TER2 ERIgALUS-FURI I

Tokyo Tech Research Repository

Jo /0000
Article / Book Information

Title DSP Code Optimization Utilizing Memory Addressing Operation

Authors N.Sugino, S. limuro, AKINORI NISHIHARA, N. Fujii

Citation IEICE Trans. Fundamentals., Vol. E79-A, No. 8, pp. 1217-1223

Pub. date 1996, 8
Rt | wsewchieesow
Copignt | (c) 1996 nstute of Electoncs,information and Communication

Engineers

Powered by T2R2 (Tokyo Institute Research Repository)

http://search.ieice.org/
http://t2r2.star.titech.ac.jp/

IEICE TRANS. FUNDAMENTALS, VOL. E79—-A, NO. 8 AUGUST 1996

1217

|PAPER _Special Section on Digital Signal Processing

DSP Code Optimization Utilizing
Memory Addressing Operation

Nobuhiko SUGINO', Member, Satoshi IIMURO', Nonmember, Akinori NISHIHARA',

SUMMARY In this paper, DSPs, of which memory addresses
are pointed by special purpose registers (address registers: ARs),
are assumed, and metheds to derive an efficient memory access
pattern for those DSPs are proposed. In such DSPs, program-
mers must take care for efficient allocation of memory space as
well as effective use of registers, in order to derive an efficient
program in the sense of execution period. In this paper, memory
addresses and AR update operations are modeled by an access
graph, and a novel memory allocation method is presented. This
method removes cycles and forks in a given access graph, and
decides an address location of variables in memory space with
less overhead. In order to utileze multiple ARs, methods to as-
sign variables into ARs are investigated. The proposed methods
are applied to the compiler for DSP56000 and are proved to be
effetive by generated codes for several examples.

key words: DSP compiler, code optimization, memory addressing

1. Introduction

A digital signal processor (DSP) is now used for vari-
ous high-speed applications: mainly for real-time signal
processing applications such as filters, FFTs, CODECs,
MODEMs, etc.. Although DSPs are fast enough for
realizing such applications, an efficient (short in execu-
tion time) program is required as well. Writing such
a program is cost and time consuming work even for
expert programmers. They are required to have both
enough knowledge of the processor architecture and the
processing algorithm, and, in order to write an efficient
program, try as many programming techniques as they
know, using primitive tools such as assembler or low
level (machine level) languages. To reduce this heavy
programming load, software tools such as high-level
language and its compiler would be very helpful. Re-
cently, DSP venders provide C compilers[1]-[3], and
some researchers present programming tools or com-
pilers for novel programming languages[4]. In one of
these compilers, DIMPL (Digital network IMPlementa-
tion Language) and its compiler[5],[6] has been pro-
posed. In these compilers, an efficient program benefits
from effective use of registers. Efficient access of mem-
ory in a program, however, is as important as effective
use of registers in order to derive an efficient program.

Manuscript received December 27, 1995.
Manuscript revised March 11, 1996.
TThe authors are with the Department of Physical Elec-
tronics, Faculty of Engineering, Tokyo Institute of Technol-
ogy, Tokyo, 152 Japan.

and Nobuo FUJII!, Members

In many DSPs, memory content is accessed indi-
rectly through address registers (ARs). Although AR
must be updated before memory access, simple AR op-
erations such as increment or decrement (41) can be
performed in one instruction cycle besides data opera-
tions such as addition, subtraction or data movement.
When AR update amount is beyond increment or decre-
ment, additional one instruction cycle is required for
substituting memory address for AR (immediate AR
load operation), which becomes overhead in a program.
Therefore, in order to derive an efficient program, reduc-
tion in the number of such immediate AR loads is very
important.

In[7], a method to share memory area with sev-
eral variables is proposed. Although it can reduce total
memory area and the AR update amount is expected to
be small, the number of immediate AR loads sometimes
increases. Assignment of memory addresses to variables
is studied in [8],[9]. In this paper, both efficient memory
address allocation and effective assignment of ARs are
discussed, and algorithms to derive an efficient memory
access pattern are proposed.

