model of computation and communication costs to optimize memory partitioning

for index and queries. Performance evaluation shows more than ten-fold performance

gain per device.

5

1. INTRODUCTION

1.5 Thesis Outline

Before describing the main contributions of this thesis, we provide some background

information HPC and parallel programming, particularly on CUDA and GPU architec-

ture, overview known algorithm optimization strategies, and provide some examples of

their successful implementations.

Chapter 3 addresses the problem of sequence alignment. We start by providing a

general introduction to the problem domain of computational genomics and a formal

definition of the problem. We describe in detail our data structure and analyse the

chosen algorithm in terms of its efficiency on GPU architecture. Particular attention

is given to the problem of reduction of costs of moving data between host and GPU

memories.

Chapter 4 presents the classification of sorting algorithms with respect to the data

types and fitness of the algorithms to particular architectures. We focus on the most-

significant digit radix sort, one of the few algorithms that are applicable to sorting

of string data. This chapter also discusses our performance model: load balancing,

scalability, and communication expenses.

Chapter 5 concludes this work. It outlines the main findings from implementation

experience and performance evaluation of our solutions, some of which are relevant not

only to the applied areas under consideration, but also to the supercomputer program-

ming in general. We and also discuss the implications of our findings for computational

biology and string data analysis and suggest some directions for future work in opti-

mization of data-intensive algorithms for hybrid architectures.

6

2

Background

2.1 High Performance Computing

History of HPC goes back to the middle of 20th century. Computers of that time had

performance about KFLOPS and were rather sequential in the meaning that they exe-

cuted one instruction after previous one is completed. In the 70s the new architecture,

called RISC or restricted (reduced) instruction set computer appeared. Its load/store

approach allowed designers to increase the size of the register set and increase inter-

nal parallelism, i.e. allowed to execute multiple instructions and multiple parts of the

instructions simultaneously. That gave rise to performance level around the MFLOPS.

In the 80s new vector computers was developed, which idea was to issue one in-

struction and have that instruction take be applied on a whole sequence of data. And

in the 80s we saw performance level approaching a GFLOPS.

Starting from the 90s we have parallel computing taking place in a rather large

way. While the first supercomputers of 1970s had only few processors, in the 90s some

machines used thousands of processors, and by the end of the 20th century, massively

parallel supercomputers with tens of thousands of off-the-shelf processors were the

norm.

Today we are at the PFLOPS point where we have super-scalar, special purpose

parallel machines, which can use over 100,000 processors connected by fast connections.

Supercomputer sector is the fastest growing one in the world of technology, and it is

currently worth some 25Billion USD(10). Japan, China and the USA are currently

7

2. BACKGROUND

holding the lead in the world of Supercomputing, but there is an acute shortage of the

skills and applications required to make the most of these machines.

2.1.1 Programming Supercomputers

Programming for parallel architectures is more difficult than traditional sequential way.

First of all, there are much more things to take care off. Programmer has not only to

express the algorithm, but move data from the point where it is originated to the point,

where it is used.

Process interaction can roughly be classified as shared memory or message passing

models. In the first model processes can see global address space where they can read

and write simultaneously. Synchronization mechanisms like locks or semaphores might

be required to assure right order of memory accesses and correctness of the program.

In a message passing model, parallel tasks exchange data by sending messages to

one another. These communications can be asynchronous or synchronous. In this

case processes can synchronize by waiting for messages. Both approaches are prone to

dead-lock and race conditions - making parallel programming more difficult.

Task other important concepts are Task parallelism and Data parallelism. A task-

parallel model focuses on processes, which can be behaviourally distinct, which empha-

sizes the need for communication. It is usually classified as MIMD/MPMD or MISD.

A data-parallel model (usually classified as SIMD/SPMD) implies performing a set

of tasks or operations on different elements of partitions of data set. Data is typically

regularly structured in an array or similar structure and the operations performed in

the data are independent for separate elements. In a shared memory system, the data

will be accessible to all, but in a distributed-memory system it will divided between

memories and worked on locally.

There are now numerous parallel and concurrent programming languages, libraries,

APIs, and parallel programming models. We uses OpenMP for programming shared-

memory intra-node parts of algorithms and MPI for communication between nodes.

OpenMP (Open Multi-Processing) is, perhaps, the most wide-spread technology

for programming shared memory systems. It extends C, C++, and Fortran languages

with so called pragmas, which are supported by most of the modern compilers and

do not disrupt program execution if the compiler happens to not support OpenMP

standard. Today OpenMP works on a wide variety of processor architectures, including

8

2.1 High Performance Computing

accelerators. It works under many operating systems, including AIX, Solaris, HP-

UX, GNU/Linux, Mac OS X, and Windows platforms. OpenMP also contains library

routines, and environment variables that influence run-time behavior. (11).

There are other libraries for implementing parallel algorithms for shared memory

processors: Threading Building Blocks, Massive Threads, QThreads etc. Most of them

support light-weight threading model - unlike operating system heavy-weight threads

they share same hardware context (registers etc) and thus context switching can be

executed faster.

The fundamental primitive in this libraries/languages and corresponding runtime

environments is a task - a sequence of instructions that can be executed independently

by one of the available ”worker” threads. New tasks are created in the task queue

usually local for the current threads and then can be executed by any available worker

thread, this logic is control by the runtime component called scheduler.

For the inter-node communication typically MPI (Message Passing Interface) is

used. It is standardized and portable message-passing system for a wide variety of

parallel computers. It originates in 1991 from an effort of a group of researchers from

academia and industry and eventually became ”de-facto” standard fort programming

distributed-memory supercomputers (12).

MPI includes language-independent communications protocol and defines the syn-

tax for the of library routines providing MPI API. It can be used to program parallel

systems of various architecture and network topology and is available for Fortran, C

and C + + programming languages.

Now there are many implementation of MPI available, most of them mature and

well-tested, suited for industrial usage. Many of these implementation are free or in

the public domain. MPI is widely in software industry for the development of scalable

and portable large-scale parallel applications.

2.1.2 Application Performance Challenges

Number of processors, total FLOPS and network bandwidth does not guarantee high

performance for a particular application. In practice many applications run on su-

percomputers utilize only a small share of available computational performance. This

difficulty is signified by the existence of Gordon Bell prize that is awarded every year

to the high-performance computing applications that achieve.

9

2. BACKGROUND

Through the history of HPC we see how the paradigms are shifting on building

and programming supercomputers (13). For example, originally power consumption

was not considered a problem, but transistors were expensive. Now we talk about

power wall and struggling to build more power-efficient systems and adopt appropriate

programming models.

With fewer cores on chip / chips in the system in the past occasional hardware

errors were not a problem, but now the drop in feature size and increase in the number

of cores dramatically increase error rates. It created a need to consider fault-tolerance

as another great challenge, in the context of design if hardware, software infrastructure

and user software itself.

Performance improvements does not go with equally steady pace for different hard-

ware components of the system. For example IO bandwidth improves by at least the

square of the improvement of the latency. Single core performance almost stopped to

grow, so did the clock rates.

Individual nodes of a cluster are typically multi-core / multi-processor shared mem-

ory systems programmed with OpenMP and programmers sometimes adopt simplified

approach to such systems as to symmetric multiprocessors. But in fact NUMA effects

are taking place in almost all contemporary microprocessors because of core-local caches

etc. NUMA, or Non-uniform memory access is a computer memory design when the

memory access time depends on the memory location relative to the processor. Under

NUMA, a processor can access its own local memory faster than non-local memory

(memory local to another processor or memory shared between processors). The ben-

efits of NUMA are limited to particular workloads, notably on servers where the data

are often associated strongly with certain tasks or users.

Instruction-level parallelism, which used to be revealed by compiler without much

effort from a programmer - now yields diminishing return (ILP wall).

As a result we can see the change of perception of what is considered ”successful

parallelization” - any speedup on a parallel system is often considered a success.

Another shift is happening in a sense of what application require supercomputer

performance. While classical ”supercomputer” tasks like dense end sparse linear algebra

problems, spectral methods, N-body simulations, finite-element methods etc, are still

very important and require a lot of FLOPS, other tasks from the areas of combinational

logic, graph algorithm, machine learning - are also becoming ”popular”. Many of this

10

2.2 GPU Computing

tasks rely on integer rather then floating-point computations and a very communication-

intensive.

The demand for such computation is coming particularly from the growing abun-

dance of data generated collected bu modern IT infrastructure.

2.2 GPU Computing

If we take a look at the head of the Top 500 list we would find that most of the worlds

fastest supercomputers are based on hybrid architecture. And from the application

side there is a corresponding rise in use of accelerators (14). In this work we mainly

focused on GPUs.

Graphics Processing Units (GPUs) are high-performance many-core processors ca-

pable of very high computation and data throughput. Initially they were designed to

speed up the rendering of complex graphics, e.g. for video game applications, where

the same algorithm is applied to many elements like polygons. This make GPUs design

originally more parallel, than traditional CPUs. First GPUs were difficult to program,

but todays GPUs are general-purpose parallel processors with support for accessible

programming interfaces and industry-standard languages like C and are actively used

for the various scientific applications.

The use of graphics processors for general purpose computation (GPGPU) is par-

ticularly attractive as their performance is improving faster than that of typical CPUs.

Unlike traditional CPUs, which are designed to make serial tasks run as quickly as

possible, GPUs execute multiple parallel tasks in a power-efficient manner. Therefore

GPU computing becoming more widely used in demanding customer applications and

high performance computing.

Recently GPUs have become very popular accelerators for HPC systems. Among

the world’s fastest systems many now are GPU-accelerated. One example petascale-

class supercomputer based in hybrid architecture is the Tokyo Techs TSUBAME 2.5

with Nvidia Fermi GPUs. It was recently upgraded from TSUBAME 2, a produc-

tion supercomputer operated by Global Scientific Information and Computing Center

(GSIC), Tokyo Institute of Technology in cooperation with industrial partners, includ-

ing NEC, HP, NVIDIA, Microsoft, and Voltaire. Since fall 2010 it has been one of

the fastest and power-efficient supercomputers in the world. TSUBAME 2.5 boasts

11

2. BACKGROUND

2.4 PFlops peak performance achieved by aggressive GPU acceleration, which allows

scientists to enjoy faster computing than ever.

The GPUs have increased the performance of several benchmarks (e.g. the sparse

finite difference Himeno benchmark), multiple libraries and many applications.

2.2.1 GPGPU History

First GPUs emerged in 1997, when Nvidia released the RIVA 128 3D single chip graph-

ics accelerator for games and 3D visualization applications (15)).

The only way to program devices of that time was to use Microsoft Direct3D and

OpenGL. GeForce 256 was introduced in 1999 and it was the first GPU, a single-chip

graphic processor, which contained a configurable 32-bit floating-point vertex transform

and lighting processor, and a configurable integer pixel-fragment pipeline, programmed

with OpenGL and Microsoft DirectX 7 APIs. In 2001 the GeForce 3 GPUs became

more flexible and programmable.

The new GeForce FX and GeForce 6800 were highly multithreaded and used Cg

programs, DX9 and OpenGL. The Cg language was the first language for programming

GPUs, which provided scalable programming models for the programmable floating-

point vertex and pixel-fragment processors of GeForce FX, GeForce 6800, and sub-

sequent GPUs. Developing Cg language allowed to use GPUs to compute scientific

simulations and other general-purpose GPU (GPGPU) computations. This GPGPU

computing programs showed significant acceleration and high performance, but were

very complicated to write. Programming general-purpose computation with Cg, how-

ever, was very not straight-forward task.

In 2006 NVIDIA introduced the GeForce 8800, which were the first unified graphics

and computing architecture. In addition to using Dx10 and OpenGL the GeForce

8800 were programmable in C with the CUDA parallel computing model. Starting

form the 2007, when NVIDIA introduced the Tesla C870, D870 and S870 GPU cards,

it became possible to build personal supercomputers by adding multiple GPU cards.

In 2009 the third-generation Fermi GPU computer architecture, which significantly

increased double precession performance, was introduced by NVIDIA. From that time

the programmer can use not only C, but C++, Fortran, OpenCL, and DirectCompute

languages to program the GPUs.

12

2.2 GPU Computing

Figure 2.1: CUDA architecture

2.2.2 GPU Architecture

GPUs are good massively parallel computation thanks to its several hundreds of cores.

While classic CPU architecture is optimized for low-latency access to cached data sets,

the GPU architecture is optimized for high data parallel throughput computation. The

GPU cores are all managed by a thread manager, that can spawn and manage tens of

thousands of threads simultaneously. Figure 2.1 shows the Fermi GPU Architecture.

The cores of the GPU (512 for the Fermi) have one Arithmetic Logic Units (ALU)

and one Floating Point Unit (FPU). A group of 32 cores plus a shared memory block

(48/16KB) makes a Streaming Multiprocessor (SM). Four of these SMs plus a Raster

Engine make a Graphic Processor Cluster (GPC). Finally, the Fermi GPU is composed

by 4 GPCs.

13

2. BACKGROUND

GPU devices has own GDDR memory which is physically placed on the same ex-

tension card and typically is faster then main RAM, though smaller in size.

New chips based on Kepler architecture comprise more then 7 billion transistors

and provide over a teraFLOP of double precision throughput and even better power

efficiency. Each of the Kepler GK110 SMX units feature 192 CUDA cores, and each

core has fully pipelined floatingpoint and integer arithmetic logic units. Kepler retains

the full IEEE 7542008 compliant single and doubleprecision arithmetic introduced in

Fermi, including the fused multiplyadd (FMA) operation.

2.2.3 Programming GPUs

Currently there are several different libraries and tools, which allow to make GPU

development easier and more productive. This include CUDA C/C++ (16), (CUDA

for Fortran is also available from the Portland Group (PGI) CUDA, OpenCL (17),

OpenHMP (18) and OpenACC (19).

OpenACC is a programming standard for parallel computing developed by Cray,

CAPS, Nvidia and PGI to simplify parallel programming of heterogeneous CPU/GPU

systems. It resembles OpenMP in a way that programmer can annotate source code to

identify the areas that should be accelerated using compiler directives and additional

functions.

There is an ongoing effort to merge OpenACC standard into OpenMP specification

to create a common specification which extends OpenMP to support accelerators in a

future release of OpenMP. These efforts resulted in a technical report[5] for comment

and discussion timed to include the annual Supercomputing Conference (November

2012, Salt Lake City) and to address non-Nvidia accelerator support with input from

hardware vendors who participate in OpenMP.

Open Computing Language (OpenCL) is a language based on a C99 standard for

writing programs that execute across heterogeneous platforms consisting of central

processing units (CPUs), graphics processing units (GPUs), digital signal processors

(DSPs), field-programmable gate arrays and other processors. OpenCL itself is used for

writing kernels -functions that execute on OpenCL devices, and kernels are called from

a user program written in C or other supported language with provided application

programming interfaces (APIs).

14

2.2 GPU Computing

OpenCL is an open standard maintained by the non-profit technology consor-

tium Khronos Group. It has been adopted by Apple, Intel, Qualcomm, Advanced

Micro Devices (AMD), Nvidia, Altera, Samsung, Vivante and ARM Holdings. Aca-

demic researchers have investigated automatically compiling OpenCL programs into

application-specific processors running on FPGAs, and commercial FPGA vendors are

developing tools to translate OpenCL to run on their FPGA devices. OpenCL can

also be used as an intermediate language for directives-based programming such as

OpenACC.

These two standards aim for the support of a wide range of accelerators and pro-

cessor architecture and as a trade-off they sacrifice some platform-specific nuances. We

use CUDA for programming GPUs as it is mature and widely-used industry standard

and, compared to other GPU programming frameworks, CUDA allows for the most

detailed control of micro-architectural details of the program execution.

2.2.4 Programming with CUDA

CUDA parallel programming model enables NVIDIA GPUs to execute programs, writ-

ten in C, C++, Fortran and other languages, it extends the language with a set of

abstractions for expressing parallelism. This lets the developer do not change the

language of the sequential code, and make a highly scalable code, by using CUDA

extensions, which significantly reduce complexity and the development time.

A CUDA program is organized into a host program, consisting of one or more

sequential threads running on the host CPU, and one or more parallel kernels that

are suitable for execution on a parallel processing device like the GPU (20). Kernel

executes a scalar sequential program on a set of parallel threads. The programmer

organizes these threads into a grid of thread blocks (Fig. 2.2).

The threads of a single thread block are allowed to synchronize with each other

via barriers and have access to a high-speed, per-block shared on-chip memory for

interthread communication (Fig. 2.3). Threads from different blocks in the same

grid can coordinate only via operations in a shared global memory space visible to

all threads. CUDA requires thread blocks be independent, meaning that a kernel

must execute correctly no matter the order in which blocks are run, even if all blocks

are executed sequentially in arbitrary order without preemption. This restriction on

the dependencies between blocks of a kernel provides scalability. It also implies that

15

2. BACKGROUND

Block (0,1)

Block (0,1)Block (0,1)Block (0,0)

Block (0,1)Block (0,1)Block (1,1) Block (0,1)Block (0,1)Block (2,1)

Block (0,1)Block (0,1)Block (1,0) Block (0,1)Block (0,1)Block (2,0)
Grid

Block (0,1)Block (0,1)Thread (0,0)

Block (1,1)

Block (0,1)Block (0,1)Block (0,0)Block (0,1)Block (0,1)Block (0,0)

Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0)

Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0)

Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0) Block (0,1)Block (0,1)Thread (0,0)

Figure 2.2: CUDA Execution Model

16

2.2 GPU Computing

Device Memory (GDDR5)

L2 Cahce

Device

SMX 0

SMX 1
SMX N

Shared Memory L1 Cache

Registers

Cuda Core 0 Cuda Core 0 Cuda Core NCuda Core N. . .

Constant Memory Cache

Read-Only Cache

Figure 2.3: CUDA Memory Hierarchy

the need for global communication or synchronization amongst threads is the main

consideration in decomposing parallel work into separate kernels. The details of the

CUDA programming model are available in NVIDIAs CUDA Programming Guide (16).

The management of the data through the memory hierarchy of the GPU is a very

important element to optimize GPU applications. Finally, when the kernel execution

is finished, the data is copied back from the device to the host. Fermi GPUs not

only achieve good performance in single-precision but also in double-precision and they

include ECC to tolerate bit-flip errors.

Some of the frequently used GPU primitives are available as Thrust library. It

is based on C + + Standard Template Library (STL). For some simple applications

Thrust allows programmers to implement high performance parallel applications with

minimal programming effort through a high-level interface that is fully interoperable

with CUDA C. Thrust provides a collection of data parallel primitives such as scan, sort,

and reduce, which can be composed together to implement more complex algorithms.

17

2. BACKGROUND

MPI

Locality

Resource contention

Low overhead OpenMP, Pthreads ...

SIMD

NUMA

Memory usage

Data orchestration

Fine grained
parallelizm

Hardware features

CUDA, OpenCL …

Figure 2.4: Stack of Parallel Programming Technologies

Recent Kepler architecture and corresponding updates in CUDA allowed for Dy-

namic Parallelism which simplifies GPU programming by allowing programmers to

easily accelerate all parallel nested loops resulting in a GPU dynamically spawning

new threads on its own without going back to the CPU. Another new feature of CUDA

programming model was so called Hyper-Q, which allows multiple CPU cores to simul-

taneously utilize a single Kepler GPU, dramatically advancing programmability and

efficiency.

