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Synchrony of limit-cycle oscillators induced by random external impulses
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The mechanism of phase synchronization between uncoupled limit-cycle oscillators induced by common
random impulsive forcing is analyzed. By reducing the dynamics of the oscillator to a random phase map, it is
shown that phase synchronization generally occurs when the oscillator is driven by weak random impulsive
forcing in the limit of large interimpulse intervals. The case where the interimpulse intervals are finite is also
analyzed perturbatively for small impulse intensity. For weak Poisson impulses, it is shown that the phase
synchronization persists up to the first order approximation.
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I. INTRODUCTION

When a limit-cycle oscillator is driven weakly by the
same temporal sequence of fluctuating forcing, its phase
tends to exhibit the same dynamics repetitively among dif-
ferent experimental trials, even if small external disturbances
distinguish each experimental trial. For example, a cortical
neuron generates spikes more reproducibly when it receives
a fluctuating input current rather than a constant input current
[1-3]. This fluctuation-induced reproducibility of a single os-
cillator can be interpreted as phase synchronization between
uncoupled oscillators driven by common random forcing, be-
cause repeated measurements on a single oscillator is equiva-
lent to a single measurement on multiple identical oscillators.
It indicates the existence of a physical mechanism that sta-
tistically stabilizes the limit-cycle orbit in the phase direction
by fluctuating forcing.

There have been a variety of studies regarding this phe-
nomenon [4-12]. Among them, Teramae and Tanaka [10]
made significant progress in understanding its universality
from the viewpoint of nonlinear dynamics. Using the
Stratonovich-Langevin equation resulting from the phase re-
duction method [13-15], they generally proved that limit-
cycle oscillators always synchronize in phase when they are
driven by vanishingly weak Gaussian-white forcing (see also
Goldobin and Pikovsky [12]). Independently, we also ana-
lyzed this phenomenon in a different setting [11]. We as-
sumed simple random telegraphic forcing to the oscillator
that switches between two values randomly, which is not
necessarily vanishingly small. We reduced the dynamics of
the system to a pair of random maps, and generally showed
that the oscillators always synchronize in phase when the
phase map is monotonic.
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In this paper, we consider yet another model of
fluctuation-induced phase synchronization. Specifically, we
assume the external forcing to be random impulses. Such a
model has wide applications to various natural phenomena,
since impulsive force is abundant in nature [16]. For ex-
ample, a cortical neuron interacts with other neurons via
spike trains, which are modeled as impulses in the simplest
approximation [17]. Within this model, we can generally
prove that the oscillators actually undergo fluctuation-
induced phase synchronization in the limit of large interim-
pulse intervals.

In addition, we can also discuss the case where the inter-
impulse interval is finite within this model. Both of the pre-
vious analyses in Refs. [10,11] assumed that the phase dis-
tribution of the oscillator is completely uniform on the limit
cycle, which corresponds to the assumption of vanishingly
weak or infinitely slow-switching external forcing. However,
in practical situations, such assumptions may not be valid,
and the phase distribution would generally be nonuniform.
Thus the effect of nonuniform phase distribution on the
phase synchronization should be assessed. By developing a
perturbation theory for weak impulse intensity, we discuss
the effect of slight nonuniformity of the phase distribution on
the phase synchronization. Especially, we will show that the
phase synchronization persists even if the phase distribution
becomes slightly nonuniform for the Poisson impulses.

Our analysis presented in this paper will extend the class
of fluctuation-driven limit-cycle oscillators that exhibit phase
synchronization, and will provide deeper insight into this
phenomenon.

This paper is organized as follows: In Sec. II, a general
model of impulse-driven limit-cycle oscillators is introduced,
and phase synchronization is demonstrated using two typical
limit-cycle oscillators. In Sec. III, reduction of the dynamics
of impulse-driven oscillators to a random phase map is pre-
sented. In Sec. IV, stability in the phase direction is analyzed
in the case where the phase distribution is uniform. In Sec. V,
effect of nonuniformity of the phase distribution is analyzed
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perturbatively for small impulse intensity. Finally, Sec. VI
gives the summary.

II. PHASE SYNCHRONIZATION INDUCED BY RANDOM
EXTERNAL IMPULSES

In this section, we first explain the equivalence between
synchrony of multiple uncoupled noisy oscillators and repro-
ducibility of a single noisy oscillator. We then introduce a
general model of uncoupled limit-cycle oscillators driven by
common random impulsive forcing, which we will analyze
in later sections. Then, before going into a general theory, we
numerically demonstrate phase synchronization induced by
random impulsive forcing using two typical models of limit-
cycle oscillators, and briefly comment on its mechanism.

A. Equivalence between synchrony and reproducibility

In this paper, we consider an ensemble of uncoupled noisy
limit-cycle oscillators driven by common random impulsive
forcing. Due to the noise that is independently given to each
oscillator, the oscillators never synchronize without external
forcing. However, as we demonstrate below, these uncoupled
noisy oscillators can be synchronized by applying external
random forcing commonly to all the oscillators. Now, it is
known that when a single noisy oscillator is driven by the
same temporal sequence of external random forcing, it tends
to exhibit the same dynamics repetitively among different
experimental trials, even under the influence of external dis-
turbance that is different at each trial [ 1-12]. Since repeated
measurements on a single noisy oscillator using the same
temporal sequence of external forcing is equivalent to a
single measurement on multiple identical noisy oscillators
driven by common external forcing, these two seemingly dif-
ferent situations are physically equivalent. The mechanism
responsible for these phenomena is the statistical stabiliza-
tion of the limit-cycle orbit in the phase direction by fluctu-
ating forcing, which we analyze in this paper for the case of
random impulsive forcing.