2. Memory Addressing

Whenever a datum in memory space is read or writ-
ten as an operand, memory address corresponding to
the datum must be pointed by some ways, which are
called as memory addressing modes. In general pur-
pose processors, several addressing modes such as im-
mediate addressing mode, indirect addressing mode, in-
dexed addressing mode, and so on, are provided so that
programmers easily implement various data structures.
These addressing modes are also utilized in compilers
for general purpose processors. Compared with mem-
ory addressing modes for general purpose processors,
those for DSPs are usually very much simplified in order
to achieve high performance in computation, although
some of DSPs have addressing modes for specific signal
processing algorithms such as bit-reversed addressing in
FFT.

Almost all the DSPs have indirect addressing
modes: they have so called address registers (ARs) to
point the memory addresses to be accessed. In this ar-
ticle, memory addressing of DSPs is assumed as below.

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 8 AUGUST 1996

1218
Table 1 Intermediate code for Fig. 1 and AR operations.
Code . Address) AR operation
Cycle Intermediate Code | Access Conventional [7] Efficient Multiple ARs
ARO ARI1
1 A« Np xmg No 0) +1 0y LD 0y +1
2 A+~ A+ Ny Xmg N1 l)+1 2)+1 l)+1
3 A— A+ Ny xmy No 2y 41 3 LD +1 2) 41
4 N3z — A N3 3
5 A— AXmg LD +1
6 A— A+ Ny xXms Ny 1y 41 2y 1 1q 11 (1 +1
7 A— A4+ Ny xXmg Ny Z)LD 3)_|_1 (2
8 Ny +— A Ny 4) LD 4) —1 4
9 A« Ny Ny 2y 1 3 —1 _1(2)_1
10 Ny — A Ny Yy Lp 2y 1 I
11 A «— N3 N3 3 —1 LD 3y —1
12 Ny — A Ny 2 3 2
[Number of AR Loads i 4] 3 | 0 I

Fig. 1

SFG of 2nd order IIR filter.

Memory addressing of the DSP model

e Memory is accessed only by AR indirect address-
ing.

e AR can be increased or decreased by one (1) be-
sides arithmetic operation or data movement in one
instruction cycle, only when memory is accessed in
this cycle.

e Immediate AR load costs one instruction cycle by
itself.

When an instruction requires to read a datum from
memory or to write a datum into memory, AR must be
updated before this instruction. If this update amount
is beyond £1, immediate load operation of the memory
address into AR is required. This immediate AR load
costs another instruction cycle, and becomes overhead
of a program.

Let us think of memory address and AR opera-
tions with a simple example. The signal flow graph of
a second order IIR filter is shown in Fig.1. After an
appropriate computational ordering, intermediate codes
are derived as shown in left hand side of Table 1, where
variables No—N, are kept in memory, and temporary
variable A is kept in the register.

The right hand side in Table 1 shows the memory
access sequences and AR operations. The conventional
allocation method used in the DIMPL compiler decides
the addresses of variables as they appear in the program.
The decided addresses and AR operations for the ex-
ample in Fig.1 are shown at the column labeled as

“Conventional” in Table 1. By this method, 4 immedi-
ate AR loads between codes 46, 7-8, 8-9, and 10—11,
which are denoted as “LDs” in Table 1 are required. If
memory address is given as the next column “Efficient,”
only 3 immediate AR loads between codes 1-2, 3—4,
11-12 are required, and one immediate AR load can
be saved. Moreover, DSPs usually have two or more
ARs, and utilization of these ARs can further improve
memory addressing. For this example, after choosing
an appropriate AR for every memory access no imme-
diate AR load appears in the resultant program codes
as shown in the rightmost column “Multiple ARs” in
Table 1.

As shown in the above example, both a memory
address allocation and an AR assignment are impor-
tant. In this paper, the issue to find an efficient mem-
ory address allocation is called as “memory allocation
problem” and, the issue to find an appropriate memory
access assignment into multiple ARs is called as “AR
assignment problem.” Although programmers usually
take care of these two problems at the same time and
derive an efficient memory access pattern, memory al-
location and AR assignment are considered as distinct
problems in this paper in order to simplify the overall
problem. Methods for memory allocation problem and
AR assignment problem are mentioned in Sects. 3 and
4, respectively.

