T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	履歴ダンパーを有する鋼構造建物を用いた損傷に寄与するエネルギー EDの評価
Title	
著者(和文)	
Authors	daiki sato, Haruyuki Kitamura, Michio Yamaguchi, Naoya WAKITA
出典 / Citation	日本建築学会大会学術講演梗概集, vol. B-2, , pp. 1039-1040
Citation(English)	, vol. B-2, , pp. 1039-1040
発行日 / Pub. date	2013, 8
rights	日本建築学会
rights	本文データは学協会の許諾に基づきCiNiiから複製したものである
relation	isVersionOf:http://ci.nii.ac.jp/naid/110009682886

同 松澤

祐介*2

大樹*1

同 佐藤

履歴ダンパーを有する鋼構造建物を用いた損傷に寄与するエネルギーEDの評価

正会員〇佐藤

大輔*1

損傷に寄与する	エネルギー法	
履歴ダンパー	長周期長継続地震動	入力エネルギー

1. はじめに

東北地方太平洋沖地震の経験や、近い将来、発生が懸念されている長周期長継続地震動から、昨今、累積値による損傷評価の重要性が高まっており、エネルギーの釣合いに基づく耐震設計法(以後、エネルギー法)に関する知見の充実がよりいっそう望まれる状況にある。エネルギー法では、損傷に寄与するエネルギー E_D (=入力エネルギーE-減衰エネルギー W_h)を用い建物の損傷評価を行うものであり、秋山より、 E_D の経験式が提案されている¹⁾。この経験式は、弾性系・弾塑性系の双方において有用性を確認されているが、ダンパーを有しない1質点モデル、また地震動においては標準波のみの検討に基づいたものであり、今後、 E_D の経験式を拡張するためにも、より広範な E_D の検討は重要であると考える。

筆者らは、長周期長継続地震動を含む 12 波の入力地震動とダン パーを有しないモデルを用い E_D について検討を行った²⁾。そこで 本報では、ダンパーを有する場合に拡張した広範な検討を行うこと で、 E_D の傾向特性を把握することを目的とする。

2. 検討建物、ダンパー諸元、せん断型モデル及び入力地震動概要

検討対象建物は、地上5階、8階、10階、21階、35階の鋼構造 建物とする。各建物の基準階伏図と軸組図を図1(a)~(e)に示す。な お、本論文での解析対象はX方向とする。構造減衰は、主架構の1 次固有周期_fT₁に対して、h=2%となる剛性比例型とする。本論文 では、図2に示すように主架構の静的増分解析から得られる各層の 履歴曲線の面積と、終局変形 $_f\delta_{ii}$ (静的増分解析における最大変形) 時の履歴面積が等しくなる完全弾塑性型に置換し、作成したせん断 型モデルを用いて検討を行う。表1に、各せん断型モデルにおける $_fT_1$,建物全重量W、第一層の主架構の降伏層せん断力 $_fQ_{y1}$ 、降伏 せん断力係数 $_f\alpha_{y1}$ ($=_fQ_{y1}/W$) $\mathcal{E}_f\alpha_{y1} \times_fT_1$ を示す。制振建物は、 ダンパーを図1の示す位置にそれぞれ付与したモデルとする。本報 では、ダンパーとして軸材にLY225を用いた座屈拘束ブレースを 用い、復元力特性は完全弾塑性型とした。なお、本報では、ダンパ ーの投入量として第一層の降伏せん断力係数 $_s\alpha_{y1}$ を用いた。

解析に用いる入力地震動は、1995 年兵庫県南部地震の JMA KOBE 波(神戸)、コーナー周期 T_c =0.64(s) 以降の領域で擬似速度 応答スペクトル_pS_V = 100 cm/s (h = 5%) となる位相特性 HACHINOHE 1968 EW (以後,ART HACHI) および JMA KOBE1995NS (以後,ART KOBE)の模擬地震動,最大速度を 50 cm/s に基準化した El Centro 1940NS (以後,El Centro)、東北地方太平洋 沖地震本震の K-NET MYG013 (仙台)、K-NET MYG006 (古川)、 K-NET TKY007 (新宿)、K-NET KNG013 (小田原)、およびそれら のデータ^{注1)}をもとに T_c = 0.64(s)以降の領域で $_pS_V$ = 100 cm/s (h = 5%) に基準化した模擬地震動(以後,ART FURU,ART SHIN, ART ODA)、東海・東南海地震を想定した三の丸波(以後,SAN)

The Evaluation of Earthquake Input Energy Causing Damages in

Structures using Steel Structures with Hysteretic Dampers.