B. General model

We consider an ensemble of N identical limit-cycle oscil-
lators driven by common random impulsive forcing and also
subject to mutually independent external noises in the fol-
lowing general form:

Xi(t) = F(X(1)) + 1(t) + &(1) (1)

for i=1,...,N, where X,(¢) is the internal state of the ith
oscillator at time ¢, F is the intrinsic dynamics of each oscil-
lator, I(7) is the external random impulsive forcing common
to all the oscillators, and ;(¢) is a mutually independent
weak Gaussian-white noise that represents the effect of ex-
ternal disturbances. We assume that Eq. (1) has a single
stable limit-cycle solution X(z) in the absence of the forcing
I(z) and the noise ;(r), whose basin of attraction is the entire
phase space except some unstable fixed points. The impul-
sive forcing I(z) is given by
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()= e,8t—1,), )

n=1
where t,1,, ... are occurrence times of the random impulses,
and e, e,, ... are random vectors representing the “direction”

of the impulses. When the oscillator receives an impulse at
t=t,, its state X; is suddenly kicked by a random displace-
ment e, to a new state X;+e,. We assume that the Gaussian-
white noise £;(r) is mutually independent and zero mean,
whose correlation is specified by

Gty =Dg; ;6(t-1"), (3)

where D is a diagonal matrix that determines the intensity of
the noise.

We assume that the direction of the impulse e is mutually
independent and identically distributed. We denote its prob-
ability density by Q(e), which is normalized as [deQ(e)=1.
We also assume the interval 7 between two successive im-
pulses to be independent and identically distributed. We de-
note its probability density function by P(T), which is nor-
malized as [{dT P(T)=1. We further assume the intervals to
be sufficiently long such that the orbit kicked away from the
limit cycle by an impulse can return to the limit cycle before
the next impulse. This is the necessary condition for the
phase description of the oscillator, which we adopt in the
following discussion. The time needed for this process of
course depends on the property of the oscillator and on the
intensity of the impulses, which is very roughly of the order
of the period of the limit cycle.

In this paper, we mainly consider random impulses gen-
erated by a Poisson process. Then Egs. (1) and (2) describe a
Poisson-driven Markov process [16,18]. In the Poisson pro-
cess, an impulse is generated with probability v in an infini-
tesimal time interval Az. The probability density P(T) of the
interimpulse interval T is given by the exponential distribu-
tion

P(T) = lTexp(— g), (4)

where 7=v"! determines the mean interimpulse interval. Of
course, in this Poisson case, there exists a certain probability
that the generated interval becomes shorter than the above-
mentioned return time of a kicked orbit to the limit cycle. In
such a case, the phase description fails to approximate the
true dynamics precisely. However, when 7 is sufficiently
large, such probability becomes small, and the phase descrip-
tion will be a good approximation statistically.

The probability density of the impulse direction Q(e)
should be chosen properly depending on the problem under
consideration. For example, when we consider neural oscil-
lators, usually only the membrane potential can be stimulated
experimentally by a current injection. Therefore the random
vector e has only one nonzero element corresponding to the
voltage component of X, and we only need to consider one-
dimensional probability density Q(o), where o is the inten-
sity of the current impulse. In the following examples, we
only treat the case where the impulse can take a single fixed
direction and intensity e,, namely Q(e)=d5(e—e;), but we
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present our theory in a general form such that it can also be
applicable to the case where the impulse takes various direc-
tions and intensities.

C. Examples
1. Stuart-Landau oscillator

Our first example is an ensemble of noisy Stuart-Landau
oscillators [14] driven by common Poisson impulsive forcing
with fixed intensity. The Stuart-Landau oscillator is the sim-
plest limit-cycle oscillator, which is derived as a normal form
of the supercritical Hopf bifurcation [14]. The model is de-
scribed by

Ci(t) = (1 +icg)C; = (1 +icy) |CIPC+1(1) + §i(1)  (5)

fori=1,...,N, where C; is the complex amplitude of the ith
oscillator, ¢, and c, are real parameters, I(f) represents the
Poisson impulsive forcing common to all the oscillators, and
£(r) is a mutually independent complex Gaussian-white
noise. For simplicity, we drive only the real part of C; by the
impulsive forcing I(r), which is given by

(=02 8t-t,). (6)
n=1

where the real parameter o represents the intensity of the
impulses, #, the occurrence times of the impulse, and & the
Dirac’s delta function. The impulses are generated by a Pois-
son process with mean interimpulse interval 7. When the
oscillator receives an impulse, its real component Re C; sud-
denly jumps by an amount o. It is assumed that the complex
Gaussian-white noise ;(r) has zero mean, and whose corre-
lation is specified by

(Re {{(NRe (1)) =D, 8t —1'),
(Im §()Im ;(t')) = D&, &t 1),

(Re £{()Im £i(t")) =0, (7)

where D determines the noise intensity. We fix the param-
eters at ¢y=2, c,=—1, =2, and Y\D=1073.

We initially set the phase 6; of each oscillator uniformly
and randomly on [0, 1] (see the next section for the precise
definition of the “phase”), where the zero-crossing point of
C; from Im C;<0 to Im C;>0 is chosen as the origin of
phase, 6#;=0. We then evolve the oscillators under the influ-
ence of the common Poisson impulsive forcing and indepen-
dent weak Gaussian-white noises. Figure 1(a) plots a typical
realization of the zero-crossing events for N=50 Stuart-
Landau oscillators by bars (so-called raster plot) at =0, and
Fig. 1(b) plots a typical realization of the zero-crossing
events at 0=0.1. In each of the figures, the oscillators are
driven by a single realization of the Poisson impulsive forc-
ing and 50 independent Gaussian white noises, and initial
transient is discarded. It can be seen that the oscillators syn-
chronize in phase when 0=0.1, whereas they do not synchro-
nize at all when 0=0. To quantify the degree of synchroni-
zation, we introduce an order parameter [14]
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FIG. 1. (Color online) Synchronization of 50 Stuart-Landau os-
cillators driven by external impulses. (a) Zero-crossing events at
o=0 and (b) at =0.1. (c) Time sequence of the averaged modulus
(R) of the order parameter calculated at =0, 0.05, 0.1, and 0.2.

N

1
R exp(2miO) = ;[2 exp(2mi6;) (8)
i=1

using phase 6; of each oscillator. The modulus R of this order
parameter takes R=1 for complete synchronization and R
=0 for complete desynchronization. Figure 1(c) displays
temporal evolution of the modulus (R) averaged over 50 re-
alizations of the Poisson impulsive forcing using different
initial conditions of the phase. It gradually increases from a
small value to 1 when 0=0.05 and 0=0.1, while it con-
stantly takes a small value when o=0. Thus the uncoupled
Stuart-Landau oscillators driven by common Poisson impul-
sive forcing synchronize in phase even if the oscillators are
independently subject to small external disturbances.

