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Averaging approach to phase coherence of uncoupled limit-cycle oscillators
receiving common random impulses
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Populations of uncoupled limit-cycle oscillators receiving common random impulses show various types of
phase-coherent states, which are characterized by the distribution of phase differences between pairs of oscil-
lators. We develop a theory to predict the stationary distribution of pairwise phase differences from the phase
response curve, which quantitatively encapsulates the oscillator dynamics, via averaging of the Frobenius-
Perron equation describing the impulse-driven oscillators. The validity of our theory is confirmed by direct
numerical simulations using the FitzHugh-Nagumo neural oscillator receiving common Poisson impulses as an
example.
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I. INTRODUCTION

Coherence phenomena exhibited by dynamical units re-
ceiving correlated drive signals have been the focus of much
recent research �1–16,18�. Experimentally, synchronization
among dynamical units receiving a common fluctuating
drive, or the response reproducibility of a single unit receiv-
ing identical fluctuating drive, has been shown in neurons
�1–3�, chaotic lasers �4�, and electrical oscillators �5–7�. The
slightly counterintuitive phenomenon of desynchronization
or antireliability via a common input has been seen in elec-
trical oscillators �7�, electrochemical oscillators �8�, and
light-sensitive circadian cells �9�. Further, coexistence of
multiple synchronized groups of dynamical units has been
observed in chaotic electrical circuits; they are known as
multiple basins of consistency �6�. For limit-cycle oscillators,
theoretical analysis has yielded quite a few quantitative re-
sults explaining synchronization, desynchronization, and
multiple synchronized groups or clusters exhibited in an en-
semble of limit-cycle oscillators �7,13–18�.

Our previous work �7,16� analyzed the linear stability of
synchronized or clustered states of uncoupled limit-cycle os-
cillators subject to random common external impulses by
calculating the Lyapunov exponent, which quantifies the av-
erage rate of growth of an infinitesimal phase separation be-
tween a pair of oscillators. The only dynamical information
we require about the oscillator is contained in a simple func-
tion called the phase response curve �PRC� describing the
magnitude of phase advance or retardation due to a pertur-
bation at a given phase �19,20�. The PRC has been measured
in many oscillator-like systems, including neurons, circadian
oscillators, cardiac cells, and electrical circuits �7,9,22–24�.
For nonfrequent impulses, the Lyapunov exponent � is given
by

� = ��
0

1

d��
c

dc ln�1 +
�

��
G��,c��p�c� , �1�

where � is the mean number of impulses in a unit time �or
rate�, G�� ,c� is the PRC for an impulsive perturbation
whose intensity and direction �or mark �25�� is c, p�c� is the
probability density of the mark, and the integral is over the
oscillator phase � and the mark c. A negative �positive� �
means that an infinitesimal phase difference shrinks �grows�
on the average, resulting in synchronization �desynchroniza-
tion� of the oscillators.

However, the Lyapunov exponent alone is not sufficient to
characterize the whole coherence phenomenon induced by
the common impulses, because it is an average quantity over
the entire limit cycle that characterizes only the local linear
stability of the synchronized state. The phase difference gen-
erally does not monotonically decrease or increase over suc-
cessive common impulses due to fluctuations in the expan-
sion rate of the phase difference, which is determined by the
precise form of the PRC. When small external noises or in-
homogeneities exist, such fluctuations may induce large ex-
cursions from the synchronized state even if the Lyapunov
exponent is negative on average. Oscillator pairs may find
themselves with a large phase difference, but the global dis-
tribution of the phase difference cannot be explained by a
linear stability analysis.

In this paper, we continue the theoretical analysis for an
ensemble of generic uncoupled limit-cycle oscillators to ob-
tain the stationary distribution of pairwise phase differences.1

Starting from general dynamical equations for a pair of limit-
cycle oscillators driven by common impulses, we derive a
pair of random maps and the corresponding two-body
Frobenius-Perron equation �26,27� using the phase reduction
method �7,19,20�. We then derive an approximate one-body

*arai@ton.scphys.kyoto-u.ac.jp; http://www.ton.scphys.kyoto-
u.ac.jp/nonlinear

1For an ensemble of uncoupled oscillators, no many-body effects
due to coupling arise, and analysis of the phase relation between
two oscillators is sufficient to understand the situation for N
oscillators.

