
論文 / 著書情報
Article / Book Information

Title NDCouplingHDFS: A Coupling Architecture for a Power-proportional
Hadoop Distributed File System

Authors Hieu Hanh Le, Satoshi Hikida, Haruo Yokota

出典 / Citation IEICE Transactions on Information and Systems, Vol. E97-D, No. 2,
pp. 213-222

発行日 / Pub. date 2014, 2

URL http://search.ieice.org/

権利情報 / Copyright 本著作物の著作権は電子情報通信学会に帰属します。
 Copyright (c) 2014 Institute of Electronics, Information and
Communication Engineers.

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER

NDCouplingHDFS: A Coupling Architecture for a

Power-proportional Hadoop Distributed File System∗

Hieu Hanh LE†, Satoshi HIKIDA†, Nonmembers, and Haruo YOKOTA†, Member

SUMMARY Energy-aware distributed file systems are in-
creasingly moving toward power-proportional designs. However,
current works have not considered the cost of updating data sets
that were modified in a low-power mode, where a subset of nodes
were powered off. In detail, when the system moves to a high-
power mode, it must internally replicate the updated data to
the reactivated nodes. Effectively reflecting the updated data is
vital in making a distributed file system, such as the Hadoop
Distributed File System (HDFS), power proportional. In the
current HDFS design, when the system changes power mode,
the block replication process is ineffectively restrained by a sin-
gle NameNode because of access congestion of the metadata in-
formation of blocks. This paper presents a novel architecture,
a NameNode and DataNode Coupling Hadoop Distributed File
System (NDCouplingHDFS), which effectively reflects the up-
dated blocks when the system goes into high-power mode. This
is achieved by coupling metadata management and data man-
agement at each node to efficiently localize the range of blocks
maintained by the metadata. Experiments using actual machines
show that NDCouplingHDFS is able to significantly reduce the
execution time required to move updated blocks by 46% relative
to the normal HDFS. Moreover, NDCouplingHDFS is capable of
increasing the throughput of the system supporting MapReduce
by applying an index in metadata management.
key words: power-proportionality, HDFS, metadata manage-
ment

1. Introduction

Energy-aware commercial off-the-shelf (COTS)-based
distributed file systems for cloud applications are in-
creasingly moving toward power-proportional designs,
as system configuration can be changed on demand. In
this design, the distributed file systems are able to pro-
vide IO performance that is proportional to the number
of active nodes used in the system. Specifically, the sys-
tem is designed to operate in multiple gears and each
gear contains a different number of active nodes. The
higher gears have more active nodes and hence consume
more energy. The lowest gear has a covering set group
of nodes that are always active with a sufficient amount
of data to serve the requests.

Multi-gear operation is made possible through
a number of recent works that focus on power-
proportional data placement layouts [2–4]. In general,

†The authors are with the Department of Computer Sci-
ence, Tokyo Institute of Technology, Ookayama, Meguro-ku,
Tokyo 152-8552 Japan

∗This paper is an extended version based on our short
paper proposed in DASFAA 2013 [1]

DOI: 10.1587/transinf.E0.D.1

the data from the powered-off nodes are replicated to
the activate nodes such that at each operation mode,
the amount of processing data is equally shared among
activated nodes. As a result, in each gear, the file sys-
tem is capable of providing power proportionality in
IO performance. However, those works have not yet
dealt with the reflecting of a modified data set that
is changed in low-gear mode when several nodes are
powered off. Here, the modification of the data set in-
cludes the behaviors of appending, updating or newly
creating of files that belong to the data set. In a low
gear, instead of the inactive nodes, the currently active
nodes that maintain their data’s replicas should update
the modified data. When the system moves to a high
gear, to share the load equally among all active nodes,
it is necessary to let the reactivated nodes catch up
with the data set modifications. Specifically, the sys-
tem must transparently replicate the updated data to
the reactivated nodes.

In addition to normal operations, the process of
reflecting the updated data set increases the costs of
metadata management and data transference inside the
system. In a low gear, the system has to keep a log
record specifying the location information of updated
data. And when changing to a higher gear, it must
identify the replicated data from log records, access
its metadata, transfer the data to original nodes and
update the metadata of these data for later reference.
Carrying out this process effectively is vital in realizing
power proportionality for a distributed file system, such
as the Hadoop Distributed File System (HDFS) [5],
which is already widely used as a distributed file system
for effective big data processing in the cloud. In the cur-
rent HDFS architecture, reflecting updated files is inef-
fectively restrained at the NameNode because of access
congestion in the metadata information of blocks.

This paper presents a novel architecture called the
NameNode and DataNode Coupling HDFS (NDCou-
plingHDFS), which is designed to effectively reflect up-
dated data in the power-proportional HDFS. NDCou-
plingHDFS couples metadata management and data
management at all the nodes of the system to local-
ize the range of blocks maintained by the metadata.
Through this idea, the process is effectively distributed
to multiple nodes as the load is shared among the nodes
and each node can focus on its own work because all
the necessary information is located locally.

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Additionally, taking advantage of coupling archi-
tecture, we further optimize the protocol of replicat-
ing blocks to improve the performance of the updated
block reflection process. In the current HDFS, the block
transferring process is performed in sequential manner
in which the system has to open a new network con-
nection for every single block. Hence, the performance
of the process is degraded when a number of blocks be-
comes large as the cost relating to the network part in-
creases. In order to decrease this cost, we introduce sev-
eral batch methods, which are able to process multiple
blocks per network connection. The suggested batch
methods are effectively suited with NDCouplingHDFS,
in which the processed blocks are efficiently localized
at multiple nodes of the system.

Moreover, to raise the efficiency of reflecting up-
dated data, it is preferable to eliminate the bottleneck
of metadata management at the single NameNode in a
normal HDFS by using distributed metadata manage-
ment. Taking the locality of the file system into consid-
eration, we suggest two approaches of distributed meta-
data management based on a tree structure, namely
static directory partitioning and the parallel B-tree-
based index method. In the first approach, we divide
the namespace of the system among all the nodes, as
each node will maintain a subpart of the directory hi-
erarchy. In the second approach, we apply the parallel
index technique, called Fat-Btree [6], which is used in
current database management, to manage the meta-
data of the file system.

