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ABSTRACT

We propose vocabulary expansion for video semantic index-
ing. From many semantic concept detectors obtained by
using training data, we make detectors for concepts not in-
cluded in training data. First, we introduce Mikolov’s word
vectors to represent a word by a low-dimensional vector.
Second, we represent a new concept by a weighted sum of
concepts in training data in the word vector space. Finally,
we use the same weighting coefficients for combining de-
tectors to make a new detector. In our experiments, we
evaluate our methods on the TRECVID Video Semantic In-
dexing (SIN) Task. We train our models with Google News
text documents and ImageNET images to generate new se-
mantic detectors for SIN task. We show that our method
performs as well as SVMs trained with 100 TRECVID ex-
ample videos.

Categories and Subject Descriptors

I.4 [Computing Methodologies]: Image Processing and
Computer Vision; 1.4.9 [Applications]: Multimedia Search
and Recommendation

Keywords

Semantic Indexing; Video Search; Word Vectors; Deep Learn-
ing

1. INTRODUCTION

A large amount of video data has made been available
on the Internet with advances in information and commu-
nication technologies. Semantic indexing is one of the most
important techniques in multimedia applications including
video search, surveillance and robot vision. Here, semantic
indexing is the process to detect semantic concepts of ob-
jects, events, and scenes, e.g., Bus, Airplane, Dancing, and
Landscape. Since the diversity of semantic concepts is very
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large, it has been a challenging task to bridge the semantic
gap between low-level features and high-level semantics.

Most, previous studies have focused on supervised learn-
ing methods such as support vector machines (SVMs) with
Fisher vectors [1], and deep convolutional neural networks
(CNNs) [2]. The Fisher vectors extend bag-of-visual-words
[10] to a probabilistic framework by introducing Gaussian
mixture models. SVMs are often trained for each semantic
concept with them. Deep CNNs [2] typically have more than
five layers for convolution and pooling, in which the input
is a raw image and the output is a set of detection scores
for each semantic concept. With most of these approaches,
training images are required to be manually annotated. For
example, to train a CNN for detecting object categories, sev-
eral thousands of training images or videos are needed for
each category.

Several methods use text data appeared with each im-
age/video to decrease such annotation costs. For example,
Joint embedding [3, 4] estimates a concept category from the
text data appearing with their images at the same time, for
example, on the same web page. But such a co-occurrence
based approach cannot be used to detect an unseen concept
in training data, i.e., a concept whose corresponding text
data are not available in the training phase.

In natural language processing, word embedding methods
have shown to be effective to capture semantic relationships
between words. Their typical applications include machine
translation [5], and web-document classification [6]. For
example, word-vector representation proposed by Mikolov
et. al [7] represents a word by a low-dimensional vector.
They reported that the distance between semantically simi-
lar words tends to be smaller in the word vector space. Its
interesting property is that semantic regularities are cap-
tured with vector operations for addition and subtraction.
For example, a result of ¢(King) — ¢(Man) + ¢(Woman) is
close to ¢(Queen) where ¢(w) is a word vector of a word w.
This may be also helpful to explore the relationship between
semantic concepts in video.

In this paper, we propose a vocabulary expansion method
based on word vectors for semantic indexing. From pre-
trained semantic-concept detectors, we make detectors for
out-of-vocabulary concepts, i.e., concepts not included in
training data, by using word vectors. To the best of our
knowledge, applying word vectors to vocabulary expansion
for video semantic indexing is novel. By introducing word
vectors, we expect that our framework provides general se-
mantic concept detectors, which are effective for detecting
various semantic concepts in Internet videos. In our exper-



iments, our method is evaluated on the TRECVID Video
Semantic Indexing Task [9]. We train our model without
TRECVID data by using the Google News documents [7]
and the ImageNET [8] dataset and show that our method
performs as well as SVMs trained with 100 example videos
for each TRECVID semantic concept with Fisher-vector rep-
resentation.

The rest of this paper is organized as follows. Section 2
presents the proposed framework. Section 3 shows experi-
mental evaluations, and Section 4 describes conclusion and
future work.

2. PROPOSED METHOD

Let = be a video and W be a set of words. We assume the
word vectors ¢(w) € R for all the words in W are obtained
by introducing a word embedding method (e.g.,[7]). Our
goal is to build visual concept detectors for each word.