PHYSICAL REVIEW E 78, 066220 �2008�

1539-3755/2008/78�6�/066220�8� ©2008 The American Physical Society066220-1

http://dx.doi.org/10.1103/PhysRevE.78.066220


Frobenius-Perron equation for the phase difference by aver-
aging out the fast phase dynamics, which yields the station-
ary distribution of the phase difference. The theoretical result
is compared with direct numerical simulations using
FitzHugh-Nagumo oscillators receiving common Poisson
impulses.

II. THEORY

A. Phase reduction of the dynamical equation

We investigate a pair of uncoupled oscillators receiving
common random impulses and also subject to independent,
weak additive Gaussian white noise. The stochastic dynami-
cal equation for the ith oscillator in this pair is �7�

Ẋi�t� = F�Xi� + �
n=1

N�t�

��Xi,c
�n��h�t − t�n�� + �DH�Xi��i,

�2�

where i=1,2, Xi�t��RM is the oscillator state at time t, and
F�Xi�: RM →RM is the dynamics of a single oscillator, N�t� is
the number of received impulses up to time t, t�n� is the
arrival time of the nth impulse, c�n��RK is the intensity and
direction, or mark �25�, of the nth impulse, ��Xi ,c�: RM

�RK→RM is the coupling function describing the effect of
an impulse c on Xi, h�t− t�n�� is the infinitesimally narrow
unit impulse whose wave form is localized at the time t�n� of
the impulse �	−�

� h�t− t�n��dt=1�, H�Xi��RM�M is the cou-
pling matrix of the independent noise to the oscillator, �i
�RM is a Gaussian white noise of unit intensity with corre-
lation 
�i

��t�� j
	�s��=
�t−s�
�	
ij added independently to

each oscillator, and D is the intensity of the independent
noise. We interpret Eq. �2� in the Stratonovich sense. If the
impulses and the independent noises are absent �H=0, �
=0�, the system is assumed to have a single stable limit-cycle
solution, X0�t�.

As in our previous papers �7,16�, we use the phase
reduction method to analyze the dynamics of impulse-driven
oscillators. We define an asymptotic phase �19,20� � along
the limit cycle X0�t� that constantly increases with a natural
frequency �, and extend the definition of phase to the whole
state space of the oscillator �except for phase singular sets�
by identifying the orbits that asymptotically converge to the
same point on the limit cycle. This defines a mapping from
the oscillator state X�RM to the phase �� �0,1�.

We assume that the interval between impulses is long
compared to the relaxation time back to the limit cycle, so
the oscillator is almost always on the limit cycle when an
impulse is received. We can then reduce Eq. �2� to the dy-
namics of a single asymptotic phase �i. The dynamics of the
phase �i

�n� right before the nth impulse is received can be
approximately described by a random map

�i
�n+1� = �i

�n� + G��i
�n�,c�n�� + ���n� + 
i

�n�, �3�

where G�� ,c� is the PRC, ���n� is the increase in phase
during the interval between the nth and �n+1�th impulses

��n�= t�n+1�− t�n�, and 
i
�n� is the displacement caused by the

additive independent Gaussian noise �i in the interval ��n�.
From now on, we assume the range of � to be the real
numbers R by taking into account the number of windings
around the limit cycle, which makes the treatment of peri-
odic boundary conditions easier in the following derivation
�28�.

The PRC G�� ,c� describes the change in phase of the
oscillator when an impulse of mark c is received at phase �
on the limit cycle, which is periodic in �, i.e., G��+1,c�
=G�� ,c�. It can be obtained by applying the approximation
theorem by Marcus �21� to the impulsive term in Eq. �2� as
�7�

G��,c� = ��X0��� + g„X0���,c…� − � , �4�

where g�X ,c�= �exp�� j� j�X ,c��� /�Xj��−1
X.2 The PRC is
related to the phase sensitivity function �20� Zi���
���� /�Xi�X=X0��� by G�� ,c��Z��� ·�(X0��� ,c) when the
effect of the impulse �(X0��� ,c) is small.