3. Memory Allocation
3.1 Access Graph (AG)

Memory access sequence consists of memory addresses
and AR operations and is modeled by an access graph
(AG) in this paper, where the memory addresses cor-
respond to the variables in a program. For example,
AG for Fig.1 is shown in Fig.2, where each node and
edge denote the variable to be accessed and the required
AR operations, respectively: all the nodes are labeled
by corresponding variables “Ny”—“Ny,” and the edge

SUGINO et al: DSP CODE OPTIMIZATION UTILIZING MEMORY ADDRESSING OPERATION

(a) Fork

(b) Cycle (c) Line
Fig. 3 The classes of AG.

corresponding to the AR operation from variable Ny
in code 1 to variable Ny in code 2 is illustrated by the
label “code 1—2.” Although multiple edges appear be-
tween two nodes in AG, they are handled by one edge
and its weight. In Fig.2, 3 edges appear between vari-
ables Ny and N3, but they are considered as a edge with
weight of 3.

3.2 Memory Allocation Algorithm

When a given AG is a line graph as shown in Fig. 3 (c),
no immediate AR load is required and memory ad-
dresses for variables can easily be decided. However, in
general cases, AGs include several fork nodes as shown
in Fig. 3(a) or several cycles as shown in Fig. 3(b).

By removal of appropriate edges, cycles and forks
in a given AG are eliminated and a given AG can be
transformed into a line graph. In return, immediate AR
loads are required at the memory access corresponding
to the removed edges. Therefore the memory allocation
problem is assumed as finding a line graph for a given
AG with the minimum number of removed edges. To
derive the optimal address allocation is an NP-hard
problem, so that a heuristic method is employed to lin-
earize a given AG.

In this heuristic method, the following parameters
are taken into account in order to select the edges to be
removed.

e Weights
A weight of an edge e = (u,v) (u,v: end nodes of e)
is given by the number of AR operations required
between the variable v and v.

w(e) = the number of required AR 1
operations at the edge e
e Forks

An example of a fork is shown in Fig.3(a). When

1219

k independent edges are connected to a node v,
which is a fork node, at least £ — 2 of these edges
must be removed, in order to derive a line graph
as shown in Fig.3(a). The fork count of a node v
(fork(v)) is defined as:

fork(v) = max{deg(v) — 2, 0}, (2)

where deg(v) denotes the number of independent
edges connected to node v or “the order” of node
v. For a fork of fork count k, at least k& edges
connected to fork node v must be removed.

Cycles

An example of a cycle is shown in Fig.3(b). At
least one edge in a cycle must be removed in or-
der to derive a line graph as shown in Fig.3(b).
Therefore, cycle flag of edge e(cycle(e)) is defined
as:

1, e is included in a cycle.
cycle(e) =< 0, e is not included (3)
in any cycles.

The cost function estimates how much a given AG is
linearized after removal of e = (u,v) (u,v: edge nodes
of e), by evaluating above parameters. The cost function
is given by

benefit(e) — fork(u) + fork(v) + cycle(e)' @

w(e)

By the use of this cost function, algorithm to de-
rive an efficient memory allocation, which is named as
“ALOMA (Address LOad Minimization Algorithm)”
follows.

Memory Allocation Algorithm: ALOMA

Input AG G = (V, E)
Memory area M = {z|z € N; 0< z < |V|[}

Output Memory allocation (m : V — M) to minimize
the cost function

Objective function The number of immediate AR load
operations (loadg(G)) required in G

1. For all the nodes v € V in G, evaluate fork(v) by
Eq. (2).

2. For all the edges e € E, evaluate cycle(e) by Eq. (3).

3. For all the edges e € E in G, evaluate benefit(e) by
Eq.(4)

4. Find a edge with the maximum benefit and remove
it from G.

5. Repeat 1-4, until G becomes a line graph.

6. For the nodes in the derived line graph, memory
addresses are decided.

1220

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 8 AUGUST 1996

Table 2 Comparison of immediate AR load operations.

Total Program Steps | Total Number of | Number of Conventional Proposed

Filters || (without AR loads) | Memory Accesses | Variables Methodin Ref.[7] | Method
3rd order lattice 48 27 11 15 14
5th order wave 111 56 25 25 18
11th order wave 321 145 64 89 67
17th order wave 510 232 103 143 110

Initial AG

Initial benefits

After removal
of branch 'f’

After removal
of branch ’a’

Fig. 4 Procedure of memory allocation.