The easiest way is to train detectors f,(z) (e.g., SVMs)
for each w € W. However, this is not always a reasonable
solution for real applications such as video search allowing
users to enter any query words since the size of W is often
large. To solve this problem, we build a detector for w ¢ C
from pre-trained detectors by using word vectors, where we
assume pre-trained detectors for a subset C C W are given.

We first approximate a word vector for w ¢ C with the
word vectors for words in C by

B N
d(w) = Zaid)(wi)v 1)

where ¢(w) is an approximation of a word vector ¢(w), N
is the number of words in C, w; is the i-th word in C, and «a;

is a weighting coefficient. We then use the same weighting
coefficients for making a detector by

fu(z) = Zaz'fwi(x) (2)

Here we assume that those concepts (words) semantically
similar to each other have similar visual features.

The following subsections present three methods using
1) vector quantization (VQ), 2) k-nearest neighbor search
(KNN), and 3) Gaussian mixture models (GMMs), to de-
termine the weighting coefficients in Eq. (1).

2.1 Vector Quantization

Approximating a word by the most similar word by ap-
plying vector quantization to word vectors is the simplest
way to obtain the weighting coefficients. «; is given by

. {1 ifi = arg{nin d(p(w), p(w;))

0 otherwise

; ®3)

where d(-,-) is the distance between two word vectors. For
example, cosine distance between word vectors [7] can be

introduced to here.

2.2 k-Nearest Neighbor Search

The k-nearest neighbor (KNN) search, which provides k
similar words, is an extension of VQ to assign more than
one similar words to a given word. With KNN, we set the
weighting coefficients as

1 ip -
ab:{k if i € KNN(w) @

0 otherwise

where KNN(w) is a set of k nearest words of w based on the
distance measure d(-,-) in Sec. 2.1.

2.3 Gaussian Mixture Models

Gaussian mixture models (GMMs) capture variance infor-
mation for each pre-defined words and provide soft weighting
for «; as

= TN (@W)|P(wi), Xi) , 5)
Sy mN (d(w)|g(wi), i)
where ¢(w) is a word vector, 7; is a mixture coefficient, and
N(-|¢(w;), ;) is a pdf of Gaussian distribution with a mean
vector ¢(w;) and a covariance matrix %; for the i-th mixture
component. Note that the word vectors for pre-determined
words are used as mean vectors.

To estimate the covariance matrixes and the mixture co-
efficients from the set of word vectors for W, we use the
Expectation Maximization (EM) algorithm. Note that W
includes words w ¢ C. In the M-step, the parameters are
updated by

1
™, = W Z Ciw, (6)

weW

D= e 3 (6(w) — 6(w)(6(w) — (w:)”

ZWEW Ciw weW
(M)

where c¢;y, is a responsibility of w to the i-th mixture com-
ponent. The responsibilities are computed in the E-step as

e = — TN (@W)[$(wi), 5i) ®)
S mN (d(w)|g(w:), 5i)

For the initialization values, we use m; = + and %; = [
where [ is the identity matrix.

2.4 Extension to a Set of Words

To further extend the discriminative function f to accept
a set of words e.g., Airplane+Flying, we simply make the
average vector as follows. Let s = {w}?_, be a set of word
vectors. The average vector ¢(s) is given by

T

¢(s) =D d(w"). (9)

By approximating this vector in the same way as Eq. (1),
the three methods presented in Sec. 2.1 to 2.3 are applied

in the same way to build a detector for s.

3. EXPERIMENTS

3.1 Experimental Setup

We evaluate our method on the TRECVID 2010 Semantic
Indexing dataset, which consists of 11,556 Internet video
clips with creative commons licenses. Each video clip is
divided into video shots based on the switching of a camera.
Shot boundaries and a key-frame for each shot are provided
with the dataset. The total number of video shots is 264,673,
which is divided into 119,685 for training and 144,988 for
testing. Only the key-frame images of the testing set are
used to evaluate our methods.

The task is to detect 346 semantic concepts including ob-
jects, events, and scenes, e.g., Boat, AirplaneFlying, Danc-
ing, Walking, Basketball and Cityscape, from video shots.
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Figure 1: Evaluation using different k for k-nearest
neighbor search.