Generally speaking, the displacement 
i
�n� depends on the

oscillator phase �i
�n�, the impulse mark c�n�, and the relax-

ation path to the limit cycle after each impulse. We approxi-
mate the actual distribution function of 
i

�n� by a zero-mean
Gaussian normal distribution with variance �2��n�.3 The ap-
proximate diffusion constant � can be obtained by ignoring
the fast relaxation dynamics to the limit cycle after the im-
pulse and by averaging the phase dependence over the limit
cycle as �17�

�2 = �
0

1

�
ijk

Zi���Zj���H„X0���…ikH„X0���… jkd� , �5�

where we utilize the fact that the stationary phase distribu-
tion of a single oscillator receiving infrequent impulsive
forcing is nearly uniform �7,16�. As we demonstrate later,
this is a good approximation for oscillators whose relaxation
to the limit cycle is sufficiently fast.

B. Frobenius-Perron equation for the phase difference

Let us consider the dynamics of the joint probability dis-
tribution ���1 ,�2 ,n� of the phases ��1 ,�2� right before the
nth impulse, determined by the random map Eq. �3�. We
assume the range of phase variables to be �1,2�R. The
Frobenius-Perron equation for the evolution of the joint dis-
tribution is

2For the Ito interpretation of the impulse term, the PRC is simply
given by G�� ,c�=��X0���+�(X0��� ,c�)−� �7�.

3The Stratonovich interpretation of Eq. �2� introduces a phase-
dependent drift term that disappears upon averaging over the limit
cycle �17�, so the additive diffusion term 
i

�n� may be taken to have
zero mean.
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���1,�2,n + 1� = �
−�

�

d�1��
−�

�

d�2��
0

�

d��
c

dc�
−�

�

d
1�
−�

�

d
2W���p�c�R�
1,��R�
2,��

� 
„�1 − �1� − G��1�,c� − �� − 
1…
„�2 − �2� − G��2�,c� − �� − 
2…���1�,�2�,n�

= �
−�

�

d�1��
−�

�

d�2��
0

�

d��
c

dc W���p�c�R„�1 − �1� − G��1�,c� − ��,�…

� R„�2 − �2� − G��2�,c� − ��,�…���1�,�2�,n� , �6�

where W��� is the interimpulse distribution, G�� ,c� is the
PRC, and R�
i ,�� is the probability that an oscillator i has
diffused an amount 
i in a time interval �, which we approxi-
mated as a normal distribution with variance �2�.

Going to the center-of-mass coordinates, we change vari-
ables to �= ��1+�2� /2 and �=�1−�2, where � is the mean
phase and � is the phase difference. The Frobenius-Perron
equation �6� is transformed as

���,�,n + 1�

= �
−�

�

d���
−�

�

d���
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
− G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
− G��� −

��

2
,c� − ��,��

�����,��,n� .

We now restrict the mean phase to �� �0,1� and the
phase difference to �� �−1,1�, similarly to Ermentrout and
Saunders �28� by introducing a new distribution function

P��,�,n� = �
p=−�

�

�
q=−�

�

��� + p,� + 2q,n� , �7�

which sums up contributions from pairs of phase values with
different winding numbers but that represent physically
equivalent situations on the limit cycle. This “wrapped”
P�� ,� ,n� corresponds to the actual distribution of the mean
phase and the phase difference measured in simulations or
experiments. Using the periodicity of the PRC, we obtain

P��,�,n + 1�

= �
��p�=��q�

�
0

1

d���
−1

1

d���
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
+ p − G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
+ q − G��� −

��

2
,c� − ��,��

�P���,��,n� ,

where the summation involves all pairs of p and q of equal
parity ���·� denotes the parity of an integer�.

