<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>論題</td>
<td>Direct Probing of Internal Electric-fields in Fullerene Diodes Using Electric-field-induced Second-harmonic Generation Measurement</td>
</tr>
<tr>
<td>著者</td>
<td>田口 大, 陳 翔宇, 間中 孝彰, 岩本 光正</td>
</tr>
<tr>
<td>掲載誌 書名</td>
<td>Molecular Crystals and Liquid Crystals, 578, 9, 50-54</td>
</tr>
<tr>
<td>発行日</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.tandfonline.com/toc/gmcl20/current#.UzJ6rrWChaQ</td>
</tr>
</tbody>
</table>

このファイルは著者（最終）版です。
Direct Probing of Internal Electric-fields in Fullerene Diodes Using Electric-field-induced Second-harmonic Generation Measurement

DAI TAGUCHI, XIANGYU CHEN, TAKAAKI MANAKA, and MITSUMASA IWAMOTO*,

Department of Physical Electronics, Tokyo Institute of Technology,
2-12-1 S3-33 Ookayama Meguro-ku Tokyo 152-8552, Japan

*E-mail: iwamoto@pe.titech.ac.jp TEL/FAX +81-3-5734-2191

Abstract

By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we directly probed internal electrostatic fields formed in indium-zinc-oxide (IZO)/fullerene (C_{60})/Al diodes, which are electrically shorted. Results showed that an internal electric-field is formed in the direction from the IZO to Al electrode, whereas the electric-field points in the opposite direction by the use of an interlayer of bathocuproine (BCP) between C_{60} and Al. We concluded that the EFISHG measurement directly probes internal electric-fields formed in organic devices, and it is thus helpful for understanding the effect of an interlayer in diodes.
Keywords Electric-field-induced optical second-harmonic generation (EFISHG), internal electric-field, work function difference, carrier injection, double-layer diode, fullerene

- shortened version of the title suitable for the running head:

Directly probing internal field using EFISHG
Introduction

Organic thin film devices have attracted much attention in electronics. Among them are organic light-emitting diodes (OLEDs) [1] and organic solar cells (OSCs) [2]. These device structure is basically the same with that of a metal-insulator-metal (MIM) diode with a thin organic layer. Owing to the difference of work function of the two electrodes, a non-zero internal electric-field is formed in these short-circuited devices. The presence of the non-zero internal electric-field assists carrier injection in OLEDs [3], whereas it assists charge separation in OSCs [4]. Accordingly measuring the internal field is an important research subject for understanding carrier mechanism in these devices. The electric-field-induced optical second-harmonic generation (EFISHG) measurement is capable of directly probing electric-fields in MIM devices [5,6]. In the EFISHG measurement, nano (or femto) second pulsed laser is used as a probe light. Therefore, we can carry a time-resolved method in the EFISHG measurement, where the electric-field evolution induced by carrier injection and succeeding carrier transport is allowed to be traced. Until now, we have been using the time-resolved EFISHG measurement to probe carrier motion in organic devices, on paying attention to the presence of space charge fields generated from carriers [7]. In this paper, for further understanding carrier behavior in diodes, the time-resolved EFISHG measurement is employed to measure internal electric-fields formed in short-circuited MIM diodes.

Experimental

Figure 1 portrays an experimental arrangement of the time-resolved EFISHG measurement, where IZO/fullerene (C60)/Al and IZO/fullerene (C60)/bathocuproine (BCP)/Al diodes are used. These diodes were prepared on glass substrates with patterned IZO electrodes (device area 3.1 mm²) as follows: Before the preparation, the
substrates were UV/Ozone-treated, and the surface of the IZO electrodes was free of organic residues. On the UV/Ozone-treated substrates, the C\textsubscript{60} layer (thickness $d=200$ nm) and Al electrode were evaporated successively. The BCP layer was also evaporated with a thickness of 5 nm when we prepared the IZO/C\textsubscript{60}/BCP/Al diodes.