The procedure of the proposed method is explained by
using the example shown in Fig.2. Whole the proce-
dure is shown in Fig. 4, where the numbers labeled on
nodes and edges denote fork counts and benefits respec-
tively, and edges with bold lines indicate cycles.

Figure 4(a) shows the initial AG. At first, edge
“f is removed from the initial AG (Fig.4 (b)), because
this edge has the maximum benefit “3” in all edges. Af-
ter this removal, fork counts of nodes and benefits of
edges are renewed for the new AG (Fig.4 (c)). In this
AG, edges “a,” “b,” “c” and “d” have the same benefits
“1,” and edge “a” is assumed to be removed(Fig. 4(d)).
Then, edge “d” of the maximum benefit “1” in AG
(Fig.4(d)) is removed. Finally, benefits of all the re-
maining edges become “0,” and a line graph Fig. 4(e)
appears. For this line graph, memory addresses of node
Ny through node N3, which are labeled as superscripts
on nodes, are decided.

3.3 Code Generation Result

The proposed method is applied to the DIMPL com-
piler[5],[6]. This compiler reads the filter network de-
scription, decides the computational ordering (schedul-
ing) and then generates an efficient code. The code
generation part is closely related to the target DSPs,
while the rest parts are independent of processors.
Slight modification of the code generation part can
give the compiler for different DSPs. Compilers are
now available for puPD7720/25, pPD77230 (NEC),
TMS32010/15/20/25 (TI) and DSP56000 (Motorola).
DSP56000 (Motorola) [10] is chosen for the target DSP,
because it has only 2 arithmetic registers and memory
access is frequently required in its programs. The pro-
posed method is implemented in the code generation
part of the compiler.

For several filter examples, DSP codes are gen-
erated by this compiler, and are compared with the
conventional DIMPL compiler. These filters include
rather complicated memory access sequences, and they
are appropriate for the comparison in memory address-
ing methods.

Table 2 shows the comparison of the proposed
method to the conventional method in terms of the num-
ber of immediate AR load operations included in the
generated codes. In the table, total program steps, the
total number of memory accesses and the number of
variables for example filters are also shown. From the
table, the number of immediate AR load operations is
reduced up to 20%.

4. AR Assignment
4.1 AR Assignment Algorithms

As mentioned above, AR assignment and memory al-
location is performed separately in the case of DSPs
with multiple ARs. Furthermore, for the simplicity, ev-
ery variable is assigned to one of ARs, rather than every
access is assigned to an AR, so that ALOMA algorithm
is applied after the AR assignment. This limits memory
space accessed by each AR, and reduces memory access
pattern choices. Memory access patterns derived under
this limitation, however, are efficient enough for many
examples.

Suppose a given program has a set V' of variables
on memory space, and they are accessed by k& ARs of

SUGINO et al: DSP CODE OPTIMIZATION UTILIZING MEMORY ADDRESSING OPERATION

Estimation
&anition of Variab1951 s f (P)
! N
Vi £ Vk
A O
48 Go) - Ol

aLoma /X O

N
)
3

O |aLoma

SRl -

Memory Space
Fig. 5 AR assignment diagram.

a target DSP. AR assignment algorithm partitions the
variables V' into k subsets of variables (V7 through V),
so that each group is accessed by an individual AR. For
every subset, the memory allocation is decided by the
ALOMA algorithm.

The goal of AR assignment is to find a parti-
tion P = {Vi,Vs,...,V;} with the least immediate
AR loads. By examining all the possible partition P,
optimal AR assignment with the least immediate AR
loads can be found, but its computation costs too much.
Therefore, practically, a heuristic method is employed to
derive the partition of variables. The diagram of AR
assignment algorithm is shown in Fig.5. Partition and
memory allocation are iteratively performed in the al-
gorithm, where f(P) represents the quality of partition
P, and controls partitioning at the next iteration. In
this paper, f(P) is given by the number of immediate
AR loads at first.

4.2 AR Assignment Based on Min-Cut Algorithm

AR assignment problem is partitioning variables into
subsets 50 as to mininimize cost f{P) or the total num-
ber of AR loads. It is quite similar to well-known
min-cut problem, which is dividing a graph into two
subgraphs so as to minimize the sum of the costs on
all edges. The heuristic iterative method for solving
min-cut problem proposed by Fiducca and Matthey-
ses[12],{13] is applied to AR assignment problem.