To obtain a closed equation for the phase difference �, we
now average out the fast dynamics of the mean phase �. If
the impulses are not very frequent and the magnitude of the
independent noise is small, the mean phase � is a rapidly
changing variable compared to the phase difference �. Then
� and � can be taken to be nearly independent, and the joint
probability density can be separated as P�� ,� ,n�
�S�� ,n�U�� ,n�, where S�� ,n� and U�� ,n� are the probabil-
ity density functions of � and �, respectively. Note that
U�� ,n� is periodic in �, U���1,n�=U�� ,n�, because � and
��1 represent the same phase difference. For nonfrequent
impulses, � is almost uniformly distributed on the limit
cycle, S�� ,n��1 �7,16�. We then average over � on both
sides to obtain

U��,n + 1� = �
−1

1

d���
0

1

d���
0

1

d� T��,�,��,���U���,n� ,

�8�

where

T��,�,��,���

= �
��p�=��q�

�
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
+ p − G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
+ q − G��� −

��

2
,c� − ��,�� .

�9�

We now derive an approximate one-body Frobenius-Perron
equation for the distribution of the phase difference,

U��,n + 1� = �
−1

1

X��,���U���,n�d��, �10�

where the transition probability is given by

X��,��� = �
0

1

d���
0

1

d� T��,�,��,��� . �11�

Thus, we have reduced the problem to that of finding the
stationary distribution of a Markov process for the random
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variable � with transition probability X�� ,���. By numerical
estimation of the transition probability X�� ,��� from the
PRC, Eq. �10� can be iterated until a stationary state is
reached. X�� ,��� is periodic in � and ��, X���1,���1�
=X�� ,���.

In the following numerical simulations, we assume that
the random impulses are generated by a Poisson process, and
fix c so that all impulse marks are identical. The interimpulse
interval is exponentially distributed,

W��� =
1

�P
exp�−

�

�P
� , �12�

where the parameter �P is the mean impulse interval. We
further simplify the calculation by neglecting the dependence
of R�
i ,�� on � in Eq. �9� by replacing it with R�
i ,�p�, a
normal distribution with fixed variance �2�P, which is equal
to the average variance of the diffusion 
i in a mean inter-
impulse interval �P. Defining G−�=G���+�� /2,c�−G���
−�� /2,c� and G+�=G���+�� /2,c�+G���−�� /2,c�, the func-
tion T�� ,� ,�� ,��� can then explicitly be calculated as

T��,�,��,��� =
exp�D/4�P�2�

��P
�D�P

4�

� �
p even

exp�−
�� − �� − G−� + p�2

4D�P
�

� �
q

exp�−
� − �� − G+�/2 + q

��P
�

��erf�2��� − �� − G+�/2 + q� − D

2��D�P
� + 1� ,

�13�

where erf is the Gauss error function. In numerical calcula-
tions, it is sufficient to use the first several terms in the sum-
mation for p. Since the error function approaches 1 �−1� very
quickly for positive �negative� values of its argument, for a
small enough value of D, the sum over q is to a good ap-
proximation a geometric series.

III. NUMERICAL SIMULATIONS

As an example of a limit-cycle oscillator, we employ the
FitzHugh-Nagumo �FHN� neural oscillator �29� driven by
common Poisson impulses and independent Gaussian white
noises described by the following set of equations:

u̇i = ��vi + a − bui� ,

v̇i = vi −
vi

3

3
− ui + I0 + ��vi,c��

n=1

N�t�

h�t − tn� + �D�i�t� . �14�

Here, the parameters �, a, and b are fixed at �=0.08, a
=0.7, b=0.8, and we use the parameter I0 as a bifurcation
parameter. The last two terms of the equation for v describe
the impulses and noises, where h�t� represents a unit impulse
and ��v ,c� describes the vi-dependent effect of the impulse
on the oscillator. In this example, both H and � have only