2. Hodgkin-Huxley model

Our second example is an ensemble of the Hodgkin-
Huxley neural oscillators [17] driven by common Poisson
impulsive forcing with fixed intensity. It is given by the fol-
lowing set of equations [17]:

CVilt) = Gy hi(Ey,y = Vi) + Gn (Eg = V)
+ Gm(vresl - Vi) + 10 + I(t) + gi(t)v (9)

mi(t) = am(l - mi) - Bmmi’

hi(f) = ay(1 = h;) = Byh;,
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’;li(t) = an(l - ni) - Bnni’

for i=1,...,N, where V, represents the membrane potential
of the ith neural oscillator, m; and h; the activation of its
sodium channel, and n; the activation of the potassium chan-
nel, I, the constant input current, /(z) the random impulsive
forcing, and &(f) the mutually independent Gaussian-white
noise. Parameters Gy,, G, and G,, represent conductances
of the channels, Ey, and Ey represent their reversal poten-
tials, and V.., represents the rest voltage. a, and B, (x
=m,h,n) are rate constants that are given by the following
equations:

0.125-v) 8 =4 < v)
=T Az N > m= XpP\— 745 />
o (25—1;) 1 P\ g
CXp 10
1
ah=007exp<——>, By = )
(0—0 1)
€X
P70
0.01(10 - v) 820125 ( v) (10)
=—FV =0. expl - — .
% (10—0) P P\7 %0
exp -1
10

The parameters are fixed at the standard values presented in
the textbook [17], i.e., Gy,=120 mS/cm?, Ey,=115mV,
Gx=36 mS/cm?, Ex=—12mV, G,=03 mS/cm? V.
=10.613 mV, and C,,=1 uF/cm?. We fix the constant input
at [p=11 nA. When the forcing I(¢) and the noise &(¢) are
absent, this model exhibits stable limit-cycle oscillation. The
random impulsive forcing is given by

[

It)=0>, 8t—1,) X 1 nA, (11)

n=1

where o determines its intensity (o itself is dimensionless).
The impulses are generated by a Poisson process with mean
interimpulse interval 7=100 ms. The Gaussian-white noise
&(1) representing external disturbance has zero mean and
intensity D, which is applied only to the V; component for
simplicity. We fix the noise intensity at \D=10"% nA hereaf-
ter. We define the zero-crossing event (“firing event”) of this
Hodgkin-Huxley neural oscillator as the moment at which
the variable V; changes its sign from V;<0 mV to V;
>(0 mV. We take this point as the origin of phase, and define
a phase along the limit cycle [13,14].

As in the previous case, we set the initial phase of the
Hodgkin-Huxley oscillators randomly, and evolve them un-
der the effect of the common Poisson impulsive forcing and
independent Gaussian-white noises. Figure 2(a) displays a
typical realization of zero-crossing events for an ensemble of
50 Hodgkin-Huxley neural oscillators at o=0, and Fig. 2
displays a typical realization of zero-crossing events at o
=2. In each of the figures, the oscillators are driven by a
single realization of the Poisson impulsive forcing and 50
independent Gaussian-white noises, and initial transient is
discarded. The zero-crossing events well coincide with each
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FIG. 2. (Color online) Synchronization of 50 Hodgkin-Huxley
neural oscillators driven by external impulses. (a) Zero- crossing
events at 0=0 and (b) at 0=2. (c) Time sequence of the averaged
modulus (R) of the order parameter calculated at =0, 1, 2, and 4.

other when o=2, i.e., the oscillators synchronize in phase
after the initial transient. Of course, they do not synchronize
at all when o=0. Figure 2(c) shows temporal evolution of
the modulus (R) of the order parameter averaged over 20
realizations of the Poisson impulsive forcing at several val-
ues of the impulse intensity . When o takes 1, 2, or 4, phase
synchronization occurs and (R) gradually increases from a
small value to 1.

It is also possible to observe impulse-induced desynchro-
nization in this model by choosing the impulse intensity ap-
propriately as shown in Fig. 3(a), where zero-crossing events
of 50 Hodgkin-Huxley neural oscillators are plotted using a
single realization of the Poisson impulsive forcing and the
Gaussian-white noises. In this case, the external constant in-
put is set at /,=9.8 nA, the intensity of the impulse at o=6,
and the interimpulse interval at 7=50 ms. The phase of each
oscillator is initially set at roughly the same value, except
tiny additional fluctuations of order 0.1. As can be seen in
Fig. 3(b), the phase of the oscillators is strongly scattered
occasionally, and correspondingly the order parameter drops.
Thus initial tiny phase differences among the oscillators can
also be enhanced by the impulsive forcing.

D. On the mechanism of impulse-induced
phase synchronization

The mechanism of phase synchronization induced by
common random forcing is basically a single-oscillator prob-
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FIG. 3. Desynchronization of 50 Hodgkin-Huxley neural oscil-
lators induced by external impulses. (a) Zero-crossing events. (b)
Temporal sequence of the modulus R of the corresponding order
parameter.

lem, though we consider an ensemble of uncoupled oscilla-
tors in the above examples. The origin of the phase synchro-
nization is the local stabilization of each limit cycle in the
phase direction due to the random impulsive forcing.
Namely, small phase disturbance of a single oscillator
shrinks statistically, as we formulate in the following sec-
tions by reducing the dynamics of each oscillator to a ran-
dom phase map. At the same time, it indicates the suppres-
sion of small difference in phase between any pair of
oscillators. Due to the external impulses and the noises, the
phase of each oscillator diffuses on the limit cycle in addition
to the constant rotation. Once two phase variables of any pair
of the oscillators take close values accidentally, their differ-
ence can no longer grow but shrinks statistically due to the
local stability, leading to the synchrony of the entire en-
semble. This mechanism has certain similarity to that of
chaos synchronization induced by common random forcing
[19-22].

In the second example, we demonstrated that external im-
pulses do not only lead to phase synchronization but can also
cause phase desynchronization. Though we mainly focus on
phase synchronization in this paper, this fact is important in
understanding that fluctuation-induced phase synchroniza-
tion is not a trivial phenomenon but has some subtleties. (See
Tass [23] for a detailed discussion on the desynchronization
of phase oscillators induced by an impulse.)