Furthermore, although the normal HDFS is de-
signed to run on commodity hardware, the NameNode
that centrally maintains all the metadata of the sys-
tems should be well equipped with high-end CPU, large
memory and so on. However, consisting such high-end
machines is not required in NDCouplingHDFS because
the metadata is distributed to all nodes and each node
only manages the metadata of local data.

In addition, recent works on power-proportional
systems have not fully provided power proportionality,
as the power consumption of the NameNode was not
counted when the power consumption of the system
was considered. However, we believe that by coupling
the metadata management and data management at
all nodes, NDCouplingHDFS can provide perfect power
proportionality to the systems.

Our main contributions are the following.

• NDCouplingHDFS is proposed to solve the prob-
lem of reflecting updated data sets when the
power-proportional file system shifts from a low
gear to a higher gear.

• NDCouplingHDFS improves the IO throughput of
the metadata operation of the HDFS by imple-
menting distributed metadata management with
an index technique.

• NDCouplingHDFS is compatible with MapReduce

frameworks, which are currently supported by the
HDFS.

• NDCouplingHDFS eliminates the single point of
failure existing in the normal HDFS by utilizing
metadata replication at multiple nodes.

• An empirical experiment to comprehensively eval-
uate the idea of coupling metadata management
and data management, and batch block processing
in NDCouplingHDFS is performed on actual ma-
chines. The empirical experimental results show
that NDCouplingHDFS is able to significantly re-
duce the execution time to transfer updated blocks
by 46% relative to a normal HDFS.

This paper is an extended version of [1] as it in-
cludes the important parts of reporting the experi-
ment to provide the capability of NDCouplingHDFS
to support the MapReduce framework. Furthermore,
all other explanations of NDCouplingHDFS and the
discussion of the experimental results are described in
more detail.

The remainder of this paper is organized as fol-
lows. Related work is introduced in Sect. 2 and the
background of the HDFS architecture and the assump-
tions made in this paper are described in Sect. 3. Sec-
tion 4 describes the architecture of NDCouplingHDFS,
the optimized techniques for effective updated data re-
flecting process. Section 5 presents a performance eval-
uation of our proposals. Conclusions and future work
are discussed in Sect. 6.

2. Related Work

Rabbit [2] is the first work that aims to provide power
proportionality to an HDFS by focusing on read perfor-
mance. Rabbit uses the equal-work data layout policy
using data replication. The primary replica is stored
evenly on primary nodes. The remaining replicas are
stored on additional and increasingly large subsets of
nodes. A node in the subsets is fixedly ordered and
stores the number of blocks that inversely relates to
its order, to guarantee that the system can distribute
the workload equally to all activated nodes. However,
Rabbit still has not supported write workload, hence
not yet considered the cost of reflecting updated data
in a low gear.

Designed as a power-proportional distributed stor-
age system for data centers, Sierra [3] is a replicated
object store that is able to support both the write and
read workload in multiple-gear operation. This method
guarantees the write availability in a low gear by taking
advantage of the idea of Write Off-loading [7], which
is originally motivated by the goal of saving power
through spinning down unnecessary disks. It allows
write requests on spun-down disks to be temporally
redirected to other active disks in the file system. As
a result, this technique lengthens the spin-down dura-

LE et al.: NDCOUPLINGHDFS: A COUPLING ARCHITECTURE FOR A POWER-PROPORTIONAL HDFS
3

tions, thereby achieving additional power saving. Al-
though not aiming to provide power proportionality,
the idea could be considered as a solution for multi-
gear file systems dealing with updated data when the
system operates in a low gear. Nonetheless, despite the
fact that Sierra is able to deal with write requests in
a low gear, it is still not optimized for the efficiency
of reflecting updated data when the system moves to
higher gear. Similar to the current HDFS, the current
architecture of Sierra exploits the centralized metadata
management which is widely considered as a bottleneck
of the system [8].

In previous work, we have taken into consideration
the cost of updated data reflection relating to the size
of moving data in a power-proportional HDFS [9]. As
the size of moving data is small, the reflection process
could be shortened.

There are also other efforts on reducing the total
power consumption of storage systems.

Weddle et al. [10] have proposed PARAID, a
skewed pattern for replicating and striping data blocks
to the disks inside the system. This enable adaption
to the system load by varying the number of activating
disks, where the disks are organized into a number of
groups and identified subsets of groups are the gears.
PARAID only focuses on RAID unit and lack the reli-
ability when adapts to distributed environment.

Kim et al. [4] suggest a fractional replication
method to achieve a balance between the power con-
sumption and performance of a system. In their
proposal, the data-placement layout is inspired by
PARAID [10] in performing fractional replication.
Their work considers the problem of identifying a suit-
able time to gear down and save power.

Kaushik et al. [11] proposed an energy-conserving
multiple-zone approach for HDFS that utilized life-
cycle information for the data. They divided storage
clusters of the HDFS into a Hot Zone and a Cold Zone.
The frequently accessed data were placed in the Hot
Zone, where all datanodes are active and consuming
power. Less frequently accessed data were placed in
the Cold Zone, allowing datanodes to be inactive. The
power consumption in the Cold Zone is therefore lower
than in the Hot Zone. Via this mechanism, some power
saving for the HDFS is achieved. However, this does
not provide full power proportionality to the HDFS.

3. Background

This section describes the concepts of the HDFS archi-
tecture and the assumptions made in this paper.