2.2.5 Challenges of GPU Programming

Hybrid GPU-accelerated architectures introduce new level of difficulty to the parallel

programming. First of the stack of technologies required to program for these archi-

tectures gets one extra level. Typically programmers have to use MPI to distribute

work among cluster nodes and to exchange messages between processes. Then they

use OpenMP or other threading language/library to utilize multiple cores of the CPU

or multiple CPUs on the motherboard. Then they have to use GPU-specific language

for programming the accelerator: CUDA, OpenCL, OpenACC or any other alternative

(fig. 2.4).

This also introduces additional complexity to the code, makes it harder to write, to

read, to maintain and to debug. But the problem is not only how to write a working

error-free program, but how to make it efficient in therms of using all the potential

GPU performance.

The first problem is extra levels of memory hierarchy introduced by GPUs. The data

18

2.2 GPU Computing

lying in the DRAM, main memory accessed by the CPU, is not visible by the device.

Programmer has to explicitly transfer this data and it takes time as the transfer happens

through the PCIx bus. When the computation per unit of data is relatively big - the

transfer does not cause noticeable performance degradation, but if compute/data move

ration is not very high - GPU’s computational power might be of little use. Moreover,

when there are multiple GPUs in the system PCIe bandwidth is divided between these

devices.

GPU memory, in turn, is not monolithic (fig. 2.3). There are typically several chips

of fast GDDR memory on the board containing so called device memory. From the

programmer’s point of view this is so called global memory - the one accessible to all

symmetric multiprocessors of GPU. This is the only memory which can be accessed from

the host, largest in size and slowest in access, however typically GDDR memory offers

higher throughput than DRAM. More then that, the throughput depends in access

pattern - if threads of the warp are accessing adjacent memory words, this accesses can

be performed simultaneously, effectively multiplying throughput. On modern GPU

devices size of global memory reaches 12 gigabytes, which is still several times smaller

than typically available to CPU.

Then on the GPU chip itself there is level two (L2) cache. This cache is also shared

between all symmetric multiprocessors, is faster than the global memory but much

smaller in size, about several megabytes.

Every SMX also has it’s own several levels of memory hierarchy private to this

SMX. The local memory and L1 cache are placed on the same physical memory close

the SMX and are visible to the threads of the same block. Local memory and L2 cache

are faster then L2 cache and respectively than the global memory, but are much smaller

in size, 64 kilobytes on recent GPUs.

In addition to L2 and L1 caches GPUs have constant memory and read-only cache.

Like many of the nuances of GPU architecture these are inherited from previous tai-

loring for computer-graphics computation where textures were accessed read-only and

with 2-dimensional addressing. At the dawn of GPGPU computing programmers had

to literally represent their data as images to get benefits from GPU texture subsystems.

Now programmer can just specify that certain block of data is accessed read-only and

compiler will translate it into corresponding low-level instructions.

19

2. BACKGROUND

Finally there are registers, the fastest memory on GPU. Registers are local for

the threads and typically used for storing variables from cuda kernels. If there are

not enough registers in the system - register spilling happens and negatively affects

performance.

As we can see there are many things just from the memory hierarchy are which

can help or prevent achieving high GPU performance. Some algorithms with high

computation/memory access ratio and algorithms with regular memory access patterns

are obviously ”GPU-friendly”. Some algorithms can me implemented in a form that can

meet GPU peculiarities. Some algorithms have very irregular memory access patterns

and perform it frequently - these applications are difficult to efficiently implement for

GPU.

The other potential cause of problems is the execution model itself. As we dis-

cussed before, modern GPUs evolved from those GPU for computer graphics with

fixed-function pipelines. Computer graphics applications were not so sensitive to la-

tency of individual instruction execution but required hight throughput. This through-

put was achieved by massive parallelism, while the individual core is not very efficient

compared to CPU core. So if there is any sequential part in GPU code - the negative

affect on performance would be orders of magnitude bigger compared with CPU, where

all programs typically have some sequential parts.

Parallel threads on GPUs are executed in warps of 32 threads. Each threads in

the warp executes same instruction, so some researchers say that ”many CUDA core”

mentioned in NVidia’s white papers are virtually several SMX cores with 32-degree

wide SIMD instructions. If there is branching operator in the thread and one thread

of the warp executes one branch another threads executes second branch - than both

threads in fact would iterate over the instructions of these two branches. This is called

branch divergence and can dramatically decrease GPU performance. In worst case,

effectively lose factor 32x in performance if one thread needs expensive branch, while

rest do nothing.

It is noteworthy that there are some gradual improvements in GPU architectures

which are done to make GPUs less ”picky” for the applications which can be run

on them. We see that GPU memory access can now be partially coalescent - i.e. if

only some threads of the warp are addressing adjacent words - then these threads

will enjoy combined load or store operation while other threads will issue individual

20

2.2 GPU Computing

memory access instructions. Overall global memory size is increasing from one device

to another.

Next generations of accelerators are predicted to have unified virtual memory which

will allow to avoid explicit data transfers between host and device. Stacked DRAM

promises an order of magnitude higher memory throughput and integrating general-

purpose core into the device will allow for control logic to run on the same device as

the computational kernels.

Still GPU programming is extremely challenging and while new architectural fea-

tures will surely make some GPU programming easier in some aspects - they will also

introduce new nuances to be aware of when implementing algorithms for future devices.

21

2. BACKGROUND

22

3

Sequence Alignment

3.1 Introduction to the Problem Domain

3.1.1 Genes and DNA

In most living organisms the genetic instructions used in their development and func-

tioning are stored in the long polymeric molecules of Deoxyribonucleic acid or DNA.

Most DNA molecules are double-stranded helices, consisting of two long biopolymers

which in their turn consist of simpler units called nucleotides. Nucleotides are formed

with four nucleobased (guanine, adenine, thymine, and cytosine, coded G, A, T, and C,

respectively), and a backbone made of alternating sugars (deoxyribose) and phosphate

groups (related to phosphoric acid). The nucleobases (G, A, T, C) are attached to the

sugars (21).

It is the sequence of the four nucleobases along the backbone that encodes biolog-

ical information. Under the genetic code, RNA strands are translated to specify the

sequence of amino acids within proteins. These RNA strands are initially created using

DNA strands as a template in a process called transcription.

The genetic code is the set of rules by which information encoded within genetic

material (DNA or mRNA sequences) is translated into proteins by living cells. Bio-

logical decoding is accomplished by the ribosome which links amino acids in the order

specified by mRNA. Ribosome uses transfer RNA (tRNA) molecules to carry amino

acids and to read the mRNA, three nucleotides at a time. The genetic code is highly

similar among all organisms and can be expressed in a simple table with 64 entries.

23

3. SEQUENCE ALIGNMENT

Figure 3.1: DNA Structure

24

3.1 Introduction to the Problem Domain

The code defines how sequences of nucleotide triplets, called codons, specify which

amino acid will be added next in the process of protein synthesis. With some excep-

tions, a three-nucleotide codon in a nucleic acid sequence specifies a single amino acid.

Because the vast majority of genes are encoded with exactly the same code (see the

RNA codon table), this particular code is often referred to as the canonical or stan-

dard genetic code, or simply the genetic code, though in fact some variant codes have

evolved. For example, protein synthesis in human mitochondria relies on a genetic code

that differs from the standard genetic code.

Not all nucleotides in DNA encode proteins, in fact only small share of all nucleotides

has this function. This stretches of DNA are called genes, other nucleotides (regulatory

regions) control gene expression - determining when and under what conditions genes

are actually transcribed and eventually turned into proteins.

The human genome consists of approximately 3 billion DNA base pairs and is esti-

mated to carry 20,00025,000 protein coding genes. To decipher information contained

in a DNA molecule we need to determine the order of nucleotides, the elementary build-

ing blocks of DNA that are also called bases. This task is important for many emerging

areas of science and medicine.

3.1.2 DNA sequencing

DNA sequencing is the process of determining the exact order of nucleotides within a

DNA molecule. This term is used to refer to any method or technology that is used

to determine the order of the four bases (adenine, guanine, cytosine, and thymine)

in a strand of DNA. The invention of faster DNA sequencing methods has greatly

accelerated biological and medical research and discovery.

Bioinformatics involves manipulation, searching, and analysis of biological data,

including DNA sequence data. The development of techniques to store and search

DNA sequences have posed new tasks for such areas of computer science as string

searching algorithms, machine learning and database theory.[144] String searching or

matching algorithms which search for an occurrence of a sequence of letters inside a

larger sequence of letters were developed for processing specific sequences of nucleotides.

The first advances in reading biological data were made in RNA sequencing. In 1972

Walter Fiers and his coworkers at the University of Ghent (Ghent, Belgium) identified

25

3. SEQUENCE ALIGNMENT

and published the first complete gene (22). In 1976 they also presented the complete

genome of Bacteriophage MS2(23).

Several notable advancements in DNA sequencing were also made in the 1970s.

Frederick Sanger developed rapid DNA sequencing methods at the MRC Centre, Cam-

bridge, UK and published a method for ”DNA sequencing with chain-terminating in-

hibitors” in 1977.(24) Walter Gilbert and Allan Maxam at Harvard also developed se-

quencing methods, including one for ”DNA sequencing by chemical degradation”.(25,

26) In 1973, Gilbert and Maxam reported the sequencing of 24 basepairs using a method

known as wandering-spot analysis.[9] Advances in sequencing were aided by the con-

current development of recombinant DNA technology, allowing DNA samples to be

isolated from sources other than viruses.

The first full DNA genome to be sequenced was that of bacteriophage φX174 in

1977(27). Medical Research Council scientists deciphered the complete DNA sequence

of the Epstein-Barr virus in 1984, finding it to be 170 thousand base-pairs long.

Leroy E. Hood’s laboratory at the California Institute of Technology announced

the first semi-automated DNA sequencing machine in 1986.[citation needed] This was

followed by Applied Biosystems’ marketing of the first fully automated sequencing

machine, the ABI 370, in 1987. By 1990, the U.S. National Institutes of Health

(NIH) begun large-scale sequencing trials on Mycoplasma capricolum, Escherichia coli,

Caenorhabditis elegans, and Saccharomyces cerevisiae at a cost of US$0.75 per base.

Meanwhile, sequencing of human cDNA sequences called expressed sequence tags was

started in Craig Venter’s lab, in an attempt to capture the coding fraction of the hu-

man genome.(28) In 1995, Venter, Hamilton Smith, and his colleagues at The Institute

for Genomic Research (TIGR) published the first complete genome of a free-living

organism, the bacterium Haemophilus influenzae. The circular chromosome contains

1,830,137 bases and its publication in Science journal(29) marked the first published use

of whole-genome shotgun sequencing, eliminating the need for initial mapping efforts.

By 2001, shotgun sequencing methods had been used to produce a draft sequence of

the human genome.(7, 30)

Several new methods for DNA sequencing were developed in the mid- to late 1990s.

In 1996, Pl Nyrn and his student Mostafa Ronaghi at the Royal Institute of Technol-

ogy in Stockholm published their method of pyrosequencing.(31) A year later, Pascal

26

3.1 Introduction to the Problem Domain

Figure 3.2: The growth of biological databases

Mayer and Laurent Farinelli submitted patents to the World Intellectual Property Orga-

nization describing DNA colony sequencing.(32) In 2000 Lynx Therapeutics published

and marketed ”Massively parallel signature sequencing”, or MPSS. This method incor-

porated a parallelized, adapter/ligation-mediated, bead-based sequencing technology;

it became the first commercially available ”next-generation” sequencing method, al-

though no DNA sequencers were sold to independent laboratories.(33) In 2004, 454

Life Sciences marketed a parallelized version of pyrosequencing.(34) The first version

of their machine reduced sequencing costs 6 times compared to automated Sanger

sequencing.(35)

The progress in sequencing technologies continues, now we have a spectre of bext-

gen sequencing techinques, including semiconductor highly parallel sequencing ma-

chines It all leads to increasing amount of DNA data (see figure 3.2) and

27

3. SEQUENCE ALIGNMENT

3.1.3 Practical Applications and -omics

The possibility to look into the contents of DNA opened a door for new fields in

medicine, biotechnology, anthropology and other social sciences.(36) Next-generation

genomic technologies allow clinicians and biomedical researchers to drastically increase

the amount of genomic data collected on large study populations. When combined

with new informatics approaches that integrate many kinds of data with genomic data

in disease research, allowing researchers to better understand the genetic bases of drug

response and disease.(37)

Availability of sequenced genomes of many organisms enabled and boosted research

in gene expression and regulation, protein structure prediction, mechanisms of genome

evolution and many others.

Sequenced genomes allowed for creation of the first software simulation of the en-

tire organism, performed by researchers from Stanford University and J. Craig Venter

Institute.(38) They created a simulation of Mycoplasma genitalium, smallest free-living

organism with 525 genes.

Researchers developed the software model With data from more than 900 scien-

tific papers reported on the bacterium, with different modules mimicing the various

functions of the cell and then are integrated together into a whole simulated organism.

The simulation runs on a cluster of 128 computers, recreates the complete life span of

the cell at molecular level, reproducing the interactions of molecules in cell processes

including metabolism and cell division. Coincidently, the simulation for a single cell

division takes around 10 hours, about the same time the living cell takes in its natural

environment.

The silicon cell will act as computerized laboratories that could perform experiments

which are difficult to do on an actual organism, or could carry out procedures much

faster. The applications will include faster screening of new compounds, understanding

of basic cellular principles and behavior.

The English-language neologism omics informally refers to a field of study in biology

ending in -omics, such as genomics, proteomics or metabolomics. The related suffix -

ome is used to address the objects of study of such fields, such as the genome, proteome

or metabolome respectively. The suffix -ome as used in molecular biology refers to a

28

3.1 Introduction to the Problem Domain

totality of some sort; similarly omics has come to refer generally to the study of large,

comprehensive biological data sets.

There are two notable projects related to this field which really highlight the tremen-

dous acceleration of advance in genomic technologies and the current flood of genomic

data.

3.1.4 Human Genome Project

The Human Genome Project was the largest collaborative biological project. It started

in 1987 and was planned for 15 years (39). The aim was to determine the sequence

of chemical base pairs which make up DNA, and to identify and map the approxi-

mately 20000 - 25000 genes of the human genome from both a physical and functional

standpoint.

It took unprecedented cooperation between researchers from many countries and

billions of dollars of funding before the first draft of the first rough drafts became

available in 2000. The Human Genome Project was declared complete in April 2003

with the final sequencing mapping of the human genome.

Although this was reported to be 99% of the human genome with 99.99% accuracy

a major quality assessment of the human genome sequence was published on May 27,

2004 indicating over 92% of sampling exceeded 99.99% accuracy which is within the

intended goal(40). The data gathered by Human Genome Project is the combined

”reference genome” of a small number of anonymous donors, not of sequence of every

individual’s genome. It is available on the internet and there are many ongoing works

using HGP data.

Even before the completion of the project lots of practical result emerged from it.

Genetic tests to detect predisposition to the variety of illnesses like breast cancer, cystic

fibrosis, liver diseases and many others became available from a number of companies.

Scientists improved understanding of etiologies for cancers, Alzheimer’s disease etc.

Meanwhile, the progress in sequencing technology let us run much more data-

intensive projects, aiming for example to identifying differences among individuals,

involving single-nucleotide polymorphisms and the HapMap.

29

3. SEQUENCE ALIGNMENT

3.1.5 1000 Genomes Project

In January 2008 the 1000 Genomes Project was started with the aim of developing a

detailed catalogue of human genetic variation which in turn can be used for association

studies relating genetic variation to disease. Scientists planned to sequence the genomes

of at least one thousand anonymous participants from a number of different ethnic

groups within the following three years, using newly developed technologies which were

faster and less expensive.

The primary goal of this project was to create a complete and detailed catalogue

of human genetic variations, which in turn can be used for association studies relating

genetic variation to disease. Secondary goals includes the support of better SNP and

probe selection for genotyping platforms in future studies and the improvement of the

human reference sequence.

For this project samples were collected from the populations of Yoruba in Ibadan,

Nigeria; Japanese in Tokyo; Chinese in Beijing ; Utah residents with ancestry from

northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya;

Toscani in Italy; Peruvians in Lima, Peru; Gujarati Indians in Houston; Chinese in

metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African

ancestry in the southwestern United States.

In 2010, the project finished its pilot phase, which was described in detail in a publi-

cation in the journal Nature.(41) In October 2012, the sequencing of 1092 genomes was

announced in a Nature publication.(8) Data generated by the 1000 Genomes Project

is widely used by the genetics community, making the first 1000 Genomes Project one

of the most cited papers in biology.

During the production phase joined sequencing rate reached 10 billion bases or 2.5

human genomes per day which is a groundbreaking capacity. The total dataset includes

more then 6 trillion DNA bases, which is 60 times more than collected in previous 25

years.

The work on interpretation of genome data is still in its initial stages. It is an-

ticipated that detailed knowledge of the human genome will provide new avenues for

advances in medicine and biotechnology.

30

3.2 Sequence Alignment

3.2 Sequence Alignment

This work focuses on the pairwise local DNA sequence alignment problem. It is ex-

tremely computationally intensive as constant progress in sequencing technology leads

to ever-increasing amounts of data to be processed. We target GPU-based systems that

have been shown to allow for greater performance in sequence processing tasks due to

their extreme parallel capacities (42).

3.2.1 Definition

There are different understanding of what to call sequence alignment. The main idea

can be expressed as arranging two symbolic representations of DNA or protein sequences

next to one another so that their most similar elements are juxtaposed.

Many bioinformatics tasks depend upon successful alignments and typically regions

of similarity indicate some functional, structural, or evolutionary relationships between

the sequences (9). Generally they fall into two categories: global alignments and local

alignments. Global alignment can be interpreted as a form of global optimization that

”forces” the alignment to span the entire length of all query sequences. Local alignments

identify regions of similarity within long otherwise divergent sequences.

There is a variety of specifications of a task and used algorithms depending on an

actual biological problem. Comparing sequences of different species can reveal common

ancestry, build phylogenetic tries, detect single nucleotide polymorphism etc.

3.2.2 Dynamic Programming

The formally correct method, yielding best alignment for any sequences is based on

dynamic programming. For global alignment it is the NeedlemanWunsch algorithm

presented in 1970 (43) and for local alignment - The SmithWaterman algorithm, (44)

which uses roughly the same basic idea.

The NeedlemanWunsch algorithm works by constructing a two-dimensional matrix

F with one column for each character in sequence A, and one row for each character

in sequence B. Thus, if we are aligning sequences of sizes n and m, the amount of

memory used is in O(nm). There are some optimizations reported to decrease the

memory consumption but the time required is still O(nm). The matrix is filled based

on similarity.

31

3. SEQUENCE ALIGNMENT

The matrix elements Fij are be assigned to be the optimal score for the alignment

of the first i= 0, . . . , n characters in A and the first j = 0, . . . ,m and then recursively

as Fij = max(Fi−1,j−1 + S(Ai, Bj), Fi,j−1 + d, Fi−1,j + d) To find the alignment the

second stage of the algorithms start from the bottom right cell, and compare the value

with the three possible sources (Match, Insert, and Delete above) to see which it came

from.