III. REDUCTION TO A RANDOM PHASE MAP

In order to analyze the stability in the phase direction, we
first reduce the dynamics of our impulse-driven limit-cycle
oscillator to a random phase map. Since the Gaussian-white
noise () in Eq. (1) representing the effect of external dis-
turbances is not important in the stability analysis, we omit
this term in the following discussion.

A. Random phase map

Following the standard procedure [13,14], we define a
phase 6=6(X,) along the limit-cycle orbit X,(¢) in such a
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way that 6 increases with a constant angular velocity w. The
phase 6 is normalized by the period of the limit cycle, so that
its range is [0, 1] where 0 and 1 represent the same phase.
This definition of phase can be extended to the entire phase
space except at phase-singular points, yielding a phase field
0(X). It is achieved by identifying a point P in the phase
space with a point Q right on the limit cycle in such a way
that the two orbits started from P and Q asymptotically co-
incide. A set of points that have equal phase is called an
isochron. The entire phase space is composed of isochrons
with various phase.

In the absence of external impulses and noises, the phase
6(t)=6(X(r)) obeys

01t) = w (12)

on the entire phase space (except at phase-singular points).
When the external impulses are given, the orbit is perturbed.
Let us assume that the orbit is on the limit cycle at time ¢
=1,—0, i.e., immediately before the nth impulse (we say the
orbit is “on” the limit cycle when it is sufficiently close to
the limit cycle). We denote its location by X, (7,—0) and its
phase by 6,=6(z,—0). We also denote the interval between
the nth impulse and the next (n+1)th impulse by T,=1,,,
—t,. When the oscillator receives an impulse e, 5(t—t,) at ¢
=t,, the orbit is kicked off the limit cycle and jumps to a new
phase-space point as

X(t,+0)=X((1,—0) +e,. (13)

This new phase-space point X(z,+0) is on a certain isochron
of the limit cycle, whose phase we denote by ¢, (unless it is
kicked exactly onto the phase-singular point, which rarely
occurs). We represent this mapping from 6, to ¢, by

¢n = F(emen) = 0n + G(aﬂ’en)’ (14)

which we call a “phase map” hereafter. In the second expres-
sion, we split F(6,,e,) into the trivial part 6, that exists even
without any impulses, and the nontrivial part G(6,,e,) aris-
ing from the impulse. Since F(6,e) is a phase map, it is a
periodic function on [0, 1]. Therefore F(1,e)=F(0,e) and
G(0,e)=G(1,e) should hold (we should treat them in
modulo 1). As we discuss later, the above rule gives rise to
an impulse-driven phase equation of the Ito type [16,18].

After the arrival of the nth impulse, the oscillator evolves
freely with no external impulses from t=¢,+0 to t=¢,,;—0
for an interval of 7,,=t,,,;—t,, and the phase changes from ¢,
to ¢, + wT, during this interval. If T, is sufficiently large, the
orbit evolves from X(z,+0) to a new point X(,,;—0) on the
limit cycle.

Thus corresponding to the evolution of the variable
X(1,—0) — X(t,+0) — X (2,,,—0) from r=1,-0 to t=t,,,
-0, the phase evolves as 6,— ¢, — ¢,+»T,. Hence we ob-
tain the following evolution equation of the phase:

0,1 =T, +F(6,e,)=0,+ T, +G(6,e,). (15)
Since T, and e, are random variables whose probability den-
sity functions are given by P(T) and Q(e) respectively, this

equation describes a random map. When we consider Pois-
son random impulses, the time step n roughly corresponds to
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the real time ¢t as n==t/7, because the mean interimpulse
interval is 7.

If we go back to the continuous description, the dynamics
of the phase 6 can be written as

00) = w+ >, G(6,.,)0(t—1,). (16)
n=1
The external impulse is now explicitly multiplicative in this
equation. This impulse-driven phase equation is of Ito type
[16,18], namely, G(6,,e,) depends only on the phase 6, be-
fore the nth impulse, which stems from the rule we have
assumed for the phase jump caused by an impulse.

B. Relation to the phase response function

According to the standard theory of phase reduction
[13,14], when the orbit on the limit cycle X, at phase 6 is
kicked by a weak impulsive force p to another isochron, its
new phase ¢ is given by a linear projection of the perturba-
tion p on the gradient of the phase field 6(X) as

d=0+7(6) -p, (17)
where
Z(6) = VX6'(X)|XO(0) (18)

is the conventional phase response function representing the
gradient of A(X) on the limit cycle orbit X,(z). Comparing
this equation with Egs. (14) and (15), we obtain

G(emen) = Z(an) “€ps (19)

so that the phase dynamics can be described by

F(en’en) = 0}1 + Z(an) "€

0n+1 = 0n + an + Z(an) "€y (20)

Thus the phase map can simply be represented using the
inner product of the conventional phase response function
Z/(0) and the direction of the impulse e when e is sufficiently
small.

C. Generalized Frobenius-Perron equation

Temporal evolution of the probability density function
(PDF) p(0,n) of the phase 6 at time step n is described by a
generalized Frobenius-Perron equation [24], which is convo-
luted with a transition kernel W(6) that represents random
shifting on the limit cycle for a random duration 7 drawn
from P(T), and is also averaged by the probability density
Q(e) of impulse directions e,

1
P(H,n+1)=f dpW (6~ d))fdeQ(e)
0

1
Xf dyp(p—F(.e)p(hn),  (21)
0

where the argument 6—¢ of W(6— ) should be interpreted
in modulo 1. In deriving this equation, we utilized the fact
that 6,, e,, and T, are mutually independent (6, depends only
one,...,e,_and Ty,...,T, ;) [24].
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For Poisson impulses, the explicit form of the transition
kernel W(6) can be calculated from Eq. (4) by taking into
account the periodicity in # and the Jacobian of the transfor-
mation, which is given by

W(6) = lz p(ﬂ)

w j=0 w

e—ﬁ/((m‘)

- an'(l _ e—l/wr)
A

- 1—e¢™

er0=<60<1), (22)

where we defined A=1/w7. Of course, it is normalized as
[odow(o)=1.