3.1 HDFS Architecture

An HDFS cluster has two types of nodes, a single Na-
meNode and a number of DataNodes; the major mod-
ules are shown in Fig. 1. The centralized metadata

NameNode

DataNodes

Data Placement

NameNode

Management

Storage

Management

Read/Write Requests

Serving

Block Replication

① Access to the NameNode for responsible DataNodes

② Go to the responsible DataNodes to read/write data

①

②

Storage

Management

Storage

Management

Block Mapping

Heartbeat messages issue

blocks

Client

Centralized

MDM

Other

Modules

Fig. 1 HDFS architecture and data flow

management (Centralized MDM) on the NameNode
maintains the directory tree of the file system and all
the metadata from all files and directories in the sys-
tem. In an HDFS, internally, a file is split into one
or more blocks and these blocks are stored on DataN-
odes. The process of Data Placement decides which
DataNodes will store the file’s blocks by considering
the locality and availability of the system. The pro-
cess of Block Mapping keeps the mapping information
between the blocks and the DataNodes on which the
blocks are located.

The Storage Management at each DataNode stores
and retrieves blocks to serve read/write requests from
clients or block replication requests from other DataN-
odes. Additionally, the contacts between NameNode
and DataNodes are kept by heartbeat messages that are
periodically issued after each heartbeat interval. Using
this mechanism, the NameNode can maintain the status
of DataNodes and instruct the block replication process
if needed. In detail, the transferred blocks coupled with
the destination node information are sent to the block
transfer queue of the responsible Storage Management
at DataNodes. This queue is then drained by the Stor-
age Management after each heartbeat interval.

When the client wants to access certain files, it first
needs to connect to the NameNode to obtain metadata
information and then directly opens connections to re-
sponsible DataNodes to read or write the blocks of that
file.

3.2 Assumptions and Conditions

In our proposal, we employed the following assumptions
and conditions.

1. Data layout policy: The scope of this paper is lim-
ited to the metadata management and the cost of
reflecting updated data at power-proportional file
systems. As we focus on the locality to decrease

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Storage

Management

①①①① Send metadata request

of SubNamespace C

②②②② Forward request

to responsible nodes

④④④④ Return results

③③③③ Serve the request

and return the results

System Namespace [a - z]

[i - p) [p - z]

NDCouplingNode 1

Client

NameNode

Management

Distributed

MDM

Other

Modules

Storage

Management

NameNode

Management

Other

Modules

Storage

Management

NameNode

Management

[a - i)

NDCouplingNode 2 NDCoulpingNode 3

①①①①

④④④④

②②②②

③③③③

blocks

open “weather.dat”

Distributed

MDM

Other

Modules

Distributed

MDM

Other

Modules

Fig. 2 A NameNode and DataNode Coupling HDFS architec-
ture and data flow

the cost, we assume that every file’s blocks are ini-
tially stored at one node and then are replicated
to other nodes according to an appropriate power-
proportional method.

2. Replication: This paper suggests coupling meta-
data management and data management methods.
When data are replicated at other nodes, their
metadata are also replicated at the same node. In
a low gear, both the metadata and the blocks from
inactive nodes are replicated at other, active nodes.

3. Failure: We suppose that all nodes in the system
operate without failure. However, because all the
metadata and data are replicated, when a node
fails, all its requests can be redirected to other
nodes that maintain its replicas. Consequently, it
is derived that the single point of failure does not
exist in our proposal. This important character-
istic differentiates our proposal from the normal
HDFS for which the single NameNode that main-
tains whole namespace of the systems becomes
the single point of failure. When the NameNode
fails, the files in the systems are unaccessible. The
Byzantine failures are not considered in this pa-
per’s scope.

4. NDCouplingHDFS

This section at first depicts the architecture and a data
flow of our system. And then, two methods for dis-
tributed metadata management are described. Finally,
we present the system’s behavior in reflecting updated
data.

4.1 Architecture and Data Flow of NDCouplingHDFS

The architecture of NameNode and DataNode Coupling
HDFS (NDCouplingHDFS) are shown in Figure 2. In
this paper, because we focus on the locality of meta-
data management to improve the efficiency of reflect-
ing the updated data when the system shifts to a higher

gear, we decide to apply the equivalent coupling as all
the NDCouplingNodes contain both NameNode Man-
agement and Storage Management. In future work,
the looser or tighter coupling in which several nodes
manage the metadata of one node’s data or one node
maintains the metadata of several nodes’ data could be
considerable.

In NDCouplingHDFS, the NameNode Manage-
ment includes the distributed metadata management
(Distributed MDM) and other modules such as the
Data Placement and Block Mapping, as in a normal
HDFS. The important difference from a default HDFS
is that the namespace of the file system is divided
among all the nodes in the cluster while take locality
into consideration. The local Distributed MDM and
the Block Mapping only manage the metadata for files
and blocks that are locally located. For example, if a
file weather.dat is located on NDCouplingNode 3, then
both of its metadata and blocks will also be managed by
NDCouplingNode 3. The Storage Management at ND-
CouplingNode is the Storage Management at DataNode
in a normal HDFS.

Because NDCouplingHDFS is aimed to be applied
to the system which provides power-proportionality
through data replication, the mechanisms to manage
the number of replicas of blocks are achieved at the fol-
lowing two circumstances. Firstly, like in the normal
HDFS, whenever receiving a new block from client for
a writing request or from other nodes for a block repli-
cation request, the node’s Storage Management sends
a notification message to the local NameNode Manage-
ment to inform the local Block Mapping about the new
location of the block. After the local Block Mapping
finish updating such location information for the block,
the local NameNode Management further broadcasts
the notification messages to all other nodes in the sys-
tem. The NameNode Managements at other nodes in
which the blocks are replicating on are subjected to
inform the corresponding Block Mappings to update
this new location information. The NameNode Man-
agements at nodes that are not storing any replicas
of the block then simply drop the message. Through
this mechanism, the block’s location information is al-
ways kept updated. Secondly, the number of replicas of
blocks in the system is monitored through the period-
ical heartbeat messages between the NameNode Man-
agement and the Storage Management at each node
and among the NameNode Managements at all nodes
of the system. The communication protocols of the Na-
meNode Managements among all nodes of the system
are newly implemented into NDCouplingHDFS. Fur-
ther techniques to optimize the network communica-
tion protocols in this processes could be considered in
future work.