The SmithWaterman algorithm sets negative F matrix cells a to zero, which makes

local alignments possible. Backtracking is done starting from the highest scoring ma-

trix cell and proceeds until a cell with zero score. Optimal local alignment allows for

a correct alignments in regions of low similarity even between distantly related bio-

logical sequences. It is noteworthy that CUDA implementation of Smith-Watherman

algorithm (CUDASW++) was among the first highly successful bio-informatics appli-

cations for GPU, it was highlighted on NVIDIA website for a long time.

Dynamic programming methods yield optimal alignments, but require quadratic

time and memory space to execute. There were multiple optimizations proposed, but

still time complexity is very prohibitive for aligning large sequences.

3.2.3 Faster Methods

Due to the high space and time complexity dynamic programming approaches are used

only for relatively short sequences. Usually proteins or protein-coding DNA regions.

For biological reasons different nucleotides in this regions have different mutation prob-

ability and because of these substitution matrices are used to assign corresponding

scores to substitutions, and a gap penalty for matching an amino acid in one sequence

to a gap in the other.

Another popular workflow is searching large-scale databases of annotated genomes,

queries are usually gene-coding sequences and researchers are looking for homologous

genes. In this case less precise but much more efficient heuristic algorithms or proba-

bilistic methods are being used.

Word methods are typical representatives of this family, they identify series of short,

nonoverlapping words in the sequence and match them to the database. FASTA and

BLAST (45) algorithms are, perhaps, the most well known of this kind.

FASTA method was introduced in 1985 by David J. Lipman and William R. Pearson

The heuristic algorithm observes the pattern of word hits and switches to slow but more

32

3.2 Sequence Alignment

precise Smitwh-Waterman alignment for potential matches. User can specify the search

word length - for slower but more sensitive search if the given length is shorter. The

legacy of FASTA method is now ubiquitous FASTA storage format, which we used in

our implementation as well. The detailed description of the format will be given in the

following chapters.

The BLAST, or Basic Local Alignment Search Tool, is actually a family of algo-

rithms optimized for particular types of queries. The BLAST program was introduced

in 1990 by Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, and David J.

Lipman form the National Institutes of Health (46). BLAST is following roughly the

same logic as FASTA, using a word search of length k, but evaluates only the most

significant word matches. It provides a faster alternative to FASTA without sacrificing

much accuracy.

BLAST can be used for several purposes:

• to identify sequences from unknown species

• to map a unknown location of sequence based on other sequences from the same

species

• to locate common genes in two related species and map annotations from one

organism to another

• to construct a phylogenetic tree, however purpose-built computational phyloge-

netic methods do it better.

The algorithms mentioned above work extremely well on when aligning single pro-

teins or genomic DNA sequences containing a single gene. On the whole-genome level

the problem of size emerge. Also for closer related species the search for very similar

nucleotide matches is becoming increasingly important. Newer generation of align-

ment programs tailored for this use typically use index based on a Burrows Wheeler

Transform to address the size challenge. They can use genome-scale target database.

Example alignment programs are BWA(47), SOAP(48), and Bowtie(49).

33

3. SEQUENCE ALIGNMENT

3.2.4 Whole-Genome Structural Alignment

More importantly, due to the recent advances in sequencing technology now we have

multitude of genomes from the same species, which are extremely similar and the

problem of whole genome-level structural comparison emerges.

All the previous algorithms were designed primarily to discover insertions, deletions

and point mutations, but not to look for the large-scale structural changes that can

be discovered in whole-genome comparisons, such as differences in tandem repeats and

large scale reversals. Such a comparison can be based on first identifying regions of

’maximum unique match’ (MUM), or the longest subsequence that occurs in both query

sequence. And then by using other techniques to analyse structural changes. Software

called MUMMer was introduced in 1999 to deal with this task. Matching algorithm

was build upon a suffix tree data structure(50).

In this work we focus on performing the search for maximal exact matches in huge

sequences, more closely related works and our approach will be described in the follow-

ing section in more details.

3.2.5 Read Alignment

Another important form of sequence alignment is short read alignment. As described

before, modern sequencing techniques split the DNA molecule into pieces that are also

called reads. Reads are processed separately to increase the sequencing throughput.

Then they are aligned to the reference sequence to determine their position in the

molecule.

Read alignment is extremely computationally intensive, as a complete genome of

such complex organisms as humans is billions of bases long, and the amount of reads

data produced by sequencing machines is usually an order of magnitude bigger(51)(52).

Reads produced by different sequencing technologies can differ in length and error

characteristics. Overall, the method of finding maximal unique matches can be used

for read alignment, particularly MUMmer software is known to be used for this task.

3.2.6 Defining our Problem

We focus on a problem of finding maximal unique matches ib a big sequences, as it is

important for the emerging whole-genome structural comparison problem and can also

34

3.3 Aproaches to Finding MUMs

be applied for read alignment.

Technically MUM alignment is a substring matching operation: we search for a

pattern of length m in reference string of length n, where n >> m. Straight-forward

naive approach has daunting asymptotic performance of O(mn), so aligning is typically

done in two stages:

• Index is build from the reference DNA sequence;

• Each read is matched against the reference sequence using its index.

Based in the data structure selected different matching algorithms are available. In

next section we make a survey of existing solutions that use different types of search

index are briefly discussed in the following section.

To reduce memory consumption we propose using matching algorithm based on

Burrows Wheeler Transform. This algorithm is mainly used for data compression,

but possibility of pattern matching using this transform was recently described(53).

Index based on BWT is more than ten times smaller than index based on suffix array.

We perform an analysis of how this algorithm fits GPU characteristics and do model

implementation to see if we can actually get significantly better execution time with

this smaller memory footprint algorithm.

3.3 Aproaches to Finding MUMs

3.3.1 Suffix Trees and MUMmer

The theoretically fastest search algorithm uses suffix tree, as index and has compu-

tational complexity O(m) (where m is query length) for matching one query to the

reference(54).

Suffix tree (also called PAT tree) were first introduced by Weiner in 1973 (55), as a

compressed trie containing all the suffixes of the given text as their keys and positions in

the text as their values. Donald Knuth characterized suffix tree concept as ”Algorithm

of the Year 1973”.

Later on efficient algorithms for suffix tree construction were introduced by Mc-

Creight in 1976 (56) , and by Ukkonen in 1995.(57) Ukkonen provided the first online-

construction of suffix trees, now known as Ukkonen’s algorithm. Finally, Farach (1997)

35

3. SEQUENCE ALIGNMENT

Figure 3.3: Suffix tree

gave the first suffix tree construction algorithm that is optimal for all alphabets which

became the basis for new algorithms for constructing both suffix trees and suffix arrays,

for example, in external memory, compressed, succinct, etc.(58)

Suffix trees allow a particularly fast implementation of many important string oper-

ations, like string search or finding the longest repeated substring and are often used in

bioinformatics applications, searching for patterns in DNA or protein sequences (which

can be viewed as long strings of characters). The ability to search efficiently with

mismatches might be considered their greatest strength.

Also in read alignment we usually search for the longest possible match up to some

minimal match length. Instead of repeating search for each subquery the suffix tree

can incorporate additional links that connects related suffixes. Thus it allows to search

for all subqueries of a given query in O(m) time.

Sequence alignment software called MUMmer was developed on the basis of suffix

tree data structure(50). MUMmer is a system for rapidly aligning entire genomes,

whether in complete or draft form, it can align of very large DNA and amino acid

sequences. Later on it was refactored into GPU-version called MummerGPU, and its

authors claimed up to 10 times speed-up over the CPU version (59).

36

3.3 Aproaches to Finding MUMs

While the suffix tree asymptotic space complexity is linear, the constant multiplier

under O(N) (where N is reference length) is very big, between 22.4n and 32.7n bytes

for DNA sequences (60), so the memory consumption becomes a serious performance

issue on big workloads.

3.3.2 Suffix Arrays and MUMmerGPU++

While theoretically fastest search algorithm uses suffix tree, its space complexity makes

it inefficient for big references(54). There were successful attempts to decrease mem-

ory footprint of matching algorithm or even to trade computational complexity for

space consumption. In MummerGPU++ the authors replaced search algorithm based

on suffix tree with one based on suffix array, which lead for another performance

improvement(61).

Suffix array is an array of integers giving the starting positions of suffixes of a string

in lexicographical order. This data structure was introduced in 1990 by Manber and

Myers as a simple, space efficient alternative to suffix trees (62).

1 2 3 4 5 6 7 8 9 10 11 12

m i s s i s s i p p i $

Let S = s1, s2, ..., sn be a string and let S[i, j] denote the substring of S ranging

from i to j.

The suffix array A of S is now defined to be an array of integers providing the

starting positions of suffixes of S in lexicographical order. This means, an entry A[i]

contains the starting position of the i-th smallest suffix in S and thus for all 1 < i ≤ n:

S[A[i− 1], n] < S[A[i], n].

Twelve suffixes: ”mississippi$”, ”ississippi$”, ”ssissippi$”, and so on down to ”i$”

and ”$” that can be sorted into lexicographical order to obtain:

The process is illustrated in the figure 3.4, LCP is the the longest common prefix

array, storing the lengths of the length of longest common prefixes between pairs of

consecutive suffixes in the suffix array.

This approach, however, has a very bad performance. If we sort all the string

with comparison-based sorting it will require O(n log n) comparison operations, and

comparison of two suffixes requires O(n) time, giving us overall asymptotic execution

37

3. SEQUENCE ALIGNMENT

Index Sorted suffix LCP

12 $ 0

11 i$ 0

8 ippi$ 1

5 issippi$ 1

2 ississippi$ 4

1 mississippi$ 0

10 pi$ 0

9 ppi$ 1

7 sippi$ 0

4 sissippi$ 1

6 ssippi$ 1

3 ssissippi$ 3

Figure 3.4: Constructing Suffix Array

time estimation as O(n2 log n). Sligtly better performance is possible to achieve us-

ing three-way radix quicksort (developed by Sedgewick and also known as multikey

quicksort)(63).

Theoretically fastest way to construct a suffix array is via the suffix tree traversal,

and for the suffix tree linear-time construction algorithms are available, as we mentioned

in the previous section. However, this approach has a unsatisfying space requirement

due to the necessity to store the suffix tree.

Suffix array construction in linear time without using suffix tree is called direct

suffix sorting problem, and now we have many (in fact, many classes) of direct suffix

sorting algorithms. These approaches are all exploiting the fact that strings which are

being sorted are all related to each other.

The first approaches were based on the prefix doubling strategy, described by of

Karp, Miller Rosenberg (1972) (64). Suffixes are bucketed into groups bu common

prefixes, and the length of prefixes is doubles every iteration until each prefix is unique

and provides the rank of the associated suffix.

The second group of suffix array construction algorithms is recursive and roughly

follows suffix tree construction logic. Subset of suffixes are recursively sorted and then

used to infer a suffix array of the remaining suffixes.

38

3.4 Implementing BWT-based Aligner

The third important group is induced copying algorithms, favouring iteration of

recursion but also using the idea of sorting a subset of suffixes ind then inducing the

order of remaining suffixes. The SA-IS algorithm of Nong, Zhang and Chan (2009)(65)

was among the first to achieve Θ(n) minimal asymptotic complexity, little extra working

space requirement and being fast in practice. In fact The detailed survey on a diverse

group of suffix array construction algorithms can be found in (66).

Suffix arrays are closely related to suffix trees:

• Suffix arrays can be constructed by performing a depth-first traversal of a suffix

tree, if edges are visited in the lexicographical order of their first character.

• A suffix tree can be constructed in linear time by using a combination of suffix

and LCP array.

Suffix array takes N logN bits in general case, whereas the original text takes

N log |Σ| bits where Σ is the alphabet. In practical implementation we talk about

linear space complexity with constant multiplier under O(n) being 9 bytes per symbol

in case of 64-bit implementation.

Search complexity for suffix array is O(m + log n) where m is the length of query

and n is the length of reference. Binary search algorithm can be used for a suffix array.

Evaluation of MummerGPU++ showed that on references over 100MB the memory

limit is still taxing performance, since it leads to splitting the index into small pieces

to fit into GPU memory and repeating search for each part. Search complexity does

not depend (or depends very little) on index size, so splitting index in chunks increases

computation time linearly. Copying index and queries to the device also takes its share

of time of time. We will provide a more detailed analysis of time consumed by data

transfers later on.

3.4 Implementing BWT-based Aligner

As the chief way to increase performance we propose using an algorithm with lesser

memory footprint. Such an algorithm can be based on Burrows-Wheeler transform and

some additional data structures (FM-Index) instead of suffix array. BWT was intro-

duced in 1994 by Burrows and Wheeler(67) and was used mainly for data compression.

There are some recent sequence alignment solutions using BWT, some of them are not

39

3. SEQUENCE ALIGNMENT

F L

mississippi$ $ mississipp i

ississippi$m i $mississip p

ssissippi$mi i ppi$missis s

sissippi$mis i ssippi$mis s

issippi$miss i ssissippi$ m

ssippi$missi m ississippi $

sippi$missis p i$mississi p

ippi$mississ p pi$mississ i

ppi$mississi s ippi$missi s

pi$mississip s issippi$mi s

i$mississipp s sippi$miss i

$mississippi s sissippi$m i

Figure 3.5: Constructing Burrows-Wheeler transform

parallel (Bowtie (49)), some are using GPUs, but for different class of alignment (48).

Also in (68) authors discuss the potential of using GPUs for exact sequence matching

on single GPU.

3.4.1 Burrows-Wheeler Transform

BWT was introduced by Burrows and Wheeler(67) in 1994. It transforms reoccurring

patterns in the string into continuous runs of a single symbol, so this transform is used

as a part of compression algorithms such as bzip2 and is sometimes (incorrectly) called

”block-sorting compression”. BWT itself does not compress data - i.e. the number of

characters (or bytes) remains the same, it just permutes the order of symbols.1

The Burrows-Wheeler Transformation of a text T, BWT(T), is constructed as fol-

lows: The Burrows-Wheeler Matrix of T is the matrix whose rows are all distinct cyclic

rotations of T$ sorted lexicographically. It is shown on the right sight of 3.5 for word

mississippi. BWT(T) is the sequence of characters in the rightmost column (marked

L) of the matrix(67).

1We use the word symbol as the transform is easier to understand on example of text data, but

generally speaking any number of consecutive bits can be a symbol

40

3.4 Implementing BWT-based Aligner

Obviously there is no need to store and sort all the rotations as strings - this

will reqire O(2n) space and would not be efficient. Instead and array of references to

positions in the original string can be used. Such array R[1..n] would have O(n) space

requirement and the size of the transformed text is identical to the original, containing

exactly the same characters but in a different order.

In the example in figure 3.5 we used special symbol ($) to indicate the end of the

string. This leads to increasing the character space by one, but in real implementation

can be avoided by maintaining special pointer to the first or last symbols. Alternatively

BWT can be constructed in its bijective variant with special technique to avoid infinite

comparison of looped word.

Sorting of all the rotations of the input is basically what brings together characters

that occur in similar contexts. This is what makes BWT useful in compression algo-

rithms. Typically move-to-front transform and run-length encoding are used together

with BWT. For example a piece of Burrows-Wheeler Transform of all of Shakespeare’s

Hamlet will look like

nnnnnnnnnnnnnnnnnntnnnnnnnhnnngnnnnnnnnjnnnnnhdnnng

nnnnonnNnnnhhNnnnnnnnnntnnhnnnnnnnnnnnnnnNnndnnnhnn

nnnNnnnnnnnnnnnnnnnnnnnnnonntnnNNnnnnnnnndngnnnnnnn

nnnnnnnNnnnnnnnngnnnnnnnnnnnnnnnnnngnnnnnnnnonnnnnn

nnnNNnlnnnhnnnnnnnnnntdbdnnrrmnnmnmnnnuoccppppppdnr

rDolBbbdddodbbBddbbddbdBdbbdbdDddddBbbbbdDbubbdbdbB

and just by run-length encoding the first line can be compressed as ”19nt7nh3ng8nj5nhd3ng”

Run-length encoder takes advantage of runs of identical characters in a sequence

by replacing them with a singe data value and count, rather than as the original run.

The ”Move-to-front transform” is working by replacing each symbol in the data with

its index in the stack of recently used symbols. These techniques are strongly featured

in much of the BWT research, , however, most of the compression is achieved with

the arithmetic coding, and there is some evidence that even the run-length encoding

isn’t necessary if the arithmetic coding is done correctly, although RLE can make

implementation simpler and faster (69).

We can notice some properties of BWT Matrix:

41

3. SEQUENCE ALIGNMENT

• Every column of MT , hence also the transformed text L, is a permutation of T$.

• In particular, the first column of MT , called F, is obtained by lexicographically

sorting the characters of T$ (or, equally, the characters of L).

• There is a strong relation between MT and the suffix array built on T.

Another very important property of BWT is that it is reversible - otherwise de-

compression would not be possible. The original data can be re-generated only using

symbols from the last column of the matrix - i.e. BWT itself. The simplest way to

perform and understand reverse transformation is the following. Using only the last

column we can recreate the first one - by sorting symbols. Then last and the first

column put together will give us all the pairs of symbols in the text. By sorting this

list of pairs we will rebuild first two column of the BWT matrix. Following the same

logic we will eventually reconstruct all the matrix and the row with sentinel symbol at

the end would be the original text.

Better approach to the reverse transformation is based on a property called called

LF mapping: the ith occurrence of character X in the last column of the BWT matrix

corresponds to the same character in original text as the ith occurrence of X in the

first column. By counting the number of symbols in F and L we can consequently

reconstruct the original data symbol by symbol as shown in the figure 3.6.

3.4.2 Compressed Suffix Arrays

Possible alternative to BWT-based index can be using compressed suffix array. It is

possible to decrease space consumption of suffix array from O(n log n) to O(n) bits,

particular constants might differ depending on implementation and usually depend on

the entropy of the text. First so called compressed suffix array approach, first presented

by Grossi and Vitter in 2000(70).

The core idea is to use a successor array usually called Ψ such that SA[x] =

SA[Ψ[x]] − 1. Suffix array can be regenerated from Ψ and also Ψ has a good poten-

tial for compression. Because suffixes are lexicographically sorted the Ψ array consists

of series of monotonically increasing sequences - two consecutive entries in Ψ will be

increasing if the corresponding suffixes start from the same prefix.

42

3.4 Implementing BWT-based Aligner

F L

i1 p1

m1 → i4 → s4 → s2 → i3 → s3 → s1 → i2 → p2 → p1 → i1

i2 s1

i3 s2

i4 m1

m1 i1

p1 p2

p2 i2

s1 s3

s2 s4

s3 i3

s4 i4

Figure 3.6: Reverse Transformation

As a simplest way to compress such a sequence delta-encoding in blocks can be

used. In this case elements of compressed array are stored as Ψ[i] − Ψ[i − 1] Such

encoding, however, would allow only for sequential access to elements in blocks. To

allow for random access Elias-Fano encoding cab be used. It is slightly more intricate

and requires some auxiliary data structures.

it is possible to search compressed suffix array directly - without reconstruction of

the original suffix array and even without looking into the original text. One elegant

implementation od compressed suffix array with such capabilities was proposed by

Sadakane (71) soon after Grossi and Vitter original work.