Sufficiently after the initial transient, the PDF p(6,n) is
expected to reach a stationary state p(6), but it is generally
difficult to calculate this stationary PDF analytically even if
the map F(6,e) has a simple functional form. In the follow-
ing, we first analyze the limit of large interimpulse interval 7
where the stationary PDF becomes uniform, and then ana-
lyze the deviation of the stationary PDF from the uniform
density perturbatively for small impulse intensity.

D. Examples of phase maps
1. Stuart-Landau oscillator

Figure 4(a) plots numerically calculated phase maps
F(6,0) of the Stuart-Landau oscillator at several values of
the impulse intensity o. As |o] becomes larger, the phase
map deforms from the trivial identity map noticeably, and
finally becomes nonmonotonic when o= +0.8. Figure 4(b)
displays the phase response normalized by the impulse inten-
sity [F(6,0)- 0]/ 0=G(6,0)/ o at several values of o. If o is
sufficiently small, Eq. (19) should hold, and the different
curves corresponding to different values of o should col-
lapse. The limiting curve at o— 0 gives the real component
of the phase response function Z(6). It can be analytically
calculated for the Stuart-Landau oscillator as Zg.(6)
=sin(2w6+37/4)/32 [14], which is also shown in the fig-
ure.

2. Hodgkin-Huxley model

Figure 5(a) shows numerically calculated phase maps
F(0,0) of a Hodgkin-Huxley neural oscillator at several val-
ues of the impulse intensity o. As |o| becomes larger, the
phase map deforms from the trivial identity map and finally
becomes nonmonotonic at o= +5. Figure 5(b) shows nor-
malized phase response [F(6,0)—6]/0=G(6,0)/ 0 at sev-
eral values of o. It can be seen that the curves actually col-
lapse at small o, and deviates at larger o. The limiting curve
at 0— 0 gives the V component of the phase response func-
tion Zy(6). The curve corresponding to o=0.1 in Fig. 5(b)
gives an approximation to the phase response function.

IV. STABILITY IN THE PHASE DIRECTION

Synchrony of uncoupled oscillators induced by random
impulses is the result of statistical stabilization of each oscil-
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(b)

G(6,0)/ ©

FIG. 4. (Color online) (a) Phase maps F(6,0) of the Stuart-
Landau oscillator at several values of the impulse intensity o. (b)
Normalized phase response G(6,0)/o=[F(6,0)- 6]/ at several
values of the impulse intensity o. Theoretical phase response func-
tion Zg(0)=sin(27w6+37/4)/3y2 that corresponds to the limit of
o—0 is also shown.

lator against phase disturbances. Such stability is character-
ized by the Lyapunov exponent of the random phase map Eq.
(15).

A. Lyapunov exponent

Let us consider the temporal evolution of a small devia-
tion A, from the original orbit 6,. The linearized evolution
equation of this small deviation is given by

A6n+1 = F,(emen)Aen, (23)

where F'(6),,€)=(dF(6,e)/d6), . At large time step n, A6,
expands as

n—1 n—1
A6, , ,
‘_ = H |F (0m’em)| =cexXp 2 1I1|F (0n17em)|
A00 m=0 m=0
= exp(An), (24)

where we introduced the Lyapunov exponent A of the map
F(6,e) averaged over the PDFs Q(e) and p(6),

PHYSICAL REVIEW E 72, 026220 (2005)

FIG. 5. (Color online) (a) Phase map F(6,0) of the Hodgkin-
Huxley neural oscillator at several values of the impulse intensity o.
(b) Normalized phase response G(6,0)/o=[F(0,0)-6]/0 at sev-
eral values of the impulse intensity o. The curve corresponding to
0=0.1 gives an approximation to the phase response function Zy(6)
of the Hodgkin-Huxley neural oscillator.

1
M=l 0= | dopt0) [ deoi@mir ool
0

(25)

If \ is negative, A6, shrinks on average, so that the deviation
from the original orbit is suppressed, whereas if A is positive,
small external disturbances will be enhanced. Thus the value
of \ gives a (local) condition for the phase synchronization.

B. Limit of large interimpulse intervals

As we mentioned previously, it is difficult to obtain the
stationary PDF p(6) analytically. However, when the inter-
impulse interval 7 is sufficiently large, it can be approxi-
mated by a uniform density. In the limit of large 7, the tran-
sition probability tends to be uniform, i.e., W(6) — 1, which
can easily be confirmed from Eq. (22) in the Poisson case.
Correspondingly, the stationary phase PDF p(6) approaches
a uniform density in the large 7 limit,

p(6) — 1. (26)

In this limit, we can obtain a sufficient condition of phase
synchronization for general limit-cycle oscillators: when the
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phase map F(0,e) is a monotonically increasing function of
0, the Lyapunov exponent \ is always nonpositive. When this
condition is satisfied, namely, when F’'(0,e)=1+G’(6,e)
>(), we can bound \ from above as

1
)\:f d0p(6)fdeQ(e)lnF’(0,e)
0
1
sf d0p(0)ln{fdeQ(e)F'(0,e)}
0
1
=f d&p(ﬂ)ln[l+fdeQ(e)G'(9,e)}
0

1
< f dbp(6) f deQ(e)G'(6b.e). (27)
0

In the above transformation, we utilized Jensen’s inequality
fdeQ(e)In[g(e)]<In[ fdeQ(e)g(e)] that holds for a concave
function In[- - -], the normalized probability density Q(e), and
a positive scalar function g(e). The second inequality follows
from log(l+x)<x. By using the facts that p(f)=1 and
G(0,e)=G(1,e), the upper bound of A can be calculated as

1 1
J db’p(ﬁ)fdeQ(e)G’(b’,e):fdeQ(e)J doG'(6,e)
0 0

= f deQ(e)[G(1,e) — G(0,e)]
=0. (28)

Thus for monotonically increasing F(6,e), the Lyapunov ex-
ponent \ is always nonpositive. The equality A=0 holds only
when F(6,e) is a trivial identity map for all e, i.e., F(6,e)
=6, which follows from the equality condition of Jensen’s
inequality. Therefore small deviations from the original orbit
always shrink by applying random external impulses with
large interimpulse intervals, when the phase map F(6,e) is
monotonically increasing.