Here, relating to the power consumption of the
system, it is well recognized that at each configura-
tion which requires the similar number of nodes con-

LE et al.: NDCOUPLINGHDFS: A COUPLING ARCHITECTURE FOR A POWER-PROPORTIONAL HDFS
5

taining the physical data, NDCouplingHDFS generally
consumes less total energy than the normal HDFS. At
each configuration, NDCouplingHDFS uses fewer ac-
tive nodes than the normal HDFS because the separate
NameNode to maintain the metadata is not required.

Next, the data flow for the client interacting with
NDCouplingHDFS is explained using Fig. 2. At first,
when the client wants to access the file system (open
weather.dat), as opposed to the case of the normal
HDFS, the system randomly connects to a node of the
cluster, in this case NDCouplingNode 1. Subsequently,
at this connected node, according to the new Dis-
tributed MDM, the system forwards the request to the
corresponding NDCouplingNode (NDCouplingNode 3)
that contains the metadata of this file. Then, at ND-
CouplingNode 3, the system looks for the file’s meta-
data and sends back to the client the result through
NDCouplingNode 1. Finally, based on this result, the
Client opens connections to the responsible NDCou-
plingNodes to retrieve or store all the blocks of the file.

From the above description, the important point
of NDCouplingHDFS is how to identify the responsible
NDCouplingNode that contains the metadata for the
accessed files under Distributed MDM. We explain the
two approaches that we use in the following.

4.2 Distributed Metadata Management

Here, we describe two distributed metadata manage-
ment (Distributed MDM) methods that take the local-
ity of the file system into consideration.

4.2.1 Static Directory Partitioning Method

In this paper, we first try the static directory parti-
tioning (SDP) method in distributing the namespace to
multiple NDCouplingNodes in the system. Here, this
method requires a system administrator to decide in ad-
vance how the file system should be distributed and to
manually assign a subpart of the directory hierarchy to
individual NDCouplingNodes. All the NDCouplingN-
odes in the system have the mapping information about
which node is responsible for what subpart of the file
system directory. The system can process the request
at most one hop to determine the appropriate NDCou-
plingNodes because the subparts of the hierarchy are
treated as independent structures.

Under Distributed MDM, for a power-proportional
file system, each node is able to locally acquire meta-
data for the transfer of data of certain files to other
nodes. As a result, in general, the process of transfer-
ring data during a system configuration change is dis-
tributed among multiple nodes in the system. Conse-
quently, the cost of this process could be less than that
for a normal HDFS that includes only one NameNode
to perform metadata management.

Root page

Index page

Leaf page

Node 1 Node 2 Node 3 Node 4

Page y

Page x=P(y)

Level 1

Level 2

Level 3

Level 4

Fig. 3 An example of Fat-Btree

4.2.2 Fat-Btree-based Method

The second approach of Distributed MDM which is
based on a parallel B-tree called Fat-Btree is described.
Fat-Btree is an update-conscious parallel B-tree struc-
ture that was originally proposed in database manage-
ment as an indexing technique for efficient data man-
agement [6,12]. Because of the tree structure, compared
with the SDP method, the Distributed MDM based on
Fat-Btree achieves high performance for range search
query processing while maintaining good locality track-
ing of the file system. The formal definition of a Fat-
Btree is given using the following notation. Each page
of a tree is distinguished by its identifier i, and the level
of page i is denoted by L(i). When page i is the parent
of page j, P (j) = i and L(j) = L(i) + 1. Therefore,
let Si be a set of nodes storing page i. Then, a par-
allel B-tree structure satisfying the condition Si ⊇ Sj

if i = P (j) is called a Fat-Btree structure. For ex-
ample, in Fig. 3, x = P (y), Sx = {Node 1,Node 2},
Sy = {Node 2}. From this figure, it can be observed
that multiple copies of index pages close to the root
page with relatively low update frequency are repli-
cated on several nodes, while leaf pages with relatively
high update frequency are distributed across the nodes.
Thus, the maintenance cost of the Fat-Btree is much
lower than that of other parallel Btree structures. In
addition, the Fat-Btree has a more efficient concur-
rency control protocol than other parallel B-tree meth-
ods [12].

4.2.3 Alternative Techniques

To realize good performance with Distributed MDM,
many recent systems distribute the metadata across
multiple nodes utilizing distributed hash table.
Vesta [13], zFS [14] and Lustre [15,16] all hashed the file
pathname and/or some other unique identifier to deter-
mine the location of metadata. However, distributing
metadata by hashing eliminates all hierarchical locali-

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

High Gear

Gear Up

copy copy

copy copy

updated updated

Node 1

Update (a1, b1, c1, d1)

Metadata

Low Gear

Data

SubNamespace

A

Node 4

D

Node 2

b1

a1

Log

A B

replicated replicated

Node 1

a1

A

Node 2

b1

Log

a1

a1_meta

A B

b1_meta

Node 3

c1

d1

Log

C D

c1_meta

d1_meta a1_meta

b1_meta

Node 3

c1

d1

Log

C D

c1_meta

d1_metaa1_meta

Node 4

d1

D

d1_meta

Fig. 4 Operations at updated data reflection processes of ND-
CouplingHDFS

ties, and with them, many of the typical locality bene-
fits of local file systems, for instance, the POSIX direc-
tory access semantics. In such operations, the metadata
management must traverse prefix directories contain-
ing a requested piece of metadata to ensure that the
directory permissions allow the current user access to
the metadata and data in question. Because the files
and directories are scattered throughout the directory
hierarchy, a hashed metadata distribution results in a
traversal of metadata scattered over multiple nodes.