one nonzero component. For simplicity, we take the impulse
strength c to be a constant value. When both terms are zero,
a limit cycle exists for I0� �0.331,1.419�, which is created
by a subcritical Hopf bifurcation at either limit of I0. For the
simulations, we employ I0=0.34 and 0.875, which give os-
cillator periods of T�46.792 and �36.418, respectively. We
choose these values because the oscillator characteristics
change in such a way as to show synchronized and desyn-
chronized states for additive impulses, and stable two-cluster
states for linear multiplicative impulses. We set the mean
interval between the impulses at �P=10T. Results similar to
the following have been obtained using Stuart-Landau and
Moris-Lecar oscillators. However, we restrict our discussion
to the FitzHugh-Nagumo model as it displays all of the sa-
lient features of interest.

In direct numerical simulations of Eq. �14�, we realized
the Stratonovich interpretation by using a colored Gaussian
noise generated by the Ornstein-Uhlenbeck process ��̇�t�
=−��t�+��t�, where ��t� is a Gaussian white noise of unit
intensity, and delivering the impulses as discontinuous jumps
of amplitude given by the Marcus approximation theorem of
continuous physical jumps �7,21�. The correlation time � of
��t� was set to 0.05, which is much shorter than the oscillator
period T. In calculating the Frobenius-Perron equation �10�,
we numerically estimate X�� ,��� and U��� on discrete grids
of dimensions between 128 and 2048 for � and ��, depending
on how rapidly X�� ,��� varies as a function of � and ��.
Generally, the larger the value of D, the lower the required
resolution.

We show examples of PRCs for different values of the
impulse strength c obtained for the FHN oscillator through
simulation in Fig. 1, as well as the resultant transition prob-
ability X�� ,���. In all of the figures, we show only �
� �−0.5,0.5� as X�� ,��� and U��� are periodic. The
Lyapunov exponent � is negative for smooth PRCs, and
positive for rapidly fluctuating PRCs. The generic dynamical
behavior of the oscillators is as follows �7�. When ��0, the
system settles down into a largely quiescent state once syn-
chronization is achieved. The rare but sudden disintegration
of a pair of oscillators is possible if there are regions of the
PRC with positive local Lyapunov exponent, but the relative
separation of a pair remains largely static. However, for �
�0, disintegration of a pair happens routinely, followed by a
gradual reunion, and this cycle continues ad infinitum. These
occasional sudden, large excursions from the synchronized
state is generally known as modulational or on-off intermit-
tency �30,31�, and is a characteristic behavior of a random
multiplicative process, of which our system is an example.

Now let us examine the stationary distribution U��� of the
phase difference �. We expect the distribution of � to be
qualitatively different between � of different sign. Figures 2
and 3 show the distribution of � for additive impulses
���v ,c��c, c=0.5,−0.2, respectively� at various intensities
of independent noise for PRCs with negative and positive �.
In all figures, theoretical curves obtained using our
Frobenius-Perron equation for the phase difference nicely fit
the results of direct numerical simulations, which indicates
that the approximations we have made so far are reasonable
for the parameter values we use. It is readily apparent that, if
the synchronized state is stable, the synchronized peaks be-
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FIG. 1. �Color online� �a� PRC G��� for various values of additive impulse intensity c for the FHN oscillator with I=0.34, with the PRCs
of smaller amplitudes shown enlarged in the inset. �b� Averaged phase difference transition probability X�� ,��� for additive impulses with
c=−0.2, D=2.5�10−5, corresponding to the case shown in Fig. 2. �c�, �d� PRCs for I=0.875 with multiplicative impulses, and correspond-
ing transition probability for c=0.5, D=2.5�10−5, corresponding to the case shown in Fig. 5. The PRC of FHN gains additional symmetry
G���=G��+0.5� �as does the transition probability X�� ,���=X���0.5,���0.5�� with application of balanced, multiplicative noise,
��v ,c�=cv.
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FIG. 2. �Color online� Comparison of U��� for the case of ��0 calculated using the averaged Frobenius-Perron equation �FPE� and
measured via simulation �Sim�. �a� shows the global distribution on a semilogarithmic scale, and �b� the distribution near �=0 on a log-log
scale for ��0. The intensity of independent, additive noise �diffusion� is varied �D=9�10−8, 1�10−6, 2.5�10−5� while the intensity of the
common impulse �c=0.5� is kept constant for FHN oscillators with I0=0.875. It can be seen that lowering the independent noise narrows and
increases the height of the peaks of the distribution near �=0. Because the Lyapunov exponent remains constant, the slope is preserved for
various diffusion strengths.
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come taller and narrower as the diffusion is made smaller,
while � far away from the stable peaks become increasingly
rare. On the other hand, if the synchronized state is unstable,
the distribution for rare � reaches a limiting value, while only
the tip of the synchronized peak increases in height and the
width of the peak remains constant. The distributions exhibit
a power-law dependence near �=0, a characteristic of ran-
dom multiplicative processes �30–33�. As shown in Fig. 4,
different power-law exponents are obtained by changing the
impulse strength c �=−0.2,0.05,0.1�, where the Lyapunov
exponent � determines whether the slope of the power law is
steeper or shallower than −1 �30–33�.