As we mentioned previously, when e is small, G(6,e) can
be represented using the phase response function Z(6) as
G(0,e)=7(0)-e. Since F(0,e)=0+G(0,e), F(0,e) is mono-
tonically increasing with respect to @ for sufficiently small e.
Therefore when the intensity of external impulses is small
and the mean interval between impulses is large, N always
becomes negative.

C. Examples

1. Stuart-Landau oscillator

As can be seen from Fig. 4(a), the phase map F(6, o) of
the Stuart-Landau oscillator is monotonic as long as |o]| is
small. Therefore the Stuart-Landau oscillator exhibits phase
synchronization induced by external impulses at such values
of |o| for sufficiently large inter-impulse intervals, as we
demonstrated previously.
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2. Hodgkin-Huxley model

Similarly, as shown in Fig. 5(a), numerically calculated
phase maps F(6,0) of the Hodgkin-Huxley neural oscillator
are monotonic when |o| is not so large. Therefore the
Hodgkin-Huxley neural oscillators also exhibit impulse-
induced phase synchronization for such values of |o|. When
|o| becomes large, the phase map can become quite complex,
which can lead to the impulse-induced phase desynchroniza-
tion mentioned previously.

V. EFFECT OF NONUNIFORM PHASE DISTRIBUTION

In the previous section, we discussed the limiting case of
large interimpulse intervals, where the stationary PDF of the
phase becomes uniform. If the mean interimpulse interval is
not so large, the stationary PDF would generally become
nonuniform. In this section, we first develop a perturbation
theory to approximate the nonuniform PDF for weak exter-
nal impulses. We then discuss the correction to the upper
bound of the Lyapunov exponent caused by the nonunifor-
mity of the PDF. In the following discussion, we assume that
the intensity of external impulses is sufficiently small, and
that the phase map F(6,e) is a strictly monotonically increas-
ing function of 0, i.e., F'(6,e)>0.

A. Perturbative solution to the generalized
Frobenius-Perron equation

As a first step, we calculate the deviation of the stationary
PDF from the uniform density perturbatively for small exter-
nal impulses (up to the second order). Our starting point is
the generalized Frobenius-Perron equation for the stationary
PDF p(6),

1 1
p(0)=f d¢W(9—¢)JdeQ(e)f dpd(p—F(ih,e))p(h).
0 0

(29)

We assume that the deviation of F(6,e) from the identity
map F(6,e)=0 is small,

F(6,e)= 0+ €eG(6,e), (30)

where we introduced a small parameter € in order to control
the magnitude of the perturbation. By using a well-known
formula for the & function, Eq. (29) can be rewritten as

p( (¢.e))
[F' (¢ (¢,e).e)

where /" (¢, e) is a solution to F(i/,e)=¢. We here used the
fact that there exists only one solution, because F(i,e) is a
monotonically increasing function of ¢ [we do not consider
the trivial case of F(i/,e)= i, where p(6) always becomes
uniform].

We first calculate the solution (¢, e) to F(i,e)=¢ as a
power series in €. We assume that the solution can be ex-
panded in terms of € around the trivial solution ¢ (¢,e)=¢
at €=0 as

1
p(9)=f dd>W(0—¢)fdeQ(e) , (3D
0
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W (p.e) = b+ ey (h.e) + En(he) +O(€).  (32)

By inserting this expression to F(i'(¢.e),e)= ¢, we obtain

¢= ¢ at O(e),
Uy (d.e) + G(p.e) =0 at O(€'),
z//;(¢,e) + G’(¢,e)1,/f1k(¢,e) =0 at O(€),

(33)

Thus to the second order in €, the solution ¢(¢,e) is ap-
proximated by

¢*(¢’e) = ¢_ EG(¢,C) + 62G,(¢’e)G(¢’e) + 0(63)
(34)

Since F'(6,e)=1+¢€G’(6,e), it can be expanded as

F'(f'(p.e).e) =1+ €G'(¢,e) — €G"(h,e)G(h,e) + O(€).
(35)

We also expand the stationary PDF p(6) in a power series of
€ as

p(0) =1+ ep,(6) + €py(6) + O(€). (36)

Since p(6) is normalized to 1, f(l)depl(ﬁ) =f(1)d0p2(0) =0
should hold. Inserting the above expansions into Eq. (31), we
obtain

1+ €p(0) + €py(6) + O(€)
1
=f d¢W(9—¢)fdeQ(e)
0

(Lren(d)+ Hp,(¢) - pi($)G(p,e)} + O(€)
1+ eG'(,e) — €G"(h,e)G(p,e) + O(€)

1
=J d¢W(0—¢)fdeQ(e)[1 +elpi(¢) - G'(d.e)}
0
+{px(¢) - H(g,e)} + 0(€)], (37)

where we utilized the fact that F’(4"(¢,e),e)>0, and de-
fined

H(p.e)=pi($)G(d.e) -G (d.e)G(de).  (38)
Thus the first order correction p,(6) to the uniform stationary

PDF py(6)=1 satisfies

1
91(6’)=J d¢>W(0—¢)JdeQ(e){P1(¢)—G’(¢,e)}
0

1
=f dpW(0- d)ipi(¢) = (G")e(P)} (39)
0

and the second order correction p,(6) satisfies

PHYSICAL REVIEW E 72, 026220 (2005)
1
p2(0) = f dpW(6- ¢) f deQ(e){px(¢) — H'(.e)}
0

1
= f dpW(6— d){pa(d) — (H')e(P)}. (40)
0

Here and hereafter, for notational simplicity, we define an
averaged function (f).(6) of a function f(6,e) over Q(e) as

(e(0) = f deQ(e)f(0.e), (41)

such as  (G')(})=[deQ(e)G'(p,e) and (H')(¢h)
=[deQ(e)H' (¢,e). We also define the Fourier transform be-

tween a function f(6) and its coefficient f(k) by

f0)= 2 ™ F(k),

k=—

1
flk) = f doe> 0[(6). (42)
0

For example, the Fourier coefficients of p,(6) and G'(6,e)
are denoted as (k) and G’ (k,e), respectively. The averaged