Figure 3: Average Precision (AP) by semantic concepts.
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Figure 2: Comparison with Fisher vectors using
different numbers of training samples.
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AP for randomly sampled 30 of 346 semantic

concepts are reported. FV: Fisher vectors of dense SIFT features. SVMs are trained on randomly sampled
two examples, one for positive and one for negative. W-GMM: our word-based model using a GMM (Sec 2.3).

Table 1: Mean AP on TRECVID by methods.
W-VQ, W-KNN, W-GMM: our word-vector based
methods presented in Sec. 2, Fisher Vector: SVMs
trained on one positive and one negative samples
with Fisher vectors.

Method Mean AP
W-VQ 0.127
W-KNN (k = 10) 0.140
W-GMM 0.153
Fisher Vector (one example) [1] 0.101

For semantic concepts presented by more than one word, we
apply the method in Sec. 2.4. The evaluation measure is
Mean Average Precision (Mean AP) over the 346 semantic
concepts !

For the pre-trained concept detectors in Sec. 2, a CNN
trained with 1,000 objects in the ImageNET Challenge 2012
[8] is used with the Caffe implementation [15]. Note that
semantic concepts on TRECVID and the objects on Ima-
geNET are exclusive. For the distance measure between
words, cosine distance between 300-dimension word repre-

We use annotations provided in TRECVID 2014 to compute
average precision, since the official annotations in 2010 only has
30 semantic concepts.

sentations in [7] is used. This measure is trained on the
Google News dataset, which has 100 billion words with 3
million synsets. We use the word2vec implementation [7].
We compare our methods with a baseline using SVMs with
Fisher vectors (FV) trained for each 346 semantic concepts
trained by using annotations provided in the TRECVID
dataset. We follow the FV extraction process with dense
SIFT features in [1].

3.2 Experimental Results

Main Results

Table 1 compares Mean AP for word-based vector quantiza-
tion (W-VQ), k-nearest neighbor search (W-KNN), and the
Gaussian mixture model (W-GMM). We see that W-GMM
outperforms the others. This shows that soft weighting in
a GMM is effective for representing a semantic concepts by
pre-determined objects.

For the parameter £ in W-KNN, k£ > 5 is reasonable as
shown in Figure 1. However, W-GMM is better than the
best result of W-KNN using different k. This shows the
effectiveness of probabilistic estimation of word distribution
presented in Sec. 2.3.

Comparison with Fisher Vector

Comparison with Fisher Vector (FV) representation [1] is
shown in Table 1. With FV, SVMs are trained for each



semantic concept in TRECVID with randomly sampled two
examples, one for positive and one for negative. The Mean
AP shown in the table is the average value of ten repeated
experiments. We see that the FV performs worse than our
methods. This is because the number of training samples is
not enough to train SVMs.

In Figure 2, the number of training samples for FV is in-
creased from 2 to 2,000. The result of W-GMM is also plot-
ted on the figure. We conclude that W-GMM, which uses no
examples from TRECVID, performs as well as SVMs trained
with 100 example videos for each TRECVID semantic con-
cept.

Analysis

Figure 3 shows AP for randomly sampled 30 of 346 seman-
tic concepts. We see that our W-GMM performs well for
objects such as vehicles and animals. As shown in Figure 4,
which analyzes the relation between word vectors and visual
features, vehicles and animals are separated into two clus-
ters. This confirms our assumption that semantically similar
concepts tend to have similar visual features. We conclude
that this tendency helped to detect concepts in TRECVID
that are not included in training data.

On the other hand, it is difficult to detect actions from
video. For example, for a concept of “Swimming”, concepts
about actions with motion detectors and/or motion features
should be added to the pre-trained detector to improve the
action detection performance.

4. CONCLUSION

We proposed vocabulary expansion for video semantic in-
dexing without any additional training with annoations. From
pre-trained semantic-concept detectors, we made detectors
for out-of-vocabulary concepts. Our experiments showed
that the word-vector based Gaussian mixture models (W-
GMM) performed the best and as well as SVMs trained with
100 example videos for each TRECVID semantic concept.
Our future work will focus on motion analysis for semantic
indexing to detect actions and events in videos.
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