Figure 1: (a) Experimental illustration for the time-resolved EFISHG measurement. (b) Timing chart of step-voltage application and laser pulse irradiation.

In the time-resolved EFISHG measurement, the pulsed laser beam (duration 4 ns, repetition rate 10 Hz) was incident at an angle of 45° from the IZO side. The wavelength of the pulsed laser beam was 1000 nm, to selectively probe the SHG from the C\textsubscript{60} layer [6]. In the presence of an internal d.c. electric-field E_0, the second-harmonic nonlinear polarization wave $P_{2\omega}$ (wavelength $\lambda/2$) is induced due to electromagnetic coupling between the electric-field E_{ω} of laser beam (wavelength λ) and electrons in C\textsubscript{60}.
molecules. As a result the EFISHG is generated and its intensity is given as

\[I_{2\omega} \propto |P_{2\omega}|^2 \propto |\varepsilon_0 \chi^{(3)} : E_0 E_{\omega} E_{-\omega}|^2 \]

(1)

where \(\varepsilon_0 \) is the vacuum permittivity, \(\chi^{(3)} \) is the third-order nonlinear susceptibility. Eq.(1) indicates that the EFISHG intensity is proportional to \(|E_0|^2 \). Here \(E_0 (= E_i + E_e) \) is given as sum of the internal electrostatic field \(E_i \) and the external electric-field \(E_e \) (= \(V/d \), \(V \): external voltage, \(d \): distance between two electrodes). In the time-resolved EFISHG measurement, \(I_{2\omega} \) is probed with a delay time \(t_d \), upon application of step d.c. voltage \(V \) to the IZO electrode in reference to the Al electrode (see Fig. 1), in a manner as in our previous study [6].

Equation (1) shows that \(I_{2\omega} = 0 \) when \(E_0 = E_i + E_e = 0 \). Therefore, the internal field is estimated as \(E_i = -E_e \), by choosing the applied external voltage \(V \) to be \(I_{2\omega} = 0 \). Upon application of a step-voltage \(V \) at \(t = 0 \), the electric-field \(E_e \) in the \(C_{60} \) layer in diodes increases with time as \(E_e = V/d(1 - \exp(-t/\tau)) \), with a single relaxation time \(\tau = RC \) (\(R \): electrode and lead-wire resistance, \(C \): sample capacitance). Accordingly, the electric-field \(E_0 \) increases, though the \(E_0 \) is shifted with \(E_i \) from \(E_e \).

Results and Discussion

Figures 2a and 2b show the time-resolved EFISHG response of the IZO/C\(_{60}\)/Al and IZO/
C₆₀/BCP/Al diodes, respectively, where a step-voltage was applied at \(t = 0 \). The EFISHG response with a single relaxation time \(\tau \) of 100 ns, which agrees well with the circuit \(RC \) with electrode resistance \(R = 100 \ \Omega \) and device capacitance \(C \sim 1 \ \text{nF} \). Results suggest that external electric-field is applied to the C₆₀ layer in proportion to \(V/d(1 - \exp(-t/\tau)) \). In more detail, for the IZO/C₆₀/Al diode (see Fig. 2a), the EFISHG signal was non-zero at \(t = 0 \), but increased with time upon application of a step-voltage of +1V to the IZO electrode. The result suggested that there is an internal field \(E_i \) in the C₆₀ layer in the direction from the IZO to the Al electrode, and additionally the field in the C₆₀ layer increases in proportion to \(V/d(1 - \exp(-t/\tau)) \) by the applied step-voltage. On the other hand, for the IZO/C₆₀/BCP/Al diode (Fig. 2b), the EFISHG signal was again non-zero at \(t = 0 \), indicating the presence of non-zero internal field \(E_i' \) in the C₆₀ layer, but \(E_i' \neq E_i \). Interestingly the field formed in the C₆₀ layer decreased in proportion to \(V/d(1 - \exp(-t/\tau)) \) by the applied step-voltage of +0.5V. Results suggest that the polarity of \(E_i' \) is opposite to the \(E_i \). That is, the internal electric-field \(E_i' \) points in the direction from the Al to IZO electrode, as a result of the insertion of the interlayer between C₆₀ and Al electrodes. Consequently, the application of the step-voltage of +0.5 V resulted in the decrease of the electric-field \(E_0 = E_e + E_i' \).
Figure 2: EFISHG response recorded by the application of a step voltage at \(t = 0 \), (a) for the IZO/C\(_{60}\)/Al diode with a step voltage \(V \) of +1 V, and (b) for the IZO/C\(_{60}\)/BCP/Al diode with a step voltage \(V \) of +0.5 V.