4.3 Updated Data Reflection

In this section, we describe the behavior of NDCou-
plingHDFS in serving the updated-data requests in a
low gear and reflecting the updated data when the sys-
tem changes to a high gear by reactivating a subset of
nodes. In the normal HDFS, basically all the operations
are similiar however because there is only a single Na-
meNode that is in charge of metadata management, all
the metadata operations are proccessed at the NameN-
ode. Figure 4 shows a simple example of a four-node
system in which each node maintains a subNamespace
of the system. In the low gear, Node 1 and Node 4 are
inactive, and their maintenance data are consequently
replicated at Node 2 and Node 3. When the system
changes to the high gear, Node 1 and Node 4 will be
reactivated .

In the low gear, certain parts of the new updated
data cannot be reflected at the deactivated nodes. In
such cases, according to predefined data placement pol-
icy, the system chooses another node from among the
active nodes to serve this request. Information about
the data, the temporary node, and the intended node
is saved into a log file (Log file). This information will
be retrieved when the system changes from the low to
the high gear. In this example, Node 2, which main-
tains the replication metadata and data of Node 1, will
update the data (here is a1) that should be updated by
Node 1.

When the system changes to the high gear by re-

activating nodes (Node 1 and Node 4), the following
four-step operations are carried out.

(1) Step 1: Transfer updated metadata.

First, the active nodes (Node 2, Node 3) check the Log
files and the metadata management transfers only the
different metadata, here are a1 meta and d1 meta, to
the activated nodes (Node 1 and Node 4).

(2) Step 2: Issue block transfer commands.

Next, in the log records, the metadata management
searches for updated file blocks. It then issues the
block transfer command by filling the block transfer
queue of each Storage Management with the block and
destination node paired information. After each heart-
beat interval, the Storage Management receives a com-
mand and transfers the blocks to the destination nodes.
Here, there are two approaches for issuing a command,
namely sequential and batch methods. The sequential
issuance method repeats the above search-and-issue
operation for each transferred file, while the batch is-
suance method first looks for all the blocks and their
destination nodes and then places them into a queue.

(3) Step 3: Transfer updated blocks.

When the Storage Management receives the command
issued by metadata management, it sends the blocks to
the destination nodes. However, in the current imple-
mentation in this part of the HDFS, for each block, the
system has to open a new connection to the destina-
tion node. Here, to increase the efficiency of reflecting
updated data, it is favored to reduce this cost. In the
case of the batch issuance method, when the Stor-
age Management knows all the blocks it has to transfer,
the cost of opening a new network connection can be
reduced by sending all the blocks through just a single
network connection. We call this the batch transfer
method. The current implementation in the HDFS is
called the sequential transfer method.

(4) Step 4: Reflect updated metadata.

After receiving the updated data, the just-activated
nodes notify the newly arrived data information to the
responsible metadata management as in the default
HDFS.

5. Experimental Evaluation

We carried out an empirical experiment with actual ma-
chines and an HDFS to verify the contributions of this
paper. In the first part, we validate NDCouplingHDFS
architecture with the original HDFS in terms of reduc-
ing the cost of updated data reflection when the sys-
tem shifts to higher gear. Next, we present MapReduce
benchmark results for both NDCouplingHDFS and the
original HDFS to confirm the capability to support
MapReduce. Finally, we examine the effectiveness of

LE et al.: NDCOUPLINGHDFS: A COUPLING ARCHITECTURE FOR A POWER-PROPORTIONAL HDFS
7

Table 1 Characteristics of the configurations used in experiments

Configuration NormalHDFS SSS SBS SBB FBB
Metadata management Centralized SDP SDP SDP Fat-BTree
Command issuance Sequential Sequential Batch Batch Batch
Block transference Sequential Sequential Sequential Batch Batch
Updated metadata transference - © © © ©

Distributed MDM relating to the scalability of meta-
data operations.

5.1 Updated-data Reflection

We verified our proposal with a normal HDFS in
terms of effective updated-data reflection [1]. To ver-
ify the effectiveness of each contribution proposed in
Sec. 4, we prepared several configurations. Here, the
NormalHDFS uses the sequential issuance method
and sequential transfer method. The SSS configura-
tion, which is the simplest configuration of NDCou-
plingHDFS, is the combination of SDP Distributed
MDM, sequential issuance method and sequential
transfer method. The SBS configuration is configured
to verify the effect of batch issuance method and is inte-
grated from SDP, batch issuance method and sequential
transfer method. Moreover, to verify the contribution
of the block transfer method, the SBB configuration
that uses SDP, batch issuance method and batch trans-
fer method is examined. Finally, we prepare the FBB
configuration that implements Fat-BTree-based meta-
data management, batch issuance method and batch
transfer method. The characteristics of each configura-
tion are summarized in Tab. 1.

5.1.1 Experimental Environment

We compare the proposed NDCouplingHDFS with the
normal HDFS in terms of reducing the cost of reflecting
updated data when the system shifts to a higher gear by
changing the configuration of the system. Here, we use
the execution time to finish reflecting updated data to
present this cost based on the observation that the cur-
rent power-proportional systems are mainly achieved
through a dedicated data placement method with a
good load balancing mechanism. As a result, when
the system moves to a higher gear, it must reorganize
the data layout through reflecting updated data be-
fore serving the request on processing newly updated
dataset. Consequently, the system is preferable to finish
the reflecting updated data process as fast as possible
in order to reach to the higher performance regarding
to power-proportionality.

In this experiment, NDCouplingHDFS and HDFS
operate in two gears, a low gear and a high gear with
different configurations. For NormalHDFS, there is
one NameNode, and eight active DataNodes in the low
gear and 16 active DataNodes in the high gear. For ND-
CouplingHDFS, there are eight active NDCouplingN-

Table 2 Experimental environment

Number of Gears 2
Number of active nodes at Low Gear 8
Number of active nodes at High Gear 16
Number of updated files 16000
File size 1MB

Table 3 Specification of a node

CPU TM8600 1.0GHz
Memory DRAM 4GB
NIC 1000 Mb/s
OS Linux 3.0 64bit
Java JDK-1.7.0

Table 4 HDFS information and parameters

version 0.20.2
max.rep-stream 100
heartbeat interval 1 second

odes in the low gear, and 16 active NDCouplingNodes
in the high gear (Tab. 2). Here, because we focus on
the energy-aware system, we use low-power-consuming
ASUS Eeebox EB1007 machines, whose specifications
are given in Tab. 3. Furthermore, because we want
to evaluate the effectiveness of metadata management
in this paper, the number of updated (newly created)
files when the system operates at the low gear is fixed
at 16000 dividing equally to 16 nodes, and the size of
each file is 1MB. The max.rep-stream, which specifies
the maximum number of blocks that can be replicated
by a Storage Management at the same time, is set to
100. In order to efficiently perform the updated data
reflection, the communication frequency between Na-
meNode Management and Storage Managements is in-
creased by setting heartbeat interval to one second, the
smallest allowable value in the current HDFS (Tab. 4).