Fourier coefficient @e(k) of flk,e) over Q(e) is similarly
defined as

(Prelk) = f deQ(e)f(k,e), (43)

such as  (G')(m)=[deQ(e)G'(m,e) and (H').(m)

=[deQ(e)H' (m,e).
Equations (39) and (40) can be solved for p,(6) and p,(6)
through the Fourier transform, which yields

pi(m) = f deQ(e)W(m){p,(m) - G' (m,e)}

= W(m){p;(m) = (G")e(m)}, (44)

and
pa(m) = f deQ(e)W(m){py(m) — H' (m,e)}

= Wm){py(m) - (H')e(m)}. (45)

It can easily be shown that the equations at m=0 give trivial
relations, which should be neglected. We thus obtain

W(m) W(m)

(G")elm),  Balm) =— (H')(m)

W(m) -1

pi(m)=—
W(m) -1

(46)

for m# 0, and the corrections p,(6) and p,(6) to the uniform
density can be obtained as

()=

— <é/>e(m)€2wim0’
m#0 W(m) -1

()= S, )

- (H'Ye(m)e*™™®. (47)
m#0 W(m) — 1
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For the Poisson impulses, the transition probability W(6)
is given by Eq. (22), and its Fourier coefficient W(m) is
given by

- ! . A
W(m) = f dOW(g)e ™m0 = ————— (48)
0 A+2mim
for integer m. Therefore the coefficient in Eq. (47) is calcu-
lated as W(m)/[W(m)—1]=—A/(2mim). Using this, we can
calculate the first order correction to the phase PDF as

o= S (G (m)ermmt

m=0 27Tim
=—A 2 (G)e(m)e*™™
m#0
=-A[G)e(0) - Go), (49)

where we defined G0=<6>e(0)= I (l)d K G)e(6), and utilized the

relation (G')(m)=(27im){G)(m). Similarly, the second or-
der correction to the PDF can be calculated as

-A - .
pa(6) = 2 S (H ) (m)e ™
mw#0 & TN

=—A 2 (H)(m)e*™™"
m#0

=~ A[(H)(6) — (H),(0)],

=-A[p1($)G(¢.e)). — (G'G)(0)]

+ const

=A’[(G)e(O)F - 4Gy - (G)e(6)

+ A(G' G)(6) + const, (50)
where we defined (G'G).(0)=(G'(0,e)G(0,e)).. The con-
stant can be determined from the condition [yd6p,(6)=0.

Thus in the Poisson case, the averaged phase map (G)¢(6)
directly appears at the first order perturbation, p;(6). Since
A=1/wT, the amplitude of the first order perturbation scales
as €/ wr, namely, the ratio of the impulse intensity to the
nondimensional time scale determined by the period of the
limit cycle and the interimpulse intervals. The second order

perturbation p,(6) represents the lowest-order nonlinear con-
tributions from the phase map.

B. Upper bound of the Lyapunov exponent

The Lyapunov exponent \ is bounded from above as

A={In F'(0,6)>>.9,e

1
:f dﬁp(ﬁ)fdeQ(e)ln F'(6,e)
0

1
< J dap(a)ln{ J deQ(e)F’(B,e)}
0
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1
:f dﬂp(ﬁ)ln{l+fdeQ(e)eG’(0,e)}
0

1
$f dap(a)fdeQ(e){eG’(G,e)}. (51)
0

Now, using Eq. (36), correction to the upper bound of the
Lyapunov exponent can be expanded as

fol dop(0) J deQ(e){eG'(0,e)}
= fol do{1 + ep,(0) + ep,(6)
+0(€)} f deQ(e){eG'(6,e)}
= fﬂ d&G")(6) + ezfol d6p,(6)(G")(6)

1
+é f dBp,(0){G")e(0) + O(€Y). (52)
0

The first term corresponds to the zeroth order contribution
from the uniform component of the phase PDF, which van-
ishes (similarly to the previous uniform case) irrespective of
the functional form of the transition kernel W(6),

1
J dG")e(0) =(G")e(1) =(G")e(0) = 0. (53)

0

For the Poisson impulses, the first order correction to the
upper bound of N can be calculated using Eq. (49) as

1

1
fd0P1(0)<G'>e(6’)=—Af d&G)e(G")e(6)
0

0

1
+AG, f d6(G")(6)
0

_ _A[@] FAG(G)(O)],

0
=0. (54)

Thus the upper bound of the Lyapunov exponent \ is still
zero even if the first order correction p,(6) to the uniform
PDF is incorporated. The second order correction to the up-
per bound can similarly be calculated using Eq. (50) as

1
f dOpy(6)(G")e(0)
0

1 1
=A? f dO(G)e(0)}(G")(0) - A’G, f do{(G)(0)}
0 0

1

X<G,>e(0)+Af dKG' G)e(6)(G")(0)
0
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FIG. 6. (Color online) Stationary phase PDFs of the Stuart-
Landau oscillator driven by external impulses obtained by (i) a
direct simulation of the original model, (ii) a direct simulation of
the corresponding phase model, (iii) numerically solving the corre-
sponding Frobenius-Perron equation, and (iv) the perturbation
theory.

1
+ constf deG")(0)
0
_A

2 2
= S THG)OP T - G o)

1
+const[{{(G") ()] +A f d&(G'G)o(0){G")(6)
0

1
=Af dKG' G)e(0)(G')(0). (55)
0

Thus only the term containing (G’ G).(6) in p,(6) gives non-
vanishing contribution. Its sign cannot be determined at this
point unless the explicit functional form of G(6,e) is given.
This term could make the upper bound of the Lyapunov ex-
ponent slightly different from zero, but its effect is only of
the order of €.

Summarizing, the first order correction to the upper bound
of the Lyapunov exponent N\ by the nonuniformity of the
phase PDF is generally O(€?), but for the Poisson impulses,
it also vanishes. Thus the upper bound of A is still zero up to
the first order approximation. The next order correction is
only O(€’), which is quite small when € is small. Therefore
the impulse-induced phase synchronization will persist for
weak Poisson impulses even if the phase PDF becomes
slightly nonuniform for small e.