Array Ψ can also be used for faster than logarithmic search of matches in a suffix

array. Let’s define array C with C[p] being the number of occurrences of symbols less

then p in the text. Using array C it is possible to determine the range of suffix array

entries containing suffixes starting from certain letter - just by taking the element of C

corresponding to the first letter of the target suffix and the adjacent element.

Using Ψ and C it is possible to iteratively narrow down the range of suffix array

corresponding to the last, then last two and so on symbols from the end of the target

suffix until we reach the first symbol.

The size of an index based on compressed suffix array is comparable to one based of

BWT, but if we use straightforward encoding - the BWT gives us constant compression

43

3. SEQUENCE ALIGNMENT

i :=p , c :=P[p] ,

F i r s t :=C[c]+1 , Last :=C[c +1] ;

whi l e ((F i r s t <= Last)

and (i >= 2)) do

c :=P[i −1] ;

F i r s t :=C[c]+Occ (c , F i r s t −1)+1;

Last :=C[c]+Occ (c , Last) ;

i := i −1;

i f (Last<F i r s t)

then return no matches

e l s e re turn <Fir s t , Last>.

Figure 3.7: Procedure Backward search.

ratio and ability to subdivide index easily. Search algorithm for compressed suffix

array and for BWT indexes are very similar, search algorithm for BWT-based index is

described in the next section.

Memory-partitioning optimizations proposed in further sections are agnostic of un-

derlying data structures and would be equally applicable to indexes based on BWT

and compressed suffix array.

3.4.3 Search Algorithm

It has transpired that the BWT is useful for a lot more than compression because it

contains an implicit sorted index of the input string. Eventually full-text indexing and

pattern-matching algorithms based on BWT were discovered.

We adopted backward search algorithm proposed by Manzini and Ferragina (53) for

our GPU implementation. Here Occ is the number of occurrences of given symbol before

given position in transformed sequence. Array C contains total number of occurrences

of each symbol.

Backward search procedure (fig. 3.7) uses LF mapping to calculate in rounds the

rows of the matrix that begin with progressively longer suffixes of the query string.

44

3.5 Implementation

3.5 Implementation

The running time of the Backward search procedure is dominated by the cost of evaluat-

ing Occ(c, q). If we build a two-dimensional array OCC such that OCC[c][q] = Occ(c, q)

the backward search procedure runs in O(m) time and it requires O(|Σ|n log n) =

O(n log n) bits.

The result of the Backward search procedure is not the position(s) of matches in

the reference sequence but the range of elements in the corresponding suffix array,

containing indexes of actual matches in the reference. We suggest using suffix array

on a host (which usually has enough memory to store it entirely) to decipher output

of Backward search procedure in O(1) time. While it is possible to resolve positions of

matches using the transformed text and OCC, generating all match positions on GPU

will provide unpredictable amount of results per query, i.e. each execution thread will

need to use unpredictable amount of device memory, and that is unsuitable for CUDA

execution model. It will also cause additional overhead for moving data from device to

host. To decipher search results on the host side we simply iterate suffix array elements

bound by backward search procedure output values.

To compress BWT we make use of the fact that DNA sequences have a very small

alphabet (only four symbols), that allows for straightforward encoding, two bit for each

symbol. Such compression is almost as efficient as bzip-like typically used with BWT

and offers such benefits as the absence of worst-case degradation and the possibility

to estimate memory space required for index before the transform. In real application

queries can contain extra symbols other than A,C,G and T, like n for inconclusive read,

but we do not need to compress queries. Otherwise we could use 4bits for coding extra

symbols.

To compress OCC we split the transformed text into buckets of arbitrary size. For

each bucket we will store the number of occurrences of each symbol in the transformed

text before the first symbol of this bucket. For example, in 64 bit implementation for

buckets of 32 symbols we will need 8 bits per symbol to store compressed OCC and 8

consequent memory reads to count the number of occurrences for any symbol. It gives

us 10 bits of index per 8 bits of reference sequence and it is possible to change this ratio

by varying OCC bucket size. 64 bit suffix array need 17bytes of memory, which is 13.5

times bigger.

45

3. SEQUENCE ALIGNMENT

Figure 3.8: Effect of memory partitioning

3.5.1 Preliminary Performance Evaluation

We chose CUDA as target architecture as it is de facto standard for GPGPU program-

ming. The algorithm was implemented in C++ for CUDA programming language.

Experimental implementation takes reference and a set of named queries in FASTA

format as input. Output is a set of positions in the reference where queries are mapped

and for each query the position of the first match character.

By merely replacing suffix array with BWT we already achieved 3-4 times per-

formance improvement for cases where the size of data is too big to fit in memory for

suffix-array based software but can be processed in one pass with our approach. Fig.3.8)

show how increasing reference size affects performance whether index can (BWT) or

can not (suffix array) fit into GPU memory. We used NVIDIA Tesla 2050 card (2.6Gb

memory) on the machine with 2.67GHz 4 cores Intel Core i7 920 CPU and 12GB of

RAM running under CentOS 5.4.

The program executes in following phases:

1. Build index from reference or load pre-built index.

2. Load query set.

3. Move index and queries to GPU.

4. Align queries to reference using its index.

46

3.5 Implementation

Figure 3.9: Data in GPU Memory

ion 0.99d (TeX Live 2013/Debian) The top-level auxiliary file: thes

5. Copy results to host.

6. Output results.

The CUDA kernel that performs the query search is an almost straight-forward

implementation of procedure Backward search, where each thread is processing its own

query independently. Each thread stores results in its own preallocated global memory

and accesses the reference index only by reading. Therefore there are no race condi-

tions and no need for synchronization. Performance profiling showed that major share

of time is consumed by loading data from global memory. On references over 100mb

MummerGPU++ starts to subdivide index and loses performance, while with our ap-

proach index up to several gigabytes (i.e. complete human genome) can be stored in

GPU memory.

3.5.2 Partitioning Big Workloads

Index based on BWT is small enough to store the entire human genome in memory of

modern GPU devices (up to 6Gb in recent models) which is enough for aligning the

DNA material from a known source, such as a sample from human biological material

that needs to be aligned only against the human genome. This allows us to fully exploit

parallel capacities of GPU without having to split the index and process it chunk by

chunk. Yet there are situations when the size of index as well as the amount of query

data considerably exceed device memory size. For example, in metagenomics DNA

samples are taken from environmental samples and might be required to be aligned

against a range of reference genomes, total size of which can me much bigger than

device memory size.

47

3. SEQUENCE ALIGNMENT

Figure 3.10: Dealing with Bif Workloads

48

3.5 Implementation

Figure 3.11: Performance evaluation

In this case we need to somehow split the index as well as the queries and process

them chunk by chunk, aligning each chunk of query set against each chunk pf index. It

is not obvious how to do this decomposition, in which proportions to allocate memory

for index and for queries and in what order to process them. In the following section

we describe our performance model for this process, so as to see if it is possible to find

the optimal balance and get maximal performance. (72) (73)

3.5.3 Performance Model and Workload Balancing on single-GPU

The theoretical complexity of matching algorithm itself is O(q), where q is query length.

In case of sequential execution increasing number of queries to process obviously in-

creases execution time in the same linear manner.

So we can say that the overall execution time depends linearly on the overall size

of query set. Parallel execution on a GPU device will show little or no increase of

computation time until the number of queries si big enough to occupy all cores and

saturate memory bus. Having 512 CUDA cores on Fermi card multiplied by roughly

esteemed number of 256 thread, multiplied by 100(the number of bases in one query) -

gives us about 10mb of query data to be processed in one kernel launch, which is much

smaller than the typical amount of available onboard memory and even more negligible

compared to the overall workload size. So we will consider performance to be linearly

dependent on query size for overall GPU performance, assuming index and query can

49

3. SEQUENCE ALIGNMENT

fit entirely into GPU memory and keeping in mind that we do not want to make query

load less than 10mb.

Let us call memory size Smem, index size Sidx and query set size Sqry. The overall

execution time consists of the computation time itself and the time spent on moving

data between host and device: T = Tcmp +Tmem. This formula assumes the worst case

scenario when there is no overlapping between computation and data transfers. Cases

where such overlapping is possible will be discusses below.

Let’s take a look at Tcmp. Suppose we have to split the index into Nidx chunks of

size Pidx each and the query set into Nqry chunks of Pqry bytes. There is an obvious

correlation between Nidx and Nqry, but for the time being we shall not include it in

the model to keep it simpler. We have to match each chunk of query set against each

part of index, one such iteration (kernel launch) taking C ∗ Pqry time as complexity

does not depend on index size. We have to repeat the matching procedure for each

part of index and for each part of query set, which gives as execution time Tcmp =

C ∗Nidx ∗Nqry ∗ Pqry = C ∗ Sqry ∗Nidx. As the overall size of Sqry is constant it seems

preferable to allocate greater share of memory for storing index.

Now let’s consider the communication expenses of moving index and query set parts

from host to device. We have two basic options here. One option is to place one part

of index on device, processing all subsets of query set one by one and then doing the

same procedure for next part of index. The other option is to do the matching vice

versa, i.e. matching one part of query set against all parts of index and then proceed

to the next chunk of query set.

In the first case we need to copy Pidx bytes for each part of index, then Nqry

times Pqry bytes of query subsets which equals to Sqry bytes and then to repeat this

process Nidx times. Given host-to-device transfer bandwidth β communication will

take Tmem = β(Pidx + Sqry) ∗Nidx = βSidx + βSqryNidx time. The overall time will be

T = C ∗Sqry ∗Nidx +βSidx +βSqryNidx = (C+β)SqryNidx +βSidx. Obviously the only

variable parameter here is Nidx and we maximize it by keeping the size of index chunk

as big as possible. At the same time the size of query set chunks goes to zero, that

is to the minimal amount required to saturate GPU memory bus. As the overall time

does not depend on number of query chunks, we can split each chunk into two parts

without affecting time, and copy one part while processing another. Having typically

β < C we can completely hide the communication cost.

50

3.5 Implementation

For the second case using the same logic we get T = C ∗Sqry ∗Nidx+βSqry +βSidx ∗
Nqry overall execution time.

In the second case we copy one part of query set of Pqry bytes and the whole index

part by part (Sidx bytes). Then we repeat it Nqry times which gives us β(Pqry +Sidx) ∗
Nqry = βSqry + βSidx ∗ Nqry time. The overall time will be T = C ∗ Sqry ∗ Nidx +

βSqry + βSidx ∗Nqry. In this case the performance gained through smaller amount of

index chunks is concealed by losses caused by more frequent transfers of index.

Let α be the share of memory occupied by index. Then each chunk of index will

use αSmem bytes and each chunk of queries (1 − α)Smem bytes. We will have to split

index into Nidx = Sidx/αSmem chunks and query set into Nqry = Sqry/(1 − α)Smem

chunks. Figure 3.11 shows how variation of α changes the overall execution time and

that the first case allows for a potentially higher performance.

Actual value of C is retrieved form experiment and it depends on many parameters,

like minimal required match length etc, but the asymptotic behaviour will be the same.

Performance of test implementation on big workloads confirms the predicted model

(figure 3.11).

So in the first case the overall performance increases as the index size is increased.

This process continues up to the point where the memory remaining for queries is

enough to run kernels with full memory saturation, which is relatively small and is not

shown in figure3.11.

In the second case we increase index size up until the point where communication

expenses of repeating transfers of big index chunks are equal to the time spent on

processing queries on extra number of index chunks. Maximal performance is better in

the first case and it seems preferable from the point of view of pure GPU productivity.

Moreover, it allows us to overlap communication and computation, as we can split

queries without much penalty making performance even closer to ideal.

However, in this model we do not take into account the fact that results of matching

of each subset of queries against each part or index need to be merged with each

other. In the first case we have to store results of matching against each part of index

somewhere until we process all queries and it will tax CPU-side memory/storage. This

approach is completely inapplicable in a situation where queries are being streamed

from some source (i.e. a sequencing machine) and we need to process each query block

51

3. SEQUENCE ALIGNMENT

Figure 3.12: Performance details

as it comes so we have to stay with worst case model - or we can try using multiple

GPUs.

3.5.4 Multiple GPUs

Index chunk distribution among multiple GPU devices allows for smaller amount of

repeatedly loaded index chunks per device. Ideally index chunks are not being moved

at all. In this case theoretical performance in terms of pure GPU productivity will be

even better, though not significantly, than that provided by the first approach on a

single GPU device. On each device we spend C ∗ Sqry + βSqry time for moving and

processing all queries (once again, overlapping is possible in this case).

In perspective of the whole application two problems can occur. Copying data to

multiple devices can be slower than copying to single device. But even in the worst

case, when data can only be moved to GPU devices one by one, it will not be an

issue: since when devices are initially filled with workloads one by one, we can keep

this asynchronism in execution and all succeeding data transfers.

Another potential problem is than merging results can take up more time than

matching itself.

The process of deciphering and joining results consists of following stages. We get

the ranges of suffix array elements as output of each GPU matching routine and restore

actual positions of matches in reference sequence. For each device output we will have

such list of positions. Then we need to merge these lists together and sort resulting

list. It does indeed look like time consuming routine, but it obviously has O(Nidx)

52

3.6 Conclusion

complexity, the same as complexity of search procedure itself. The exact multiplier

depends on implementation, CPU characteristics and average number of matches for

each query. However, given realistic search output, our sequential test implementation

performed merging of 8 chunks of one million results in less then one second, which is

definitely faster than processing corresponding amount of data on GPU (fig. 3.12). In

previous experiments we used queries of 100 bases long, so 1 million results correspond

to 100Mb of query data. In tests on both real and generated sequences multi GPU

performance per device was same as for single GPU case 1. We performed benchmarking

on one of the Tsubame 2.0 supercomputer nodes with 2 six-core Intel Xeon X5670

CPUs and 54GB of RAM running under SUSE Linux Enterprise Server 11 SP1 for this

test. The node has three NVIDIA Tesla 2050 GPUs connected with 16 lanes of PCI

Expression 2 on it. We used 100 bases long queries and set minimal match length to

40 bases. For 6GB reference sequence aligning efficiency per device was 3.55 million

bases per second for single GPU and 3.7 for multi GPU implementation when all 3

devices were used. So 3 GPUs compared to single one gave us 3.11 times speed-up, i.e.

1.04 efficiency. Optimal number of devices is equal to the number of index chunks of

optimal size. Increasing number of GPUs further will negatively affect the efficiency as

index chunk size will be decreased.

3.6 Conclusion

Read alignment is basically a string matching problem and is typically done by building

index of a reference and then matching queries against it. There are several types

of indexes and corresponding match algorithms which were being used for alignment

problem. We made a survey of existing solutions (50),(59),(61), and found that memory

limitation is the performance bottleneck in all cases. Workload size for both reference

sequence and query set can dramatically surpass available device memory and each

index subdivision into smaller chunks to fit into memory simply doubles execution time.

For example human genome contains approximately 3 billion of bases. Suffix array

(array of integers giving the starting positions of suffixes of a string in lexicographical

order) needs 9 bytes per base, so it will require 27 gigabytes of memory, while top

modern GPUs have about 6GB. To index bigger references 64 bit integers are required

and suffix array space complexity will be 17 bytes per base.

53

3. SEQUENCE ALIGNMENT

Faster and faster computing systems are developed every day to cope with ever-

increasing complexity of problems that emerge in various areas of science and tech-

nology. Performance growth comes from technological advancements and mainly form

architectures facilitating parallel data processing in various forms (i.e. recently GPUs).

At the same time algorithms known to solve particular tasks themselves have many pos-

sibilities of improvement, taking into consideration fact that overall performance comes

not just from better algorithm, but also on how it fits certain peculiarities of hardware

platform and different patterns of data distribution in heterogeneous systems. GPUs

and clusters of GPUs have recently become one of the main threads of supercomputing.

Their computational characteristics are different from those of traditional systems and

they are relatively new to software developers, which makes the above-stated issues

even more important. Also while some applications have a pretty uniform data model,

like those solving various matrix-based mathematical problems, in other applications

data model itself is heterogeneous and its decomposition requires a profound study of

balancing storage and distribution of workload parts so that we could better meet the

platform characteristics and improve the overall performance.

Better software performance does not necessarily come from computational com-

plexity of underlying algorithms. Choice of particular data structures and correspond-

ing algorithms depends on how they meet characteristics and features of target hard-

ware. This is particularly true for GPU devices.

This work shows that using more compact data structures can lead to performance

improvement in short read alignment problem. We refactored MummerGPU++, pre-

vious highly-efficient GPU exact-matching read alignment software by replacing suffix

array with BWT and rewriting the corresponding search algorithms and get 3-4 times

performance improvement. The analysis of application behavior for the case of work-

load size considerably exceeding device memory proves that higher performance can

me achieved by intelligent strategy for data decomposition. We also showed that best

performance per device for read alignment problem can be achieved by using multiple

GPUs, and the optimal number of GPU devices for a particular task can be estimated

from reference size.

As the chief way to increase performance we propose using an algorithm with lesser

memory footprint. Such an algorithm can be based on Burrows-Wheeler transform

and some additional data structures (FM-Index) instead of suffix array. BWT was

54

3.6 Conclusion

introduced in 1994 by Burrows and Wheeler(67) and was used mainly in compres-

sion algorithms such as bzip2 as it transforms reoccurring patterns in the string into

continuous runs of a single symbol, but it can be also used for pattern matching.

The second one is the performance model of possible memory utilization strategies.

This model allowed us to find best proportions and succession of memory allocations and

data transfers to maximize overall performance. We found that optimal performance

is possible to achieve by using multiple GPU devices.

55

3. SEQUENCE ALIGNMENT

56

4

String Sorting

4.1 Introduction

Sorting, or ordering the sequence of items in ascending or descending order, is one

of fundamental and most widely studied algorithmic problems in computer science.

According to Donald Knuth (74) ”computer manufactures in 1960s estimated that

more than 25 percent of the running time on their computers was spend on sorting,

when all their customers were taken into account. In fact, there were many installations

in which the ask of sorting was responsible for more then half of the computing time.”

Solving togetherness problem, matching items in two lists, binary search by key -

are common example of how sorting can be useful. Sorting routines are widely used

standalone for storage and manipulation of data, and also often serve as a basis for

more complex algorithms in various areas from graph and spatial data processing to

molecular biology.

With data becoming Big Data, efficiency of sorting algorithms becomes of increasing

importance. Another important consideration is the data becomes more diverse in

nature, particularity bigger volumes of non-numeric data are emerging (75) and require

for specialized algorithms (76).

There are two ways to improve sorting performance: optimization of the algorithms

themselves and their adaptation to massively parallel hybrid architectures. An efficient

algorithm should combine workload balancing, economic data transfers and overall

computation model that is adequate to strengths and limitations of underlying hardware

57

4. STRING SORTING

platform. Sorting algorithms also make a valuable case study of how to attack parallel

programming challenges in general.

This work addresses the issue of efficient sorting of strings on multi-core processors,

which has not received as much attention as sorting of numeric data. We describe our

approach to parallelization of MSD radix sort and discuss its the applicability to GPU

and traditional CPU architectures. Further we compare CPU and GPU implementa-

tions with regards to the efficiency of the sorting algorithm on varying key length.