の計 12 波を用いた。図 3 に入力地震動の $_{p}S_{V}$ とエネルギースペクト ル V_{E} ,表 2 に最大加速度 $A_{\alpha max}$,継続時間とf値³⁾(El Centro NS 波を単位地震動としたときのある地震動の反復数を表す),実効地 震継続時間 $_{e}f_{0}$ ³⁾をそれぞれ示す。

3. 損傷に寄与するエネルギーEDの検討

図4に、ダンパーを有した主架構弾塑性系における E_D/E と入力 地震動の関係を示す。ここに、 E_D :損傷に寄与するエネルギー(入 カエネルギーE – 減衰エネルギー W_h)である。なお、図中の実線 は E_D の経験式(式(1a,b))¹⁾を示し、入力地震動の順は右ほどf値 が大きくなるように並べた。

$$E_D = \frac{E}{\left(1 + 3h + 1.2\sqrt{h}\right)^2}, \quad E_D = \frac{E}{\left(\sqrt{1 + 4\pi hn}\right)^2}$$
 (1a,b)

Daisuke Sato, Daiki Sato, Yusuke Matsuzawa, Haruyuki Kitamura Michio Yamaguchi, Naoya Wakita, Tomoaki Matsukage

-1039-

ここに、n:減衰エネルギーの等価繰返し数である。本報ではh=0.02, n=2,3を用いた。図4より、高層のモデルほど、 E_D/E は小さく、 また Epの経験式は時刻歴解析に対し安全側の評価を下す傾向にあ ることが確認できる。主架構弾性系においても、ダンパーが塑性化 すれば主架構弾塑性系と同様な傾向になることを確認している。

図5.6に主架構弾塑性系におけるダンパーの塑性変形倍率の平均 $(i_a \bar{\mu} (\vec{x}(2)) \ge E_D / E の 関係を示す。$

$${}_{a}\overline{\mu} = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{\delta_{\max j} - {}_{a} \delta_{yj}}{{}_{a} \delta_{yj}} \right)$$
(2)

ここに、 $N: 全層数, \delta_{maxi}: i 層の最大層間変形, a \delta_i: ダンパーの降$ 伏変形である。なお、図5は解析モデル(無彩色:5,8,10層モデル、 赤系色: 21, 35 層モデル) と $_{s}\alpha_{1}$ を凡例とし, 図6はf値を凡例と したものである。図5より, $_{a\mu}$ が大きくなるほど E_D/E が大きく なり、やがて E_D/E は 0.7~0.8 程度に収束する。換言すれば、塑性 化の程度が著しい場合においても、Eの約20~30%程度はWhであ ることがわかった。図4同様、図5から、低層のモデルに比べ高層 のモデルの方が、Wh/Eは大きくなる傾向にあることが確認できる。 制振構造の場合, Eに対して制振部材の塑性履歴エネルギーが支配 的であるため、 $_{s}\alpha_{n}$ の変化が E_{D}/E に大きく影響を与えることが確 認できる。また、 $_{s}\alpha_{_{\!N}}$ が大きいほど、比較的小さな $_{a}\mu$ から E_{D}/E が 収束することを確認した。

図5,6より、今回の検討において、ダンパーを有する場合、①塑 性化の程度, ②ダンパー量, ③解析モデルの3つの要素が, Ep/E に顕著に影響を与えることを確認した。

4. まとめ

本報では、損傷に寄与するエネルギーEpについて、12波の入力 地震動とダンパーを有するモデルを用い検討を行った。今回の検討 において、ダンパーを有する場合、①塑性化の程度、②ダンパー量、 ③解析モデルが E_D/E に顕著に影響を与えることを確認した。

参考文献

秋山宏:エネルギーの釣合に基づく建築物の耐煙設計,技術堂出版,1999.11 佐藤大輔、他:様々な入力地震動を用いた損傷に寄与するエネルギーEpの 1) 評価,日本建築学会関東支部研究報告集 2012.3 秋山広,北村春幸・エネルギーフックレ 2)

- 北村春幸:エネルギースペクトルと速度応答スペクトルの対応, 3) 日本建築学会構造系論文集,第608号, 37-43p, 2006.10

謝辞

本研究作成では、防災科学技術研究所 K-NET 観測記録を使用させて頂きま した。本研究は、新日鉄住金エンジニアリング株式社、東京理科大学北村研究 室による共同研究の成果の一部を用いたものです。ここに深く感謝の意を表し ます

地震動	JMA KOBE	ART KOBE	ART HACHI	El Centro		
$A_{cc \max}(\text{cm/s}^2)$	818.02	482.23	501.59	456.57		
継続時間(s)	152.0	300.0	550.0	107.6		
f值	0.89	0.64	1.89	1.04		
$_{e}t_{0}(s)$	8.4	16.5	92.5	24.4		
地震動	MYG006	MYG013	TKY007	KNG013		
$A_{cc \max}(\text{cm/s}^2)$	571.50	1517.20	192.44	163.59		
継続時間(s)	300.0	300.0	300.0	300.0		
f値	1.93	1.62	2.52	1.69		
$_{e}t_{0}(s)$	115.1	89.5	81.5	70.0		
地震動	ART FURU	ART SHIN	ART ODA	SAN		
$A_{cc \max}(\text{cm/s}^2)$	598.79	429.26	561.68	186.00		
継続時間(s)	400.0	400.0	400.0	490.9		
f值	3.44	3.54	2.77	3.28		
$_{e}t_{0}(s)$	182.4	149.6	120.0	119.9		

*1 東京理科大学

*2 ㈱山下設計(元東京理科大学)

*3 新日鉄住金エンジニアリング㈱

- *1 Tokyo Univ. of Science.
- *2 Yamashita Sekkei Inc.
- $^{\ast 3}$ Nippon Steel & Sumikin Enginieering Co , Ltd