C. Examples of lyapunov exponents
1. Stuart-Landau oscillator

Stationary phase PDFs p(6) of the Stuart-Landau oscilla-
tor driven by external impulses at 0=0.1 and 7=2 are shown
in Fig. 6. The curves are obtained by (i) a direct simulation
of the original model Eq. (5) without Gaussian-white noise,
(ii) a direct simulation of the reduced phase model Eq. (16),
(iii) a numerical calculation of the stationary solution of the
corresponding Frobenius-Perron equation (29), and (iv) the
perturbation theory up to the second order, respectively. All
curves agree well, which confirms the validity of our ap-
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FIG. 7. (Color online) Dependence of the Lyapunov exponent A
on the impulse intensity o obtained by (i) directly using the original
model Eq. (5) without Gaussian-white noise, (ii) directly using the
reduced phase model Eq. (16), (iii) a calculation using numerical
phase maps assuming uniform phase PDF, and (iv) a calculation
using numerical phase maps and the approximated phase PDF.

proximation at least for small impulse intensity. In this case,
the first order perturbation already gives a nice fit to the
actual PDF, and the second order perturbation gives only a
tiny correction.

Figure 7 plots the Lyapunov exponent A as a function of o
at 7=2, which is obtained by (i) directly using the original
model Eq. (5) without Gaussian-white noise, (ii) directly us-
ing the reduced phase model Eq. (16), (iii) a calculation us-
ing numerical phase maps and uniform phase PDF, and (iv) a
calculation using numerical phase maps and the approxi-
mated phase PDF. Reflecting the symmetry of the limit
cycle, the graph of A is also symmetrical with respect to o
=0. Since the phase map is always monotonically increasing
in this range of o, the Lyapunov exponent \ calculated as-
suming uniform phase PDF (iii) is always nonpositive and
only becomes 0 at 0=0. The Lyapunov exponent N\ calcu-
lated using approximate phase PDF (iv) is also always non-
positive. Since the correction to the uniform PDF is small,
the difference between (iii) and (iv) is also small. Both
curves agree well with the actual Lyapunov exponent ob-
tained by (i) and (ii).

2. Hodgkin-Huxley model

Similarly, stationary PDFs of the Hodgkin-Huxley neural
oscillator driven by external impulses at o=2 and 7
=100 ms are shown in Fig. 8. The curves represent the re-
sults obtained by (i) a direct simulation of the original model,
(ii) a direct simulation of the reduced phase model, (iii) a
numerical solution of the Frobenius-Perron equation, and
(iv) the perturbation theory. Of course, the results of (ii) and
(iii) give a nice fit to the actual phase PDF obtained by (i).
The result of perturbation theory (iv) also gives a reasonable
fit to the actual phase PDF. As in the previous case, the first
order perturbation gives a good fit to the actual PDF, and the
second order perturbation gives only a tiny correction.

Figure 9 plots the Lyapunov exponent A as a function of o
at 7=100, which is obtained by (i) directly simulating the
original model without external noises, (ii) directly simulat-
ing the reduced phase model, (iii) calculation using numeri-
cal phase maps assuming uniform phase PDF, and (iv) cal-
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FIG. 8. (Color online) Stationary phase PDFs of the Hodgkin-
Huxley neural oscillator driven by external impulses obtained by (i)
direct simulation of the original model, (ii) direct simulation of the
corresponding phase model, (iii) numerical solution of the corre-
sponding Frobenius-Perron equation, and (iv) perturbation theory
using Fourier coefficients numerically obtained from the phase
map.

culation using numerical phase maps and the phase PDF
approximated up to the second order perturbation. Since the
phase map is always monotonically increasing in this range
of o, the Lyapunov exponent N\ calculated assuming uniform
phase PDF (iii) is always nonpositive and only becomes 0
when o=0. The Lyapunov exponent \ calculated using ap-
proximate phase PDF (iv) is also always nonpositive. In this
case, the correction to the uniform phase PDF is even smaller
than the previous Stuart-Landau case, hence the Lyapunov
exponents calculated by (iii) and by (iv) are almost indistin-
guishable. Of course, they coincide with the results obtained
by direct simulation of the original model and the phase
model.

VI. SUMMARY

We analyzed phase synchronization of general limit-cycle
oscillators subject to external impulses by reducing the dy-
namics of the oscillator to a random phase map. We proved
that when the phase maps are strictly monotonic and the
mean interimpulse interval of the input current is sufficiently
large, the Lyapunov exponent of the system always becomes
negative, leading to fluctuation-induced phase synchroniza-
tion. We also treated the case where the interimpulse interval
is finite perturbatively for weak Poisson impulses, and
proved that the first order correction to the upper bound of
the Lyapunov exponent is also zero, hence the fluctuation-
induced phase synchronization persists even if the phase dis-
tribution becomes slightly nonuniform.
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FIG. 9. (Color online) Lyapunov exponent A obtained as a func-
tion of the impulse intensity o, by (i) directly using the original
model, (ii) directly using the reduced phase model, (iii) a calcula-
tion using numerical phase maps assuming uniform phase PDF, and
(iv) a calculation using numerical phase maps and the approximated
phase PDE.

Mathematically, the nonpositivity of the Lyapunov expo-
nent is a general result of the concavity of the log function
and the monotonicity and periodicity of the phase map.
Therefore this result is not restricted to specific models, but
also holds generally for a wide variety of limit-cycle oscilla-
tors. Examining the significance of our results in practical
problems would be an interesting topic.

Finally, though we did not derive in this paper, we can
reduce the phase model driven by Poisson impulses to an
Ito-Langevin phase equation in the limit of weak and fre-
quent impulses when the net drift induced by the external
impulses vanishes. It yields

(1) = w+ Z(6) - (1), (56)

where #(z) is a n-dimensional Gaussian-white noise. On the
other hand, Teramae and Tanaka [ 10] assumed the same form
of Langevin phase equation in the Stratonovich interpreta-
tion, which does not come out of the integration rule we
assumed for the impulsive force in this paper, as the starting
point in their analysis of the fluctuation-induced phase syn-
chronization. Since this Langevin equation is driven multi-
plicatively by the noise, different treatments of the stochastic
forcing may lead to physically different results [25]. Detailed
discussions on this point, including the stochastic interpreta-
tion of impulsive forcing, will be reported in the future.
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