5.1.2 Experimental Results

Figure 5 shows the execution time for reflecting the
updated data to just-activated nodes using different
methods employing the combination of this paper’s con-
tributions. The left vertical axis shows the execution
time from the time that the system begins to change
from the low gear to the high gear until all the just-
activated nodes catch up with the most current status
of the updated data set. The right vertical axis shows
the maximum number of transfer block command is-
suances, which is the number of times that the Storage

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

 0

 10

 20

 30

 40

 50

 60

 70

 80

Normal
HDFS

SSS SBS SBB FBB
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

E
xe

cu
tio

n
tim

e
[s

]

M
ax

im
um

 n
um

be
r

of
 c

om
m

an
d

is
su

an
ce

s
[ti

m
es

]

Configurations

Execution time
Maximum number of command issuances

Fig. 5 Experimental results for updated data reflection

Management has to make a connection with the meta-
data management to drain the block transfer queue.

(1) Performance of NDCouplingHDFS.

To confirm the NDCouplingHDFS’s performance, we
focus on the experimental results of NormalHDFS
and SSS, the simplest configuration of NDCou-
plingHDFS, in Fig. 5. We see that NDCouplingHDFS
has significantly reduced cost in reflecting updated
data; the reduction is nearly 41% (from 58 seconds
to 34 seconds). In the HDFS, because of the large
load at the NameNode with the processing of 8000 files
that should be replicated to eight nodes, it requires
about 40 connections (about 40 seconds since heart-
beat interval equals one second) between the NameN-
ode Management and Storage Management to drain
the block transfer queue of the Storage Management.
Meanwhile, the process is distributed to eight NDCou-
plingNodes in NDCouplingHDFS, and the load at each
NDCouplingNode is thus divided by eight (eight active
nodes in the high gear) and overall it takes about 34 sec-
onds to complete. It internally includes the execution
times of four steps, i.e. transferring updated metadata,
issuing block transfer command, transferring updated
blocks and reflecting updated metadata as described in
Sect. 4.3. Specifically, the time for transferring updated
metadata was about 1.8 seconds. In HDFS, it is esti-
mated that the data size of metadata of a single file or
a single block is 200 bytes [8]. As a result, in our exper-
iment, the amount of transfered updated metadata of
1000 one-block files was about 390KB. The remaining
time (32.2 seconds) was for the last three steps in which
the transferring updated blocks step was the major. As
these three steps were executed in parallel at several
nodes in almost non-sequential manner, it was difficult
to clearly classify the results of each step. However,
because the number of blocks that can be transfered
between two nodes at the same time is fixed through pa-
rameter max.rep-stream (= 100), it can be derived that
the execution time required in these three steps is the

sum of three kinds of time, i.e. the time for issuing the
block transfer commands for the first 100 blocks, the
time for transfer all updated blocks (1000MB) and the
time for reflecting updated metadata of the last group
of blocks. The number of blocks in the last group gen-
erally was smaller than 100. Because issuing command
and reflecting the metadata are processed on memory,
their execution times were significantly small (several
milliseconds) and could be ignored.

As indicated by the maximum number of command
issuances, in the normal HDFS, the retrieval of meta-
data information is restrained at NameNode, and the
possibility of increasing the free time at several DataN-
odes is higher than in NDCouplingHDFS.

(2) Performance of the command issuance.

From the results of SSS and SBS, we see that the batch
command issuance provided a slightly worse result than
did sequential command issuance. The reason is that
the Storage Managements in SBS wasted several first
connections to the NameNode Management before it
had finished retrieving all 1000 updated files’ data. On
the other hand, the Storage Management in SSS can
perform the block replication process immediately from
the very first communication.

(3) Performance of the block transfer method.

Figure 5 shows that SBB reduces costs by approxi-
mately 10% compared with SBS, as reduce the exe-
cution time of the process to 31 seconds. This means
that batch block transfer was able to reduce the cost of
opening a new network connection for sending blocks.
In total, SDP-based NDCouplingHDFS was able to re-
duce the execution time required for reflecting the up-
dated data by 46% relative to NormalHDFS.

(4) Performance of Fat-Btree-based distributed meta-
data management method.

We also confirmed the validity of introducing Fat-Btree-
based Distributed MDM methods. It is easier for Fat-
Btree to implement the batch transfer block as it has
the advantage of a range search. There was little differ-
ence between the performance of FBB and SBB. The
cost of the latter is slightly less by 0.5 seconds owing
to the lower cost of metadata management operations.
This is due to the process of transferring incremental
metadata, as the Fat-Btree-based method has to trans-
fer more information than SDP because of the complex
structure. However, the difference (0.5 seconds) is small
compared with the overall execution time.

(5) Remarks.

The different contributions of this paper are verified
through empirical experiments on actual machines.
From the experiment results, our proposed system is
able to reduce the cost of reflecting updated data com-
pared with the case for the default HDFS. The simplest

LE et al.: NDCOUPLINGHDFS: A COUPLING ARCHITECTURE FOR A POWER-PROPORTIONAL HDFS
9

 0

 100

 200

 300

 400

 500

 600

 700

 800

NormalHDFS NDCouplingHDFS
SDP

NDCouplingHDFS
Fat-Btree

E
xe

cu
tio

n
tim

e
[s

]

Map phase
Reduce phase

Fig. 6 Execution time of the wordcount benchmark

configuration of NDCouplingHDFS achieved up to 41%
better performance, and the batch block transfer in the
data transfer implementation further reduced computa-
tional costs by more than 5%.