4.1.1 Approaches to Sorting

Let’s say we are given a list of N records R1, R2, ...RN , containing some data and

keys K1,K2, ...KN . The goal of sorting is to arrange these records according to the

ordering relation ”<” applied to keys. Since the sorting algorithms deal only with keys

and are agnostic about the additional values we will focus on sorting a list of N keys,

sometimes called items. If the keys are big it makes sense to move pointers to keys

instead of moving bulky keys themselves, this approach is called address table sorting.

In case when the keys are multi-character arrays or strings, such approach is dictated

by the data representation itself, as string arrays are typically stored in memory as two

arrays - of pointers and symbols belonging to each sting in contiguous memory block.

Ordering relation ”<” should satisfy following conditions for any key values a, b, c:

• Only one of the responsibilities a < b, a = b, b < a is true. (trichotomy)

• If a < b and b < c, then a < c (transitivity)

We can notice that these conditions are equivalent to mathematical concept of total

ordering. The sorting is called stable if we make the further requirement that records

with equal keys should retain their original relative order.

Most classical sorting algorithms are build only on the assumption that the ”<”

relation is the only thing we know about the data type of keys. We will call such

algorithms comparison based. Their advantage is that they can be applied to any data

type if the comparison operator is provided. In modern programming languages these

algorithms are implemented as template or generic code, which user can parametrize

with own comparison operation implementation or provide a reference to appropriate

library routine.

58

4.1 Introduction

algorithm guarantee average extra space assumption of keys

insertion N2/2 N2/4 no comparable

selection N2/2 N2/2 no comparable

merge N log n N logN N comparable

quick 1.39N logN 1.39N logN c logN comparable

LSD radix WN WN N +R digital

Table 4.1: Frequency of instruction in the inner loop

Simple approaches which can be build upon a comparison operation are well known

of comparison based algorithms are insertion sort (items are considered one at a time,

and each new item is inserted into the appropriate position relative to the previously-

sorted items) and bubble sort (if two items are found to be out of order, they are

interchanged. This process is repeated until no more exchanges are necessary).

A fundamental limit of comparison sorting algorithms is that they require linearith-

mic time - O(N logN) in the worst case. Two wll-known classical comparison-based

sorting algorithms that achieve this asymptotic complexity are merge-(77) or quick-

sort(78).

However this formula allows us to estimate only the amount of comparison opera-

tions needed to complete the sort and not the actual performance time. So, for these

sorts execution time depends on the cost of comparison operation, and that depends on

the actual data. For example, lexicographic sorting of strings requires comparison of

many symbols, and that makes the complexity of the sorting dependent on what is called

the longest common prefix (LCP) = 1
n−1

n∑
i=0

(LCP (Si, Si+1)) where LCP (Si, Si+1) is the

number of symbols two adjacent strings in have in common.

On the other hand, better performance is possible on real-world data (such as

almost-sorted data), and algorithms not based on comparison, such as counting sort,

can have better performance. Although many consider sorting a solved problem asymp-

totically optimal algorithms have been known since the mid-20th century useful new

algorithms are still being invented.

4.1.2 Sorting by Counting

Sorting by counting, or key-index counting is a simple primitive which is used as a

59

4. STRING SORTING

building block for string sorting algorithm and it also provides a good and simple

example how better sorting performance can be achieved if we tailor particular data

type.

This method is based on the idea that the jth key in the final sorted sequence is

greater than exactly j 1 of the other keys (74, 79). Let’s assume input to be a collection

of n non-negative integer key whose maximum value is at most σ.

The algorithm iterates over the items, computing a histogram of the number of times

each key occurs within the input collection. It then performs a prefix sum computation

(a second loop, over the range of possible keys) to determine, for each key, the starting

position in the output array of the items having that key. Finally, it loops over the

items again, moving each item into its sorted position in the output array.

Algorithm 1 Key-index counting

procedure Sort(input,N)

for i ∈ (0..N) do . counting

count[input[i]]← count[input[i]] + 1

end for

for i ∈ (0..σ) do . offsets

offset[i]←
∑i−1

0 count[i]

end for

for i ∈ (0..N) do . moving

output[offset[input[i]]]← input[i]

output[offset[input[i]]← output[offset[input[i]] + 1

end for

return output

end procedure

Algorithm 1 shows the pseudocode for counting sort. input here is the input array

of integers and σ is the maximum key value. The first loop counts keys in the input

array to the array cound, this process is also called building a histogram. The second

loop builds the array of the number of items with key less than ith, which is the same

as the first index at which an item with key i should be stored in the output array.

This process is also called prefix sum.

In our simplified pseudocode the prefix sum computation looks redundant in a sense

that it iterates over the count array O(σ2) times, in practice linear-time implementation

60

4.1 Introduction

is possible and pretty straightforward.

The output is an array of ordered items. From the pseudo-code we can see that

such implementation of counting sort is stable and requires O(N) time to execute -

indeed, it performs only two loops over the N input elements. Strictly speaking, it

require Therefore the time for the whole algorithm is the sum of the times for these

steps, O(N + σ) time, but in practical case σ is significantly less than N . The spatial

complexity of the algorithm is also O(N + σ).

4.1.3 Sorting Longer Keys

As we can see, sorting algorithms can deliver faster performance for certain data types,

up to linear performance in the ideal case, when we take into account the additional

knowledge about keys data type. On the other hand ignoring it can cause serious

performance degradation, like in the case of string, when comparison operation does

not take constant time.

One of the algorithm that we focus on is a radix sort which is a build on the top of

key-index counting

Radix sort comes in two flavors: sort that starts from the most significant digit

(MSD radix sort) or from the least significant digit (LSD radix sort). The term ”digit”

is used because radix sort is generally applied to integers; it actually refers to any

amount of bits in the binary representation of the number. However, since this paper

describes application of radix sort to strings, we shall hereafter use the term ”symbol”

rather than ”digit”.

LSD radix sort is perhaps the most commonly used one; it performs well on short-

length keys such as integer numbers. The most efficient implementation of this algo-

rithm is now part of CUDA SDK(80). However, LSD sort is bound to short keys of

fixed length, which does not cover many types of data.

The reason why LSD radix sort is bound to short keys is that it starts from the

rightmost symbol and proceeds to the previous one while maintaining stability of the

sort, and then the algorithm is repeated until the first symbol is reached. On relatively

long keys this approach would not be efficient because comparing the first several

symbols should be enough to determine the order of strings. Moreover, with a long key

the number of iterations goes up, and the performance decreases accordingly.

61

4. STRING SORTING

MSD radix sort does not have this problem in that it starts from the leftmost symbol

and then moves up to the next symbol only for the strings the order of which is not yet

determined. It can be viewed as bucket sort because this process basically consists of

recursive distribution of strings into buckets: at first all strings are placed into different

buckets depending on their first symbol, and then the strings inside each bucket are

partitioned again by the next symbol. This process is fairly intuitive, but its recursive

nature makes it challenging to implement on GPU.

Another algorithm that can be useful for sorting strings is Three-way radix quicksort

or multikey quicksort, which is the combination of MSD radix and quick sorts.

4.1.4 Parallel Sorts

Sorting algorithms have been studied extensively, and there have also been numer-

ous attempts to develop parallel approaches to sorting. Comparison-based sorts are

the most commonly used and applicable to various kinds of data. The most efficient

algorithms are based on divide-and-conquer approach and are tricky to parallelize ef-

ficiently. We now have parallel versions of quick sort (81) and merge sort(82, 83)

, among others. There is also bitonic mergesort sort (84) which was developed to

be more paralellization-friendly. The efficiency of certain algorithms and their imple-

mentation is also relative to the type of data being sorted and underlying hardware

architecture. Most of these sorting algorithms are memory-bound, and, for distributed

memory systems, communication-bound.

SIMD architectures are putting even more limitations on what can be implemented

and, like the recently popular GPUs, provide totally different performance trade-offs.

Distribution sorts which are inherently efficient for certain type of data have been espe-

cially successfully implemented on GPU. Radix sort which utilizes thread parallelizm

and hight memory throughput was reported to be highly efficient on GPU (85). They

have also presented a quicksort implementation for GPU with inferior performance. To

the best of our knowledge, the most efficient GPUu radix sort is currently the one from

Thrust library presented by Merril and Grimshaw (80).

Comparison-based sorts were also implemented on GPU. Purcell et al. (86) pre-

sented bitonic merge sort on GPUs based on the work by Kapasi et al. (87). Greß et al.

(88) used the sorting technique presented in the Bilardi et al. paper (89) to implement

GPU adaptive bitonic sort. Another GPU sort based on bitonic was implemented by

62

4.2 Parallelizing String Sort

Govindaraju et al. (90). Later they presented a hybrid CPU and GPU solution us-

ing bitonic-radix sort in Tera-Sort challenge(91). An approach that combines several

algorithms was presented by Sintorn et al. (92); their solution splits the data with a

bucket sort and then uses merge sort on the resulting blocks. Finally, there were more

successful attempts to implement quick sort on GPU (93). There are ongoing efforts

to optimize comparison-based algorithms for new architectures, e.g. by using vector

instructions of modern processors (94).

However, all the above-mentioned radix sorts perform better on numerical data,

since they are LSD radix sorts and can not work with long keys; and none of comparison-

based sorts are efficient for string data. The one algorithm that is known for high

performance on strings is MSD radix sort (74). There is also 3-way radix quicksort

presented by Bentley and Sedgewick (63, 95), which is even more efficient due to more

optimal use of caching. However, at present, to the best of our knowledge, there are no

parallel implementations of radix sort that could handle long string keys. This work

addresses this gap. Our solution is based on MSD radix sort which is less complex and

more GPU-friendly, and equally efficient on the initial stages of the algorithm (while the

bucket are relatively big). On the later stages, as buckets get smaller, we are switching

to the 3-way radix quicksort.

4.2 Parallelizing String Sort

In previous section we made a survey on different sorting algorithm and found two

which are appropriate for sorting string data - MSD radix sort and multikey quicksort.

Now we will introduce this algorithm in greater detail and provide our strategy for

building efficient parallel implementation.

4.2.1 MSD Radix Sort

As we briefly mentioned, MSD radix sort is using so called key-indexed counting which

and can be outlined as follows:

1. count frequencies of each symbol using key as index

2. compute offsets

3. access cumulates using key as index to find record positions

63

4. STRING SORTING

Figure 4.1: MSD radix sort

4. copy back into original array

To perform MSD radix sort we partition input items into σ buckets according to

first character and then sort all strings that start with each character (see fig. 4.1). σ

here is the size of the alphabet.

MSD radix sort can be implemented in place, i.e. without the requirement for

auxiliary array for keys, but as we are moving only pointers to keys (strings), not the

keys themselves - the overhead of using auxiliary array is not significant. On the other

hand, such implementation allows for stable sort.

The alg. 2 shows pseudo-code for our implementation.

Here S is the array of strings and S[i][j] denotes jth symbol of i-th string and Saux

is auxiliary array. Though we use double-buffering technique, S and Saux are storing

only pointers to strings, so the increase in memory consumption is not significant. C

is the array of counters for each letter of the alphabet and O is the array of pointers to

the beginning of each bucket. N is the number of strings being sorted and σ is alphabet

size. d denotes sorting depth, i.e. the position of symbol we use for partitioning strings

into buckets.

64

4.2 Parallelizing String Sort

Algorithm 2 MSD Radix Sort

procedure Sort(S, l, r, d)

for i ∈ (0..N) do . counting

C[S[i][d]]← C[S[i][d]] + 1

end for

for i ∈ (0..σ) do . offsets

O[i]←
∑i−1

0 C[i]

end for

for i ∈ (0..N) do . moving

Saux[O[S[i][d]]] = S[i]

O[S[i][d]]← O[S[i][d]] + 1

end forS = Saux

for i ∈ (0..σ) do . recursion

if (i! = EOL)and(C[i] > 1) then

Sort(S,O[i]− C[i], O[i], d+ 1)

end if

end for

end procedure

4.2.2 3-Way Radix Quicksort

MSD radix sort provides theoretically best performance in term of how many times do

we need to examine every symbol of every string. However, the real implementation

requires creating counter variables for each possible symbol if alphabet, while the bucket

if strings that is being sorted may contain only certain subset of this symbols as the

current key.

The way to avoid this and slightly increase the performance was proposed by Bentley

and Sedgewick in an algorithm called 3-way radix quicksort, or multikey quicksort (95).

This algorithm is a combination of radix sort and quicksort.

Quicksort is a textbook divide and conquer comparison-based algorithm developed

by Tony Hoare in (78) 1961. It chooses a partitioning element, permutes the elements

such that lesser elements are on one side and greater elements are on the other, and

then recursively sorts the two subarrays. Original version of the algorithm used binary

partitioning method, placing lesser elements on the left and greater elements on the

right, but equal elements could appear on either side.

65

4. STRING SORTING

This approach was exhibiting suboptimal performance when sorting sets containing

many equal keys. Eventually, 3-way quicksort was developed to avoid this problem.

3-way quicksort partitions items into 3 groups - less then, breater then and equal to

the pivot element (96).

It is interesting to mention, that the MSD radix sort algorithm is isomorphic to the

trie data structure. The same way, quicksort is essentially building binary search tree

abd 3-way quik sort - ternary search tree

3-way radix quick sort works like this

• It picks an element from the array (the pivot) and consider the first character

(key) of the string (multikey). Then it partition the remaining elements into three

sets: those whose corresponding character is less than, equal to, and greater than

the pivot’s character.

• Recursively sort the ”less than” and ”greater than” partitions on the same char-

acter.

• Recursively sort the ”equal to” partition by the next character (key).

Given we sort using bytes or words of length W bits, the best case is O(KN) and the

worst case O(2KN) or at least O(N2) as for standard quicksort, given for unique keys

N¡2K, and K is a hidden constant in all standard comparison sort algorithms including

quicksort. This is a kind of three-way quicksort in which the middle partition represents

a (trivially) sorted subarray of elements that are exactly equal to the pivot.

4.2.3 Implementing 3-Way Radix Quicksort Without Swaps

Classical quicksort implementation is based on swapping: algorithm scans items form

left to right, compare them to the pivot and moves to appropriate partition. Partition

pointers are updated accordingly. This approach makes quicksort algorithm unstable

and also it makes it difficult to parallelize.

We can approach quicksort in a different way, inpsired by MSD radix sort: let’s

iterate onve over all the items in the array count how many of them are less then,

greater then, or equal to pivot. Then based on these three counters we can figure out

the exact space for three partitions on the second iteration of the loop move items to

66

4.2 Parallelizing String Sort

Algorithm 3 3-Way Radix Quicksort

procedure Sort(S, lo, hi, d)

if lo < hi then

return

end if

lt← lo, gt← hi

v ← charAt(a[lo], d)

i← lo+ 1

while i <= gt do . 3-way partitioning (using d th character)

t← charAt(a[i], d)

if t < v then

exch(a, lt+ +, i+ +)

else if (t > v) then

exch(a, i, gt−−)

else

i+ +

end if

end while

Sort(a, lo, lt− 1, d)

if v >= 0 then

Sort(a, lt, gt, d+ 1)

end if

Sort(a, gt+ 1, hi, d)

end procedure

67

4. STRING SORTING

0 2 4 6 8 10 12 14 16 18 20
Number of keys, (millions)

0

5

10

15

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

std_sort
multikey_count_alph5
multikey_swap_alph5
MSD_radix_alph5

MSD_radix_alph254
multikey_count_alph255
multykey_swap_alph254

Figure 4.2: Performance of sequential algorithms

appropriate places. Such implementation is stable and can be parallelized with the

technique we propose in the next chapter.

This approach requires auxiliary array to temporarily place items and these doubles

memory consumption - so it can be less attractive as a substitute of classical quicksort.

In case 3-Way radix quicksort, however, we are targeting long keys and efficiently

sort only pointers to these keys, which makes same spaw-less approach quite appropri-

ate.

4.2.4 Parallelization Scheme

The naive approach to parallelization of a recursive algorithm would be to use task

parallelism for every recursion branch (fig 4.3). Thus we will be doubling the number

of parallel threads on every level of recursion. To partition strings N into the buckets

we need to scan N symbols and then partition each of the sub-buckets the same number

of symbols in total until the process start encountering empty buckets, i.e. the amount

of workload is the same for every iteration and takes O(N) time in total. If the first

iteration is only done by one thread and the second by σ (alphabet size) parallel threads

68

4.2 Parallelizing String Sort

etc. - possible speed-up of such an implementation is obviously limited and existing

implementations show limited scalability (97).

... ...

Figure 4.3: Recursive Bucketing: First Itera-

tion Has Maximum Work

This approach is even less efficient

for GPU than for the classical multi-

core architecture, since one thread on a

GPU is relatively slower and high per-

formance is achieved only when thou-

sands of threads are running in parallel.

Another approach would be to par-

allelize every iteration of the algorithm,

as is typically done for LSD radix sort.

To build each bucket we are basically

counting symbols and then moving

string pointers according to the coun-

ters. Counting can be efficiently par-

allelized within multiple threads when

the workload is split into chunks for each thread to process.

The problem with this approach is that it performs well in the beginning of the re-

cursive execution when the buckets are relatively big, but as they get smaller processing

small amounts of data with multiple threads becomes a waste of resources. However,

by this time we already have enough buckets to make use of the model in which one

thread or a small group of threads are processing one bucket.

Combining the two approaches would allow us to keep all the processor cores busy

the entire time of execution. We suggest starting with parallel partitioning strings into

buckets and then, when buckets are small enough, continuing to process each bucket

independently in parallel. In the case of many-core CPU we seamlessly switch from

one model to another and continue sorting until all the strings are in place. But on

GPU having many small unsorted buckets creates performance issues due to branch

divergence rates; so we suggest to use a hybrid approach in which the last stages of

sorting are always performed on CPU. Moreover, when the recursion branches are

independently executed by parallel threads we can seamlessly switch from MSD radix

sort to 3-way radix quicksort algorithm.

69

4. STRING SORTING

K

0125

I W I \0 B A N A N A \0 AA P P L ...

pointers

characters

Figure 4.4: String Array in Memory

For the second stage of the sorting Three-way MSD Radix Quick-sort algorithm

can be used interchangeably with MSD Radix sort. Also known as multikey quicksort

it is a combination of radix sort and quicksort. Algorithms picks an element from

the array (the pivot) and consider the first character (key) of the string (multikey).

Then remaining elements are partitioned into three buckets: those whose corresponding

character is less than, equal to, and greater than the pivot’s character. ”less than” and

”greater than” partitions are sorted recursively on the same character, while for the

”equal to” partition the algorithm proceeds to the next character (key). Given we

sort using bytes or words of length W bits, the best case is O(KN) and the worst

case O(2KN) or at least O(N2) as for standard quicksort, given for unique keys N <

2K , and K is a hidden constant in all standard comparison sort algorithms including

quicksort. This is a kind of three-way quicksort in which the middle partition represents

a (trivially) sorted subarray of elements that are exactly equal to the pivot.

The following section describes our implementations for GPU and CPU and dis-

cusses different aspects of our model that also influence performance, such as data

transmission costs, workload balance, and divergent branching in sorting code.

