T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 超高層免震建物の観測記録に基づく免震ダンパーの疲労損傷評価 	
Title(English)	Fatigue damage evaluation of the steel material damper of High-rise Seismic Isolated Building Based on Observation Data	
著者(和文)	村上智一, 佐藤大樹, 田村哲郎, 普後良之, 池上昌志, 吉江慶祐, 笠井和彦, 北村春幸	
Authors(English)	Tomokazu Murakami, Daiki Sato, TETSURO TAMURA, Yoshiyuki Fugo, Masashi IKEGAMI, Keisuke Yoshie, KAZUHIKO KASAI, Haruyuki Kitamura	
出典(和文)	日本風工学会誌, Vol. 40, No. 143, pp. 191-192	
Citation(English)	, Vol. 40, No. 143, pp. 191-192	
発行日 / Pub. date	2015, 4	

超高層免震建物の観測記録に基づく免震ダンパーの疲労損傷評価

Fatigue damage evaluation of the steel material damper of High-rise Seismic Isolated Building Based on Observation Data

〇村上 智一¹⁾ 佐藤 大樹²⁾ 田村 哲郎²⁾ 普後 良之³⁾ 池上 昌志⁴⁾ 吉江 慶祐⁵⁾ 笠井 和彦²⁾ 北村 春幸⁶⁾ Tomokazu MURAKAMI¹⁾, Daiki SATO²⁾, Tesuro TAMURA²⁾, Yoshiyuki FUGO³⁾, Masashi IKEGAMI⁴⁾, Keisuke YOSHIE⁵⁾, Kazuhiko KASAI²⁾ and Haruyuki KITAMURA⁶⁾

1. はじめに

近年,超高層建物にも免震構造が積極的に採用され るようになり,地震応答や風応答に関する様々な研究 報告がされている。しかし,風応答を対象とした疲労 損傷評価の実例はほとんどない。建物が高層化すると 地震力に対して相対的に風荷重が大きくなるのに加え, 風外力は地震に比べ継続時間が長いといった特徴があ るため,免震ダンパーが塑性化する場合が考えられる。 従って,設計時や免震ダンパー交換時の目安を考える ためにも地震応答だけではなく,風応答における疲労 損傷も調査することは重要である。

本報では東京工業大学すずかけ台キャンパス J2 棟 でこれまでの観測データの内比較的大きい応答を記録 した台風時のデータ(2007年10月27日台風20号¹⁾, T0720)を対象に,免震層変位の確率密度分布の算出 および免震ダンパーの疲労損傷評価を行う。

2. 建物および観測概要

J2 棟 (図1) は、地上 20 階、塔屋 2 階、高さ91.85 m の超高層免震建物であり、免震層は天然ゴム系積層ゴム

(NRB1100, NRB1200)計16基, 鋼製ダンパー計14基, オイルダンパー 2 基から構成されている。そのうち NRB1100は, 鋼製ダンパーと一体型の積層ゴムとして用 いられている²⁾。表1に鋼製ダンパー概要を示す。図2 に免震層の概要を示す³⁾。免震層には、小地震や風応 答時の免震層変位を計測できる小変形用(Small Story Drift)がX方向(短辺)に2箇所、Y方向(長辺)に 1箇所設置されている。建物頂部の北側には三杯式風 速計が設置されている。データ処理として免震層の変 位波形は台風発生前の微風時の変位を全体から引いた。 X方向では, 捩れ中心が2つの変位計の中央にあるこ とを確認しているため⁴, 両変位計の平均を用いるこ とで捩れ成分を除き,並進成分を算出している。

3. 風および免震層変位の観測記録

図3にT0720接近時の風速と風向及び免震層変位の時刻歴波形を示す。図4に台風の経路を示す。図5に 最大変位発生時10分間の免震層変位のオービットを 示す。なお、図3、図5の図内の矢印は風向を、数値

1)	東京工業大学 (元 東京理科大学)	Tokyo Institute of Technology
2)	東京工業大学	Tokyo Institute of Technology
3)	風工学研究所	Wind Engineering Institute

- 5) 日建設計
 6) 東京理科大学
- Tokyo University of Science

は免震層変位最大値(絶対値)を示す。T0720 では、 16時20分に最大瞬間風速と免震層変位最大値を記録し ている。免震層変位最大値は鋼製ダンパーの弾性範囲 に収まっていることが分かる。なお、T0720の再現期間は 1年未満と推定されている⁵⁾。