Figure 5 shows the same basic mechanism at work for the
case with linear multiplicative impulses ���v ,c�=cv, c=0.5�,
which exhibits symmetric two-cluster states. The distribu-
tion, which is nicely fitted by the theoretical curve, has three
peaks in this case, corresponding to the three possible phase
differences in the two-cluster states ��=0 and �0.5, where
�= +0.5 and −0.5 represent the same phase difference�. Near
each peak, the distribution exhibits power-law dependence,
as for the case of additive impulses.

IV. COMPARISON WITH COUPLED OSCILLATORS

We have shown that common random impulses applied to
a pair of uncoupled limit-cycle oscillators generally produce
phase coherence. Much existing work focuses on the self-
organizing coherence brought about through coupled ele-
ments, so we would like to touch upon the similarities and
differences between the coherence observable between
coupled and uncoupled systems receiving a common random
input. For simplicity, we consider a pair of identical oscilla-
tors.

Sufficiently weak common random input to uncoupled os-
cillators always tends to stabilize the synchronized state at
zero phase difference regardless of the shape of the PRC.
The probability density function U��� of the phase difference
� always has a peak at �=0, as we have seen in Figs. 2, 3,
and 5. When the common input is stronger, the in-phase syn-
chronized state �=0 can be unstable. We nevertheless ob-
serve that U��� has a local maximum at �=0 as shown in Fig.
3 for weakly unstable situations. For much stronger inputs,
the PRC can take highly irregular forms that contain many
discontinuities or with many rapid, large-amplitude oscilla-
tions. It is then possible for U��� to have a local minimum at
�=0.
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FIG. 3. �Color online� Comparison of U��� for the case of ��0 calculated using the averaged Frobenius-Perron equation �FPE� and
measured via simulation �Sim�. �a� shows the global distribution on a semilogarithmic scale �note the y-axis range in comparison with Figs.
2 and 5�, and �b� the distribution near �=0 on a log-log scale. The intensity of independent, additive noise is varied �D=9�10−8, 1
�10−6, 2.5�10−5� while the intensity of the common impulse �c=−0.2� is kept constant for FHN oscillators with I0=0.34. Due to the
inherent instability of the �=0 state, the distribution of � reaches a limiting value as the independent, additive noise is lowered.
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FIG. 4. �Color online� Power-law distributions of phase differ-
ence U��� near �=0 on a log-log scales for the FHN oscillator with
I=0.34. The intensity of independent, additive noise is kept con-
stant �D=1�10−6� while the intensity of the common impulse is
varied �c=−0.2,0.05,0.1�. As the Lyapunov exponent of the system
is changed, the slope of the power law changes correspondingly.
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In contrast, for oscillators with weak mutual coupling, the
in-phase synchronized state may be either stable or unstable
depending on the shape of the PRC and the interaction func-
tion between the oscillators. If the in-phase state is unstable,
there will be no peak appearing at �=0; instead, a peak is
expected at some other ��0 �28,34�.