4.3 Implementation

For the many-core CPU implementation we used OpenMP. Our GPU solution is im-

plemented in CUDA, NVIDIA’s programming platform for general-purpose computing

on GPUs which is the current industry standard.

One of the resources we could use to increase the efficiency of radix sort is to process

groups of symbols instead of one symbol at a time. The amount of symbols that could

be processed simultaneously is only limited by the available memory and the length of

the alphabet. Generally speaking, the amount of buckets in radix sort with N symbols

70

4.3 Implementation

in the alphabet is equal to: SM where S is the alphabet size and M is the length of

the group. Assuming that we use 64-bit integers as counters it is easy to estimate how

much memory the program will require for storing buckets: 8 ∗ SM bytes.

Furthermore, shorter alphabets with the same amount of memory will allow for

processing of more symbols per iteration. A good example of an area that uses such

data is genomics, where the alphabet consists of four nucleotides coded A, C, G, and

T (some databases also use N for inconclusive read results). In such a case sorting six

symbols at a time would require only 46 ∗ 8 bytes which would take up only 15 Kb,

which is insignificant compared to the gigabyte-sized strings to be sorted. Moreover,

this amount of buckets is already sufficient to start the parallel sorting by buckets on

the next stage.

4.3.1 CPU Implementation

For data-parallel part (counting and move) we can use OpenMP loop parallelization to

split the workload between threads. Each thread is then accumulating its own array of

counters for each symbol or a group of symbols. The next step is to perform reduction

on the resulting counters. Since OpenMP does not support reduction in arrays we

perform it manually in parallel fashion, each thread having access to local counters

of all the other threads. Obviously, we multiply the amount of memory we need for

the counters by the number of threads, which further limits the length strings we can

process. Also with more threads we have to reduce more data (although this is partly

compensated by the fact that we have more threads). Being memory-bound, this stage

exhibits work time inflation, but still the reduction stage is much smaller than the

counting stage, and the performance degradation is insignificant.

In the second stage of the algorithm we use OpenMP task parallelism. Here we

switch to 3-way radix quicksort instead of MSD radix sort.

4.3.2 GPU Implementation

The execution model on GPU is very different from that of traditional multi-core sys-

tems. While GPUs provide a much higher level of parallelism (new cards boast as many

as 512 SM cores per die), programs are executed in the so-called Single Instruction Mul-

tiple Threads (SIMT) paradigm. This means that threads on the same multiprocessor

are performing the same instructions at the same time, and this does not allow us

71

4. STRING SORTING

Figure 4.5: First stages of sorting kernel

to run independent tasks on different cores (although it is possible to launch several

parallel kernels at the same time).

Recursive algorithms are challenging to implement on GPUs because, as of now,

only the newest Kepler architecture currently support recursion, and that support is

rather limited. Recursive launch of kernels is used to bring control of their execution

entirely to GPU, but it is not meant to be used in highly recursive algorithms. Another

hardware characteristic to be considered is that programs on GPU can address only

on-board GPU memory which has relatively high bandwidth, but the data has to be

transferred from host memory and back, which is relatively slow.

As described earlier, our algorithm is executed in three stages:

(1) processing the first (biggest) buckets in data-parallel fashion; (2) processing the

resulting (smaller) buckets in combination of data-parallel and task-parallel paradigms;

(3) sorting the remaining small buckets with CPU threads.

To implement the first stage of the algorithm we made heavy use of atomic opera-

72

4.4 Performance Analysis and Optimization

tions which allowed us to avoid reduction and to thus decrease memory usage (which

would be significant with many counters per thread). This approach does not slow

down our performance due to highly efficient implementation of atomic operations in

the newest GPU architectures.

As was mentioned above, the efficiency of radix sort could be increased by sorting

groups of symbols instead of one symbol at a time. With the use of atomic operations,

the amount of symbols that could be processed simultaneously is only limited by the

available memory and the length of the alphabet. Generally speaking, the amount of

buckets in radix sort with N symbols in the alphabet is equal to: SM where S is the

alphabet size and M is the length of the group. Assuming that we use 64-bit integers as

counters it is easy to estimate how much memory the program will require for storing

buckets: 8 ∗ SM bytes.

The second stage of the algorithm repeats the same logic, but with smaller groups

of threads independently processing different buckets. This is more efficient, since the

buckets get smaller at this stage. On the other hand, since the groups of threads

now have their own counters this limits the amount of groups that can be executed in

parallel. We balance these parameters to keep GPU cores saturated.

At the point when the distribution of buckets exhibits high workload imbalance

which we cannot cope with on GPU, and the sort is continued on CPU. There we can

use 3-way radix quicksort which is a more advanced version of the same algorithm.

4.4 Performance Analysis and Optimization

We used the following hardware configuration for performance evaluation. System 1:

• CPU: Intel(R) Xeon(R) CPU E5-2687W 0 @ 3.10GHz, 16 cores with hyper-

threading, 2 sockets

• OS: CentOS release 6.4 (Final)

• Memory: 126 GB

System 2:

• Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz, 6 cores with hyper-threading, 1

socket

73

4. STRING SORTING

0 2 4 6 8 10 12 14 16 18 20
Number of keys, (millions)

0

10

20

30

40

50

60

70

80

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

std_sort
32_threads_100sym
12_threads_25symbols
32_threads_len20

sequential
12_threads_50symbols
12_threads_100symbols

Figure 4.6: Sorting throughput

• OS: Scientific Linux release 6.1 (Carbon)

• Memory: 126 GB

• GPU: Tesla K20c

• GPU compute capability: 3.5

• GPU memory: 4.6 GB

4.4.1 CPU Implementation Performance

First of all we evaluated overall performance of the implementation in terms of sorting

throughput. Figure 4.6 shows sorting throughput on different number of keys. We

observed stable performance when all the threads are placed on the cores belonging

to one socket and irregular, though insignificant jumps when threads are scattered

74

4.4 Performance Analysis and Optimization

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Threads

recursion
copy

move keys
local offsets

offsets
reduction
counting

(a) absolute time on small workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

O
v
e
ra

ll
C

o
n
tr

ib
u
ti
o
n

Number of Threads

recursion
copy

move keys
local offsets

offsets
reduction
counting

(b) relative time small workload

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Number of Threads

recursion
copy

move keys
local offsets

offsets
reduction
counting

(c) absolute time on big worlkoad

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

O
v
e
ra

ll
C

o
n
tr

ib
u
ti
o
n

Number of Threads

recursion
copy

move keys
local offsets

offsets
reduction
counting

(d) relative time on big workload

Figure 4.7: Time spent in different phases

across the cores. Analysis of time spent for each phase of the algorithm shows that the

reduction phase is causing synchronization overheads.

While measuring how the implementation responds to the increase of threads num-

ber we used numactl tool to control thread allocation and forced threads to first utilize

all cores of the first socket and then start using the second one. Figure 4.10 shows ex-

act time spent in both stages of the algorithm for 1-socket system and Figure 4.7 gives

more details about each phase for relatively small (1 million of keys) and sufficiently

large (10 million) workloads for 2-sockets system. Figure 4.9 shows overall performance

scaling for 1-socket and 2-sockets systems.

To understand the performance of the parallel CPU implementation, we instru-

mented the code to track the execution of each phase as well as the work executed

within each phase. For instrumentation we used low-overhead instrumentation library

called LoI1. LoI collects timings for kernels and phases using only timestamp counters,

1https://bitbucket.org/mpericas/loi-pub

75

https://bitbucket.org/mpericas/loi-pub

4. STRING SORTING

and it reports information on average kernel times, variation between kernel times of

different threads, phase execution times, and overheads. In this context, overheads

refers to the amount of time within a phase in which threads are not executing kernels.

It is a measure of both runtime overheads (such as OpenMP API calls) as well as load

imbalance.

By evaluating average kernel times for single-threaded and multithreaded executions

it is also possible to measure the work time inflation suffered by the kernels due to

resource sharing. Both factors can be encoded as two factors OVRN and WTIN which

represent the execution stretch compared to ideal serial execution at N threads:

Tparallel =
Tserial
N

×OVRN ×WTIN

By measuring these values we can obtain a fast qualitative analysis of the bottlenecks

present in each phase of the current code.

The figures 4.8 show the results obtained when instrumenting the three main phases

and kernels of the code: counting, move keys and recursion. As we can see, data-parallel

phases are more subjected to work time inflation both on small and large workloads

task-parallel due to more intensive use of synchronization.

Straight-forward task-parallel implementation version of the algorithm showed in-

ferior performance and scalability. We also implemented parallel version of 3-way radix

quick sort in a similar mixed-parallelism fashion with similar performance.

4.4.2 GPU Implementation Performance

For the GPU implementation analysis of hardware counters done with Compute Visual

profiler shows that sort kernel is memory bound and uses only few percent of available

memory bus bandwidth. Organizing memory access patterns in a way that writes

and loads are or at least localized is a one of the fundamental optimizations for CUDA

kernels. In our algorithms though, we are examining ith symbol of every variable-length

string and strings are occupying continuous span in global memory. It is very difficult

to organize efficient memory access in this context. Few things we can to do are two

disable L2 cache with compiler options and prioritize L1 cache size over available shared

memory with CUDA API call. Then instead of loading consequent symbols one by one

for reading the prefix of the string we do one 32 bytes memory load into local buffer

and then iterate over its. This gave us 15-20 performance improvement.

76

4.4 Performance Analysis and Optimization

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

W
or

k
Ti

m
e

In
fla

tio
n

Number of Threads

counting
move keys

recursion

(a) work time inflation on 106 keys

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 5 10 15 20 25 30

W
or

k
Ti

m
e

In
fla

tio
n

Number of Threads

counting
move keys

recursion

(b) work time inflation on 107 keys

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30

R
el

at
iv

e
O

ve
rh

ea
ds

Number of Threads

counting
move keys

recursion

(c) overheads on 106 keys

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 5 10 15 20 25 30

R
el

at
iv

e
O

ve
rh

ea
ds

Number of Threads

counting
move keys

recursion

(d) overheads on 107 keys

Figure 4.8: Performance details

77

4. STRING SORTING

Figure 4.10 shows exact time spent in each phase of the algorithm. copy is moving

string from host to device, count is counting the number of occurrences for each prefix,

offsets” is prefix sum of the counters and ”move keys” denotes scanning strings for

second time and placing corresponding pointers according to offsets.

If we continue recursive sorting past the level when buckets are getting small enough

- high branch divergence starts causing performance degradation. We found that op-

timal cut off level is about 6-8 symbols for small alphabets (like 4 symbols of genomic

data) and 3-5 symbols for longer alphabets.

But the definite bottleneck for GPU implementation is moving data to and from

the device -it takes considerable share of time and it grows proportionally to the length

of the key. Figure 4.11 shows maximal performance we can get depending on the size

of the key. Top green line shows maximal throughput if we only have to copy data to

GPU. Line labelled copy kernel accounts for moving sorted pointers back and also one

kernel launch. Kernel launch overhead is about 20 microseconds even if it does not

perform any work and we obviously need to launch at least one kernel. So this is the

best possible performance for such an implementation.

CPU implementation, on the other hand, has fixed performance irrelevant to the

length of the keys - only to the overall number and statistical properties like the size

of the alphabet.

To overcome this impediment we used the following technique. We chopped of first

symbols of every string and repartitioned them into new memory block along with the

pointers to original location. Then we transferred only this part to GPU and performed

MSD radix sort there. Though the keys are seemingly fixed-length now, at least for the

GPU part - we can not use LSD radix sort, as its every iteration is oblivious of previous

iterations and those information about partitioning is not preserved. After N iterations

of MSD radix sort on the other hand we have strings sorted by N first symbols and

also start and end position of every bucket as a by-product of an algorithm.

This re-partitioning of strings of course is bringing additional overhead, but it is

justified by overall performance improvement except for extremely short keys. We also

parallelized re-partitioning process on CPU using OpenMP, although this process is

memory-bound and does not scale much. New distribution of execution time is shown

on Figure 4.13b.

78

4.4 Performance Analysis and Optimization

4.4.3 Alternative Approach to GPU String Sorting

Another work on implementing MSD Radix sort for GPU emerged after the submission

of the first draft of this thesis. (98)

While using the same core algorithm authors propose different implementation. To

maintain good workload balance all the keys on the same level of recursive bucketing

tree are processed simultaneously.

To enable this, instead of addressing parts of keys in the contiguous memory block

where keys are stored, authors move two a portion of a key to the new memory block,

append the pointer to the first byte of the key, and extra field with bucket id to

differentiate between buckets. Then thrust radix sort primitives are applied to sort

these two symbols with the respect of bucket ids segmented scan. Then buckets of

size one or zero are excluded from the list, bucket ids are updated. Finally next two

symbols are loaded into the same space and the process is repeated until no buckets

are left. This approach requires auxiliary space for copies of pointers, fragments of the

keys and bucket ids.

The algorithm provides a very different and interesting approach to implementing

MSD radix sort. In a way it emulates standard recursive bucketing by keeping buckets

id’s and pay for better workload balance with additional memory transfers. Also, used

of thrust prefix sum primitives allowed for a short clean implementation, particularly

by ”outsourcing” grid/block side tuning to the library.

Our evaluation of this solution showed that it delivers good sorting throughput on

randomized reasonably short (about 20 bytes) keys - but as the length of the keys grows

the PCIe communication overheads start to dominate over sorting efficiency. Secondly,

the Thrust segmented scan primitive is not very efficient when there are many segments

inside the warp of 32 threads. Simple example, when the input data set contains

randomized keys and each key is repeated two times, i.e. there are many buckets of

two strings requiring deep recursion to sort - solution by Deshp and Narayanan shows

significant performance degradation down to about 15∗106 keys/second, which is several

times slower than our implementation.

79

4. STRING SORTING

4.4.4 Skewed Keys

The algorithm itself is optimal in a sense that it observes only as many characters as

necessary to distinguish unique keys and does it constant number of times - two in

our case. If the keys are distributed so that they form big amount of small buckets

- algorithm switches to task-parallel model and sort them separately. If there are big

buckets left - they are processed in the same thread-parallel manner, both parts of the

algorithm showed good performance.

In the worst case we have to examine every symbol of every key, this can happen

is we have square matrix of N keys of size N , filled with the same character. In this

case for all comparison-based algorithm complexity of comparison operation would be

O(N2) and the best overall performance we can get would be O(N2 logN), so MSD

Radix Sort still delivers the superior performance in this case.

The key point is that algorithm can dynamically choose different branches of execu-

tion depending on the current bucket size and thus utilize SIMD-fashion parallelism in-

side the recursive bucketing routing if it is needed while sequentially processing smaller

buckets to avoid task creation overheads.

4.5 Conclusion

To the best of our knowledge, this is the first1 attempt to parallelize a sorting algorithm

efficient for the processing string data. We presented our implementations of MSD radix

sort for two parallel architectures (CPU and GPU). Our solution features a two-stage

algorithm that balances different parallelization strategies to achieve good scalability.

Performance analysis confirmed that MSD radix sort can be efficiently parallelized and

achieve high performance on string data, especially on data with shorter alphabets.

Our implementation also showed that when the keys are longer, MSD radix sort

outperforms competing algorithms such as merge sort.

We analysed performance to validate our approach and used locality optimizations.

For GPU implementation we identified host-to-device communication overhead as a

bottleneck and introduced a communication-reducing strategy to overcome this issue.

1Work by Deshp and Narayanan(98) was published after the submission of the first draft of this

thesis

80

4.5 Conclusion

More research needs to be done on testing MSD radix sort on other parallel ar-

chitectures, such as MIC. Another possible direction for further work is testing the

applicability of this algorithm to distributed memory systems.

81

4. STRING SORTING

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number of threads

0

2

4

6

8

10

12

14

16

18

sp
ee

du
p

2sockets
1sockets

Figure 4.9: Scaling

0 5 10 15 20
Keys, (milloins)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

stage1
stage2

Figure 4.10: Execution time breakdown for CPU implementation

82

4.5 Conclusion

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Key length

0

50

100

150

200

250

300

350

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

sort_kernel
copy_only

copy_kernel
sort_total

Figure 4.11: Correlation of performance and key length

0.1 2.1 4.1 6.1 8.1 10.1 12.1 14.1 16.1 18.1 20.1
Number of keys, (millions)

0

10

20

30

40

50

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

cpu_3way_radix_quick
CPU_msd_radix
std_sort

rc017_OMP_string_sort
rc017_GPU_hybryd7
rc017_GPU_hybryd6

(a) absolute time on small workload

0 2 4 6 8 10 12 14 16 18 20
Number of keys, (millions)

0

10

20

30

40

50

60

70

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

cpu_3way_radix_quick
GPU_hybryd

CPU_OpenMP

(b) relative time small workload

Figure 4.12: GPU sorting throughput

83

4. STRING SORTING

1 3 5 7 9 11 13 15 17 19
Keys, (milloins)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

copy
count
offsets
move_keys
copy_results
cpu_part

(a) first implementation

0.1 2.1 4.1 6.1 8.1 10.1 12.1 14.1 16.1 18.1 20.1
Keys, (millions)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ex
ec

ut
io

n
ti

m
e

(s
ec

on
ds

)

redistribute
copy
count
offsets
move
move_results
cpu_part

(b) Implementation with re-partitioned strings

Figure 4.13: GPU execution time breakdown

0 2 4 6 8 10 12 14 16 18 20
Number of keys, (millions)

0

10

20

30

40

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

OpenMP uniform OpenMP zero

Figure 4.14: Sorting keys with zero-distribution

84

4.5 Conclusion

0.1 2.1 4.1 6.1 8.1 10.1 12.1 14.1 16.1 18.1 20.1
Number of keys, (millions)

0

10

20

30

40

50

60

70

Ke
ys

/s
ec

on
d,

 (
m

ill
oi

ns
)

std_sort
cpu_3way_radix_quick
CPU_msd_radix

OMP_string_sort
GPU_hybryd

Figure 4.15: Sorting throughput of improved implementation

85

4. STRING SORTING

86

5

Discussion and Conclusions

In this work we have presented case studies of two important data-intensive problems

of computational science: sequence alignment and string data sorting. In additional to

theoretical analysis and mathematical modelling, we implemented our ideas for GPU

architecture.

This section outlines the main findings from implementation experience and perfor-

mance evaluation of our solutions, some of which are relevant not only to the applied

areas under consideration, but also to the supercomputer programming in general.

We and also discuss the implications of our findings for computational biology and

string data analysis and suggest some directions for future work in optimization of

data-intensive algorithms for hybrid architectures.

5.1 Main Findings

The main application-specific findings from our two case studies can be summarized as

follows.

For the string sorting problem, we have shown that MSD radix sort can be efficiently

parallelized and achieve high performance on string data. We have shown that this

algorithm is particularly beneficial for data with shorter alphabets, like the one found

in genomics or proteomics. We have also found which diapason of key lengths can be

efficiently sorted on GPU and how we can apply the key-splitting strategy to sort keys

of any length with a hybrid approach.

87

5. DISCUSSION AND CONCLUSIONS

For the sequence alignment problem, our implementation has shown that using

more compact data structures can lead to performance improvement in short read

alignment problem. In our case, replacing suffix array with BWT in MummerGPU++

and rewriting the corresponding search algorithms increased the performance by 3-4

times.