4. 免震ダンパーの疲労損傷の分析

4.1 疲労損傷度評価方法

本報では、X 方向および Y 方向それぞれの1 方向の 免震層変位を対象として損傷評価を行う。疲労損傷度 D は、免震層変位の時刻歴波形に Rainflow 法で免震層 変位極値(全変位振幅)を算出し、その全変位振幅区 間 *i* の中央値*\(\alpha)* 毎に、Miner 則を用いて算出する。

$$D = \sum D_i = \sum_{i=1}^k \frac{N_i}{N_{ji}}$$
⁽¹⁾

ここで、D_i:全変位振幅区間 i の疲労損傷度

N_i: 全変位振幅区間 i の中央値Ai の繰返し回数

 $N_{fi}: \Delta i$ における破断回数(式(2a))である。 N_fは免震層の平均せん断変形角 γ_i (%)との関係式である式(2a)により算出する。 γ_i は、全変位振幅 δ_i を鋼製 ダンパー高さh(表1)で除した式(2b)で表される^の。

$$\gamma_i = 35N_{j_i}^{-0.15} + 3620N_{j_i}^{-0.80}$$
, $\gamma_i = \frac{\delta_i}{h} \times 100$ (2a, b)

ここで、全変位振幅 δ_i には全変位振幅区間 i の中央値 Δi を用いる。なお、本報では変位計の分解能³⁾より、確 率密度分布および D 値の算出において、0.1 mm 以下の Δi は無効と判断する。

4.2 免震層全変位振幅の確率密度分布の分析

図6にT0720の台風全体と最大変位発生時10分間 における免震層全変位振幅の確率密度分布を示す。図 内の数値は免震層変位の標準偏差σ₈を示す。図3より, 最大変位発生時10分間の風向は建物のX方向に正対 しているため、X方向を風方向、Y方向を風直交方向 と定義する。台風全体と最大変位発生時10分間を比較 すると、X方向は台風全体の方が分布形状が緩やかで あるがY方向は殆ど変わらないと言える。また、図6(b)(ii) より、風直交方向における免震層全変位振幅の確率密度 分布はレーリー分布に良い対応を示した。これより、文献 7の手法で解析的に疲労を推定出来る可能性が示唆さ れた。

4.3 免震ダンパーの疲労損傷度の分析

表2に台風全体,最大変位発生時10分間のD値を 示す。10分間毎のD値を算出する際には各データの先 頭に0を加えることで、10分間毎のデータにおける平 均成分の評価を行っている。表2より台風全体のD値 に対する最大変位発生時10分間のD値の割合は,X 方向で約13%,Y方向で約2%と台風全体と最大変位 発生時10分間のD値の比率に大きな違いがあり、そ

名称 方向 D值(24	時間) D値(10分間)			
T0720 X 3.30×	10 ⁻⁸ 4.33×10 ⁻⁹			
Y 5.35×	10^{-10} 1.24×10^{-11}			

の違いは各方向で異なる。T0720によるD値は小さい 値を示すが、T0720の再現期間は1年未満であり、デ ータの蓄積が必要である。

5. まとめ

超高層免震建物の免震層変位極値の確率密度分布を 算出し、免震ダンパーの疲労損傷評価を行った。風直 交方向における免震層全変位振幅の確率密度分布はレ ーリー分布に良い対応を示した。T0720によるD値は小 さい値を示したが再現期間が短く、データの蓄積が必 要である。また、10分間毎の免震層変位波形に人工的 な処理を行い平均成分を評価しているため、適切な評 価方法に関しては今後の課題とする。

謝辞 本研究で用いた J2 棟の変位観測データは、東京工業大学 GCOE プロ グラムから提供して頂いたものであります。厚く御礼申し上げます。 参考文献

- 1) ウェザーニュース:http://weathernews.jp/tyhoon/(2014.2.22 参照)
- 2) 菊地岳志,藤森智,竹内徹,和田章:メガブレースを用いた超高層 免震鋼構造建築物の設計,日本建築学会技術報告集,第22号, pp.217-222,2005.12
- 3) 大木洋司,山下忠道,盛川仁,山田哲,坂田弘安,山中浩明,笠井 和彦,和田章:超高層免震建物の長期観測システム構築に関する具 体的取り組み、日本建築学会技術報告集、第21号, pp.73-77, 2005.6
- 4) 市原義孝, 佐藤大樹, 大木洋司, 盛川仁, 山田哲, 坂田弘安, 山中浩明, 笠井和彦, 和田章, 北村春幸: 観測記録に基づく超高層免震 建物の応答特性に関する研究 その2 風応答特性および振動数の 変化, 日本建築学会大会学術講演梗概集, pp.311-312, 2008.9
- 5) 佐藤大樹, 鈴木勇人, 田村哲郎, 普後良之, 中村修, 笠井和彦, 北 村春幸: 超高層免震建物の観測記録に基づく風応答の分析, 第22回 風工学シンポジウム論文集, pp.251-256, 2012.12
- 6) 吉敷祥一,大河原勇太、山田哲,和田章:免震構造用U字形鋼材ダンパ 一の繰返し変形性能に関する研究、日本建築学会構造系論文集、第73巻、 第624号, pp.333-340, 2008.2
- 7) 吉江慶祐,北村春幸,大熊武司:エネルギーの釣合に基づく変動風 力を受ける弾塑性構造物の応答予測手法,日本建築学会構造系論文 集,第589号,pp.59-66,2005.3