5.2 MapReduce Benchmark

Here, to confirm that NDCouplingHDFS has the capa-
bility to support the MapReduce framework, we ran a
wordcount benchmark on a 16-node NDCouplingHDFS
(SDP-based and Fat-Btree-based). The nodes are sim-
ilar to those used in previous experiments. Because we
also wanted to verify the metadata operation’s perfor-
mance for a large number of files, we tested our system
with a 1-GB data set of 1024 files of 1 MB each, which
is equivalent to the block size of the HDFS. The repli-
cation parameter was set to one. Figure 6 shows the
execution time including the running time in map phase
and reduce phase.

Figure 6 shows that almost the same result for
the benchmark was obtained for all three configura-
tions. The result for NDCouplingHDFS was domi-
nated by the network communication cost, especially
at map phase, which required only light read opera-
tions. In the MapReduce framework, a jobtracker must
first open the files’ metadata to locate the blocks to
allocate the job to tasktrackers that are close to the
files. Because in NormalHDFS, the jobtracker is also
located locally in the NameNode, all the work can be
performed within the NameNode. However, because
NDCouplingHDFS distributes the namespace to multi-
ple nodes, it requires network communications among
the nodes in this phase.

To confirm the effect of SDP and Fat-Btree-based
methods on MapReduce jobs, the performance evalu-
ation relating to the scalability of simple read/write
metadata operations is reported in the next section.

Table 5 Workload

Fat-Btree leaf fanout 16
Data size (#files) 3000

Number of nodes (#nodes) 1, 2, 4, 8
File size 1KB

Number of write accesses per node #files
#nodes

Number of read accesses per node #files

5.3 Distributed metadata management Performance

5.3.1 Experimental Environment

We verified the scalability of NDCouplingHDFS relat-
ing to read and write operations by changing the num-
ber of nodes and the data size as shown in Table 5.
For the write workload, each node generated an equal
number of requests as the number of files divided by
the number of nodes used in that experiment run. For
the read workload, each node performed work that re-
quires the scanning of the whole data set, which means
reading all the files in the system without redundancy.
The order that files were requested was randomly gen-
erated. Furthermore, because we wanted to verify the
effectiveness of namespace operations, the size of the
physical file was kept to a small 1 MB.

5.3.2 Experimental Results

Figure 7 shows the read and write throughput of SDP
and Fat-Btree. Note that we also performed the exper-
imentation for the normal HDFS in which there were
only one node to perform both NameNode and DataN-
ode’s functionalities under the same environments. It
was observed that these results were almost the same
as the results for SDP when there was one node. The
reason is that the overhead of SDP relating to identify
which node to serve the request was extremely small in
this case.

From Fig. 7(a) it is seen that the read performance
of the Fat-Btree-based method significantly scales out
as the number of nodes increases. Here, the transaction
includes searching for the block locations of the query
file and reading the blocks from the nodes. The good
balance of the parallel B-Tree structure means that the
read requests are effectively distributed to all the nodes
in the system; hence, the overall throughput increased
as the number of nodes increased.

In contrast, in the case of the SDP-based method,
the throughput slightly decreased as the number of
nodes increased from one to two. The reason here is
the cost of opening a new connection to other nodes
that are responsible for the request is much larger than
the cost of searching for the responsible INode of the
searched file.

Figure 7(b) describes the overall throughput for
write requests. Here, a transaction is determined by

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

 0

 50

 100

 150

 200

 250

 300

 350

 400

1 2 4 8

R
ea

d
T

hr
ou

gh
pu

t [
op

er
at

io
ns

/s
]

Number of nodes

SDP
Fat-BTree

(a) Read throughput

 0

 5

 10

 15

 20

 25

1 2 4 8

W
rit

e
T

hr
ou

gh
pu

t [
op

er
at

io
ns

/s
]

Number of nodes

SDP
Fat-BTree

(b) Write throughput

Fig. 7 The scalability of read/write performance of SDP and
Fat-Btree-based NDCouplingHDFS

the two processes of creating new metadata for the file,
and actually writing the physical data of the file to
the node. Overall, it is seen that the Fat-Btree-based
method do not provide such a considerable efficiency
compare with the SDP-based method because of the
high cost of synchronizing of B-tree structures among
nodes during an update. Whenever a node splits, lead-
ing to some change in the structure, the related nodes
of different NDCouplingNodes need to be synchronized.
On the other hand, in SDP, each partition of the direc-
tory is treated as local metadata and independent of
other partitions at other nodes.

Overall, from the above read and write perfor-
mance results, it is believed that the Fat-Btree is more
suitable for the read-mostly workloads in MapReduce
applications.

6. Conclusion and Future Work

In this paper, we first described the issue of inefficient
updated data reflection and then proposed the NDCou-
plingHDFS architecture to solve the issue. Coupling
the metadata management and data management at
every nodes to efficiently localize the range of data,
NDCouplingHDFS significantly reduced the execution
time required to move updated data relative to the

normal HDFS. Moreover, in order to further improve
the performance of block transferring process, we sug-
gested and evaluated several batch methods of com-
mand issuance and block transfer. Experiments us-
ing actual machines verified that our solution was able
to shorten the execution time required to reflect up-
dated data by 46% relative to the time required by the
default HDFS. Moreover, NDCouplingHDFS was able
to increase the throughput of the system supporting
MapReduce by applying an index in metadata man-
agement. In addition, as utilizing metadata replica-
tion, NDCouplingHDFS was able to get rid of the single
pointer of failure problem existing in the normal HDFS.