This illustrates the biggest difference between coherence
in mutually coupled and uncoupled systems subject to com-
mon inputs. In coupled systems, it is possible to have a
single stable phase-locked state with ��0, while in un-
coupled systems, this is not possible. One possible point of
confusion that arises here may be our use of the terms
“stable” and “unstable.” For uncoupled oscillators driven by
a common input, these terms represent the statistical stability
of the synchronized state. Even if the synchronized state in-
duced by a common input is slightly unstable, the distribu-
tion of the phase differences can still have a shallow maxi-
mum at zero phase difference. The vicinity of �=0 is an
attractive region even if the synchronized state is weakly
unstable. In contrast, these terms represent deterministic sta-
bility for coupled systems. If the state is unstable, we never
observe such a maximum even if independent noises are
added.

If the natural frequencies of the oscillators are different,
the difference in phase coherence behavior will be more
subtle. In this case, a local extremum in U��� at ��0 appears
for two nonidentical oscillators driven by a common input,
and may be a maximum or minimum depending on the de-
gree of statistical stability or instability of the locked state
�data not shown�. In weakly mutually coupled systems, the
deterministic stability is once again dependent on the inter-
action function, and, in addition, the magnitude of the differ-
ence of the natural frequencies. Furthermore, combined ef-
fects of coupling and common input, which may be
important in practical situations, will lead to more intriguing
behavior.

V. SUMMARY

We have found an approximate method to calculate the
steady-state probability distribution of the pairwise phase
difference in an ensemble of uncoupled oscillators receiving
random impulses. The system is essentially a random multi-
plicative process, and as such shows modulational intermit-
tent behavior and power-law dependence of the distribution
near its peak. Qualitative and quantitative features of the
distributions have been found relating the results to the
Lyapunov exponents that characterized the stability of clus-
tered states in earlier works �7,16�.

Our treatment is conceptually a generalization of our pre-
vious result �17� on uncoupled limit-cycle oscillators subject
to common and independent infinitesimal Gaussian white
noises. In that case, the common noise always stabilizes the
synchronized state as long as the oscillator possesses a con-
tinuous phase sensitivity function. The oscillators form one
or more synchronized clusters, depending on the degree of
symmetry possessed by the system. By contrast, in the sce-
nario studied in this paper, there is the further possibility that
common impulses may destabilize the synchronized state,
which can still quantitatively be analyzed within our theoret-
ical framework based on the averaged Frobenius-Perron
equation.4

In this work, we considered a pair of identical oscillators
subject to the same common impulses, and considered the
diffusion in between received impulses as the effect of inde-
pendent noises. Our method can also be applicable if the
natural frequencies or the PRCs of the oscillators are slightly
different. Furthermore, we can also interpret the diffusion as
the result of inherently noisy response of an oscillator to

4The slope of the power-law dependence of U��� near the peak is
always −2 for the infinitesimal Gaussian white drive, while it can
take a range of values in the present impulsive drive.
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FIG. 5. �Color online� Comparison of two-clustered � distribution for the case of ��0 calculated using the averaged Frobenius-Perron
equation �FPE� and measured via simulation �Sim� for impulses with c=0.5, FHN bifurcation parameter I0=0.875, and independent additive
noise �D=9�10−8, 1�10−6, 2.5�10−5�. �a� shows the global distribution on a semilogarithmic scale and �b� the distribution near �=0 on
a log-log scale.
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pulsatile inputs. The consequences of a noisy PRC have been
treated recently in the case of mutually coupled neural oscil-
lators �28�. Mildly chaotic, nonmixing oscillators also show
a similar noisiness in their responses. A noisy PRC also
arises in the case of globally coupled oscillators exhibiting a
collective coherent oscillation, where the response of the col-
lective oscillation is inherently fluctuating due to finite-size
effects, in particular near the critical point of the synchroni-
zation transition �35�. The method developed within this pa-

per may prove to be useful in analyzing the dynamics of such
systems. Further results will be reported in the near future.
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