We showed that smart strategy for allocation shares of available memory for different

parts of a workload can further boost performance and that the best performance per

device for read alignment problem can be achieved by using multiple GPUs. The

optimal number of GPU devices for a particular task can be estimated from reference

size.

The problems presented in this dissertation involve different algorithms for perform-

ing different tasks on different kinds of data. Nevertheless, in addition to application-

specific results we can also observe some general tendencies which include the following.

Firstly, the efficiency of the algorithm highly depends on how well it matches a

given architecture. This makes the choice of the algorithm a key decision in writing a

data-intensive application.

Secondly, not all algorithms can efficiently use the benefits of GPU acceleration

throughout the time of execution. This means that hybrid approaches can often lead

to better results than relying only on GPUs.

Thirdly, our GPU implementations allowed us to identify the host-to-device com-

munication overhead as a bottleneck which requires special strategies to reduce the

time costs.

In this chapter we will focus on the three general tendencies outlined above, which

present interest not only for the applied areas under consideration (computational bi-

ology and string data sorting), but also to other data-intensive areas of supercomputer

programming.

5.2 Fitness of Algorithms and Architectures

Our results show that it is important to select the algorithm and data structure so

that it would match the given architecture. It is often the case that several algorithms

can be applied to solve a particular problem. Such areas include matrix multiplication,

numeric methods, and, in our case, pattern matching and sorting. In some cases even

88

5.3 Host-to-device Communication Expenses

higher complexity of the algorithm itself can allow for a better overall performance by

allowing, e.g., better cache efficiency or lower host-to-device communication expenses.

This point is well illustrated by choosing the basic data structure for our implemen-

tation of sequence alignment algorithm. While suffix tree is theoretically the fastest

data structure for substring matching, high memory consumption is making its prac-

tical implementation less efficient, particularly for GPUs. Using BWT allowed us to

increase the performance by several times as it is much smaller than suffix array and,

subsequently, suffix tree. Its small size also allows us to process the same amount of

data in one pass. With the low amount of memory available on GPUs, other data

structures would have forced us to split the data to be processed in several chunks.

The reason for efficiency of BWT in our implementation is not only memory effi-

ciency but

5.3 Host-to-device Communication Expenses

Performance degradation due to high costs of data transmission between different levels

in memory hierarchies is clearly a performance bottleneck for many applications. This

was evident in the case of string sorting: moving long keys through the PCIe bus was

making the otherwise efficient standard version of Most Significant Digit radix sort

algorithm slower than its sequential counterpart.

Therefore programming for GPUs requires being conscious about data movements

to make the algorithm much more efficient. We see several possible ways to reduce the

time spent on data transfers.

• Careful selection of the algorithm. With GPUs, it makes sense to decide on a rel-

atively computationally complex algorithm if it allows to reduce communication

costs.

• Compressing the data before it is sent (given that one does not spend too much

time on compressing and decompressing).

• Overlapping of computation and communication. In our sequence alignment im-

plementation sending a chunk of query data was possible when another chunk is

being processed.

89

5. DISCUSSION AND CONCLUSIONS

• Algorithm-specific ways to reduce communication costs might be available de-

pending on the task.

The last point is illustrated by our implementation of the sequence alignment

method. The data that we are processing consists of two different part: reference

and queries. Both parts have to be split in chunks to fit the device memory and be

processed in pairwise fashion.

The analysis of application behavior for the case of workload size considerably

exceeding device memory proves that higher performance can be achieved by intelligent

strategy for data decomposition.

5.4 Hybrid Algorithms

As described above, GPUs and traditional architecture provide different performance

characteristics, and different algorithms can exhibit drastically different fitness to a

given architecture. Some algorithms are so well adapted to GPUs that the role of CPU

in hybrid-architecture tailored solution consists only in loading data, transferring it

into GPU and then retrieving the results back. However, in other cases both sides can

contribute substantially to the overall application performance.

The present study highlights three such characteristic cases:

1. When algorithm is composed of several sub-routines, and some of this routines

are well-suited for GPU architecture, and some are not, but can be efficiently

executed on CPU.

2. When CPU is used to compress/uncompress data to minimize the host-to-device

communication overhead.

3. When algorithm exhibits different efficiency on particular architectures during

different stages of execution.

These thee cases represent possible nuances rather that distinct, non intersecting

cases, and can co-occur in one problem. Such was our case with string sorting: different

architectures were used at different execution stages, and CPU was used to smartly

reformat data to decrease data transfers.

90

5.4 Hybrid Algorithms

The first scenario is, perhaps, the most straightforward. GPU-friendly tasks are

running on GPU, while highly recursive tasks or tasks with high memory requirements

are running on the host side. In our example the suffix array is constructed on CPU.

Linear-time suffix array construction algorithms are available, but they are difficult to

implement on GPU due to their highly recursive nature.

Another good example can be found in two GPU-accelerated implementations in

Fast Multipole Method, a mathematical technique that was developed to speed up

the calculation of long-ranged forces in the n-body problem. One implementation was

presented by Hu et al. in 2011 (99), and another - in 2012 by Lashuk (100). FMM

algorithm is composed from several phases and authors determined which phases are

GPU-friendly, particularly the so-called P2P phase (the native N-body computation).

A good example of the second scenario is the compression of BWT-based index we

use for sequence alignment. Compared to the plain uncompressed index we can achieve

up to 4x times better space efficiency. If the workload is too big to be processed in

one device memory we have to move data across the PCIe bus several times, thus

multiplying the beneficial effect of the compression.

The third case can be observed in Most-Significant Digit radix sort algorithm de-

scribed in the 3d chapter of this work. This algorithm is recursively partitioning strings

into buckets. While buckets are big enough, SIMD (or SIMT) execution model is work-

ing well. But when the buckets get smaller, the CUDA code starts to suffer from high

branch divergence and poor workload balance.

Finally, it is possible to address these nuances simultaneously. Again, in MSD

radix sort the transferring of long keys to device is seriously taxing performance. By

splitting keys into segments to be sorted on GPU and to be ”finished” on a host side

we are solving two problems simultaneously: we separate the parts with good and with

poor workload balance to be executed on GPU and on CPU side and we minimize the

amount of data to be transferred through the PCIe bus.

Of course, the strategies for a particular implementation depend mostly on the

characteristics of a given algorithm, and it is impossible to predict which technique

would work best for all problems. Nevertheless, we have outlined some general strategies

for implementations for hybrid architectures which could be useful in other specific

cases.

91

5. DISCUSSION AND CONCLUSIONS

5.5 Implications for Computational Biology

New-generation sequencing machines allow for cheaper and faster DNA sequencing,

which leads to increasing amount of genomic data. This calls for more efficient software

infrastructure for storing and processing this data. Our work demonstrated that GPUs

can be helpful for such tasks.

The original MUMmer software is being used in actual work with genetic data

(50) . It was further refactored by Schatz et al. (59) to use GPU acceleration. The

latest GPU-based implementation by (61) that uses suffix array achieves about 8 ∗ 106

keys/s performance. Using BWT instead of suffix array and smart memory partitioning

strategy allowed us to further boost performance by 3 times. At the same time we

preserved compatibility with the original MUMmer software, which allows our solution

to be directly usable in actual data analysis.

Dealing with genomic data always implies handling gigabytes of information, which

requires the algorithms to be efficient in terms of I/O, networking and intra-node com-

munications. Memory-conscious approaches are preferable. We showed that BWT can

be efficient and reliable data structure for GPU implementation of exact-match prob-

lem, and it could be efficient for other classes of matches, particularly those allowing

for mismatches in the sequences.

5.6 Implications for String Data Analysis on GPU

Supercomputers have originally been mostly used for number-crunching (mostly for

double precision floating point values). However we now witness the tendency of using

supercomputers for processing data; moreover, supercomputers are being converged

with data centers. Such data can include genomic sequences, natural language texts,

different keys, hashes, etc. This means that we need efficient string-processing algo-

rithms which would be friendly to massively parallel hybrid architectures. This work

presented one of such algorithms, namely the string sorting.

We have shown that the benefits of GPU architecture can be used for processing

string data. However, to keep it efficient, the programmer must pay particular attention

to communication expenses, as the string keys are simply longer than numeric data.

Our implementation has shown that the excessive length of keys makes it prohibitive

to utilize GPUs. Two ways to deal with this problem are (a) using GPUs to sort only

92

5.7 Implications for Supercomputer Design

shorter keys, and (b) use GPUs to sort only parts of the keys, e.g., the first n symbols.

In this work we used the second approach to build an efficient GPU implementation of

MSD radix sort.

5.7 Implications for Supercomputer Design

As mentioned above, various non-float data are coming to supercomputers. Processing

such data can be more taxing on storage and intra-node communications, and this

implies that for supercomputers to be efficient for string crunching, we need faster

local storage. We also need faster network and inter-node communications, which are

important for numerical data as well.

Another consideration is the metric we use for ranking high performance computing

systems. The most widely known and recognized supercomputer rating, Top500 list, is

primarily concerned with the double-precision floating-point computation performance.

It is built based on High Performance Linpack (HPL) - simple program that factors

and solves a large dense system of linear equations using Gaussian Elimination with

partial pivoting. HPL benchmark provided good correlation between the ranking and

the performance of real-world full-scale applications, but now situation is changing.

For many new applications which have much lower computation-to-data-access ratios,

access memory irregularly or have fine-grain recursive computations performance do

not really correlate with HPL benchmark score.

There are other ratings, such as Graph 500 which target different types of computa-

tion, but they are more concerned with communication efficiency. However, even in the

domain of numerical simulation we observe the tendency of using the single-precision

values at some stages of certain algorithms to maximize the general efficiency. Differ-

ent systems exhibit different balance of single- and double-precision performance. The

Tsubame 2.5 system installed in Tokyo Institute of Technology is inferior to the top

Japanese system, the K supercomputer, for double-precision floating-point operations

(5.7 TFlop/s VS 10.5 TFlop/s), but is more efficient (at 17.1 TFlop/s VS the same

10.5 TFlop/s) for the single-precision floating-point values.

Recently proposed High Performance Conjugate Gradient (HPCG) benchmark is

supposed to address some of this new challenges and provide more adequate rating.(101)

93

5. DISCUSSION AND CONCLUSIONS

Our case studies highly exemplify this tendency. In fact, they both do not in-

volve floating-point operations at all and are purely integer, and we do not have much

statistics on the supercomputer efficiency for this kind of computations.

5.8 Directions for Further Work

The solutions presented in this work were developed for GPUs, currently the most

popular accelerator architecture. However more research needs to be done on testing

MSD radix sort on other parallel architectures, such as MIC which is steadily growing

in presence in the HPC world.

As MICs share many features with GPUs, such as the data transfer through PCIe

bus, many of the techniques and findings presented in this works should be applicable

to this architecture. However, the execution model of MIC is slightly different from

that of GPU, and it might require re-evaluation of some algorithms. At the same time,

characteristics of this architecture might open up new ways of optimizations for the

sequence alignment and/or string sorting problems.

Since our solution of the sequence alignment problem showed considerable perfor-

mance gains from replacing suffix array with BWT, it could turn out to be equally useful

for other applied tasks in computational biology. There are recent works presenting

BWT-based algorithms for inexact matching problem, and these could be efficiently

adapted on GPU.

94

References

[1] Stanislaw Marcin Ulam. Tribute to John von Neu-

mann. Bulletin of the American Mathematical Society,

64(3):1–49, 1958. 1

[2] Gordon E Moore et al. Cramming more compo-

nents onto integrated circuits. In Proceedings of the

IEEE, 86, pages 82 – 85. McGraw-Hill, January 1998.

1

[3] George S. Almasi. Highly Parallel Processing (The Ben-

jamin/Cummings series in computer science and engi-

neering). Benjamin-Cummings Publishing Co.,Subs. of

Addison Wesley Longman,US, 1987. 2

[4] Computer Science, Telecommunications Board, Na-

tional Research Council, Academy Industry Program,

and National Academy of Sciences. Supercomputers:

Directions in Technology and Applications. National

Academies Press, 1989. 2

[5] Krste Asanovic, Rastislav Bodik, James Demmel, Tony

Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson Mor-

gan, David Patterson, Koushik Sen, John Wawrzynek,

David Wessel, and Katherine Yelick. A View of the

Parallel Computing Landscape. Commun. ACM,

52(10):56–67, October 2009. 2

[6] S. Huang, S. Xiao, and W. Feng. On the Energy Effi-

ciency of Graphics Processing Units for Scientific

Computing. In Proceedings of the 2009 IEEE Inter-

national Symposium on Parallel&Distributed Processing,

IPDPS ’09, pages 1–8, Washington, DC, USA, 2009.

IEEE Computer Society. 4

[7] J. C. Venter. The Sequence of the Human Genome.

Science, 291(5507):1304–1351, Feb 2001. 4, 26

[8] Gil A. McVean, Richard A. Gibbs, Jun Wang, Eric S. Lan-

der, Paul Flice, and all. An integrated map of ge-

netic variation from 1,092 human genomes. Na-

ture, 491(7422):56–65, Nov 2012. 4, 30

[9] David W. Mount. Bioinformatics: Sequence and Genome

Analysis. Cold Spring Harbor Laboratory Press, 2001.

5, 31

[10] Horst Gietl Hans W. Meuer. Supercomputers Pres-

tige Objects or Crucial Tools for Science and In-

dustry? Software Development Practice, 2012. 7

[11] OpenMP Application Program Interface, Ver-

sion 4.0. openmp.org. 9

[12] Ewing Lusk, Nathan Doss, and Anthony Skjellum. A

high-performance, portable implementation of

the MPI message passing interface standard. Par-

allel Computing, 22:789–828, 1996. 9

[13] Krste Asanovic, Ras Bodik, Bryan Christopher Catan-

zaro, Joseph James Gebis, Kurt Keutzer, David A.

Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, Katherine A. Yelick, Meet-

ings Jim Demmel, William Plishker, John Shalf, Samuel

Williams, and Katherine Yelick. The Landscape of

Parallel Computing Research: A View from

Berkeley. Technical report, TECHNICAL REPORT,

UC BERKELEY, 2006. 10

[14] Pavan Balaji and Satoshi Matsuoka. Guest Editors’

Introduction: Special Issue on Applications for

the Heterogeneous Computing Era. IJHPCA,

27(2):87–88, 2013. 11

[15] J. Nickolls and W.J. Dally. The GPU Computing

Era. Micro, IEEE, 30(2):56 –69, march-april 2010. 12

[16] NVIDIA. CUDA C Programming Guide, 2013. 14, 17

[17] Khronos OpenCL Working Group. The OpenCL Spec-

ification, Version 1.1, 2012. 14

[18] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid

Multi-core Parallel Programming Environment.

Workshop on General Purpose Processing on Graphics

Processing Units (GPGPU 2007), Boston, Massachus-

sets, USA, 2007. 14

[19] OpenACC. OpenACC Application Programming

Interface, 2012. 14

[20] M. Garland, S. Le Grand, J. Nickolls, J. Anderson,

J. Hardwick, S. Morton, E. Phillips, Yao Zhang, and

V. Volkov. Parallel Computing Experiences with

CUDA. Micro, IEEE, 28(4):13 –27, july-aug. 2008. 15

[21] Martin Egli and Wolfram Saenger. Principles of Nucleic

Acid Structure. Springer, 1983. 23

[22] W. MIN JOU, G. HAEGEMAN, M. YSEBAERT, and

W. FIERS. Nucleotide Sequence of the Gene Cod-

ing for the Bacteriophage MS2 Coat Protein. Na-

ture, 237(5350):82–88, May 1972. 26

[23] W. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Is-

erentant, J. Merregaert, W. Min Jou, F. Molemans,

A. Raeymaekers, A. Van den Berghe, and et al. Com-

plete nucleotide sequence of bacteriophage MS2

RNA: primary and secondary structure of the

replicase gene. Nature, 260(5551):500–507, Apr 1976.

26

[24] F. Sanger, S. Nicklen, and A. R. Coulson. DNA

sequencing with chain-terminating inhibitors.

Proceedings of the National Academy of Sciences,

74(12):5463–5467, Dec 1977. 26

[25] A. M. Maxam and W. Gilbert. A new method for se-

quencing DNA. Proceedings of the National Academy

of Sciences, 74(2):560–564, Feb 1977. 26

[26] Gilbert W. DNA sequencing and gene structure.

Technical report, Nobel lecture, December 1980. 26

95

http://doi.acm.org/10.1145/1562764.1562783
http://doi.acm.org/10.1145/1562764.1562783
http://dx.doi.org/10.1109/IPDPS.2009.5160980
http://dx.doi.org/10.1109/IPDPS.2009.5160980
http://dx.doi.org/10.1109/IPDPS.2009.5160980
http://dx.doi.org/10.1126/science.1058040
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1038/nature11632
openmp.org
openmp.org
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dx.doi.org/10.1038/237082a0
http://dx.doi.org/10.1038/237082a0
http://dx.doi.org/10.1038/260500a0
http://dx.doi.org/10.1038/260500a0
http://dx.doi.org/10.1038/260500a0
http://dx.doi.org/10.1038/260500a0
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1073/pnas.74.2.560
http://dx.doi.org/10.1073/pnas.74.2.560

REFERENCES

[27] F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R.

Coulson, J. C. Fiddes, C. A. Hutchison, P. M. Slocombe,

and M. Smith. Nucleotide sequence of bacterio-

phage X174 DNA. Nature, 265(5596):687–695, Feb

1977. 26

[28] M. Adams, J. Kelley, J. Gocayne, M. Dubnick, M. Poly-

meropoulos, H. Xiao, C. Merril, A. Wu, B. Olde,

R. Moreno, and et al. Complementary DNA se-

quencing: expressed sequence tags and human

genome project. Science, 252(5013):1651–1656, Jun

1991. 26

[29] R. Fleischmann, M. Adams, O White, R. Clayton, E. Kirk-

ness, A. Kerlavage, C. Bult, J. Tomb, B. Dougherty,

J. Merrick, and et al. Whole-genome random se-

quencing and assembly of Haemophilus influen-

zae Rd. Science, 269(5223):496–512, Jul 1995. 26

[30] Eric S. Lander, Lauren M. Linton, Bruce Birren, Chad

Nusbaum, Michael C. Zody, Jennifer Baldwin, Keri De-

von, Ken Dewar, Michael Doyle, William FitzHugh, and

et al. Initial sequencing and analysis of the hu-

man genome. Nature, 409(6822):860–921, Feb 2001.

26

[31] Mostafa Ronaghi, Samer Karamohamed, Bertil Petters-

son, Mathias Uhln, and Pl Nyrn. Real-Time {DNA}
Sequencing Using Detection of Pyrophosphate

Release. Analytical Biochemistry, 242(1):84 – 89, 1996.

26

[32] Eric Kawashima, Laurent Farinelli, and Pascal Mayer.

Method of Nucleic Acid Amplification, October

1998. 27

[33] Sydney Brenner, Maria Johnson, John Bridgham, George

Golda, David H. Lloyd, Davida Johnson, Shujun Luo,

Sarah McCurdy, Michael Foy, Mark Ewan, and et al.