Min-cut algorithm, which partitions a set of the
variables V' into two subsets, A and B, is shown below.
In this algorithm, gain() is employed to show how much
partitioned subsets are improved after the movement of
a variable. When variable o € A moves to B, gain(a) is
defined by,

gain(a) = f({4, B}) — f({A - {a}, B+{a}}). (5)

1221

In the following min-cut algorithm, evaluation of this
function and movement of variable are iteratively per-
formed and finally one of the best partitioning is de-
rived.

Min-cut algorithm

1. Decide the initial partition Py = {Ag, Bg}. (itera-
tion cycle i = 0).

2. Evaluate the gain() for all the variables in P;.

3. Select the variable with the maximum gain (= g;41)
among not-yet-moved variables in P;.

4. Move the selected variable from the current subset
to the other subset.

5. If all the variables have been selected and moved,
go to step 6. Otherwise, let i < 7+ 1 and return to
step 2.

k k
6. Choose k to maximize Z gi, and let gmax = Z gi.

i=1 i=1

7. If gmax > 0, partition P is better than the initial
partition Fy. Let Py be a new initial partition Py
and go back to step 2. Otherwise, gma.x = 0 and
the optimal partition is derived in Py.

Since the min-cut algorithm divides the given set of vari-
able into two subsets, partition into 3 or more subsets
requires iterative use of this algorithm. The algorithm
to partition variables into k subsets is shown below.

k-partition algorithm

1. Select a pair of subsets V;, V; among all the subsets
W, Va,..., Vk}.

2. Apply min-cut algorithm to this pair.

3. Repeat step 1-2 until no movement of variable be-
tween V1, V3, ..., Vi appears.

Selection of a pair seems very important in this algo-
rithm. Although several strategies are tested, the num-
ber of AR loads in the resultant code is not much im-
proved. Rather than selection of a pair, strategy for
initial partition has an effect on the resultant code. The
following two strategies are examined.

1. Assign all the variables into one of the subsets (all
other subsets are empty).

2. Assign variables into subsets randomly.

The resultant codes shows the first strategy is about 20%
superior to the second strategy, so that the first strategy
is chosen in this paper.

1222

Table 3 Result of AR assignment based on min-cut algorithm
(number of immediate AR loads).

Number of ARs

Filt
ilters i] 7 | 3 | y
3rd order lattice 14 3 1 0
5th order wave 18 7 4 3
11th order wave 67 28 17 13
17th order wave 110 44 39 20

Table 4 Result of AR assignment based on SA.
(number of immediate AR loads).

Number of ARs

Filter T 5 3 7]
3 0 0
3rd order lattice 14 3.0 0.0 0.0
3 0
7 4 I
5th order wave 18 7.0 4.0 1.1
8 5 2

25 15 10
11th order wave 67 26.1 16.6 | 11.5
27 18 15
40 25 16
17th order wave 110 436 | 294 | 21.3
47 34 26

4.3 Code Generation Result

The above mentioned method is applied to DIMPL
compiler for DSP56000, which is mentioned in the for-
mer chapter, and the numbers of immediate AR loads
in generated codes are tabulated in Table 3.

For the comparison, a partition method based on
simulated annealing technique (SA) is applied, and the
code generation results are shown in in Table 4, where
the best, the average and the worst results in 500 trials
are tabulated in first, second and third row, respectively
for each case.

From these tables, the AR assignment based on
min-cut algorithm is comparable to that based on SA
in terms of the number of immediate AR loads. The
AR assignment based on SA however takes longer time
than that based on min-cut algorithm. Moreover, by the
AR assignment based on SA, the number of immediate
AR loads changes for each trial. Consequently, the AR
assignment method based on min-cut algorithm is said
to be better.

4.4 An Improved Cost Function

In the above mentioned methods, the number of im-
mediate AR loads is employed for cost function f(P),
and it is estimated by ALOMA algorithm, which costs
O(n®) of computational time (n: the number of vari-
ables). Therefore, a simple method to estimate the num-
ber of AR loads is desired.