In the future, we would like to carry out more ex-
periments with different workloads and a larger scale
of nodes. Moreover, we would like to develop a sys-
tem that integrates NDCouplingHDFS with suitable
data placement to provide power proportionality. We
would then like to evaluate this system for several work-
loads including MapReduce-based applications. Last
but not least, as NDCouplingHDFS utilizes the dis-
tributed metadata management, it is suggested that
optimization techniques of network communication cost
reduction at internal metadata processing can be fur-
ther explored.

Acknowledgements

This work is partly supported by Grants-in-Aid for Sci-
entific Research from Japan Science and Technology
Agency (A) (#22240005).

References

[1] H.H. Le, S. Hikida, and H. Yokota, “NameNode and DataN-
ode Coupling for Power-proportional Hadoop Distributed
File System,” Proc. the 18th International Conference on
Database System for Advanced Applications, Part II, DAS-
FAA ’13, vol. 7826, pp. 99–107, Springer Verlag, 2013.

[2] A. Hrishikesh, C. James, G. Varun, G. Gregory R.,
K. Michael A., and S. Karsten, “Robust and Flexible
Power-proportional Storage,” Proc. the 1st ACM Sympo-
sium on Cloud Computing, SoCC ’10, pp. 217–228, ACM,
2010.

[3] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: Prac-
tical Power-proportionality for Data Center Storage,” Proc.
the 6th European Conference on Computer Systems, Eu-
roSys ’11, pp. 169–182, ACM, 2011.

[4] J. Kim and D. Rotem, “Energy Proportionality for Disk
Storage using Replication,” Proc. the 14th International
Conference on Extending Database Technology, EDBT ’11,
pp. 81–92, ACM, 2011.

[5] Apache Hadoop, “HDFS Hadoop Wiki.” http://wiki.

apache.org/hadoop/HDFS.
[6] H. Yokota, Y. Kanemasa, and J. Miyazaki, “Fat-Btree: An

Update Conscious Parallel Directory Structure,” Proc. the
15th International Conference on Data Engineering, ICDE
’99, pp. 448–457, IEEE Computer Society, 1999.

[7] D. Narayanan, A. Donnelly, and A. Rowstron, “Write Off-
loading: Practical Power Management for Enterprise Stor-
age,” ACM Transaction on Storage, vol. 4, no. 3, pp. 10:1–

LE et al.: NDCOUPLINGHDFS: A COUPLING ARCHITECTURE FOR A POWER-PROPORTIONAL HDFS
11

10:23, 2008.
[8] K.V. Shvachko, “HDFS Scalability: The Limits to

Growth,” ;login:, vol. 35, no. 2, 2010.
[9] H.H. Le, S. Hikida, and H. Yokota, “An Evaluation

of Power-proportional Data Placement for Hadoop Dis-
tributed File Systems,” Proc. the 2011 Dependable, Au-
tonomic and Secure Computing, DASC ’11, pp. 752–759,
IEEE Computer Society, 2011.

[10] W. Charles, O. Mathew, Q. Jin, W.A.I. Andy, R. Peter, and
K. Geoff, “PARAID: A Gear-shifting Power-aware RAID,”
ACM Transaction on Storage, vol. 3, 2007.

[11] R.T. Kaushik and B. Milind, “GreenHDFS: Towards an
Energy-conserving, Storage-efficient, Hybrid Hadoop Com-
pute Cluster,” Proc. the 2010 International Conference
on Power Aware Computing and Systems, HotPower ’10,
pp. 1–9, USENIX, 2010.

[12] T. Yoshihara, D. Kobayashi, and H. Yokota, “A Concur-
rency Control Protocol for Parallel B-tree Structures With-
out Latch-coupling for Explosively Growing Digital Con-
tent,” Proc. the 11th International Conference on Extend-
ing Database Technology, EDBT ’08, pp. 133–144, ACM,
2008.

[13] P. Corbett and D. Feitelson, “The Vesta Parallel File Sys-
tem,” ACM Transactions on Computer Systems, vol.14,
no. 3, pp. 225–264, 1996.

[14] O. Rodeh and A. Teperman, “zFS - A Scalable Distributed
File System using Object Disks,” Proc. the 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and
Technologies, MSST ’03, pp. 207–218, IEEE, 2003.

[15] “Lustre-Main Page.” wiki.lustre.org/.
[16] P. Schwan, “Lustre: Building a File System for 1000-node

Clusters,” Proc. the 2003 Linux Symposium, 2003.

Hieu Hanh LE received his B.E., and
M.E. degree from Tokyo Institute of Tech-
nology in 2008, and 2010, respectively. He
is currently a Ph.D student at Tokyo In-
stitute of Technology. He is interested in
research on data engineering, information
storage systems, and network engineering.
He is a member of IPSJ.

Satoshi HIKIDA received his M.E.
degree from Tokyo Institute of Technol-
ogy in 2011. He is currently a Ph.D stu-
dent at Tokyo Institute of Technology. He
is engaged in research on data engineer-
ing, and information storage systems. He
is a student member of IPSJ.

Haruo YOKOTA received his B.E.,
M.E. and Dr.Eng. degrees from Tokyo In-
stitute of Technology in 1980, 1982, and
1991, respectively. He joined Fujitsu Ltd.

in 1982, and was a researcher at ICOT for
the Japanese 5th Generation Computer
Project from 1982 to 1986, and at Fu-
jitsu Laboratories Ltd. from 1986 to 1992.
From 1992 to 1998, he was an Associate
Professor at Japan Advanced Institute of
Science and Technology (JAIST). He is

currently a Professor at the Department of Computer Science in
Tokyo Institute of Technology. His research interests include the
general research areas of data engineering, information storage
systems, and the dependable computing. He was a chair of ACM
SIGMOD Japan Chapter and a trustee member of IPSJ. He is a
Vice Chair of the Database Society of Japan (DBSJ), the Editor-
in-Chief of Journal of Information Processing, an associate editor
of the VLDB Journal, a fellow of IEICE and IPSJ, and a member
of JSAI, IEEE, IEEE-CS, ACM, and ACM-SIGMOD.