Gene expression analysis by massively parallel

signature sequencing (MPSS) on microbead ar-

rays. Nature Biotechnology, 18(6):630–634, Jun 2000.

27

[34] Marcel Margulies, Michael Egholm, William E. Altman,

Said Attiya, Joel S. Bader, Lisa A. Bemben, Jan Berka,

Michael S. Braverman, Yi-Ju Chen, Zhoutao Chen, and

et al. Genome sequencing in microfabricated

high-density picolitre reactors. Nature, Jul 2005.

27

[35] Stephan C Schuster. Next-generation sequenc-

ing transforms today’s biology. Nature Methods,

5(1):16–18, Dec 2007. 27

[36] Barry Barnes and John Dupre. Genomes and What to

Make of Them. University Of Chicago Press, 2008. 28

[37] W. Gregory Feero, Alan E. Guttmacher, Christopher J.

O’Donnell, and Elizabeth G. Nabel. Genomics of

Cardiovascular Disease. New England Journal of

Medicine, 365(22):2098–2109, Dec 2011. 28

[38] JonathanR. Karr, JayoditaC. Sanghvi, DerekN. Macklin,

MiriamV. Gutschow, JaredM. Jacobs, Benjamin Bolival

Jr., Nacyra Assad-Garcia, JohnI. Glass, and MarkusW.

Covert. A Whole-Cell Computational Model Pre-

dicts Phenotype from Genotype. Cell, 150(2):389

– 401, 2012. 28

[39] Charles Delisi. The Human Genome Project. Amer-

ican Scientist, 76(5):488–493, September 1988. 29

[40] Jeremy Schmutz, Jeremy Wheeler, Jane Grimwood, Mark

Dickson, Joan Yang, Chenier Caoile, Eva Bajorek,

Stacey Black, Yee Man Chan, Mirian Denys, and et al.

Quality assessment of the human genome se-

quence. Nature, 429(6990):365–368, May 2004. 29

[41] R. M. Durbin, D. L. Abecasis, R. M. Altshuler,

and all. A map of human genome varia-

tion from population-scale sequencing. Nature,

467(7319):1061– 1073, Oct 2010. 30

[42] John D. Owens, David Luebke, Naga Govindaraju, Mark

Harris, Jens Kruger, Aaron E. Lefohm, and Timothy

J.Purcell. A Survay on General-Purpose Compu-

tation on Graphics hardware. Computer Graphics

Forum, 26(1):80–113, 2007. 31

[43] Saul B. Needleman and Christian D. Wunsch. A general

method applicable to the search for similarities

in the amino acid sequence of two proteins. Jour-

nal of Molecular Biology, 48(3):443–453, Mar 1970. 31

[44] T.F. Smith and M.S. Waterman. Identification of com-

mon molecular subsequences. Journal of Molecular

Biology, 147(1):195–197, Mar 1981. 31

[45] Stephen F. Altschul, Warren Gish, Webb Miller, Eu-

gene W. Myers, and David J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology,

215(3):403–410, Oct 1990. 32

[46] D. Lipman and W. Pearson. Rapid and sensitive pro-

tein similarity searches. Science, 227(4693):1435–

1441, Mar 1985. 33

[47] Durbin R Li H. Fast and accurate short read align-

ment with Burrows-Wheeler Transform. Bioinfor-

matics, 25(14):1754–1769, 2009. 33

[48] Ruiqiang Li, Chang Yu, Yingrui Li, et al. SOAP2: an

improved ultrafast tool for short read alignment.

Bioinformatics, 15(25):1966–1967, 2009. 33, 40

[49] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L

Salzberg. Ultrafast and memory-efficient align-

ment of short DNA sequences to the human

genome. Genome Biology, 10(25), march 2009. 33,

40

[50] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann,

Jeremy Peterson, Owen White, and Steven L. Salzberg.

Alignment of whole genomes. Nucleic Acids Res.,

27:2369, 1999. 34, 36, 53, 92

[51] Mihai Pop. Genome assembly reborn: recent com-

putational challenges. Briefings in Bioinformatics,

10:354, 2009. 34

[52] Jonathan M. Rothberg, Wolfgang Hinz, Todd M.

Rearick, et al. An integrated semiconductor de-

vice enabling non-optical genome sequencing. Na-

ture, 475:348–352, July 2011. 34

[53] Paolo Ferragina and Giovanni Manzini. Indexing Com-

pressed Text. Journal of the ACM, 53(4):552–581,

2005. 35, 44

96

http://dx.doi.org/10.1038/265687a0
http://dx.doi.org/10.1038/265687a0
http://dx.doi.org/10.1126/science.2047873
http://dx.doi.org/10.1126/science.2047873
http://dx.doi.org/10.1126/science.2047873
http://dx.doi.org/10.1126/science.7542800
http://dx.doi.org/10.1126/science.7542800
http://dx.doi.org/10.1126/science.7542800
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1038/35057062
http://www.sciencedirect.com/science/article/pii/S0003269796904327
http://www.sciencedirect.com/science/article/pii/S0003269796904327
http://www.sciencedirect.com/science/article/pii/S0003269796904327
http://dx.doi.org/10.1038/76469
http://dx.doi.org/10.1038/76469
http://dx.doi.org/10.1038/76469
http://dx.doi.org/10.1038/nature03959
http://dx.doi.org/10.1038/nature03959
http://dx.doi.org/10.1038/nmeth1156
http://dx.doi.org/10.1038/nmeth1156
http://dx.doi.org/10.1056/NEJMra1105239
http://dx.doi.org/10.1056/NEJMra1105239
http://www.sciencedirect.com/science/article/pii/S0092867412007763
http://www.sciencedirect.com/science/article/pii/S0092867412007763
http://dx.doi.org/10.1038/nature02390
http://dx.doi.org/10.1038/nature02390
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1126/science.2983426
http://dx.doi.org/10.1126/science.2983426

REFERENCES

[54] Dan Gusfield. Algorithms on Strings, Trees and Se-

quences: Computer Science and Computational Biology.

Cambridge University Press, 1997. 35, 37

[55] Peter Weiner. Linear pattern matching algorithms,

pages 1–11. Institute of Electrical and Electronics En-

gineers, Oct 1973. 35

[56] Edward M. McCreight. A Space-Economical Suffix

Tree Construction Algorithm. Journal of the ACM,

23(2):262–272, Apr 1976. 35

[57] R. Giegerich and S. Kurtz. From Ukkonen to Mc-

Creight and Weiner: A Unifying View of Linear-

Time Suffix Tree Construction. Algorithmica,

19(3):331–353, Nov 1997. 35

[58] Martin Farach. Optimal Suffix Tree Construction

with Large Alphabets. In 38th IEEE Symposium

on Foundations of Computer Science (FOCS ’97), page

137143, 1997. 36

[59] Michael C Schatz, Cole Trapnell, Arthur L Delcher1,

and Amitabh Varshney. High-throughput sequence

alignment using Graphics Processing Units. BMC

Bioinformatics, 8:474, 2007. 36, 53, 92

[60] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replac-

ing suffix trees with enhanced suffix arrays. Jour-

nal of Discrete Algorithms, 2:53–86, 2004. 37

[61] Abdullah Gharaibeh and Matei Ripeanu. Size Matters:

Space/Time Tradeoffs to Improve GPGPU Ap-

plications Performance. In SC ’10 Proceedings of the

2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis.

IEEE Computer Society, 2010. 37, 53, 92

[62] Udi Manber and Gene Myers. Suffix arrays: A new

method for on-line string searches. In Proceedings

of the First Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 319–327, 1990. 37

[63] Jon Bentley and Robert Sedgewick. Sorting Strings

with Three-Way Radix Quicksort. Dr. Dobbs Jour-

nal, 1998. 38, 63

[64] Richard M. Karp, Raymond E. Miller, and Arnold L.

Rosenberg. Rapid identification of repeated patterns in

strings, trees and arrays, pages 125–136. Association

for Computing Machinery, 1972. 38

[65] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear Suf-

fix Array Construction by Almost Pure Induced-Sorting,

pages 193–202. Institute of Electrical and Electronics

Engineers, Mar 2009. 39

[66] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin.

A taxonomy of suffix array construction algo-

rithms. ACM Computing Surveys, 39(2):4–es, Jul 2007.

39

[67] M. Burrows and David J. Wheeler. A block-sorting

lossless data compression algorithm. Technical Re-

port 124, Digital Equipment Corporation, 1994. 39, 40,

55

[68] Su Chen and Hai Jiang. An Exact Matching Ap-

proach for High Throughput Sequencing Based

on BWT and GPUs. In 2011 IEEE 14th International

Conference on Computational Science and Engineering

(CSE). IEEE Computer Society, 2011. 40

[69] Paolo Ferragina, Raffaele Giancarlo, and Giovanni

Manzini. The engineering of a compression boost-

ing library: Theory vs practice in BWT com-

pression. Technical report, In Proc. 14th European

Symposium on Algorithms (ESA 06, 2006. 41

[70] Roberto Grossi, Jeffrey, and Scott Vitter. Com-

pressed suffix arrays and suffix trees with ap-

plications to text indexing and string matching

(extended abstract. In in Proceedings of the 32nd

Annual ACM Symposium on the Theory of Computing,

pages 397–406, 2000. 42

[71] Kunihiko Sadakane. New Text Indexing Function-

alities of the Compressed Suffix Arrays. J. Algo-

rithms, 48(2):294–313, September 2003. 43

[72] Aleksandr Drozd, Naoya Maruyama, and Satoshi Mat-

suoka. Sequence Alignment on Massively Parallel

Heterogeneous Systems. In in proceedings of IEEE

26th International Parallel and Distributed Processing

Symposium Workshops & PhD Forum, pages 2498 –

2501, 2012. 49

[73] Aleksandr Drozd, Naoya Maruyama, and Satoshi Mat-

suoka. A Multi GPU Read Alignment Algorithm

with Model-Based Performance Optimization. In

High Performance Computing for Computational Science

- VECPAR 2012, 7851, pages 270–277. Springer-Verlag,

2013. 49

[74] Donald E. Knuth. The Art of Computer Programming,

Volume 3: Sorting and Searching, 3. Addison-Wesley

Professional, 2011. 57, 60, 63

[75] Jiang Bian, Umit Topaloglu, and Fan Yu. Towards

Large-scale Twitter Mining for Drug-related Ad-

verse Events. In Proceedings of the 2012 Interna-

tional Workshop on Smart Health and Wellbeing, SHB

’12, pages 25–32, New York, NY, USA, 2012. ACM. 57

[76] Beth Plale. Big Data Opportunities and Chal-

lenges for IR, Text Mining and NLP. In Proceed-

ings of the 2013 International Workshop on Mining Un-

structured Big Data Using Natural Language Processing,

UnstructureNLP ’13, pages 1–2, New York, NY, USA,

2013. ACM. 57

[77] Thomas H Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms

(3rd ed.). MIT Press and McGraw-Hill, 2009 [1990]. 59

[78] Charles Antony Richard Hoare. Algorithm 64:

Quicksort. Communications of the ACM, 4(7):321, july

1961. 59, 65

[79] Robert Sedgewick and Michael Schidlowsky. Algorithms

in Java, Third Edition, Parts 1-4: Fundamentals, Data

Structures, Sorting, Searching. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 3rd edi-

tion, 1998. 60

97

http://dx.doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1007/PL00009177
http://dx.doi.org/10.1007/PL00009177
http://dx.doi.org/10.1007/PL00009177
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1109/DCC.2009.42
http://dx.doi.org/10.1109/DCC.2009.42
http://dx.doi.org/10.1145/1242471.1242472
http://dx.doi.org/10.1145/1242471.1242472
http://dx.doi.org/10.1016/S0196-6774(03)00087-7
http://dx.doi.org/10.1016/S0196-6774(03)00087-7
http://dx.doi.org/10.1007/978-3-642-38718-0_27
http://dx.doi.org/10.1007/978-3-642-38718-0_27
http://doi.acm.org/10.1145/2389707.2389713
http://doi.acm.org/10.1145/2389707.2389713
http://doi.acm.org/10.1145/2389707.2389713
http://doi.acm.org/10.1145/2513549.2514739
http://doi.acm.org/10.1145/2513549.2514739

REFERENCES

[80] Duane Merrill and Andrew Grimshaw. Revisiting

Sorting for GPGPU Stream Architectures. Tech-

nical Report CS2010-03, University of Virginia, De-

partment of Computer Science, Charlottesville, VA,

USA, 2010. 61, 62

[81] Peter Sanders and Thomas Hansch. Efficient mas-

sively parallel quicksort. In Proceedings 4th Inter-

national Symposium, IRREGULAR’97 Paderborn, Ger-

many, pages 13–24. Springer-Verlag, June 1997. 62

[82] Richard Cole. Parallel merge sort. SIAM J. Comput.,

17(4):770–785, August 1988. 62

[83] Manwade K. B. Article: Analysis of Parallel Merge

Sort Algorithm. International Journal of Computer

Applications, 1(1):66–69, February 2010. Published By

Foundation of Computer Science. 62

[84] K. E. Batcher. Sorting networks and their appli-

cations. In Proceedings of the April 30–May 2, 1968,

spring joint computer conference, 32 of AFIPS ’68

(Spring), pages 307–314, New York, NY, USA, 1968.

ACM. 62

[85] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and

John D. Owens. Scan Primitives for GPU Com-

puting. In Graphics Hardware 2007, pages 97–106, San

Diego, CA, August 2007. ACM. 62

[86] Timothy J. Purcell, Craig Donner, Mike Cammarano,

Henrik Wann Jensen, and Pat Hanrahan. Photon map-

ping on programmable graphics hardware. In

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, HWWS ’03, pages 41–

50, Aire-la-Ville, Switzerland, Switzerland, 2003. Euro-

graphics Association. 62

[87] Ujval J. Kapasi, William J. Dally, Scott Rixner, Pe-

ter R. Mattson, John D. Owens, and Brucek Khailany.

Efficient conditional operations for data-parallel

architectures. In Proceedings of the 33rd annual

ACM/IEEE international symposium on Microarchitec-

ture, MICRO 33, pages 159–170, New York, NY, USA,

2000. ACM. 62

[88] Alexander Greß and Gabriel Zachmann. GPU-

ABiSort: Optimal parallel sorting on stream

architectures. In IN PROCEEDINGS OF THE

20TH IEEE INTERNATIONAL PARALLEL AND DIS-

TRIBUTED PROCESSING SYMPOSIUM (IPDPS 06)

(APR, page 45, 2006. 62

[89] Gianfranco Bilardi and Alexandru Nicolau. Adaptive

Bitonic Sorting: An Optimal Parallel Algorithm

for Shared Memory Machines. Technical report,

Cornell University, Ithaca, NY, USA, 1986. 62

[90] Naga K. Govindaraju, Nikunj Raghuvanshi, Michael Hen-

son, David Tuft, and Dinesh Manocha. A cache-

efficient sorting algorithm for database and data

mining computations using graphics processors.

Technical report, UNC, 2005. 63

[91] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Di-

nesh Manocha. GPUTeraSort: high performance

graphics co-processor sorting for large database

management. In Proceedings of the 2006 ACM SIG-

MOD international conference on Management of data,

SIGMOD ’06, pages 325–336, New York, NY, USA,

2006. ACM. 63

[92] Erik Sintorn and Ulf Assarsson. Fast parallel GPU-

sorting using a hybrid algorithm. Journal of Par-

allel and Distributed Computing, 68(10):1381–1388, Oct

2008. 63

[93] Daniel Cederman and Philippas Tsigas. GPU-

Quicksort: A practical Quicksort algorithm for

graphics processors. J. Exp. Algorithmics, 14:4:1.4–

4:1.24, January 2010. 63

[94] Kamil Rocki Tian Xiaochen and Reiji Suda. Register

Level Sort Algorithm on Multi-Core SIMD Pro-

cessors. In proceeding of the IA3 Workshop on Irregular

Applications; Architectures & Algorithms, 2013. 63

[95] Jon Bentley and Robert Sedgewick. Fast algoprithms

for sorting and searching string. In Proc. Annual

ACM-SIAM Symp. on Discrete Algorithms, pages 360–

369, New Orleans, Luisiana, 1997. ACM/SIAM. 63, 65

[96] Robert Sedgewick. Implementing Quicksort pro-

grams. Communications of the ACM, 21(10):847–857,

Oct 1978. 66

[97] Ralf Hoffmann, Matthias Korch, and Thomas Rauber.

Performance Evaluation of Task Pools Based on

Hardware Synchronization. In Proceedings of the

2004 ACM/IEEE Conference on Supercomputing, SC

’04, pages 44–, Washington, DC, USA, 2004. IEEE

Computer Society. 69

[98] Aditya Deshpande and PJ Narayanan. Can GPUs Sort

Strings Efficiently? In IEEE High Performance Com-

puting (HiPC), 2013, 2013. 79, 80

[99] Qi Hu, Nail A. Gumerov, and Ramani Duraiswami. Scal-

able Fast Multipole Methods on Distributed Het-

erogeneous Architectures. In Proceedings of 2011

International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, SC ’11, pages

36:1–36:12, New York, NY, USA, 2011. ACM. 91

[100] Ilya Lashuk, Aparna Chandramowlishwaran, Harper

Langston, Tuan-Anh Nguyen, Rahul Sampath, Aashay

Shringarpure, Richard Vuduc, Lexing Ying, Denis Zorin,

and George Biros. A Massively Parallel Adaptive

Fast Multipole Method on Heterogeneous Archi-

tectures. Commun. ACM, 55(5):101–109, May 2012.

91

[101] Jack Dongarra and Michael A Heroux. Toward a New

Metric for Ranking High Performance Comput-

ing Systems,. Technical report, UTK EECS Tech

Report and Sandia National Labs Report, June 2013.

SAND2013-4744. 93

98

http://dx.doi.org/10.1007/3-540-63138-0_2
http://dx.doi.org/10.1007/3-540-63138-0_2
http://dx.doi.org/10.1137/0217049
http://doi.acm.org/10.1145/1468075.1468121
http://doi.acm.org/10.1145/1468075.1468121
http://dl.acm.org/citation.cfm?id=844174.844181
http://dl.acm.org/citation.cfm?id=844174.844181
http://doi.acm.org/10.1145/360128.360145
http://doi.acm.org/10.1145/360128.360145
http://doi.acm.org/10.1145/1142473.1142511
http://doi.acm.org/10.1145/1142473.1142511
http://doi.acm.org/10.1145/1142473.1142511
http://dx.doi.org/10.1016/j.jpdc.2008.05.012
http://dx.doi.org/10.1016/j.jpdc.2008.05.012
http://doi.acm.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://doi.acm.org/10.1145/1498698.1564500
http://dx.doi.org/10.1145/359619.359631
http://dx.doi.org/10.1145/359619.359631
http://dx.doi.org/10.1109/SC.2004.38
http://dx.doi.org/10.1109/SC.2004.38
http://doi.acm.org/10.1145/2063384.2063432
http://doi.acm.org/10.1145/2063384.2063432
http://doi.acm.org/10.1145/2063384.2063432
http://doi.acm.org/10.1145/2160718.2160740
http://doi.acm.org/10.1145/2160718.2160740
http://doi.acm.org/10.1145/2160718.2160740