The rank of cycle in a graph G gives the minimum
number of edges to be removed from a graph, when the

IEICE TRANS. FUNDAMENTALS, VOL. E79-A, NO. 8 AUGUST 1996

Table 5 Computation time for partitioning (second)
into 4 subsets by method based on min-cut.
filters cost based A novel
‘ on ALOMA cost
11th order wave 427 0.7
17th order wave 6,747 3.0
graph is linearized. It is estimated as

v(G) = |B| = V[+w(G), (6)

where |E|, |V| and w(G) represent the numbers of edges,
nodes and connections in G, respectively. When |V| and
w(G) in a given AG G are assumed to be constant, the
number of edges to be removed is related only to |F|,
and the novel cost function is given by

f(P) = Z |E(Gy), (7)

where |E(G;)| represents the number of edges in AG
G, and G; denotes the access graph formed by the par-
titioned subset V;. By use of this novel cost function,
estimating the number of AR loads costs O(n) of com-
putational time. In return, this cost function does not
always give the precious estimation of AR loads, espe-
cially when a given AG includes no cycle but includes
forks. Such an AG, however, rarely appears in many
examples.

This cost function f(P) is implemented in AR as-
signment part of compilers, which work on NWS-5000
SB (Sony). Table 5 shows the comparison of two cost
functions in terms of the computational times for sev-
eral filter examples. From the table, AR assignment
by this novel cost function is performed in remarkably
short time. The number of AR loads in a derived code,
however, increases slightly.

5. Conclusion

In this paper, methods to derive an efficient memory
access pattern for DSPs, of which memory space is in-
dexed by address registers (ARs), are proposed. First,
memory location and access operations are discussed.
They are modeled by an access graph, and, by remov-
ing cycles and fork nodes from this graph, an efficient
memory allocation is derived. This method is applied
to DIMPL compiler for DSP56000 and generated code
can save up to 20% of immediate AR loads.

Second, DSP with multiple address registers are as-
sumed and an efficient memory access pattern for these
DSPs can be derived by use of the methods to assign
variables into several ARs together with the proposed
memory allocation method. These methods are applied
to the DIMPL compiler, and from the code generation
results, the AR assignment method based on min-cut
algorithm is found to be superior to that based on sim-
ulated annealing techniques. Improvement in compu-
tational period for AR assignment is also studied in

SUGINO et al: DSP CODE OPTIMIZATION UTILIZING MEMORY ADDRESSING OPERATION

this article. Methods to derive further efficient memory
access pattern must be investigated.

Acknowledgement

The authors are grateful to Ass. Prof. S. Takagi of
Tokyo Institute of Technology, for the valuable discus-
sions. This work is a part of the Research Body of
CAD21 (Computer Aided Design for 21th Century) in
Tokyo Institute of Technology.

References

[1] R. Simar Jr. and A. Davis, “The application of hign-level
langueges to single chip digital signal processors,” 1988
ICASSP, pp.1678—1681, 1988.

[2] Texas Instruments, “TMS320C30 C Compiler—Reference
Guide,” 1990.

[3] J. Hartung, S.L. Gay, and S.G. Haigh, “A practical C
language compiler/optimizer for real-time implementa-
tions on a family of floating Point DSPs,” 1988 ICASSP,
pp-1674—1677, 1988.

[4] E.A. Lee, Wai-Hung Ho, et al., “Gabriel: A design en-
vironment for DSP,” IEEE Trans. ASSP, vol.37, no.ll,
pp.1751-1761, Nov. 1989.

[5] N. Sugino, A. Toshikiyo, E. Watanabe, and A. Nishihara,
“Computational ordering of digital signal processing net-
works and its application to compilers for signal proces-
sors,” IEICE Trans., pp.327-335, 1988.

[6] N. Sugino, S. Ohbi, and A. Nishihara, “Computational
ordering of digital network under the pipeline constraints
and its application to compiler for DSPs,” Proc. ECCTD
’89, pp.395-399, Sept. 1989.

[7] S. Ohbi, N. Sugino, and A. Nishihara, “Automatic
DSP code generation with effective utilization of storage
resources—Improvement in DSP compiler DIMPL—,”
Proc. of 4th Digital Signal Processing Symposium, Dec.
1989.

[8] S. Iimuro, N. Sugino, A. Nishihara, and N. Fujii, “Code
optimization method utilizing memory addressing and its
application to DSP compilers,” Proc. IEICE Fall Conf.
A-112, 1992.