To further verify the direction of the internal electric-field formed in the C\(_{60}\) layer, we carried the time-resolved EFISHG measurement at various step-voltages, in the range from -1.5 V to 1.5 V. To avoid the influence of carrier injection, we plotted the results at \(t = 200 \) ns, as shown in Fig. 3. Note that at \(t = 200 \) ns the time-resolved EFISHG signal saturates in a similar manner as shown in Fig.2, suggesting no other electric-field formation such as by carrier injection. The y-axis represents the electric-field \(E_0 \), Here the value of the electric-field was determined using Eq. (1), with reference to the EFISHG intensity at \(V = -1 \) V. The electric-field in the C\(_{60}\) layer gives a minimum at \(V = -0.1 \) V for the IZO/C\(_{60}\)/Al diode, whereas at \(V = +0.42 \) V for the IZO/C\(_{60}\)/BCP/Al diode.

As we mentioned in EXPERIMENTAL section, the EFISHG intensity should be a
minimum when we applied external voltage V to satisfy $E_i = -E_e \ (=-V/d)$. Accordingly, the internal field in the C$_{60}$ layer is $E_i = 5 \times 10^3$ V/cm in the direction from the IZO to Al electrode for IZO/C$_{60}$/Al diode, whereas $E_i' = -2.1 \times 10^4$ V/cm in the direction from the Al to IZO electrode, for the IZO/C$_{60}$/BCP/Al diode. Noteworthy that the work-function difference between IZO ($\phi_1=4.8$ eV) and Al ($\phi_2=3.4$ eV) is about 1.4 eV, and an internal field $E_i = (\phi_2 - \phi_1)/ed = -7 \times 10^4$ V/cm (e, elementary charge) is assumed to be formed in the C$_{60}$ layer, in the direction from the Al to IZO. The results of the EFISHG measurements of the IZO/C$_{60}$/BCP/Al diode agreed well with the assumption. On the other hand, in the IZO/C$_{60}$/Al diode, electrons transfer from the Al to the C$_{60}$ layer at the Al/C$_{60}$ interface, where electrons are accumulated. As a result, an electrostatic space charge field is additionally formed in the C$_{60}$ layer, and the internal field is thus in the direction from the IZO to Al.

Figure 3: Plots of the electric field in the C$_{60}$ layer probed by the EFISHG measurement.
Conclusion

By using the EFISHG measurement, internal electric-fields in IZO/C_{60}/Al and IZO/C_{60}/BCP/Al diodes were determined. Results showed that the direction of the probed internal field was from the Al to IZO electrodes for the short-circuited IZO/C_{60}/BCP/Al diode, in a manner as expected from the work-function-difference between the IZO and Al electrodes. On the other hand, the result showed that the direction changes without a BCP interlayer between the C_{60} layer and Al electrode. The EFISHG measurement is helpful for further understanding of carrier motion in organic devices by the introduction of an interlayer, where an internal electric-field makes a significant contribution such as in OSCs and in OLEDs.

Acknowledgement

This work was supported by a Grant-in-Aid for Scientific Research S (No. 22226007) from Japanese Society for the Promotion of Science (JSPS), SENTAN from Japan Science and Technology Agency (JST).

References