[9] S. Iimuro, N. Sugino A. Nishihara, and N. Fujii, “Code
optimization method utilizing memory addressing opera-
tion and its application to DSP compiler,” Proc. of Asia-
Pacific Conference on Circuit and Systems, pp.151-156,
1994.

[10] MOTOROLA, “DSP56000/DSP56001 Digital Signal Pro-
cessor User’s Manual,” 1990.

[11] NEC, “xPD77230 Users Manual,” 1987.

[12] B.W. Kernighan and S. Lin, “An efficient heuristic proce-
dure for partitioning graphs,” Bell System Technical Jour-
nal, vol.49, pp.291-307, Feb. 1970.

[13] C.M. Fiducca and R.M. Mattheyses, “A linear-time heuris-
tic for improving network partitions,” Proc. 19th DAC,
pp.175-181.

[14] S. Kirkpatrick, “Optimization by simulated annealing,”
Science, vol.220, no.4598, pp.671-680, 1983.

1223

Nobuhiko Sugino was born in
Yokkaichi, Mie, Japan on November 19,
1964. He received B.E.,, M.E. and Dr.
Eng. degrees in physical electronics from
Tokyo Institute of Technology in 1987,
1989 and 1992, respectively. Since 1992,
he has been with Tokyo Institute of Tech-
nology, where he is now a Research Asso-
ciate of Department of Physical Electron-
ics, Faculty of Engineering. His main re-
search interests are in hardware and soft-
ware for digital signal processing, especially in software develop-
ment tools for digital signal processors. Dr. Sugino is a member
of IEEE.

Satoshi Iimuro was born in Yoko-
hama, Japan on May 23, 1968. He re-
ceived B.E. and M.E. Eng. degrees in
physical electronics from Tokyo Institute
of Technology in 1992 and 1994, respec-
tively. Since 1994, he has been with Hi-
tachi, Ltd., where he is now a Researcher
of Multimedia System Research and De-
velopment Department. His main re-
search interests are in development of dig-
ital televison receiver, especially in hard-
ware and software of receiver for Satellite digital broadcasting.

AKkinori Nishihara was born in
Fukuoka, Japan, on February 26, 1951.
He received the B.E., M.E. and Dr. Eng.
degrees in electronics from Tokyo Insti-
tute of Technology in 1973, 1975 and
1978, respectively. Since 1978 he has
been with Tokyo Institute of Technology,
where he is now Associate Professor of
Department of Physical Electronics, Fac-
ulty of Engineering. His main research
interests are in filter design, 1D and multi-
D signal processing, and modern applications of classical circuit
theory. From 1990 to 1994 he served as an Associate Editor of
the IEICE Trans. Fundamentals, and is now serving as an As-
sociate Editor of the IEEE Trans. Circuits & Systems I1. He is
now Student Activities Committee Chair, IEEE Region 10 (Asia
Pacific Region). Dr. Nishihara is a member of IEEE, EURASIP,
ECS and JET.

1224

Nobuo Fujii received B.E. degree from
Keio University, Yokohama, Japan, and
M.E. and Doctor of Engineering degrees
from Tokyo Institute of Technology, To-
kyo, Japan, in 1966, 1968, and 1971, re-
spectively. Since 1971, he has been with
the Faculty of Engineering, Tokyo Insti-
tute of Technology where he is now a pro-
fessor in the Department of Physical Elec-
tronics. From 1984 to 1985, he was a vis-
iting scholar at the University of Califor-
nia, Santa Barbara. From 1990 to 1992, he served as an editor of
the Transaction of the Institute of Electronics, Information, and
Communication Engineers and is now one of the chief editors
of the International Journal of Analog Integrated Circuits and
Signal Processing, Kluwer Academic Publishers. He is the chair-
man of the technical group of electronic circuits of IEE Japan
and the chairman of the Circuits and Systems Society of IEEE
Tokyo Chapter. His main interest lies in the fields of active net-
works, analog integrated circuits, and analog signal processing.
He is the recipient of the Best Paper Award of the Institute of
Electrical and Communication Engineers of Japan. He is the
author of more than 10 books. Dr. Fujii is a member of the In-
stitute of Electrical and Electronics Engineers and the Institute
of Electrical Engineers of Japan.

IEICE TRANS. FUNDAMENTALS, VOL. E79—-A, NO. 8 AUGUST 1996

